Ruby 3.5.0dev (2025-04-25 revision 71166f60d95f0d78de5f151205ef6060de5e054e)
vm.c (71166f60d95f0d78de5f151205ef6060de5e054e)
1/**********************************************************************
2
3 Vm.c -
4
5 $Author$
6
7 Copyright (C) 2004-2007 Koichi Sasada
8
9**********************************************************************/
10
11#define vm_exec rb_vm_exec
12
13#include "eval_intern.h"
14#include "internal.h"
15#include "internal/class.h"
16#include "internal/compile.h"
17#include "internal/cont.h"
18#include "internal/error.h"
19#include "internal/encoding.h"
20#include "internal/eval.h"
21#include "internal/gc.h"
22#include "internal/inits.h"
23#include "internal/missing.h"
24#include "internal/object.h"
25#include "internal/proc.h"
26#include "internal/re.h"
27#include "internal/ruby_parser.h"
28#include "internal/symbol.h"
29#include "internal/thread.h"
30#include "internal/transcode.h"
31#include "internal/vm.h"
32#include "internal/sanitizers.h"
33#include "internal/variable.h"
34#include "iseq.h"
35#include "symbol.h" // This includes a macro for a more performant rb_id2sym.
36#include "yjit.h"
37#include "ruby/st.h"
38#include "ruby/vm.h"
39#include "vm_core.h"
40#include "vm_callinfo.h"
41#include "vm_debug.h"
42#include "vm_exec.h"
43#include "vm_insnhelper.h"
44#include "ractor_core.h"
45#include "vm_sync.h"
46#include "shape.h"
47#include "insns.inc"
48#include "zjit.h"
49
50#include "builtin.h"
51
52#include "probes.h"
53#include "probes_helper.h"
54
55#ifdef RUBY_ASSERT_CRITICAL_SECTION
56int ruby_assert_critical_section_entered = 0;
57#endif
58
59static void *native_main_thread_stack_top;
60
61VALUE rb_str_concat_literals(size_t, const VALUE*);
62
64
65extern const char *const rb_debug_counter_names[];
66
67PUREFUNC(static inline const VALUE *VM_EP_LEP(const VALUE *));
68static inline const VALUE *
69VM_EP_LEP(const VALUE *ep)
70{
71 while (!VM_ENV_LOCAL_P(ep)) {
72 ep = VM_ENV_PREV_EP(ep);
73 }
74 return ep;
75}
76
77static inline const rb_control_frame_t *
78rb_vm_search_cf_from_ep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp, const VALUE * const ep)
79{
80 if (!ep) {
81 return NULL;
82 }
83 else {
84 const rb_control_frame_t * const eocfp = RUBY_VM_END_CONTROL_FRAME(ec); /* end of control frame pointer */
85
86 while (cfp < eocfp) {
87 if (cfp->ep == ep) {
88 return cfp;
89 }
90 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
91 }
92
93 return NULL;
94 }
95}
96
97const VALUE *
98rb_vm_ep_local_ep(const VALUE *ep)
99{
100 return VM_EP_LEP(ep);
101}
102
103PUREFUNC(static inline const VALUE *VM_CF_LEP(const rb_control_frame_t * const cfp));
104static inline const VALUE *
105VM_CF_LEP(const rb_control_frame_t * const cfp)
106{
107 return VM_EP_LEP(cfp->ep);
108}
109
110static inline const VALUE *
111VM_CF_PREV_EP(const rb_control_frame_t * const cfp)
112{
113 return VM_ENV_PREV_EP(cfp->ep);
114}
115
116PUREFUNC(static inline VALUE VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp));
117static inline VALUE
118VM_CF_BLOCK_HANDLER(const rb_control_frame_t * const cfp)
119{
120 const VALUE *ep = VM_CF_LEP(cfp);
121 return VM_ENV_BLOCK_HANDLER(ep);
122}
123
124int
125rb_vm_cframe_keyword_p(const rb_control_frame_t *cfp)
126{
127 return VM_FRAME_CFRAME_KW_P(cfp);
128}
129
130VALUE
131rb_vm_frame_block_handler(const rb_control_frame_t *cfp)
132{
133 return VM_CF_BLOCK_HANDLER(cfp);
134}
135
136#if VM_CHECK_MODE > 0
137static int
138VM_CFP_IN_HEAP_P(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
139{
140 const VALUE *start = ec->vm_stack;
141 const VALUE *end = (VALUE *)ec->vm_stack + ec->vm_stack_size;
142 VM_ASSERT(start != NULL);
143
144 if (start <= (VALUE *)cfp && (VALUE *)cfp < end) {
145 return FALSE;
146 }
147 else {
148 return TRUE;
149 }
150}
151
152static int
153VM_EP_IN_HEAP_P(const rb_execution_context_t *ec, const VALUE *ep)
154{
155 const VALUE *start = ec->vm_stack;
156 const VALUE *end = (VALUE *)ec->cfp;
157 VM_ASSERT(start != NULL);
158
159 if (start <= ep && ep < end) {
160 return FALSE;
161 }
162 else {
163 return TRUE;
164 }
165}
166
167static int
168vm_ep_in_heap_p_(const rb_execution_context_t *ec, const VALUE *ep)
169{
170 if (VM_EP_IN_HEAP_P(ec, ep)) {
171 VALUE envval = ep[VM_ENV_DATA_INDEX_ENV]; /* VM_ENV_ENVVAL(ep); */
172
173 if (!UNDEF_P(envval)) {
174 const rb_env_t *env = (const rb_env_t *)envval;
175
176 VM_ASSERT(imemo_type_p(envval, imemo_env));
177 VM_ASSERT(VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED));
178 VM_ASSERT(env->ep == ep);
179 }
180 return TRUE;
181 }
182 else {
183 return FALSE;
184 }
185}
186
187int
188rb_vm_ep_in_heap_p(const VALUE *ep)
189{
190 const rb_execution_context_t *ec = GET_EC();
191 if (ec->vm_stack == NULL) return TRUE;
192 return vm_ep_in_heap_p_(ec, ep);
193}
194#endif
195
196static struct rb_captured_block *
197VM_CFP_TO_CAPTURED_BLOCK(const rb_control_frame_t *cfp)
198{
199 VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
200 return (struct rb_captured_block *)&cfp->self;
201}
202
203static rb_control_frame_t *
204VM_CAPTURED_BLOCK_TO_CFP(const struct rb_captured_block *captured)
205{
206 rb_control_frame_t *cfp = ((rb_control_frame_t *)((VALUE *)(captured) - 3));
207 VM_ASSERT(!VM_CFP_IN_HEAP_P(GET_EC(), cfp));
208 VM_ASSERT(sizeof(rb_control_frame_t)/sizeof(VALUE) == 7 + VM_DEBUG_BP_CHECK ? 1 : 0);
209 return cfp;
210}
211
212static int
213VM_BH_FROM_CFP_P(VALUE block_handler, const rb_control_frame_t *cfp)
214{
215 const struct rb_captured_block *captured = VM_CFP_TO_CAPTURED_BLOCK(cfp);
216 return VM_TAGGED_PTR_REF(block_handler, 0x03) == captured;
217}
218
219static VALUE
220vm_passed_block_handler(rb_execution_context_t *ec)
221{
222 VALUE block_handler = ec->passed_block_handler;
223 ec->passed_block_handler = VM_BLOCK_HANDLER_NONE;
224 vm_block_handler_verify(block_handler);
225 return block_handler;
226}
227
228static rb_cref_t *
229vm_cref_new0(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int use_prev_prev, int singleton)
230{
231 VALUE refinements = Qnil;
232 int omod_shared = FALSE;
233
234 /* scope */
235 union {
237 VALUE value;
238 } scope_visi;
239
240 scope_visi.visi.method_visi = visi;
241 scope_visi.visi.module_func = module_func;
242
243 /* refinements */
244 if (prev_cref != NULL && prev_cref != (void *)1 /* TODO: why CREF_NEXT(cref) is 1? */) {
245 refinements = CREF_REFINEMENTS(prev_cref);
246
247 if (!NIL_P(refinements)) {
248 omod_shared = TRUE;
249 CREF_OMOD_SHARED_SET(prev_cref);
250 }
251 }
252
253 VM_ASSERT(singleton || klass);
254
255 rb_cref_t *cref = IMEMO_NEW(rb_cref_t, imemo_cref, refinements);
256 cref->klass_or_self = klass;
257 cref->next = use_prev_prev ? CREF_NEXT(prev_cref) : prev_cref;
258 *((rb_scope_visibility_t *)&cref->scope_visi) = scope_visi.visi;
259
260 if (pushed_by_eval) CREF_PUSHED_BY_EVAL_SET(cref);
261 if (omod_shared) CREF_OMOD_SHARED_SET(cref);
262 if (singleton) CREF_SINGLETON_SET(cref);
263
264 return cref;
265}
266
267static rb_cref_t *
268vm_cref_new(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval, int singleton)
269{
270 return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, FALSE, singleton);
271}
272
273static rb_cref_t *
274vm_cref_new_use_prev(VALUE klass, rb_method_visibility_t visi, int module_func, rb_cref_t *prev_cref, int pushed_by_eval)
275{
276 return vm_cref_new0(klass, visi, module_func, prev_cref, pushed_by_eval, TRUE, FALSE);
277}
278
279static int
280ref_delete_symkey(VALUE key, VALUE value, VALUE unused)
281{
282 return SYMBOL_P(key) ? ST_DELETE : ST_CONTINUE;
283}
284
285static rb_cref_t *
286vm_cref_dup(const rb_cref_t *cref)
287{
288 const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref);
289 rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref;
290 int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref);
291 int singleton = CREF_SINGLETON(cref);
292
293 new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton);
294
295 if (!NIL_P(CREF_REFINEMENTS(cref))) {
296 VALUE ref = rb_hash_dup(CREF_REFINEMENTS(cref));
297 rb_hash_foreach(ref, ref_delete_symkey, Qnil);
298 CREF_REFINEMENTS_SET(new_cref, ref);
299 CREF_OMOD_SHARED_UNSET(new_cref);
300 }
301
302 return new_cref;
303}
304
305
306rb_cref_t *
307rb_vm_cref_dup_without_refinements(const rb_cref_t *cref)
308{
309 const rb_scope_visibility_t *visi = CREF_SCOPE_VISI(cref);
310 rb_cref_t *next_cref = CREF_NEXT(cref), *new_cref;
311 int pushed_by_eval = CREF_PUSHED_BY_EVAL(cref);
312 int singleton = CREF_SINGLETON(cref);
313
314 new_cref = vm_cref_new(cref->klass_or_self, visi->method_visi, visi->module_func, next_cref, pushed_by_eval, singleton);
315
316 if (!NIL_P(CREF_REFINEMENTS(cref))) {
317 CREF_REFINEMENTS_SET(new_cref, Qnil);
318 CREF_OMOD_SHARED_UNSET(new_cref);
319 }
320
321 return new_cref;
322}
323
324static rb_cref_t *
325vm_cref_new_toplevel(rb_execution_context_t *ec)
326{
327 rb_cref_t *cref = vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE /* toplevel visibility is private */, FALSE, NULL, FALSE, FALSE);
328 VALUE top_wrapper = rb_ec_thread_ptr(ec)->top_wrapper;
329
330 if (top_wrapper) {
331 cref = vm_cref_new(top_wrapper, METHOD_VISI_PRIVATE, FALSE, cref, FALSE, FALSE);
332 }
333
334 return cref;
335}
336
337rb_cref_t *
338rb_vm_cref_new_toplevel(void)
339{
340 return vm_cref_new_toplevel(GET_EC());
341}
342
343static void
344vm_cref_dump(const char *mesg, const rb_cref_t *cref)
345{
346 ruby_debug_printf("vm_cref_dump: %s (%p)\n", mesg, (void *)cref);
347
348 while (cref) {
349 ruby_debug_printf("= cref| klass: %s\n", RSTRING_PTR(rb_class_path(CREF_CLASS(cref))));
350 cref = CREF_NEXT(cref);
351 }
352}
353
354void
355rb_vm_block_ep_update(VALUE obj, const struct rb_block *dst, const VALUE *ep)
356{
357 *((const VALUE **)&dst->as.captured.ep) = ep;
358 RB_OBJ_WRITTEN(obj, Qundef, VM_ENV_ENVVAL(ep));
359}
360
361static void
362vm_bind_update_env(VALUE bindval, rb_binding_t *bind, VALUE envval)
363{
364 const rb_env_t *env = (rb_env_t *)envval;
365 RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq);
366 rb_vm_block_ep_update(bindval, &bind->block, env->ep);
367}
368
369#if VM_COLLECT_USAGE_DETAILS
370static void vm_collect_usage_operand(int insn, int n, VALUE op);
371static void vm_collect_usage_insn(int insn);
372static void vm_collect_usage_register(int reg, int isset);
373#endif
374
375static VALUE vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp);
376static VALUE vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
377 int argc, const VALUE *argv, int kw_splat, VALUE block_handler,
379static VALUE vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE block_handler);
380
381#if USE_YJIT
382// Counter to serve as a proxy for execution time, total number of calls
383static uint64_t yjit_total_entry_hits = 0;
384
385// Number of calls used to estimate how hot an ISEQ is
386#define YJIT_CALL_COUNT_INTERV 20u
387
389static inline bool
390rb_yjit_threshold_hit(const rb_iseq_t *iseq, uint64_t entry_calls)
391{
392 yjit_total_entry_hits += 1;
393
394 // Record the number of calls at the beginning of the interval
395 if (entry_calls + YJIT_CALL_COUNT_INTERV == rb_yjit_call_threshold) {
396 iseq->body->yjit_calls_at_interv = yjit_total_entry_hits;
397 }
398
399 // Try to estimate the total time taken (total number of calls) to reach 20 calls to this ISEQ
400 // This give us a ratio of how hot/cold this ISEQ is
401 if (entry_calls == rb_yjit_call_threshold) {
402 // We expect threshold 1 to compile everything immediately
403 if (rb_yjit_call_threshold < YJIT_CALL_COUNT_INTERV) {
404 return true;
405 }
406
407 uint64_t num_calls = yjit_total_entry_hits - iseq->body->yjit_calls_at_interv;
408
409 // Reject ISEQs that don't get called often enough
410 if (num_calls > rb_yjit_cold_threshold) {
411 rb_yjit_incr_counter("cold_iseq_entry");
412 return false;
413 }
414
415 return true;
416 }
417
418 return false;
419}
420#else
421#define rb_yjit_threshold_hit(iseq, entry_calls) false
422#endif
423
424#if USE_YJIT || USE_ZJIT
425// Generate JIT code that supports the following kinds of ISEQ entries:
426// * The first ISEQ on vm_exec (e.g. <main>, or Ruby methods/blocks
427// called by a C method). The current frame has VM_FRAME_FLAG_FINISH.
428// The current vm_exec stops if JIT code returns a non-Qundef value.
429// * ISEQs called by the interpreter on vm_sendish (e.g. Ruby methods or
430// blocks called by a Ruby frame that isn't compiled or side-exited).
431// The current frame doesn't have VM_FRAME_FLAG_FINISH. The current
432// vm_exec does NOT stop whether JIT code returns Qundef or not.
433static inline rb_jit_func_t
434jit_compile(rb_execution_context_t *ec)
435{
436 const rb_iseq_t *iseq = ec->cfp->iseq;
437 struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
438
439#if USE_ZJIT
440 if (body->jit_entry == NULL && rb_zjit_enabled_p) {
441 body->jit_entry_calls++;
442
443 // At profile-threshold, rewrite some of the YARV instructions
444 // to zjit_* instructions to profile these instructions.
445 if (body->jit_entry_calls == rb_zjit_profile_threshold) {
446 rb_zjit_profile_enable(iseq);
447 }
448
449 // At call-threshold, compile the ISEQ with ZJIT.
450 if (body->jit_entry_calls == rb_zjit_call_threshold) {
451 rb_zjit_compile_iseq(iseq, ec, false);
452 }
453 }
454#elif USE_YJIT
455 // Increment the ISEQ's call counter and trigger JIT compilation if not compiled
456 if (body->jit_entry == NULL && rb_yjit_enabled_p) {
457 body->jit_entry_calls++;
458 if (rb_yjit_threshold_hit(iseq, body->jit_entry_calls)) {
459 rb_yjit_compile_iseq(iseq, ec, false);
460 }
461 }
462#endif
463 return body->jit_entry;
464}
465
466// Execute JIT code compiled by jit_compile()
467static inline VALUE
468jit_exec(rb_execution_context_t *ec)
469{
470 rb_jit_func_t func = jit_compile(ec);
471 if (func) {
472 // Call the JIT code
473 return func(ec, ec->cfp);
474 }
475 else {
476 return Qundef;
477 }
478}
479#else
480# define jit_compile(ec) ((rb_jit_func_t)0)
481# define jit_exec(ec) Qundef
482#endif
483
484#if USE_YJIT
485// Generate JIT code that supports the following kind of ISEQ entry:
486// * The first ISEQ pushed by vm_exec_handle_exception. The frame would
487// point to a location specified by a catch table, and it doesn't have
488// VM_FRAME_FLAG_FINISH. The current vm_exec stops if JIT code returns
489// a non-Qundef value. So you should not return a non-Qundef value
490// until ec->cfp is changed to a frame with VM_FRAME_FLAG_FINISH.
491static inline rb_jit_func_t
492jit_compile_exception(rb_execution_context_t *ec)
493{
494 const rb_iseq_t *iseq = ec->cfp->iseq;
495 struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
496
497 // Increment the ISEQ's call counter and trigger JIT compilation if not compiled
498#if USE_YJIT
499 if (body->jit_exception == NULL && rb_yjit_enabled_p) {
500 body->jit_exception_calls++;
501 if (body->jit_exception_calls == rb_yjit_call_threshold) {
502 rb_yjit_compile_iseq(iseq, ec, true);
503 }
504 }
505#endif
506 return body->jit_exception;
507}
508
509// Execute JIT code compiled by jit_compile_exception()
510static inline VALUE
511jit_exec_exception(rb_execution_context_t *ec)
512{
513 rb_jit_func_t func = jit_compile_exception(ec);
514 if (func) {
515 // Call the JIT code
516 return func(ec, ec->cfp);
517 }
518 else {
519 return Qundef;
520 }
521}
522#else
523# define jit_compile_exception(ec) ((rb_jit_func_t)0)
524# define jit_exec_exception(ec) Qundef
525#endif
526
527static void add_opt_method_entry(const rb_method_entry_t *me);
528
529#define RB_TYPE_2_P(obj, type1, type2) \
530 (RB_TYPE_P(obj, type1) || RB_TYPE_P(obj, type2))
531#define RB_TYPE_3_P(obj, type1, type2, type3) \
532 (RB_TYPE_P(obj, type1) || RB_TYPE_P(obj, type2) || RB_TYPE_P(obj, type3))
533
534#define VM_ASSERT_TYPE(obj, type) \
535 VM_ASSERT(RB_TYPE_P(obj, type), #obj ": %s", rb_obj_info(obj))
536#define VM_ASSERT_TYPE2(obj, type1, type2) \
537 VM_ASSERT(RB_TYPE_2_P(obj, type1, type2), #obj ": %s", rb_obj_info(obj))
538#define VM_ASSERT_TYPE3(obj, type1, type2, type3) \
539 VM_ASSERT(RB_TYPE_3_P(obj, type1, type2, type3), #obj ": %s", rb_obj_info(obj))
540
541#include "vm_insnhelper.c"
542
543#include "vm_exec.c"
544
545#include "vm_method.c"
546#include "vm_eval.c"
547
548#define PROCDEBUG 0
549
550VALUE rb_cRubyVM;
552VALUE rb_mRubyVMFrozenCore;
553VALUE rb_block_param_proxy;
554
555VALUE ruby_vm_const_missing_count = 0;
556rb_vm_t *ruby_current_vm_ptr = NULL;
557rb_ractor_t *ruby_single_main_ractor;
558bool ruby_vm_keep_script_lines;
559
560#ifdef RB_THREAD_LOCAL_SPECIFIER
561RB_THREAD_LOCAL_SPECIFIER rb_execution_context_t *ruby_current_ec;
562
563#ifdef RUBY_NT_SERIAL
564RB_THREAD_LOCAL_SPECIFIER rb_atomic_t ruby_nt_serial;
565#endif
566
567// no-inline decl on vm_core.h
569rb_current_ec_noinline(void)
570{
571 return ruby_current_ec;
572}
573
574void
575rb_current_ec_set(rb_execution_context_t *ec)
576{
577 ruby_current_ec = ec;
578}
579
580
581#if defined(__arm64__) || defined(__aarch64__)
583rb_current_ec(void)
584{
585 return ruby_current_ec;
586}
587
588#endif
589#else
590native_tls_key_t ruby_current_ec_key;
591
592// no-inline decl on vm_core.h
594rb_current_ec_noinline(void)
595{
596 return native_tls_get(ruby_current_ec_key);
597}
598
599#endif
600
601rb_event_flag_t ruby_vm_event_flags;
602rb_event_flag_t ruby_vm_event_enabled_global_flags;
603unsigned int ruby_vm_event_local_num;
604
605rb_serial_t ruby_vm_constant_cache_invalidations = 0;
606rb_serial_t ruby_vm_constant_cache_misses = 0;
607rb_serial_t ruby_vm_global_cvar_state = 1;
608
609static const struct rb_callcache vm_empty_cc = {
610 .flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE,
611 .klass = Qfalse,
612 .cme_ = NULL,
613 .call_ = vm_call_general,
614 .aux_ = {
615 .v = Qfalse,
616 }
617};
618
619static const struct rb_callcache vm_empty_cc_for_super = {
620 .flags = T_IMEMO | (imemo_callcache << FL_USHIFT) | VM_CALLCACHE_UNMARKABLE,
621 .klass = Qfalse,
622 .cme_ = NULL,
623 .call_ = vm_call_super_method,
624 .aux_ = {
625 .v = Qfalse,
626 }
627};
628
629static void thread_free(void *ptr);
630
631void
632rb_vm_inc_const_missing_count(void)
633{
634 ruby_vm_const_missing_count +=1;
635}
636
637int
638rb_dtrace_setup(rb_execution_context_t *ec, VALUE klass, ID id,
639 struct ruby_dtrace_method_hook_args *args)
640{
642 if (!klass) {
643 if (!ec) ec = GET_EC();
644 if (!rb_ec_frame_method_id_and_class(ec, &id, 0, &klass) || !klass)
645 return FALSE;
646 }
647 if (RB_TYPE_P(klass, T_ICLASS)) {
648 klass = RBASIC(klass)->klass;
649 }
650 else if (RCLASS_SINGLETON_P(klass)) {
651 klass = RCLASS_ATTACHED_OBJECT(klass);
652 if (NIL_P(klass)) return FALSE;
653 }
654 type = BUILTIN_TYPE(klass);
655 if (type == T_CLASS || type == T_ICLASS || type == T_MODULE) {
656 VALUE name = rb_class_path(klass);
657 const char *classname, *filename;
658 const char *methodname = rb_id2name(id);
659 if (methodname && (filename = rb_source_location_cstr(&args->line_no)) != 0) {
660 if (NIL_P(name) || !(classname = StringValuePtr(name)))
661 classname = "<unknown>";
662 args->classname = classname;
663 args->methodname = methodname;
664 args->filename = filename;
665 args->klass = klass;
666 args->name = name;
667 return TRUE;
668 }
669 }
670 return FALSE;
671}
672
673extern unsigned int redblack_buffer_size;
674
675/*
676 * call-seq:
677 * RubyVM.stat -> Hash
678 * RubyVM.stat(hsh) -> hsh
679 * RubyVM.stat(Symbol) -> Numeric
680 *
681 * Returns a Hash containing implementation-dependent counters inside the VM.
682 *
683 * This hash includes information about method/constant caches:
684 *
685 * {
686 * :constant_cache_invalidations=>2,
687 * :constant_cache_misses=>14,
688 * :global_cvar_state=>27
689 * }
690 *
691 * If <tt>USE_DEBUG_COUNTER</tt> is enabled, debug counters will be included.
692 *
693 * The contents of the hash are implementation specific and may be changed in
694 * the future.
695 *
696 * This method is only expected to work on C Ruby.
697 */
698static VALUE
699vm_stat(int argc, VALUE *argv, VALUE self)
700{
701 static VALUE sym_constant_cache_invalidations, sym_constant_cache_misses, sym_global_cvar_state, sym_next_shape_id;
702 static VALUE sym_shape_cache_size;
703 VALUE arg = Qnil;
704 VALUE hash = Qnil, key = Qnil;
705
706 if (rb_check_arity(argc, 0, 1) == 1) {
707 arg = argv[0];
708 if (SYMBOL_P(arg))
709 key = arg;
710 else if (RB_TYPE_P(arg, T_HASH))
711 hash = arg;
712 else
713 rb_raise(rb_eTypeError, "non-hash or symbol given");
714 }
715 else {
716 hash = rb_hash_new();
717 }
718
719#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
720 S(constant_cache_invalidations);
721 S(constant_cache_misses);
722 S(global_cvar_state);
723 S(next_shape_id);
724 S(shape_cache_size);
725#undef S
726
727#define SET(name, attr) \
728 if (key == sym_##name) \
729 return SERIALT2NUM(attr); \
730 else if (hash != Qnil) \
731 rb_hash_aset(hash, sym_##name, SERIALT2NUM(attr));
732
733 SET(constant_cache_invalidations, ruby_vm_constant_cache_invalidations);
734 SET(constant_cache_misses, ruby_vm_constant_cache_misses);
735 SET(global_cvar_state, ruby_vm_global_cvar_state);
736 SET(next_shape_id, (rb_serial_t)GET_SHAPE_TREE()->next_shape_id);
737 SET(shape_cache_size, (rb_serial_t)GET_SHAPE_TREE()->cache_size);
738#undef SET
739
740#if USE_DEBUG_COUNTER
741 ruby_debug_counter_show_at_exit(FALSE);
742 for (size_t i = 0; i < RB_DEBUG_COUNTER_MAX; i++) {
743 const VALUE name = rb_sym_intern_ascii_cstr(rb_debug_counter_names[i]);
744 const VALUE boxed_value = SIZET2NUM(rb_debug_counter[i]);
745
746 if (key == name) {
747 return boxed_value;
748 }
749 else if (hash != Qnil) {
750 rb_hash_aset(hash, name, boxed_value);
751 }
752 }
753#endif
754
755 if (!NIL_P(key)) { /* matched key should return above */
756 rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
757 }
758
759 return hash;
760}
761
762/* control stack frame */
763
764static void
765vm_set_top_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
766{
767 if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_TOP) {
768 rb_raise(rb_eTypeError, "Not a toplevel InstructionSequence");
769 }
770
771 /* for return */
772 vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH, rb_ec_thread_ptr(ec)->top_self,
773 VM_BLOCK_HANDLER_NONE,
774 (VALUE)vm_cref_new_toplevel(ec), /* cref or me */
775 ISEQ_BODY(iseq)->iseq_encoded, ec->cfp->sp,
776 ISEQ_BODY(iseq)->local_table_size, ISEQ_BODY(iseq)->stack_max);
777}
778
779static void
780vm_set_eval_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq, const rb_cref_t *cref, const struct rb_block *base_block)
781{
782 vm_push_frame(ec, iseq, VM_FRAME_MAGIC_EVAL | VM_FRAME_FLAG_FINISH,
783 vm_block_self(base_block), VM_GUARDED_PREV_EP(vm_block_ep(base_block)),
784 (VALUE)cref, /* cref or me */
785 ISEQ_BODY(iseq)->iseq_encoded,
786 ec->cfp->sp, ISEQ_BODY(iseq)->local_table_size,
787 ISEQ_BODY(iseq)->stack_max);
788}
789
790static void
791vm_set_main_stack(rb_execution_context_t *ec, const rb_iseq_t *iseq)
792{
793 VALUE toplevel_binding = rb_const_get(rb_cObject, rb_intern("TOPLEVEL_BINDING"));
794 rb_binding_t *bind;
795
796 GetBindingPtr(toplevel_binding, bind);
797 RUBY_ASSERT_MESG(bind, "TOPLEVEL_BINDING is not built");
798
799 vm_set_eval_stack(ec, iseq, 0, &bind->block);
800
801 /* save binding */
802 if (ISEQ_BODY(iseq)->local_table_size > 0) {
803 vm_bind_update_env(toplevel_binding, bind, vm_make_env_object(ec, ec->cfp));
804 }
805}
806
808rb_vm_get_binding_creatable_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
809{
810 while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
811 if (cfp->iseq) {
812 return (rb_control_frame_t *)cfp;
813 }
814 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
815 }
816 return 0;
817}
818
820rb_vm_get_ruby_level_next_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
821{
822 while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
823 if (VM_FRAME_RUBYFRAME_P(cfp)) {
824 return (rb_control_frame_t *)cfp;
825 }
826 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
827 }
828 return 0;
829}
830
831static rb_control_frame_t *
832vm_get_ruby_level_caller_cfp(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
833{
834 if (VM_FRAME_RUBYFRAME_P(cfp)) {
835 return (rb_control_frame_t *)cfp;
836 }
837
838 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
839
840 while (!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
841 if (VM_FRAME_RUBYFRAME_P(cfp)) {
842 return (rb_control_frame_t *)cfp;
843 }
844
845 if (VM_ENV_FLAGS(cfp->ep, VM_FRAME_FLAG_PASSED) == FALSE) {
846 break;
847 }
848 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
849 }
850 return 0;
851}
852
853void
854rb_vm_pop_cfunc_frame(void)
855{
856 rb_execution_context_t *ec = GET_EC();
857 rb_control_frame_t *cfp = ec->cfp;
858 const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
859
860 EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, Qnil);
861 RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
862 vm_pop_frame(ec, cfp, cfp->ep);
863}
864
865void
866rb_vm_rewind_cfp(rb_execution_context_t *ec, rb_control_frame_t *cfp)
867{
868 /* check skipped frame */
869 while (ec->cfp != cfp) {
870#if VMDEBUG
871 printf("skipped frame: %s\n", vm_frametype_name(ec->cfp));
872#endif
873 if (VM_FRAME_TYPE(ec->cfp) != VM_FRAME_MAGIC_CFUNC) {
874 rb_vm_pop_frame(ec);
875 }
876 else { /* unlikely path */
877 rb_vm_pop_cfunc_frame();
878 }
879 }
880}
881
882/* at exit */
883
884void
885ruby_vm_at_exit(void (*func)(rb_vm_t *))
886{
887 rb_vm_t *vm = GET_VM();
889 nl->func = func;
890 nl->next = vm->at_exit;
891 vm->at_exit = nl;
892}
893
894static void
895ruby_vm_run_at_exit_hooks(rb_vm_t *vm)
896{
897 rb_at_exit_list *l = vm->at_exit;
898
899 while (l) {
900 rb_at_exit_list* t = l->next;
901 rb_vm_at_exit_func *func = l->func;
902 ruby_xfree(l);
903 l = t;
904 (*func)(vm);
905 }
906}
907
908/* Env */
909
910static VALUE check_env_value(const rb_env_t *env);
911
912static int
913check_env(const rb_env_t *env)
914{
915 fputs("---\n", stderr);
916 ruby_debug_printf("envptr: %p\n", (void *)&env->ep[0]);
917 ruby_debug_printf("envval: %10p ", (void *)env->ep[1]);
918 dp(env->ep[1]);
919 ruby_debug_printf("ep: %10p\n", (void *)env->ep);
920 if (rb_vm_env_prev_env(env)) {
921 fputs(">>\n", stderr);
922 check_env_value(rb_vm_env_prev_env(env));
923 fputs("<<\n", stderr);
924 }
925 return 1;
926}
927
928static VALUE
929check_env_value(const rb_env_t *env)
930{
931 if (check_env(env)) {
932 return (VALUE)env;
933 }
934 rb_bug("invalid env");
935 return Qnil; /* unreachable */
936}
937
938static VALUE
939vm_block_handler_escape(const rb_execution_context_t *ec, VALUE block_handler)
940{
941 switch (vm_block_handler_type(block_handler)) {
942 case block_handler_type_ifunc:
943 case block_handler_type_iseq:
944 return rb_vm_make_proc(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
945
946 case block_handler_type_symbol:
947 case block_handler_type_proc:
948 return block_handler;
949 }
950 VM_UNREACHABLE(vm_block_handler_escape);
951 return Qnil;
952}
953
954static VALUE
955vm_make_env_each(const rb_execution_context_t * const ec, rb_control_frame_t *const cfp)
956{
957 const VALUE * const ep = cfp->ep;
958 VALUE *env_body, *env_ep;
959 int local_size, env_size;
960
961 if (VM_ENV_ESCAPED_P(ep)) {
962 return VM_ENV_ENVVAL(ep);
963 }
964
965 if (!VM_ENV_LOCAL_P(ep)) {
966 const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
967 if (!VM_ENV_ESCAPED_P(prev_ep)) {
968 rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
969
970 while (prev_cfp->ep != prev_ep) {
971 prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(prev_cfp);
972 VM_ASSERT(prev_cfp->ep != NULL);
973 }
974
975 vm_make_env_each(ec, prev_cfp);
976 VM_FORCE_WRITE_SPECIAL_CONST(&ep[VM_ENV_DATA_INDEX_SPECVAL], VM_GUARDED_PREV_EP(prev_cfp->ep));
977 }
978 }
979 else {
980 VALUE block_handler = VM_ENV_BLOCK_HANDLER(ep);
981
982 if (block_handler != VM_BLOCK_HANDLER_NONE) {
983 VALUE blockprocval = vm_block_handler_escape(ec, block_handler);
984 VM_STACK_ENV_WRITE(ep, VM_ENV_DATA_INDEX_SPECVAL, blockprocval);
985 }
986 }
987
988 if (!VM_FRAME_RUBYFRAME_P(cfp)) {
989 local_size = VM_ENV_DATA_SIZE;
990 }
991 else {
992 local_size = ISEQ_BODY(cfp->iseq)->local_table_size;
993 if (ISEQ_BODY(cfp->iseq)->param.flags.forwardable && VM_ENV_LOCAL_P(cfp->ep)) {
994 int ci_offset = local_size - ISEQ_BODY(cfp->iseq)->param.size + VM_ENV_DATA_SIZE;
995
996 CALL_INFO ci = (CALL_INFO)VM_CF_LEP(cfp)[-ci_offset];
997 local_size += vm_ci_argc(ci);
998 }
999 local_size += VM_ENV_DATA_SIZE;
1000 }
1001
1002 /*
1003 * # local variables on a stack frame (N == local_size)
1004 * [lvar1, lvar2, ..., lvarN, SPECVAL]
1005 * ^
1006 * ep[0]
1007 *
1008 * # moved local variables
1009 * [lvar1, lvar2, ..., lvarN, SPECVAL, Envval, BlockProcval (if needed)]
1010 * ^ ^
1011 * env->env[0] ep[0]
1012 */
1013
1014 env_size = local_size +
1015 1 /* envval */;
1016
1017 // Careful with order in the following sequence. Each allocation can move objects.
1018 env_body = ALLOC_N(VALUE, env_size);
1019 rb_env_t *env = IMEMO_NEW(rb_env_t, imemo_env, 0);
1020
1021 // Set up env without WB since it's brand new (similar to newobj_init(), newobj_fill())
1022 MEMCPY(env_body, ep - (local_size - 1 /* specval */), VALUE, local_size);
1023
1024 env_ep = &env_body[local_size - 1 /* specval */];
1025 env_ep[VM_ENV_DATA_INDEX_ENV] = (VALUE)env;
1026
1027 env->iseq = (rb_iseq_t *)(VM_FRAME_RUBYFRAME_P(cfp) ? cfp->iseq : NULL);
1028 env->ep = env_ep;
1029 env->env = env_body;
1030 env->env_size = env_size;
1031
1032 cfp->ep = env_ep;
1033 VM_ENV_FLAGS_SET(env_ep, VM_ENV_FLAG_ESCAPED | VM_ENV_FLAG_WB_REQUIRED);
1034 VM_STACK_ENV_WRITE(ep, 0, (VALUE)env); /* GC mark */
1035
1036#if 0
1037 for (i = 0; i < local_size; i++) {
1038 if (VM_FRAME_RUBYFRAME_P(cfp)) {
1039 /* clear value stack for GC */
1040 ep[-local_size + i] = 0;
1041 }
1042 }
1043#endif
1044
1045 // Invalidate JIT code that assumes cfp->ep == vm_base_ptr(cfp).
1046 if (env->iseq) {
1047 rb_yjit_invalidate_ep_is_bp(env->iseq);
1048 rb_zjit_invalidate_ep_is_bp(env->iseq);
1049 }
1050
1051 return (VALUE)env;
1052}
1053
1054static VALUE
1055vm_make_env_object(const rb_execution_context_t *ec, rb_control_frame_t *cfp)
1056{
1057 VALUE envval = vm_make_env_each(ec, cfp);
1058
1059 if (PROCDEBUG) {
1060 check_env_value((const rb_env_t *)envval);
1061 }
1062
1063 return envval;
1064}
1065
1066void
1067rb_vm_stack_to_heap(rb_execution_context_t *ec)
1068{
1069 rb_control_frame_t *cfp = ec->cfp;
1070 while ((cfp = rb_vm_get_binding_creatable_next_cfp(ec, cfp)) != 0) {
1071 vm_make_env_object(ec, cfp);
1072 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1073 }
1074}
1075
1076const rb_env_t *
1077rb_vm_env_prev_env(const rb_env_t *env)
1078{
1079 const VALUE *ep = env->ep;
1080
1081 if (VM_ENV_LOCAL_P(ep)) {
1082 return NULL;
1083 }
1084 else {
1085 const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
1086 return VM_ENV_ENVVAL_PTR(prev_ep);
1087 }
1088}
1089
1090static int
1091collect_local_variables_in_iseq(const rb_iseq_t *iseq, const struct local_var_list *vars)
1092{
1093 unsigned int i;
1094 if (!iseq) return 0;
1095 for (i = 0; i < ISEQ_BODY(iseq)->local_table_size; i++) {
1096 local_var_list_add(vars, ISEQ_BODY(iseq)->local_table[i]);
1097 }
1098 return 1;
1099}
1100
1101static void
1102collect_local_variables_in_env(const rb_env_t *env, const struct local_var_list *vars)
1103{
1104 do {
1105 if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) break;
1106 collect_local_variables_in_iseq(env->iseq, vars);
1107 } while ((env = rb_vm_env_prev_env(env)) != NULL);
1108}
1109
1110static int
1111vm_collect_local_variables_in_heap(const VALUE *ep, const struct local_var_list *vars)
1112{
1113 if (VM_ENV_ESCAPED_P(ep)) {
1114 collect_local_variables_in_env(VM_ENV_ENVVAL_PTR(ep), vars);
1115 return 1;
1116 }
1117 else {
1118 return 0;
1119 }
1120}
1121
1122VALUE
1123rb_vm_env_local_variables(const rb_env_t *env)
1124{
1125 struct local_var_list vars;
1126 local_var_list_init(&vars);
1127 collect_local_variables_in_env(env, &vars);
1128 return local_var_list_finish(&vars);
1129}
1130
1131VALUE
1132rb_vm_env_numbered_parameters(const rb_env_t *env)
1133{
1134 struct local_var_list vars;
1135 local_var_list_init(&vars);
1136 // if (VM_ENV_FLAGS(env->ep, VM_ENV_FLAG_ISOLATED)) break; // TODO: is this needed?
1137 const rb_iseq_t *iseq = env->iseq;
1138 unsigned int i;
1139 if (!iseq) return 0;
1140 for (i = 0; i < ISEQ_BODY(iseq)->local_table_size; i++) {
1141 numparam_list_add(&vars, ISEQ_BODY(iseq)->local_table[i]);
1142 }
1143 return local_var_list_finish(&vars);
1144}
1145
1146VALUE
1147rb_iseq_local_variables(const rb_iseq_t *iseq)
1148{
1149 struct local_var_list vars;
1150 local_var_list_init(&vars);
1151 while (collect_local_variables_in_iseq(iseq, &vars)) {
1152 iseq = ISEQ_BODY(iseq)->parent_iseq;
1153 }
1154 return local_var_list_finish(&vars);
1155}
1156
1157/* Proc */
1158
1159static VALUE
1160vm_proc_create_from_captured(VALUE klass,
1161 const struct rb_captured_block *captured,
1162 enum rb_block_type block_type,
1163 int8_t is_from_method, int8_t is_lambda)
1164{
1165 VALUE procval = rb_proc_alloc(klass);
1166 rb_proc_t *proc = RTYPEDDATA_DATA(procval);
1167
1168 VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), captured->ep));
1169
1170 /* copy block */
1171 RB_OBJ_WRITE(procval, &proc->block.as.captured.code.val, captured->code.val);
1172 RB_OBJ_WRITE(procval, &proc->block.as.captured.self, captured->self);
1173 rb_vm_block_ep_update(procval, &proc->block, captured->ep);
1174
1175 vm_block_type_set(&proc->block, block_type);
1176 proc->is_from_method = is_from_method;
1177 proc->is_lambda = is_lambda;
1178
1179 return procval;
1180}
1181
1182void
1183rb_vm_block_copy(VALUE obj, const struct rb_block *dst, const struct rb_block *src)
1184{
1185 /* copy block */
1186 switch (vm_block_type(src)) {
1187 case block_type_iseq:
1188 case block_type_ifunc:
1189 RB_OBJ_WRITE(obj, &dst->as.captured.self, src->as.captured.self);
1190 RB_OBJ_WRITE(obj, &dst->as.captured.code.val, src->as.captured.code.val);
1191 rb_vm_block_ep_update(obj, dst, src->as.captured.ep);
1192 break;
1193 case block_type_symbol:
1194 RB_OBJ_WRITE(obj, &dst->as.symbol, src->as.symbol);
1195 break;
1196 case block_type_proc:
1197 RB_OBJ_WRITE(obj, &dst->as.proc, src->as.proc);
1198 break;
1199 }
1200}
1201
1202static VALUE
1203proc_create(VALUE klass, const struct rb_block *block, int8_t is_from_method, int8_t is_lambda)
1204{
1205 VALUE procval = rb_proc_alloc(klass);
1206 rb_proc_t *proc = RTYPEDDATA_DATA(procval);
1207
1208 VM_ASSERT(VM_EP_IN_HEAP_P(GET_EC(), vm_block_ep(block)));
1209 rb_vm_block_copy(procval, &proc->block, block);
1210 vm_block_type_set(&proc->block, block->type);
1211 proc->is_from_method = is_from_method;
1212 proc->is_lambda = is_lambda;
1213
1214 return procval;
1215}
1216
1217VALUE
1218rb_proc_dup(VALUE self)
1219{
1220 VALUE procval;
1221 rb_proc_t *src;
1222
1223 GetProcPtr(self, src);
1224
1225 switch (vm_block_type(&src->block)) {
1226 case block_type_ifunc:
1227 procval = rb_func_proc_dup(self);
1228 break;
1229 default:
1230 procval = proc_create(rb_obj_class(self), &src->block, src->is_from_method, src->is_lambda);
1231 break;
1232 }
1233
1234 if (RB_OBJ_SHAREABLE_P(self)) FL_SET_RAW(procval, RUBY_FL_SHAREABLE);
1235 RB_GC_GUARD(self); /* for: body = rb_proc_dup(body) */
1236 return procval;
1237}
1238
1240 VALUE ary;
1241 VALUE read_only;
1242 bool yield;
1243 bool isolate;
1244};
1245
1246static VALUE
1247ID2NUM(ID id)
1248{
1249 if (SIZEOF_VOIDP > SIZEOF_LONG)
1250 return ULL2NUM(id);
1251 else
1252 return ULONG2NUM(id);
1253}
1254
1255static ID
1256NUM2ID(VALUE num)
1257{
1258 if (SIZEOF_VOIDP > SIZEOF_LONG)
1259 return (ID)NUM2ULL(num);
1260 else
1261 return (ID)NUM2ULONG(num);
1262}
1263
1264static enum rb_id_table_iterator_result
1265collect_outer_variable_names(ID id, VALUE val, void *ptr)
1266{
1268
1269 if (id == rb_intern("yield")) {
1270 data->yield = true;
1271 }
1272 else {
1273 VALUE *store;
1274 if (data->isolate ||
1275 val == Qtrue /* write */) {
1276 store = &data->ary;
1277 }
1278 else {
1279 store = &data->read_only;
1280 }
1281 if (*store == Qfalse) *store = rb_ary_new();
1282 rb_ary_push(*store, ID2NUM(id));
1283 }
1284 return ID_TABLE_CONTINUE;
1285}
1286
1287static const rb_env_t *
1288env_copy(const VALUE *src_ep, VALUE read_only_variables)
1289{
1290 const rb_env_t *src_env = (rb_env_t *)VM_ENV_ENVVAL(src_ep);
1291 VM_ASSERT(src_env->ep == src_ep);
1292
1293 VALUE *env_body = ZALLOC_N(VALUE, src_env->env_size); // fill with Qfalse
1294 VALUE *ep = &env_body[src_env->env_size - 2];
1295 const rb_env_t *copied_env = vm_env_new(ep, env_body, src_env->env_size, src_env->iseq);
1296
1297 // Copy after allocations above, since they can move objects in src_ep.
1298 RB_OBJ_WRITE(copied_env, &ep[VM_ENV_DATA_INDEX_ME_CREF], src_ep[VM_ENV_DATA_INDEX_ME_CREF]);
1299 ep[VM_ENV_DATA_INDEX_FLAGS] = src_ep[VM_ENV_DATA_INDEX_FLAGS] | VM_ENV_FLAG_ISOLATED;
1300 if (!VM_ENV_LOCAL_P(src_ep)) {
1301 VM_ENV_FLAGS_SET(ep, VM_ENV_FLAG_LOCAL);
1302 }
1303
1304 if (read_only_variables) {
1305 for (int i=RARRAY_LENINT(read_only_variables)-1; i>=0; i--) {
1306 ID id = NUM2ID(RARRAY_AREF(read_only_variables, i));
1307
1308 for (unsigned int j=0; j<ISEQ_BODY(src_env->iseq)->local_table_size; j++) {
1309 if (id == ISEQ_BODY(src_env->iseq)->local_table[j]) {
1310 VALUE v = src_env->env[j];
1311 if (!rb_ractor_shareable_p(v)) {
1312 VALUE name = rb_id2str(id);
1313 VALUE msg = rb_sprintf("can not make shareable Proc because it can refer"
1314 " unshareable object %+" PRIsVALUE " from ", v);
1315 if (name)
1316 rb_str_catf(msg, "variable '%" PRIsVALUE "'", name);
1317 else
1318 rb_str_cat_cstr(msg, "a hidden variable");
1319 rb_exc_raise(rb_exc_new_str(rb_eRactorIsolationError, msg));
1320 }
1321 RB_OBJ_WRITE((VALUE)copied_env, &env_body[j], v);
1322 rb_ary_delete_at(read_only_variables, i);
1323 break;
1324 }
1325 }
1326 }
1327 }
1328
1329 if (!VM_ENV_LOCAL_P(src_ep)) {
1330 const VALUE *prev_ep = VM_ENV_PREV_EP(src_env->ep);
1331 const rb_env_t *new_prev_env = env_copy(prev_ep, read_only_variables);
1332 ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_GUARDED_PREV_EP(new_prev_env->ep);
1333 RB_OBJ_WRITTEN(copied_env, Qundef, new_prev_env);
1334 VM_ENV_FLAGS_UNSET(ep, VM_ENV_FLAG_LOCAL);
1335 }
1336 else {
1337 ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE;
1338 }
1339
1340 return copied_env;
1341}
1342
1343static void
1344proc_isolate_env(VALUE self, rb_proc_t *proc, VALUE read_only_variables)
1345{
1346 const struct rb_captured_block *captured = &proc->block.as.captured;
1347 const rb_env_t *env = env_copy(captured->ep, read_only_variables);
1348 *((const VALUE **)&proc->block.as.captured.ep) = env->ep;
1349 RB_OBJ_WRITTEN(self, Qundef, env);
1350}
1351
1352static VALUE
1353proc_shared_outer_variables(struct rb_id_table *outer_variables, bool isolate, const char *message)
1354{
1355 struct collect_outer_variable_name_data data = {
1356 .isolate = isolate,
1357 .ary = Qfalse,
1358 .read_only = Qfalse,
1359 .yield = false,
1360 };
1361 rb_id_table_foreach(outer_variables, collect_outer_variable_names, (void *)&data);
1362
1363 if (data.ary != Qfalse) {
1364 VALUE str = rb_sprintf("can not %s because it accesses outer variables", message);
1365 VALUE ary = data.ary;
1366 const char *sep = " (";
1367 for (long i = 0; i < RARRAY_LEN(ary); i++) {
1368 VALUE name = rb_id2str(NUM2ID(RARRAY_AREF(ary, i)));
1369 if (!name) continue;
1370 rb_str_cat_cstr(str, sep);
1371 sep = ", ";
1372 rb_str_append(str, name);
1373 }
1374 if (*sep == ',') rb_str_cat_cstr(str, ")");
1375 rb_str_cat_cstr(str, data.yield ? " and uses 'yield'." : ".");
1376 rb_exc_raise(rb_exc_new_str(rb_eArgError, str));
1377 }
1378 else if (data.yield) {
1379 rb_raise(rb_eArgError, "can not %s because it uses 'yield'.", message);
1380 }
1381
1382 return data.read_only;
1383}
1384
1385VALUE
1386rb_proc_isolate_bang(VALUE self)
1387{
1388 const rb_iseq_t *iseq = vm_proc_iseq(self);
1389
1390 if (iseq) {
1391 rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self);
1392 if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet");
1393
1394 if (ISEQ_BODY(iseq)->outer_variables) {
1395 proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, true, "isolate a Proc");
1396 }
1397
1398 proc_isolate_env(self, proc, Qfalse);
1399 proc->is_isolated = TRUE;
1400 }
1401
1403 return self;
1404}
1405
1406VALUE
1407rb_proc_isolate(VALUE self)
1408{
1409 VALUE dst = rb_proc_dup(self);
1410 rb_proc_isolate_bang(dst);
1411 return dst;
1412}
1413
1414VALUE
1415rb_proc_ractor_make_shareable(VALUE self)
1416{
1417 const rb_iseq_t *iseq = vm_proc_iseq(self);
1418
1419 if (iseq) {
1420 rb_proc_t *proc = (rb_proc_t *)RTYPEDDATA_DATA(self);
1421 if (proc->block.type != block_type_iseq) rb_raise(rb_eRuntimeError, "not supported yet");
1422
1423 if (!rb_ractor_shareable_p(vm_block_self(&proc->block))) {
1424 rb_raise(rb_eRactorIsolationError,
1425 "Proc's self is not shareable: %" PRIsVALUE,
1426 self);
1427 }
1428
1429 VALUE read_only_variables = Qfalse;
1430
1431 if (ISEQ_BODY(iseq)->outer_variables) {
1432 read_only_variables =
1433 proc_shared_outer_variables(ISEQ_BODY(iseq)->outer_variables, false, "make a Proc shareable");
1434 }
1435
1436 proc_isolate_env(self, proc, read_only_variables);
1437 proc->is_isolated = TRUE;
1438 }
1439
1440 rb_obj_freeze(self);
1441 return self;
1442}
1443
1444VALUE
1445rb_vm_make_proc_lambda(const rb_execution_context_t *ec, const struct rb_captured_block *captured, VALUE klass, int8_t is_lambda)
1446{
1447 VALUE procval;
1448 enum imemo_type code_type = imemo_type(captured->code.val);
1449
1450 if (!VM_ENV_ESCAPED_P(captured->ep)) {
1451 rb_control_frame_t *cfp = VM_CAPTURED_BLOCK_TO_CFP(captured);
1452 vm_make_env_object(ec, cfp);
1453 }
1454
1455 VM_ASSERT(VM_EP_IN_HEAP_P(ec, captured->ep));
1456 VM_ASSERT(code_type == imemo_iseq || code_type == imemo_ifunc);
1457
1458 procval = vm_proc_create_from_captured(klass, captured,
1459 code_type == imemo_iseq ? block_type_iseq : block_type_ifunc,
1460 FALSE, is_lambda);
1461
1462 if (code_type == imemo_ifunc) {
1463 struct vm_ifunc *ifunc = (struct vm_ifunc *)captured->code.val;
1464 if (ifunc->svar_lep) {
1465 VALUE ep0 = ifunc->svar_lep[0];
1466 if (RB_TYPE_P(ep0, T_IMEMO) && imemo_type_p(ep0, imemo_env)) {
1467 // `ep0 == imemo_env` means this ep is escaped to heap (in env object).
1468 const rb_env_t *env = (const rb_env_t *)ep0;
1469 ifunc->svar_lep = (VALUE *)env->ep;
1470 }
1471 else {
1472 VM_ASSERT(FIXNUM_P(ep0));
1473 if (ep0 & VM_ENV_FLAG_ESCAPED) {
1474 // ok. do nothing
1475 }
1476 else {
1477 ifunc->svar_lep = NULL;
1478 }
1479 }
1480 }
1481 }
1482
1483 return procval;
1484}
1485
1486/* Binding */
1487
1488VALUE
1489rb_vm_make_binding(const rb_execution_context_t *ec, const rb_control_frame_t *src_cfp)
1490{
1491 rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(ec, src_cfp);
1492 rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(ec, src_cfp);
1493 VALUE bindval, envval;
1494 rb_binding_t *bind;
1495
1496 if (cfp == 0 || ruby_level_cfp == 0) {
1497 rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
1498 }
1499 if (!VM_FRAME_RUBYFRAME_P(src_cfp) &&
1500 !VM_FRAME_RUBYFRAME_P(RUBY_VM_PREVIOUS_CONTROL_FRAME(src_cfp))) {
1501 rb_raise(rb_eRuntimeError, "Cannot create Binding object for non-Ruby caller");
1502 }
1503
1504 envval = vm_make_env_object(ec, cfp);
1505 bindval = rb_binding_alloc(rb_cBinding);
1506 GetBindingPtr(bindval, bind);
1507 vm_bind_update_env(bindval, bind, envval);
1508 RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, cfp->self);
1509 RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, cfp->iseq);
1510 RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(ruby_level_cfp->iseq)->location.pathobj);
1511 bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp);
1512
1513 return bindval;
1514}
1515
1516const VALUE *
1517rb_binding_add_dynavars(VALUE bindval, rb_binding_t *bind, int dyncount, const ID *dynvars)
1518{
1519 VALUE envval, pathobj = bind->pathobj;
1520 VALUE path = pathobj_path(pathobj);
1521 VALUE realpath = pathobj_realpath(pathobj);
1522 const struct rb_block *base_block;
1523 const rb_env_t *env;
1524 rb_execution_context_t *ec = GET_EC();
1525 const rb_iseq_t *base_iseq, *iseq;
1526 rb_node_scope_t tmp_node;
1527
1528 if (dyncount < 0) return 0;
1529
1530 base_block = &bind->block;
1531 base_iseq = vm_block_iseq(base_block);
1532
1533 VALUE idtmp = 0;
1534 rb_ast_id_table_t *dyns = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + dyncount * sizeof(ID));
1535 dyns->size = dyncount;
1536 MEMCPY(dyns->ids, dynvars, ID, dyncount);
1537
1538 rb_node_init(RNODE(&tmp_node), NODE_SCOPE);
1539 tmp_node.nd_tbl = dyns;
1540 tmp_node.nd_body = 0;
1541 tmp_node.nd_args = 0;
1542
1543 VALUE ast_value = rb_ruby_ast_new(RNODE(&tmp_node));
1544
1545 if (base_iseq) {
1546 iseq = rb_iseq_new(ast_value, ISEQ_BODY(base_iseq)->location.label, path, realpath, base_iseq, ISEQ_TYPE_EVAL);
1547 }
1548 else {
1549 VALUE tempstr = rb_fstring_lit("<temp>");
1550 iseq = rb_iseq_new_top(ast_value, tempstr, tempstr, tempstr, NULL);
1551 }
1552 tmp_node.nd_tbl = 0; /* reset table */
1553 ALLOCV_END(idtmp);
1554
1555 vm_set_eval_stack(ec, iseq, 0, base_block);
1556 vm_bind_update_env(bindval, bind, envval = vm_make_env_object(ec, ec->cfp));
1557 rb_vm_pop_frame(ec);
1558
1559 env = (const rb_env_t *)envval;
1560 return env->env;
1561}
1562
1563/* C -> Ruby: block */
1564
1565static inline void
1566invoke_block(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_cref_t *cref, VALUE type, int opt_pc)
1567{
1568 int arg_size = ISEQ_BODY(iseq)->param.size;
1569
1570 vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_FINISH, self,
1571 VM_GUARDED_PREV_EP(captured->ep),
1572 (VALUE)cref, /* cref or method */
1573 ISEQ_BODY(iseq)->iseq_encoded + opt_pc,
1574 ec->cfp->sp + arg_size,
1575 ISEQ_BODY(iseq)->local_table_size - arg_size,
1576 ISEQ_BODY(iseq)->stack_max);
1577}
1578
1579static inline void
1580invoke_bmethod(rb_execution_context_t *ec, const rb_iseq_t *iseq, VALUE self, const struct rb_captured_block *captured, const rb_callable_method_entry_t *me, VALUE type, int opt_pc)
1581{
1582 /* bmethod call from outside the VM */
1583 int arg_size = ISEQ_BODY(iseq)->param.size;
1584
1585 VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
1586
1587 vm_push_frame(ec, iseq, type | VM_FRAME_FLAG_BMETHOD, self,
1588 VM_GUARDED_PREV_EP(captured->ep),
1589 (VALUE)me,
1590 ISEQ_BODY(iseq)->iseq_encoded + opt_pc,
1591 ec->cfp->sp + 1 /* self */ + arg_size,
1592 ISEQ_BODY(iseq)->local_table_size - arg_size,
1593 ISEQ_BODY(iseq)->stack_max);
1594
1595 VM_ENV_FLAGS_SET(ec->cfp->ep, VM_FRAME_FLAG_FINISH);
1596}
1597
1598ALWAYS_INLINE(static VALUE
1599 invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
1600 VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler,
1601 const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me));
1602
1603static inline VALUE
1604invoke_iseq_block_from_c(rb_execution_context_t *ec, const struct rb_captured_block *captured,
1605 VALUE self, int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler,
1606 const rb_cref_t *cref, int is_lambda, const rb_callable_method_entry_t *me)
1607{
1608 const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
1609 int opt_pc;
1610 VALUE type = VM_FRAME_MAGIC_BLOCK | (is_lambda ? VM_FRAME_FLAG_LAMBDA : 0);
1611 rb_control_frame_t *cfp = ec->cfp;
1612 VALUE *sp = cfp->sp;
1613 int flags = (kw_splat ? VM_CALL_KW_SPLAT : 0);
1614 VALUE *use_argv = (VALUE *)argv;
1615 VALUE av[2];
1616
1617 stack_check(ec);
1618
1619 if (UNLIKELY(argc > VM_ARGC_STACK_MAX) &&
1620 (VM_ARGC_STACK_MAX >= 1 ||
1621 /* Skip ruby array for potential autosplat case */
1622 (argc != 1 || is_lambda))) {
1623 use_argv = vm_argv_ruby_array(av, argv, &flags, &argc, kw_splat);
1624 }
1625
1626 CHECK_VM_STACK_OVERFLOW(cfp, argc + 1);
1627 vm_check_canary(ec, sp);
1628
1629 VALUE *stack_argv = sp;
1630 if (me) {
1631 *sp = self; // bemthods need `self` on the VM stack
1632 stack_argv++;
1633 }
1634 cfp->sp = stack_argv + argc;
1635 MEMCPY(stack_argv, use_argv, VALUE, argc); // restrict: new stack space
1636
1637 opt_pc = vm_yield_setup_args(ec, iseq, argc, stack_argv, flags, passed_block_handler,
1638 (is_lambda ? arg_setup_method : arg_setup_block));
1639 cfp->sp = sp;
1640
1641 if (me == NULL) {
1642 invoke_block(ec, iseq, self, captured, cref, type, opt_pc);
1643 }
1644 else {
1645 invoke_bmethod(ec, iseq, self, captured, me, type, opt_pc);
1646 }
1647
1648 return vm_exec(ec);
1649}
1650
1651static VALUE
1652invoke_block_from_c_bh(rb_execution_context_t *ec, VALUE block_handler,
1653 int argc, const VALUE *argv,
1654 int kw_splat, VALUE passed_block_handler, const rb_cref_t *cref,
1655 int is_lambda, int force_blockarg)
1656{
1657 again:
1658 switch (vm_block_handler_type(block_handler)) {
1659 case block_handler_type_iseq:
1660 {
1661 const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(block_handler);
1662 return invoke_iseq_block_from_c(ec, captured, captured->self,
1663 argc, argv, kw_splat, passed_block_handler,
1664 cref, is_lambda, NULL);
1665 }
1666 case block_handler_type_ifunc:
1667 return vm_yield_with_cfunc(ec, VM_BH_TO_IFUNC_BLOCK(block_handler),
1668 VM_BH_TO_IFUNC_BLOCK(block_handler)->self,
1669 argc, argv, kw_splat, passed_block_handler, NULL);
1670 case block_handler_type_symbol:
1671 return vm_yield_with_symbol(ec, VM_BH_TO_SYMBOL(block_handler),
1672 argc, argv, kw_splat, passed_block_handler);
1673 case block_handler_type_proc:
1674 if (force_blockarg == FALSE) {
1675 is_lambda = block_proc_is_lambda(VM_BH_TO_PROC(block_handler));
1676 }
1677 block_handler = vm_proc_to_block_handler(VM_BH_TO_PROC(block_handler));
1678 goto again;
1679 }
1680 VM_UNREACHABLE(invoke_block_from_c_splattable);
1681 return Qundef;
1682}
1683
1684static inline VALUE
1685check_block_handler(rb_execution_context_t *ec)
1686{
1687 VALUE block_handler = VM_CF_BLOCK_HANDLER(ec->cfp);
1688 vm_block_handler_verify(block_handler);
1689 if (UNLIKELY(block_handler == VM_BLOCK_HANDLER_NONE)) {
1690 rb_vm_localjump_error("no block given", Qnil, 0);
1691 }
1692
1693 return block_handler;
1694}
1695
1696static VALUE
1697vm_yield_with_cref(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat, const rb_cref_t *cref, int is_lambda)
1698{
1699 return invoke_block_from_c_bh(ec, check_block_handler(ec),
1700 argc, argv, kw_splat, VM_BLOCK_HANDLER_NONE,
1701 cref, is_lambda, FALSE);
1702}
1703
1704static VALUE
1705vm_yield(rb_execution_context_t *ec, int argc, const VALUE *argv, int kw_splat)
1706{
1707 return vm_yield_with_cref(ec, argc, argv, kw_splat, NULL, FALSE);
1708}
1709
1710static VALUE
1711vm_yield_with_block(rb_execution_context_t *ec, int argc, const VALUE *argv, VALUE block_handler, int kw_splat)
1712{
1713 return invoke_block_from_c_bh(ec, check_block_handler(ec),
1714 argc, argv, kw_splat, block_handler,
1715 NULL, FALSE, FALSE);
1716}
1717
1718static VALUE
1719vm_yield_force_blockarg(rb_execution_context_t *ec, VALUE args)
1720{
1721 return invoke_block_from_c_bh(ec, check_block_handler(ec), 1, &args,
1722 RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE, NULL, FALSE, TRUE);
1723}
1724
1725ALWAYS_INLINE(static VALUE
1726 invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
1727 VALUE self, int argc, const VALUE *argv,
1728 int kw_splat, VALUE passed_block_handler, int is_lambda,
1729 const rb_callable_method_entry_t *me));
1730
1731static inline VALUE
1732invoke_block_from_c_proc(rb_execution_context_t *ec, const rb_proc_t *proc,
1733 VALUE self, int argc, const VALUE *argv,
1734 int kw_splat, VALUE passed_block_handler, int is_lambda,
1736{
1737 const struct rb_block *block = &proc->block;
1738
1739 again:
1740 switch (vm_block_type(block)) {
1741 case block_type_iseq:
1742 return invoke_iseq_block_from_c(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, NULL, is_lambda, me);
1743 case block_type_ifunc:
1744 if (kw_splat == 1) {
1745 VALUE keyword_hash = argv[argc-1];
1746 if (!RB_TYPE_P(keyword_hash, T_HASH)) {
1747 keyword_hash = rb_to_hash_type(keyword_hash);
1748 }
1749 if (RHASH_EMPTY_P(keyword_hash)) {
1750 argc--;
1751 }
1752 else {
1753 ((VALUE *)argv)[argc-1] = rb_hash_dup(keyword_hash);
1754 }
1755 }
1756 return vm_yield_with_cfunc(ec, &block->as.captured, self, argc, argv, kw_splat, passed_block_handler, me);
1757 case block_type_symbol:
1758 return vm_yield_with_symbol(ec, block->as.symbol, argc, argv, kw_splat, passed_block_handler);
1759 case block_type_proc:
1760 is_lambda = block_proc_is_lambda(block->as.proc);
1761 block = vm_proc_block(block->as.proc);
1762 goto again;
1763 }
1764 VM_UNREACHABLE(invoke_block_from_c_proc);
1765 return Qundef;
1766}
1767
1768static VALUE
1769vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
1770 int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
1771{
1772 return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler, proc->is_lambda, NULL);
1773}
1774
1775static VALUE
1776vm_invoke_bmethod(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
1777 int argc, const VALUE *argv, int kw_splat, VALUE block_handler, const rb_callable_method_entry_t *me)
1778{
1779 return invoke_block_from_c_proc(ec, proc, self, argc, argv, kw_splat, block_handler, TRUE, me);
1780}
1781
1782VALUE
1783rb_vm_invoke_proc(rb_execution_context_t *ec, rb_proc_t *proc,
1784 int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
1785{
1786 VALUE self = vm_block_self(&proc->block);
1787 vm_block_handler_verify(passed_block_handler);
1788
1789 if (proc->is_from_method) {
1790 return vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL);
1791 }
1792 else {
1793 return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler);
1794 }
1795}
1796
1797VALUE
1798rb_vm_invoke_proc_with_self(rb_execution_context_t *ec, rb_proc_t *proc, VALUE self,
1799 int argc, const VALUE *argv, int kw_splat, VALUE passed_block_handler)
1800{
1801 vm_block_handler_verify(passed_block_handler);
1802
1803 if (proc->is_from_method) {
1804 return vm_invoke_bmethod(ec, proc, self, argc, argv, kw_splat, passed_block_handler, NULL);
1805 }
1806 else {
1807 return vm_invoke_proc(ec, proc, self, argc, argv, kw_splat, passed_block_handler);
1808 }
1809}
1810
1811/* special variable */
1812
1813VALUE *
1814rb_vm_svar_lep(const rb_execution_context_t *ec, const rb_control_frame_t *cfp)
1815{
1816 while (cfp->pc == 0 || cfp->iseq == 0) {
1817 if (VM_FRAME_TYPE(cfp) == VM_FRAME_MAGIC_IFUNC) {
1818 struct vm_ifunc *ifunc = (struct vm_ifunc *)cfp->iseq;
1819 return ifunc->svar_lep;
1820 }
1821 else {
1822 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1823 }
1824
1825 if (RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(ec, cfp)) {
1826 return NULL;
1827 }
1828 }
1829
1830 return (VALUE *)VM_CF_LEP(cfp);
1831}
1832
1833static VALUE
1834vm_cfp_svar_get(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key)
1835{
1836 return lep_svar_get(ec, rb_vm_svar_lep(ec, cfp), key);
1837}
1838
1839static void
1840vm_cfp_svar_set(const rb_execution_context_t *ec, rb_control_frame_t *cfp, VALUE key, const VALUE val)
1841{
1842 lep_svar_set(ec, rb_vm_svar_lep(ec, cfp), key, val);
1843}
1844
1845static VALUE
1846vm_svar_get(const rb_execution_context_t *ec, VALUE key)
1847{
1848 return vm_cfp_svar_get(ec, ec->cfp, key);
1849}
1850
1851static void
1852vm_svar_set(const rb_execution_context_t *ec, VALUE key, VALUE val)
1853{
1854 vm_cfp_svar_set(ec, ec->cfp, key, val);
1855}
1856
1857VALUE
1859{
1860 return vm_svar_get(GET_EC(), VM_SVAR_BACKREF);
1861}
1862
1863void
1865{
1866 vm_svar_set(GET_EC(), VM_SVAR_BACKREF, val);
1867}
1868
1869VALUE
1871{
1872 return vm_svar_get(GET_EC(), VM_SVAR_LASTLINE);
1873}
1874
1875void
1877{
1878 vm_svar_set(GET_EC(), VM_SVAR_LASTLINE, val);
1879}
1880
1881void
1882rb_lastline_set_up(VALUE val, unsigned int up)
1883{
1884 rb_control_frame_t * cfp = GET_EC()->cfp;
1885
1886 for(unsigned int i = 0; i < up; i++) {
1887 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1888 }
1889 vm_cfp_svar_set(GET_EC(), cfp, VM_SVAR_LASTLINE, val);
1890}
1891
1892/* misc */
1893
1894const char *
1896{
1897 const rb_execution_context_t *ec = GET_EC();
1898 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1899
1900 if (cfp) {
1901 return RSTRING_PTR(rb_iseq_path(cfp->iseq));
1902 }
1903 else {
1904 return 0;
1905 }
1906}
1907
1908int
1910{
1911 const rb_execution_context_t *ec = GET_EC();
1912 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1913
1914 if (cfp) {
1915 return rb_vm_get_sourceline(cfp);
1916 }
1917 else {
1918 return 0;
1919 }
1920}
1921
1922VALUE
1923rb_source_location(int *pline)
1924{
1925 const rb_execution_context_t *ec = GET_EC();
1926 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1927
1928 if (cfp && VM_FRAME_RUBYFRAME_P(cfp)) {
1929 if (pline) *pline = rb_vm_get_sourceline(cfp);
1930 return rb_iseq_path(cfp->iseq);
1931 }
1932 else {
1933 if (pline) *pline = 0;
1934 return Qnil;
1935 }
1936}
1937
1938const char *
1939rb_source_location_cstr(int *pline)
1940{
1941 VALUE path = rb_source_location(pline);
1942 if (NIL_P(path)) return NULL;
1943 return RSTRING_PTR(path);
1944}
1945
1946rb_cref_t *
1947rb_vm_cref(void)
1948{
1949 const rb_execution_context_t *ec = GET_EC();
1950 return vm_ec_cref(ec);
1951}
1952
1953rb_cref_t *
1954rb_vm_cref_replace_with_duplicated_cref(void)
1955{
1956 const rb_execution_context_t *ec = GET_EC();
1957 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1958 rb_cref_t *cref = vm_cref_replace_with_duplicated_cref(cfp->ep);
1959 ASSUME(cref);
1960 return cref;
1961}
1962
1963const rb_cref_t *
1964rb_vm_cref_in_context(VALUE self, VALUE cbase)
1965{
1966 const rb_execution_context_t *ec = GET_EC();
1967 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1968 const rb_cref_t *cref;
1969 if (!cfp || cfp->self != self) return NULL;
1970 if (!vm_env_cref_by_cref(cfp->ep)) return NULL;
1971 cref = vm_get_cref(cfp->ep);
1972 if (CREF_CLASS(cref) != cbase) return NULL;
1973 return cref;
1974}
1975
1976#if 0
1977void
1978debug_cref(rb_cref_t *cref)
1979{
1980 while (cref) {
1981 dp(CREF_CLASS(cref));
1982 printf("%ld\n", CREF_VISI(cref));
1983 cref = CREF_NEXT(cref);
1984 }
1985}
1986#endif
1987
1988VALUE
1989rb_vm_cbase(void)
1990{
1991 const rb_execution_context_t *ec = GET_EC();
1992 const rb_control_frame_t *cfp = rb_vm_get_ruby_level_next_cfp(ec, ec->cfp);
1993
1994 if (cfp == 0) {
1995 rb_raise(rb_eRuntimeError, "Can't call on top of Fiber or Thread");
1996 }
1997 return vm_get_cbase(cfp->ep);
1998}
1999
2000/* jump */
2001
2002static VALUE
2003make_localjump_error(const char *mesg, VALUE value, int reason)
2004{
2007 ID id;
2008
2009 switch (reason) {
2010 case TAG_BREAK:
2011 CONST_ID(id, "break");
2012 break;
2013 case TAG_REDO:
2014 CONST_ID(id, "redo");
2015 break;
2016 case TAG_RETRY:
2017 CONST_ID(id, "retry");
2018 break;
2019 case TAG_NEXT:
2020 CONST_ID(id, "next");
2021 break;
2022 case TAG_RETURN:
2023 CONST_ID(id, "return");
2024 break;
2025 default:
2026 CONST_ID(id, "noreason");
2027 break;
2028 }
2029 rb_iv_set(exc, "@exit_value", value);
2030 rb_iv_set(exc, "@reason", ID2SYM(id));
2031 return exc;
2032}
2033
2034void
2035rb_vm_localjump_error(const char *mesg, VALUE value, int reason)
2036{
2037 VALUE exc = make_localjump_error(mesg, value, reason);
2038 rb_exc_raise(exc);
2039}
2040
2041VALUE
2042rb_vm_make_jump_tag_but_local_jump(enum ruby_tag_type state, VALUE val)
2043{
2044 const char *mesg;
2045
2046 switch (state) {
2047 case TAG_RETURN:
2048 mesg = "unexpected return";
2049 break;
2050 case TAG_BREAK:
2051 mesg = "unexpected break";
2052 break;
2053 case TAG_NEXT:
2054 mesg = "unexpected next";
2055 break;
2056 case TAG_REDO:
2057 mesg = "unexpected redo";
2058 val = Qnil;
2059 break;
2060 case TAG_RETRY:
2061 mesg = "retry outside of rescue clause";
2062 val = Qnil;
2063 break;
2064 default:
2065 return Qnil;
2066 }
2067 if (UNDEF_P(val)) {
2068 val = GET_EC()->tag->retval;
2069 }
2070 return make_localjump_error(mesg, val, state);
2071}
2072
2073void
2074rb_vm_jump_tag_but_local_jump(enum ruby_tag_type state)
2075{
2076 VALUE exc = rb_vm_make_jump_tag_but_local_jump(state, Qundef);
2077 if (!NIL_P(exc)) rb_exc_raise(exc);
2078 EC_JUMP_TAG(GET_EC(), state);
2079}
2080
2081static rb_control_frame_t *
2082next_not_local_frame(rb_control_frame_t *cfp)
2083{
2084 while (VM_ENV_LOCAL_P(cfp->ep)) {
2085 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
2086 }
2087 return cfp;
2088}
2089
2090NORETURN(static void vm_iter_break(rb_execution_context_t *ec, VALUE val));
2091
2092static void
2093vm_iter_break(rb_execution_context_t *ec, VALUE val)
2094{
2095 rb_control_frame_t *cfp = next_not_local_frame(ec->cfp);
2096 const VALUE *ep = VM_CF_PREV_EP(cfp);
2097 const rb_control_frame_t *target_cfp = rb_vm_search_cf_from_ep(ec, cfp, ep);
2098
2099 if (!target_cfp) {
2100 rb_vm_localjump_error("unexpected break", val, TAG_BREAK);
2101 }
2102
2103 ec->errinfo = (VALUE)THROW_DATA_NEW(val, target_cfp, TAG_BREAK);
2104 EC_JUMP_TAG(ec, TAG_BREAK);
2105}
2106
2107void
2109{
2110 vm_iter_break(GET_EC(), Qnil);
2111}
2112
2113void
2115{
2116 vm_iter_break(GET_EC(), val);
2117}
2118
2119/* optimization: redefine management */
2120
2121short ruby_vm_redefined_flag[BOP_LAST_];
2122static st_table *vm_opt_method_def_table = 0;
2123static st_table *vm_opt_mid_table = 0;
2124
2125void
2126rb_free_vm_opt_tables(void)
2127{
2128 st_free_table(vm_opt_method_def_table);
2129 st_free_table(vm_opt_mid_table);
2130}
2131
2132static int
2133vm_redefinition_check_flag(VALUE klass)
2134{
2135 if (klass == rb_cInteger) return INTEGER_REDEFINED_OP_FLAG;
2136 if (klass == rb_cFloat) return FLOAT_REDEFINED_OP_FLAG;
2137 if (klass == rb_cString) return STRING_REDEFINED_OP_FLAG;
2138 if (klass == rb_cArray) return ARRAY_REDEFINED_OP_FLAG;
2139 if (klass == rb_cHash) return HASH_REDEFINED_OP_FLAG;
2140 if (klass == rb_cSymbol) return SYMBOL_REDEFINED_OP_FLAG;
2141#if 0
2142 if (klass == rb_cTime) return TIME_REDEFINED_OP_FLAG;
2143#endif
2144 if (klass == rb_cRegexp) return REGEXP_REDEFINED_OP_FLAG;
2145 if (klass == rb_cNilClass) return NIL_REDEFINED_OP_FLAG;
2146 if (klass == rb_cTrueClass) return TRUE_REDEFINED_OP_FLAG;
2147 if (klass == rb_cFalseClass) return FALSE_REDEFINED_OP_FLAG;
2148 if (klass == rb_cProc) return PROC_REDEFINED_OP_FLAG;
2149 return 0;
2150}
2151
2152int
2153rb_vm_check_optimizable_mid(VALUE mid)
2154{
2155 if (!vm_opt_mid_table) {
2156 return FALSE;
2157 }
2158
2159 return st_lookup(vm_opt_mid_table, mid, NULL);
2160}
2161
2162static int
2163vm_redefinition_check_method_type(const rb_method_entry_t *me)
2164{
2165 if (me->called_id != me->def->original_id) {
2166 return FALSE;
2167 }
2168
2169 if (METHOD_ENTRY_BASIC(me)) return TRUE;
2170
2171 const rb_method_definition_t *def = me->def;
2172 switch (def->type) {
2173 case VM_METHOD_TYPE_CFUNC:
2174 case VM_METHOD_TYPE_OPTIMIZED:
2175 return TRUE;
2176 default:
2177 return FALSE;
2178 }
2179}
2180
2181static void
2182rb_vm_check_redefinition_opt_method(const rb_method_entry_t *me, VALUE klass)
2183{
2184 st_data_t bop;
2185 if (RB_TYPE_P(klass, T_ICLASS) && FL_TEST(klass, RICLASS_IS_ORIGIN) &&
2186 RB_TYPE_P(RBASIC_CLASS(klass), T_CLASS)) {
2187 klass = RBASIC_CLASS(klass);
2188 }
2189 if (vm_redefinition_check_method_type(me)) {
2190 if (st_lookup(vm_opt_method_def_table, (st_data_t)me->def, &bop)) {
2191 int flag = vm_redefinition_check_flag(klass);
2192 if (flag != 0) {
2195 "Redefining '%s#%s' disables interpreter and JIT optimizations",
2196 rb_class2name(me->owner),
2197 rb_id2name(me->called_id)
2198 );
2199 rb_yjit_bop_redefined(flag, (enum ruby_basic_operators)bop);
2200 rb_zjit_bop_redefined(flag, (enum ruby_basic_operators)bop);
2201 ruby_vm_redefined_flag[bop] |= flag;
2202 }
2203 }
2204 }
2205}
2206
2207static enum rb_id_table_iterator_result
2208check_redefined_method(ID mid, VALUE value, void *data)
2209{
2210 VALUE klass = (VALUE)data;
2211 const rb_method_entry_t *me = (rb_method_entry_t *)value;
2212 const rb_method_entry_t *newme = rb_method_entry(klass, mid);
2213
2214 if (newme != me) rb_vm_check_redefinition_opt_method(me, me->owner);
2215
2216 return ID_TABLE_CONTINUE;
2217}
2218
2219void
2220rb_vm_check_redefinition_by_prepend(VALUE klass)
2221{
2222 if (!vm_redefinition_check_flag(klass)) return;
2223 rb_id_table_foreach(RCLASS_M_TBL(RCLASS_ORIGIN(klass)), check_redefined_method, (void *)klass);
2224}
2225
2226static void
2227add_opt_method_entry_bop(const rb_method_entry_t *me, ID mid, enum ruby_basic_operators bop)
2228{
2229 st_insert(vm_opt_method_def_table, (st_data_t)me->def, (st_data_t)bop);
2230 st_insert(vm_opt_mid_table, (st_data_t)mid, (st_data_t)Qtrue);
2231}
2232
2233static void
2234add_opt_method(VALUE klass, ID mid, enum ruby_basic_operators bop)
2235{
2236 const rb_method_entry_t *me = rb_method_entry_at(klass, mid);
2237
2238 if (me && vm_redefinition_check_method_type(me)) {
2239 add_opt_method_entry_bop(me, mid, bop);
2240 }
2241 else {
2242 rb_bug("undefined optimized method: %s", rb_id2name(mid));
2243 }
2244}
2245
2246static enum ruby_basic_operators vm_redefinition_bop_for_id(ID mid);
2247
2248static void
2249add_opt_method_entry(const rb_method_entry_t *me)
2250{
2251 if (me && vm_redefinition_check_method_type(me)) {
2252 ID mid = me->called_id;
2253 enum ruby_basic_operators bop = vm_redefinition_bop_for_id(mid);
2254 if ((int)bop >= 0) {
2255 add_opt_method_entry_bop(me, mid, bop);
2256 }
2257 }
2258}
2259
2260static void
2261vm_init_redefined_flag(void)
2262{
2263 ID mid;
2264 enum ruby_basic_operators bop;
2265
2266#define OP(mid_, bop_) (mid = id##mid_, bop = BOP_##bop_, ruby_vm_redefined_flag[bop] = 0)
2267#define C(k) add_opt_method(rb_c##k, mid, bop)
2268 OP(PLUS, PLUS), (C(Integer), C(Float), C(String), C(Array));
2269 OP(MINUS, MINUS), (C(Integer), C(Float));
2270 OP(MULT, MULT), (C(Integer), C(Float));
2271 OP(DIV, DIV), (C(Integer), C(Float));
2272 OP(MOD, MOD), (C(Integer), C(Float));
2273 OP(Eq, EQ), (C(Integer), C(Float), C(String), C(Symbol));
2274 OP(Eqq, EQQ), (C(Integer), C(Float), C(Symbol), C(String),
2275 C(NilClass), C(TrueClass), C(FalseClass));
2276 OP(LT, LT), (C(Integer), C(Float));
2277 OP(LE, LE), (C(Integer), C(Float));
2278 OP(GT, GT), (C(Integer), C(Float));
2279 OP(GE, GE), (C(Integer), C(Float));
2280 OP(LTLT, LTLT), (C(String), C(Array));
2281 OP(AREF, AREF), (C(Array), C(Hash), C(Integer));
2282 OP(ASET, ASET), (C(Array), C(Hash));
2283 OP(Length, LENGTH), (C(Array), C(String), C(Hash));
2284 OP(Size, SIZE), (C(Array), C(String), C(Hash));
2285 OP(EmptyP, EMPTY_P), (C(Array), C(String), C(Hash));
2286 OP(Succ, SUCC), (C(Integer), C(String));
2287 OP(EqTilde, MATCH), (C(Regexp), C(String));
2288 OP(Freeze, FREEZE), (C(String), C(Array), C(Hash));
2289 OP(UMinus, UMINUS), (C(String));
2290 OP(Max, MAX), (C(Array));
2291 OP(Min, MIN), (C(Array));
2292 OP(Hash, HASH), (C(Array));
2293 OP(Call, CALL), (C(Proc));
2294 OP(And, AND), (C(Integer));
2295 OP(Or, OR), (C(Integer));
2296 OP(NilP, NIL_P), (C(NilClass));
2297 OP(Cmp, CMP), (C(Integer), C(Float), C(String));
2298 OP(Default, DEFAULT), (C(Hash));
2299 OP(IncludeP, INCLUDE_P), (C(Array));
2300#undef C
2301#undef OP
2302}
2303
2304static enum ruby_basic_operators
2305vm_redefinition_bop_for_id(ID mid)
2306{
2307 switch (mid) {
2308#define OP(mid_, bop_) case id##mid_: return BOP_##bop_
2309 OP(PLUS, PLUS);
2310 OP(MINUS, MINUS);
2311 OP(MULT, MULT);
2312 OP(DIV, DIV);
2313 OP(MOD, MOD);
2314 OP(Eq, EQ);
2315 OP(Eqq, EQQ);
2316 OP(LT, LT);
2317 OP(LE, LE);
2318 OP(GT, GT);
2319 OP(GE, GE);
2320 OP(LTLT, LTLT);
2321 OP(AREF, AREF);
2322 OP(ASET, ASET);
2323 OP(Length, LENGTH);
2324 OP(Size, SIZE);
2325 OP(EmptyP, EMPTY_P);
2326 OP(Succ, SUCC);
2327 OP(EqTilde, MATCH);
2328 OP(Freeze, FREEZE);
2329 OP(UMinus, UMINUS);
2330 OP(Max, MAX);
2331 OP(Min, MIN);
2332 OP(Hash, HASH);
2333 OP(Call, CALL);
2334 OP(And, AND);
2335 OP(Or, OR);
2336 OP(NilP, NIL_P);
2337 OP(Cmp, CMP);
2338 OP(Default, DEFAULT);
2339 OP(Pack, PACK);
2340#undef OP
2341 }
2342 return -1;
2343}
2344
2345/* for vm development */
2346
2347#if VMDEBUG
2348static const char *
2349vm_frametype_name(const rb_control_frame_t *cfp)
2350{
2351 switch (VM_FRAME_TYPE(cfp)) {
2352 case VM_FRAME_MAGIC_METHOD: return "method";
2353 case VM_FRAME_MAGIC_BLOCK: return "block";
2354 case VM_FRAME_MAGIC_CLASS: return "class";
2355 case VM_FRAME_MAGIC_TOP: return "top";
2356 case VM_FRAME_MAGIC_CFUNC: return "cfunc";
2357 case VM_FRAME_MAGIC_IFUNC: return "ifunc";
2358 case VM_FRAME_MAGIC_EVAL: return "eval";
2359 case VM_FRAME_MAGIC_RESCUE: return "rescue";
2360 default:
2361 rb_bug("unknown frame");
2362 }
2363}
2364#endif
2365
2366static VALUE
2367frame_return_value(const struct vm_throw_data *err)
2368{
2369 if (THROW_DATA_P(err) &&
2370 THROW_DATA_STATE(err) == TAG_BREAK &&
2371 THROW_DATA_CONSUMED_P(err) == FALSE) {
2372 return THROW_DATA_VAL(err);
2373 }
2374 else {
2375 return Qnil;
2376 }
2377}
2378
2379#if 0
2380/* for debug */
2381static const char *
2382frame_name(const rb_control_frame_t *cfp)
2383{
2384 unsigned long type = VM_FRAME_TYPE(cfp);
2385#define C(t) if (type == VM_FRAME_MAGIC_##t) return #t
2386 C(METHOD);
2387 C(BLOCK);
2388 C(CLASS);
2389 C(TOP);
2390 C(CFUNC);
2391 C(PROC);
2392 C(IFUNC);
2393 C(EVAL);
2394 C(LAMBDA);
2395 C(RESCUE);
2396 C(DUMMY);
2397#undef C
2398 return "unknown";
2399}
2400#endif
2401
2402// cfp_returning_with_value:
2403// Whether cfp is the last frame in the unwinding process for a non-local return.
2404static void
2405hook_before_rewind(rb_execution_context_t *ec, bool cfp_returning_with_value, int state, struct vm_throw_data *err)
2406{
2407 if (state == TAG_RAISE && RBASIC(err)->klass == rb_eSysStackError) {
2408 return;
2409 }
2410 else {
2411 const rb_iseq_t *iseq = ec->cfp->iseq;
2412 rb_hook_list_t *local_hooks = iseq->aux.exec.local_hooks;
2413
2414 switch (VM_FRAME_TYPE(ec->cfp)) {
2415 case VM_FRAME_MAGIC_METHOD:
2416 RUBY_DTRACE_METHOD_RETURN_HOOK(ec, 0, 0);
2417 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
2418
2419 if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
2420 rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN,
2421 ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
2422 }
2423
2424 THROW_DATA_CONSUMED_SET(err);
2425 break;
2426 case VM_FRAME_MAGIC_BLOCK:
2427 if (VM_FRAME_BMETHOD_P(ec->cfp)) {
2428 VALUE bmethod_return_value = frame_return_value(err);
2429 if (cfp_returning_with_value) {
2430 // Non-local return terminating at a BMETHOD control frame.
2431 bmethod_return_value = THROW_DATA_VAL(err);
2432 }
2433
2434
2435 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, bmethod_return_value);
2436 if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
2437 rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
2438 ec->cfp->self, 0, 0, 0, bmethod_return_value, TRUE);
2439 }
2440
2441 const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(ec->cfp);
2442
2443 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_RETURN, ec->cfp->self,
2444 rb_vm_frame_method_entry(ec->cfp)->def->original_id,
2445 rb_vm_frame_method_entry(ec->cfp)->called_id,
2446 rb_vm_frame_method_entry(ec->cfp)->owner,
2447 bmethod_return_value);
2448
2449 VM_ASSERT(me->def->type == VM_METHOD_TYPE_BMETHOD);
2450 local_hooks = me->def->body.bmethod.hooks;
2451
2452 if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_RETURN)) {
2453 rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_RETURN, ec->cfp->self,
2454 rb_vm_frame_method_entry(ec->cfp)->def->original_id,
2455 rb_vm_frame_method_entry(ec->cfp)->called_id,
2456 rb_vm_frame_method_entry(ec->cfp)->owner,
2457 bmethod_return_value, TRUE);
2458 }
2459 THROW_DATA_CONSUMED_SET(err);
2460 }
2461 else {
2462 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_B_RETURN, ec->cfp->self, 0, 0, 0, frame_return_value(err));
2463 if (UNLIKELY(local_hooks && local_hooks->events & RUBY_EVENT_B_RETURN)) {
2464 rb_exec_event_hook_orig(ec, local_hooks, RUBY_EVENT_B_RETURN,
2465 ec->cfp->self, 0, 0, 0, frame_return_value(err), TRUE);
2466 }
2467 THROW_DATA_CONSUMED_SET(err);
2468 }
2469 break;
2470 case VM_FRAME_MAGIC_CLASS:
2471 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_END, ec->cfp->self, 0, 0, 0, Qnil);
2472 break;
2473 }
2474 }
2475}
2476
2477/* evaluator body */
2478
2479/* finish
2480 VMe (h1) finish
2481 VM finish F1 F2
2482 cfunc finish F1 F2 C1
2483 rb_funcall finish F1 F2 C1
2484 VMe finish F1 F2 C1
2485 VM finish F1 F2 C1 F3
2486
2487 F1 - F3 : pushed by VM
2488 C1 : pushed by send insn (CFUNC)
2489
2490 struct CONTROL_FRAME {
2491 VALUE *pc; // cfp[0], program counter
2492 VALUE *sp; // cfp[1], stack pointer
2493 rb_iseq_t *iseq; // cfp[2], iseq
2494 VALUE self; // cfp[3], self
2495 const VALUE *ep; // cfp[4], env pointer
2496 const void *block_code; // cfp[5], block code
2497 };
2498
2499 struct rb_captured_block {
2500 VALUE self;
2501 VALUE *ep;
2502 union code;
2503 };
2504
2505 struct METHOD_ENV {
2506 VALUE param0;
2507 ...
2508 VALUE paramN;
2509 VALUE lvar1;
2510 ...
2511 VALUE lvarM;
2512 VALUE cref; // ep[-2]
2513 VALUE special; // ep[-1]
2514 VALUE flags; // ep[ 0] == lep[0]
2515 };
2516
2517 struct BLOCK_ENV {
2518 VALUE block_param0;
2519 ...
2520 VALUE block_paramN;
2521 VALUE block_lvar1;
2522 ...
2523 VALUE block_lvarM;
2524 VALUE cref; // ep[-2]
2525 VALUE special; // ep[-1]
2526 VALUE flags; // ep[ 0]
2527 };
2528
2529 struct CLASS_ENV {
2530 VALUE class_lvar0;
2531 ...
2532 VALUE class_lvarN;
2533 VALUE cref;
2534 VALUE prev_ep; // for frame jump
2535 VALUE flags;
2536 };
2537
2538 struct C_METHOD_CONTROL_FRAME {
2539 VALUE *pc; // 0
2540 VALUE *sp; // stack pointer
2541 rb_iseq_t *iseq; // cmi
2542 VALUE self; // ?
2543 VALUE *ep; // ep == lep
2544 void *code; //
2545 };
2546
2547 struct C_BLOCK_CONTROL_FRAME {
2548 VALUE *pc; // point only "finish" insn
2549 VALUE *sp; // sp
2550 rb_iseq_t *iseq; // ?
2551 VALUE self; //
2552 VALUE *ep; // ep
2553 void *code; //
2554 };
2555 */
2556
2557static inline VALUE
2558vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo);
2559static inline VALUE
2560vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state, struct rb_vm_tag *tag, VALUE result);
2561
2562// for non-Emscripten Wasm build, use vm_exec with optimized setjmp for runtime performance
2563#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
2564
2565struct rb_vm_exec_context {
2566 rb_execution_context_t *const ec;
2567 struct rb_vm_tag *const tag;
2568
2569 VALUE result;
2570};
2571
2572static void
2573vm_exec_bottom_main(void *context)
2574{
2575 struct rb_vm_exec_context *ctx = context;
2576 rb_execution_context_t *ec = ctx->ec;
2577
2578 ctx->result = vm_exec_loop(ec, TAG_NONE, ctx->tag, vm_exec_core(ec));
2579}
2580
2581static void
2582vm_exec_bottom_rescue(void *context)
2583{
2584 struct rb_vm_exec_context *ctx = context;
2585 rb_execution_context_t *ec = ctx->ec;
2586
2587 ctx->result = vm_exec_loop(ec, rb_ec_tag_state(ec), ctx->tag, ec->errinfo);
2588}
2589#endif
2590
2591VALUE
2592vm_exec(rb_execution_context_t *ec)
2593{
2594 VALUE result = Qundef;
2595
2596 EC_PUSH_TAG(ec);
2597
2598 _tag.retval = Qnil;
2599
2600#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
2601 struct rb_vm_exec_context ctx = {
2602 .ec = ec,
2603 .tag = &_tag,
2604 };
2605 struct rb_wasm_try_catch try_catch;
2606
2607 EC_REPUSH_TAG();
2608
2609 rb_wasm_try_catch_init(&try_catch, vm_exec_bottom_main, vm_exec_bottom_rescue, &ctx);
2610
2611 rb_wasm_try_catch_loop_run(&try_catch, &RB_VM_TAG_JMPBUF_GET(_tag.buf));
2612
2613 result = ctx.result;
2614#else
2615 enum ruby_tag_type state;
2616 if ((state = EC_EXEC_TAG()) == TAG_NONE) {
2617 if (UNDEF_P(result = jit_exec(ec))) {
2618 result = vm_exec_core(ec);
2619 }
2620 /* fallback to the VM */
2621 result = vm_exec_loop(ec, TAG_NONE, &_tag, result);
2622 }
2623 else {
2624 result = vm_exec_loop(ec, state, &_tag, ec->errinfo);
2625 }
2626#endif
2627
2628 EC_POP_TAG();
2629 return result;
2630}
2631
2632static inline VALUE
2633vm_exec_loop(rb_execution_context_t *ec, enum ruby_tag_type state,
2634 struct rb_vm_tag *tag, VALUE result)
2635{
2636 if (state == TAG_NONE) { /* no jumps, result is discarded */
2637 goto vm_loop_start;
2638 }
2639
2640 rb_ec_raised_reset(ec, RAISED_STACKOVERFLOW | RAISED_NOMEMORY);
2641 while (UNDEF_P(result = vm_exec_handle_exception(ec, state, result))) {
2642 // caught a jump, exec the handler. JIT code in jit_exec_exception()
2643 // may return Qundef to run remaining frames with vm_exec_core().
2644 if (UNDEF_P(result = jit_exec_exception(ec))) {
2645 result = vm_exec_core(ec);
2646 }
2647 vm_loop_start:
2648 VM_ASSERT(ec->tag == tag);
2649 /* when caught `throw`, `tag.state` is set. */
2650 if ((state = tag->state) == TAG_NONE) break;
2651 tag->state = TAG_NONE;
2652 }
2653
2654 return result;
2655}
2656
2657static inline VALUE
2658vm_exec_handle_exception(rb_execution_context_t *ec, enum ruby_tag_type state, VALUE errinfo)
2659{
2660 struct vm_throw_data *err = (struct vm_throw_data *)errinfo;
2661
2662 for (;;) {
2663 unsigned int i;
2664 const struct iseq_catch_table_entry *entry;
2665 const struct iseq_catch_table *ct;
2666 unsigned long epc, cont_pc, cont_sp;
2667 const rb_iseq_t *catch_iseq;
2668 VALUE type;
2669 const rb_control_frame_t *escape_cfp;
2670
2671 cont_pc = cont_sp = 0;
2672 catch_iseq = NULL;
2673
2674 while (ec->cfp->pc == 0 || ec->cfp->iseq == 0) {
2675 if (UNLIKELY(VM_FRAME_TYPE(ec->cfp) == VM_FRAME_MAGIC_CFUNC)) {
2676 EXEC_EVENT_HOOK_AND_POP_FRAME(ec, RUBY_EVENT_C_RETURN, ec->cfp->self,
2677 rb_vm_frame_method_entry(ec->cfp)->def->original_id,
2678 rb_vm_frame_method_entry(ec->cfp)->called_id,
2679 rb_vm_frame_method_entry(ec->cfp)->owner, Qnil);
2680 RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec,
2681 rb_vm_frame_method_entry(ec->cfp)->owner,
2682 rb_vm_frame_method_entry(ec->cfp)->def->original_id);
2683 }
2684 rb_vm_pop_frame(ec);
2685 }
2686
2687 rb_control_frame_t *const cfp = ec->cfp;
2688 epc = cfp->pc - ISEQ_BODY(cfp->iseq)->iseq_encoded;
2689
2690 escape_cfp = NULL;
2691 if (state == TAG_BREAK || state == TAG_RETURN) {
2692 escape_cfp = THROW_DATA_CATCH_FRAME(err);
2693
2694 if (cfp == escape_cfp) {
2695 if (state == TAG_RETURN) {
2696 if (!VM_FRAME_FINISHED_P(cfp)) {
2697 THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
2698 THROW_DATA_STATE_SET(err, state = TAG_BREAK);
2699 }
2700 else {
2701 ct = ISEQ_BODY(cfp->iseq)->catch_table;
2702 if (ct) for (i = 0; i < ct->size; i++) {
2703 entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
2704 if (entry->start < epc && entry->end >= epc) {
2705 if (entry->type == CATCH_TYPE_ENSURE) {
2706 catch_iseq = entry->iseq;
2707 cont_pc = entry->cont;
2708 cont_sp = entry->sp;
2709 break;
2710 }
2711 }
2712 }
2713 if (catch_iseq == NULL) {
2714 ec->errinfo = Qnil;
2715 THROW_DATA_CATCH_FRAME_SET(err, cfp + 1);
2716 // cfp == escape_cfp here so calling with cfp_returning_with_value = true
2717 hook_before_rewind(ec, true, state, err);
2718 rb_vm_pop_frame(ec);
2719 return THROW_DATA_VAL(err);
2720 }
2721 }
2722 /* through */
2723 }
2724 else {
2725 /* TAG_BREAK */
2726 *cfp->sp++ = THROW_DATA_VAL(err);
2727 ec->errinfo = Qnil;
2728 return Qundef;
2729 }
2730 }
2731 }
2732
2733 if (state == TAG_RAISE) {
2734 ct = ISEQ_BODY(cfp->iseq)->catch_table;
2735 if (ct) for (i = 0; i < ct->size; i++) {
2736 entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
2737 if (entry->start < epc && entry->end >= epc) {
2738
2739 if (entry->type == CATCH_TYPE_RESCUE ||
2740 entry->type == CATCH_TYPE_ENSURE) {
2741 catch_iseq = entry->iseq;
2742 cont_pc = entry->cont;
2743 cont_sp = entry->sp;
2744 break;
2745 }
2746 }
2747 }
2748 }
2749 else if (state == TAG_RETRY) {
2750 ct = ISEQ_BODY(cfp->iseq)->catch_table;
2751 if (ct) for (i = 0; i < ct->size; i++) {
2752 entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
2753 if (entry->start < epc && entry->end >= epc) {
2754
2755 if (entry->type == CATCH_TYPE_ENSURE) {
2756 catch_iseq = entry->iseq;
2757 cont_pc = entry->cont;
2758 cont_sp = entry->sp;
2759 break;
2760 }
2761 else if (entry->type == CATCH_TYPE_RETRY) {
2762 const rb_control_frame_t *escape_cfp;
2763 escape_cfp = THROW_DATA_CATCH_FRAME(err);
2764 if (cfp == escape_cfp) {
2765 cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont;
2766 ec->errinfo = Qnil;
2767 return Qundef;
2768 }
2769 }
2770 }
2771 }
2772 }
2773 else if ((state == TAG_BREAK && !escape_cfp) ||
2774 (state == TAG_REDO) ||
2775 (state == TAG_NEXT)) {
2776 type = (const enum rb_catch_type[TAG_MASK]) {
2777 [TAG_BREAK] = CATCH_TYPE_BREAK,
2778 [TAG_NEXT] = CATCH_TYPE_NEXT,
2779 [TAG_REDO] = CATCH_TYPE_REDO,
2780 /* otherwise = dontcare */
2781 }[state];
2782
2783 ct = ISEQ_BODY(cfp->iseq)->catch_table;
2784 if (ct) for (i = 0; i < ct->size; i++) {
2785 entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
2786
2787 if (entry->start < epc && entry->end >= epc) {
2788 if (entry->type == CATCH_TYPE_ENSURE) {
2789 catch_iseq = entry->iseq;
2790 cont_pc = entry->cont;
2791 cont_sp = entry->sp;
2792 break;
2793 }
2794 else if (entry->type == type) {
2795 cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + entry->cont;
2796 cfp->sp = vm_base_ptr(cfp) + entry->sp;
2797
2798 if (state != TAG_REDO) {
2799 *cfp->sp++ = THROW_DATA_VAL(err);
2800 }
2801 ec->errinfo = Qnil;
2802 VM_ASSERT(ec->tag->state == TAG_NONE);
2803 return Qundef;
2804 }
2805 }
2806 }
2807 }
2808 else {
2809 ct = ISEQ_BODY(cfp->iseq)->catch_table;
2810 if (ct) for (i = 0; i < ct->size; i++) {
2811 entry = UNALIGNED_MEMBER_PTR(ct, entries[i]);
2812 if (entry->start < epc && entry->end >= epc) {
2813
2814 if (entry->type == CATCH_TYPE_ENSURE) {
2815 catch_iseq = entry->iseq;
2816 cont_pc = entry->cont;
2817 cont_sp = entry->sp;
2818 break;
2819 }
2820 }
2821 }
2822 }
2823
2824 if (catch_iseq != NULL) { /* found catch table */
2825 /* enter catch scope */
2826 const int arg_size = 1;
2827
2828 rb_iseq_check(catch_iseq);
2829 cfp->sp = vm_base_ptr(cfp) + cont_sp;
2830 cfp->pc = ISEQ_BODY(cfp->iseq)->iseq_encoded + cont_pc;
2831
2832 /* push block frame */
2833 cfp->sp[0] = (VALUE)err;
2834 vm_push_frame(ec, catch_iseq, VM_FRAME_MAGIC_RESCUE,
2835 cfp->self,
2836 VM_GUARDED_PREV_EP(cfp->ep),
2837 0, /* cref or me */
2838 ISEQ_BODY(catch_iseq)->iseq_encoded,
2839 cfp->sp + arg_size /* push value */,
2840 ISEQ_BODY(catch_iseq)->local_table_size - arg_size,
2841 ISEQ_BODY(catch_iseq)->stack_max);
2842
2843 state = 0;
2844 ec->tag->state = TAG_NONE;
2845 ec->errinfo = Qnil;
2846
2847 return Qundef;
2848 }
2849 else {
2850 hook_before_rewind(ec, (cfp == escape_cfp), state, err);
2851
2852 if (VM_FRAME_FINISHED_P(ec->cfp)) {
2853 rb_vm_pop_frame(ec);
2854 ec->errinfo = (VALUE)err;
2855 ec->tag = ec->tag->prev;
2856 EC_JUMP_TAG(ec, state);
2857 }
2858 else {
2859 rb_vm_pop_frame(ec);
2860 }
2861 }
2862 }
2863}
2864
2865/* misc */
2866
2867VALUE
2868rb_iseq_eval(const rb_iseq_t *iseq)
2869{
2870 rb_execution_context_t *ec = GET_EC();
2871 VALUE val;
2872 vm_set_top_stack(ec, iseq);
2873 val = vm_exec(ec);
2874 return val;
2875}
2876
2877VALUE
2878rb_iseq_eval_main(const rb_iseq_t *iseq)
2879{
2880 rb_execution_context_t *ec = GET_EC();
2881 VALUE val;
2882
2883 vm_set_main_stack(ec, iseq);
2884 val = vm_exec(ec);
2885 return val;
2886}
2887
2888int
2889rb_vm_control_frame_id_and_class(const rb_control_frame_t *cfp, ID *idp, ID *called_idp, VALUE *klassp)
2890{
2891 const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
2892
2893 if (me) {
2894 if (idp) *idp = me->def->original_id;
2895 if (called_idp) *called_idp = me->called_id;
2896 if (klassp) *klassp = me->owner;
2897 return TRUE;
2898 }
2899 else {
2900 return FALSE;
2901 }
2902}
2903
2904int
2905rb_ec_frame_method_id_and_class(const rb_execution_context_t *ec, ID *idp, ID *called_idp, VALUE *klassp)
2906{
2907 return rb_vm_control_frame_id_and_class(ec->cfp, idp, called_idp, klassp);
2908}
2909
2910int
2912{
2913 return rb_ec_frame_method_id_and_class(GET_EC(), idp, 0, klassp);
2914}
2915
2916VALUE
2917rb_vm_call_cfunc(VALUE recv, VALUE (*func)(VALUE), VALUE arg,
2918 VALUE block_handler, VALUE filename)
2919{
2920 rb_execution_context_t *ec = GET_EC();
2921 const rb_control_frame_t *reg_cfp = ec->cfp;
2922 const rb_iseq_t *iseq = rb_iseq_new(Qnil, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
2923 VALUE val;
2924
2925 vm_push_frame(ec, iseq, VM_FRAME_MAGIC_TOP | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH,
2926 recv, block_handler,
2927 (VALUE)vm_cref_new_toplevel(ec), /* cref or me */
2928 0, reg_cfp->sp, 0, 0);
2929
2930 val = (*func)(arg);
2931
2932 rb_vm_pop_frame(ec);
2933 return val;
2934}
2935
2936/* vm */
2937
2938void
2939rb_vm_update_references(void *ptr)
2940{
2941 if (ptr) {
2942 rb_vm_t *vm = ptr;
2943
2944 vm->mark_object_ary = rb_gc_location(vm->mark_object_ary);
2945 vm->load_path = rb_gc_location(vm->load_path);
2946 vm->load_path_snapshot = rb_gc_location(vm->load_path_snapshot);
2947
2948 if (vm->load_path_check_cache) {
2949 vm->load_path_check_cache = rb_gc_location(vm->load_path_check_cache);
2950 }
2951
2952 vm->expanded_load_path = rb_gc_location(vm->expanded_load_path);
2953 vm->loaded_features = rb_gc_location(vm->loaded_features);
2954 vm->loaded_features_snapshot = rb_gc_location(vm->loaded_features_snapshot);
2955 vm->loaded_features_realpaths = rb_gc_location(vm->loaded_features_realpaths);
2956 vm->loaded_features_realpath_map = rb_gc_location(vm->loaded_features_realpath_map);
2957 vm->top_self = rb_gc_location(vm->top_self);
2958 vm->orig_progname = rb_gc_location(vm->orig_progname);
2959
2960 rb_gc_update_values(RUBY_NSIG, vm->trap_list.cmd);
2961
2962 if (vm->coverages) {
2963 vm->coverages = rb_gc_location(vm->coverages);
2964 vm->me2counter = rb_gc_location(vm->me2counter);
2965 }
2966 }
2967}
2968
2969void
2970rb_vm_each_stack_value(void *ptr, void (*cb)(VALUE, void*), void *ctx)
2971{
2972 if (ptr) {
2973 rb_vm_t *vm = ptr;
2974 rb_ractor_t *r = 0;
2975 ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
2976 VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) ||
2977 rb_ractor_status_p(r, ractor_running));
2978 if (r->threads.cnt > 0) {
2979 rb_thread_t *th = 0;
2980 ccan_list_for_each(&r->threads.set, th, lt_node) {
2981 VM_ASSERT(th != NULL);
2982 rb_execution_context_t * ec = th->ec;
2983 if (ec->vm_stack) {
2984 VALUE *p = ec->vm_stack;
2985 VALUE *sp = ec->cfp->sp;
2986 while (p < sp) {
2987 if (!RB_SPECIAL_CONST_P(*p)) {
2988 cb(*p, ctx);
2989 }
2990 p++;
2991 }
2992 }
2993 }
2994 }
2995 }
2996 }
2997}
2998
2999static enum rb_id_table_iterator_result
3000vm_mark_negative_cme(VALUE val, void *dmy)
3001{
3002 rb_gc_mark(val);
3003 return ID_TABLE_CONTINUE;
3004}
3005
3006void rb_thread_sched_mark_zombies(rb_vm_t *vm);
3007
3008void
3009rb_vm_mark(void *ptr)
3010{
3011 RUBY_MARK_ENTER("vm");
3012 RUBY_GC_INFO("-------------------------------------------------\n");
3013 if (ptr) {
3014 rb_vm_t *vm = ptr;
3015 rb_ractor_t *r = 0;
3016 long i;
3017
3018 ccan_list_for_each(&vm->ractor.set, r, vmlr_node) {
3019 // ractor.set only contains blocking or running ractors
3020 VM_ASSERT(rb_ractor_status_p(r, ractor_blocking) ||
3021 rb_ractor_status_p(r, ractor_running));
3022 rb_gc_mark(rb_ractor_self(r));
3023 }
3024
3025 for (struct global_object_list *list = vm->global_object_list; list; list = list->next) {
3026 rb_gc_mark_maybe(*list->varptr);
3027 }
3028
3029 rb_gc_mark_movable(vm->mark_object_ary);
3030 rb_gc_mark_movable(vm->load_path);
3031 rb_gc_mark_movable(vm->load_path_snapshot);
3032 rb_gc_mark_movable(vm->load_path_check_cache);
3033 rb_gc_mark_movable(vm->expanded_load_path);
3034 rb_gc_mark_movable(vm->loaded_features);
3035 rb_gc_mark_movable(vm->loaded_features_snapshot);
3036 rb_gc_mark_movable(vm->loaded_features_realpaths);
3037 rb_gc_mark_movable(vm->loaded_features_realpath_map);
3038 rb_gc_mark_movable(vm->top_self);
3039 rb_gc_mark_movable(vm->orig_progname);
3040 rb_gc_mark_movable(vm->coverages);
3041 rb_gc_mark_movable(vm->me2counter);
3042
3043 if (vm->loading_table) {
3044 rb_mark_tbl(vm->loading_table);
3045 }
3046
3047 rb_gc_mark_values(RUBY_NSIG, vm->trap_list.cmd);
3048
3049 rb_id_table_foreach_values(vm->negative_cme_table, vm_mark_negative_cme, NULL);
3050 rb_mark_tbl_no_pin(vm->overloaded_cme_table);
3051 for (i=0; i<VM_GLOBAL_CC_CACHE_TABLE_SIZE; i++) {
3052 const struct rb_callcache *cc = vm->global_cc_cache_table[i];
3053
3054 if (cc != NULL) {
3055 if (!vm_cc_invalidated_p(cc)) {
3056 rb_gc_mark((VALUE)cc);
3057 }
3058 else {
3059 vm->global_cc_cache_table[i] = NULL;
3060 }
3061 }
3062 }
3063
3064 rb_thread_sched_mark_zombies(vm);
3065 }
3066
3067 RUBY_MARK_LEAVE("vm");
3068}
3069
3070#undef rb_vm_register_special_exception
3071void
3072rb_vm_register_special_exception_str(enum ruby_special_exceptions sp, VALUE cls, VALUE mesg)
3073{
3074 rb_vm_t *vm = GET_VM();
3075 VALUE exc = rb_exc_new3(cls, rb_obj_freeze(mesg));
3076 OBJ_FREEZE(exc);
3077 ((VALUE *)vm->special_exceptions)[sp] = exc;
3078 rb_vm_register_global_object(exc);
3079}
3080
3081static int
3082free_loading_table_entry(st_data_t key, st_data_t value, st_data_t arg)
3083{
3084 xfree((char *)key);
3085 return ST_DELETE;
3086}
3087
3088void rb_free_loaded_features_index(rb_vm_t *vm);
3089void rb_objspace_free_objects(void *objspace);
3090
3091int
3093{
3094 RUBY_FREE_ENTER("vm");
3095
3096 if (vm) {
3097 rb_thread_t *th = vm->ractor.main_thread;
3098 VALUE *stack = th->ec->vm_stack;
3099 if (rb_free_at_exit) {
3100 rb_free_encoded_insn_data();
3101 rb_free_global_enc_table();
3102 rb_free_loaded_builtin_table();
3103
3104 rb_free_shared_fiber_pool();
3105 rb_free_static_symid_str();
3106 rb_free_transcoder_table();
3107 rb_free_vm_opt_tables();
3108 rb_free_warning();
3109 rb_free_rb_global_tbl();
3110 rb_free_loaded_features_index(vm);
3111
3112 rb_id_table_free(vm->negative_cme_table);
3113 st_free_table(vm->overloaded_cme_table);
3114
3115 rb_id_table_free(RCLASS(rb_mRubyVMFrozenCore)->m_tbl);
3116
3117 rb_shape_t *cursor = rb_shape_get_root_shape();
3118 rb_shape_t *end = rb_shape_get_shape_by_id(GET_SHAPE_TREE()->next_shape_id);
3119 while (cursor < end) {
3120 // 0x1 == SINGLE_CHILD_P
3121 if (cursor->edges && !(((uintptr_t)cursor->edges) & 0x1))
3122 rb_id_table_free(cursor->edges);
3123 cursor += 1;
3124 }
3125
3126 xfree(GET_SHAPE_TREE());
3127
3128 st_free_table(vm->static_ext_inits);
3129
3130 rb_vm_postponed_job_free();
3131
3132 rb_id_table_free(vm->constant_cache);
3133 st_free_table(vm->unused_block_warning_table);
3134
3135 xfree(th->nt);
3136 th->nt = NULL;
3137
3138#ifndef HAVE_SETPROCTITLE
3139 ruby_free_proctitle();
3140#endif
3141 }
3142 else {
3143 rb_fiber_reset_root_local_storage(th);
3144 thread_free(th);
3145 }
3146
3147 struct rb_objspace *objspace = vm->gc.objspace;
3148
3149 rb_vm_living_threads_init(vm);
3150 ruby_vm_run_at_exit_hooks(vm);
3151 if (vm->loading_table) {
3152 st_foreach(vm->loading_table, free_loading_table_entry, 0);
3153 st_free_table(vm->loading_table);
3154 vm->loading_table = 0;
3155 }
3156 if (vm->ci_table) {
3157 st_free_table(vm->ci_table);
3158 vm->ci_table = NULL;
3159 }
3160 RB_ALTSTACK_FREE(vm->main_altstack);
3161
3162 struct global_object_list *next;
3163 for (struct global_object_list *list = vm->global_object_list; list; list = next) {
3164 next = list->next;
3165 xfree(list);
3166 }
3167
3168 if (objspace) {
3169 if (rb_free_at_exit) {
3170 rb_objspace_free_objects(objspace);
3171 rb_free_generic_iv_tbl_();
3172 rb_free_default_rand_key();
3173 if (th && vm->fork_gen == 0) {
3174 /* If we have forked, main_thread may not be the initial thread */
3175 xfree(stack);
3176 ruby_mimfree(th);
3177 }
3178 }
3179 rb_objspace_free(objspace);
3180 }
3181 rb_native_mutex_destroy(&vm->workqueue_lock);
3182 /* after freeing objspace, you *can't* use ruby_xfree() */
3183 ruby_mimfree(vm);
3184 ruby_current_vm_ptr = NULL;
3185
3186#if USE_YJIT
3187 if (rb_free_at_exit) {
3188 rb_yjit_free_at_exit();
3189 }
3190#endif
3191 }
3192 RUBY_FREE_LEAVE("vm");
3193 return 0;
3194}
3195
3196size_t rb_vm_memsize_waiting_fds(struct ccan_list_head *waiting_fds); // thread.c
3197size_t rb_vm_memsize_workqueue(struct ccan_list_head *workqueue); // vm_trace.c
3198
3199// Used for VM memsize reporting. Returns the size of the at_exit list by
3200// looping through the linked list and adding up the size of the structs.
3201static enum rb_id_table_iterator_result
3202vm_memsize_constant_cache_i(ID id, VALUE ics, void *size)
3203{
3204 *((size_t *) size) += rb_st_memsize((st_table *) ics);
3205 return ID_TABLE_CONTINUE;
3206}
3207
3208// Returns a size_t representing the memory footprint of the VM's constant
3209// cache, which is the memsize of the table as well as the memsize of all of the
3210// nested tables.
3211static size_t
3212vm_memsize_constant_cache(void)
3213{
3214 rb_vm_t *vm = GET_VM();
3215 size_t size = rb_id_table_memsize(vm->constant_cache);
3216
3217 rb_id_table_foreach(vm->constant_cache, vm_memsize_constant_cache_i, &size);
3218 return size;
3219}
3220
3221static size_t
3222vm_memsize_at_exit_list(rb_at_exit_list *at_exit)
3223{
3224 size_t size = 0;
3225
3226 while (at_exit) {
3227 size += sizeof(rb_at_exit_list);
3228 at_exit = at_exit->next;
3229 }
3230
3231 return size;
3232}
3233
3234// Used for VM memsize reporting. Returns the size of the builtin function
3235// table if it has been defined.
3236static size_t
3237vm_memsize_builtin_function_table(const struct rb_builtin_function *builtin_function_table)
3238{
3239 return builtin_function_table == NULL ? 0 : sizeof(struct rb_builtin_function);
3240}
3241
3242// Reports the memsize of the VM struct object and the structs that are
3243// associated with it.
3244static size_t
3245vm_memsize(const void *ptr)
3246{
3247 rb_vm_t *vm = GET_VM();
3248
3249 return (
3250 sizeof(rb_vm_t) +
3251 rb_vm_memsize_waiting_fds(&vm->waiting_fds) +
3252 rb_st_memsize(vm->loaded_features_index) +
3253 rb_st_memsize(vm->loading_table) +
3254 rb_vm_memsize_postponed_job_queue() +
3255 rb_vm_memsize_workqueue(&vm->workqueue) +
3256 vm_memsize_at_exit_list(vm->at_exit) +
3257 rb_st_memsize(vm->ci_table) +
3258 vm_memsize_builtin_function_table(vm->builtin_function_table) +
3259 rb_id_table_memsize(vm->negative_cme_table) +
3260 rb_st_memsize(vm->overloaded_cme_table) +
3261 vm_memsize_constant_cache() +
3262 GET_SHAPE_TREE()->cache_size * sizeof(redblack_node_t)
3263 );
3264
3265 // TODO
3266 // struct { struct ccan_list_head set; } ractor;
3267 // void *main_altstack; #ifdef USE_SIGALTSTACK
3268 // struct rb_objspace *objspace;
3269}
3270
3271static const rb_data_type_t vm_data_type = {
3272 "VM",
3273 {0, 0, vm_memsize,},
3274 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
3275};
3276
3277
3278static VALUE
3279vm_default_params(void)
3280{
3281 rb_vm_t *vm = GET_VM();
3282 VALUE result = rb_hash_new_with_size(4);
3283#define SET(name) rb_hash_aset(result, ID2SYM(rb_intern(#name)), SIZET2NUM(vm->default_params.name));
3284 SET(thread_vm_stack_size);
3285 SET(thread_machine_stack_size);
3286 SET(fiber_vm_stack_size);
3287 SET(fiber_machine_stack_size);
3288#undef SET
3289 rb_obj_freeze(result);
3290 return result;
3291}
3292
3293static size_t
3294get_param(const char *name, size_t default_value, size_t min_value)
3295{
3296 const char *envval;
3297 size_t result = default_value;
3298 if ((envval = getenv(name)) != 0) {
3299 long val = atol(envval);
3300 if (val < (long)min_value) {
3301 val = (long)min_value;
3302 }
3303 result = (size_t)(((val -1 + RUBY_VM_SIZE_ALIGN) / RUBY_VM_SIZE_ALIGN) * RUBY_VM_SIZE_ALIGN);
3304 }
3305 if (0) ruby_debug_printf("%s: %"PRIuSIZE"\n", name, result); /* debug print */
3306
3307 return result;
3308}
3309
3310static void
3311check_machine_stack_size(size_t *sizep)
3312{
3313#ifdef PTHREAD_STACK_MIN
3314 size_t size = *sizep;
3315#endif
3316
3317#ifdef PTHREAD_STACK_MIN
3318 if (size < (size_t)PTHREAD_STACK_MIN) {
3319 *sizep = (size_t)PTHREAD_STACK_MIN * 2;
3320 }
3321#endif
3322}
3323
3324static void
3325vm_default_params_setup(rb_vm_t *vm)
3326{
3327 vm->default_params.thread_vm_stack_size =
3328 get_param("RUBY_THREAD_VM_STACK_SIZE",
3329 RUBY_VM_THREAD_VM_STACK_SIZE,
3330 RUBY_VM_THREAD_VM_STACK_SIZE_MIN);
3331
3332 vm->default_params.thread_machine_stack_size =
3333 get_param("RUBY_THREAD_MACHINE_STACK_SIZE",
3334 RUBY_VM_THREAD_MACHINE_STACK_SIZE,
3335 RUBY_VM_THREAD_MACHINE_STACK_SIZE_MIN);
3336
3337 vm->default_params.fiber_vm_stack_size =
3338 get_param("RUBY_FIBER_VM_STACK_SIZE",
3339 RUBY_VM_FIBER_VM_STACK_SIZE,
3340 RUBY_VM_FIBER_VM_STACK_SIZE_MIN);
3341
3342 vm->default_params.fiber_machine_stack_size =
3343 get_param("RUBY_FIBER_MACHINE_STACK_SIZE",
3344 RUBY_VM_FIBER_MACHINE_STACK_SIZE,
3345 RUBY_VM_FIBER_MACHINE_STACK_SIZE_MIN);
3346
3347 /* environment dependent check */
3348 check_machine_stack_size(&vm->default_params.thread_machine_stack_size);
3349 check_machine_stack_size(&vm->default_params.fiber_machine_stack_size);
3350}
3351
3352static void
3353vm_init2(rb_vm_t *vm)
3354{
3355 rb_vm_living_threads_init(vm);
3356 vm->thread_report_on_exception = 1;
3357 vm->src_encoding_index = -1;
3358
3359 vm_default_params_setup(vm);
3360}
3361
3362void
3363rb_execution_context_update(rb_execution_context_t *ec)
3364{
3365 /* update VM stack */
3366 if (ec->vm_stack) {
3367 long i;
3368 VM_ASSERT(ec->cfp);
3369 VALUE *p = ec->vm_stack;
3370 VALUE *sp = ec->cfp->sp;
3371 rb_control_frame_t *cfp = ec->cfp;
3372 rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
3373
3374 for (i = 0; i < (long)(sp - p); i++) {
3375 VALUE ref = p[i];
3376 VALUE update = rb_gc_location(ref);
3377 if (ref != update) {
3378 p[i] = update;
3379 }
3380 }
3381
3382 while (cfp != limit_cfp) {
3383 const VALUE *ep = cfp->ep;
3384 cfp->self = rb_gc_location(cfp->self);
3385 cfp->iseq = (rb_iseq_t *)rb_gc_location((VALUE)cfp->iseq);
3386 cfp->block_code = (void *)rb_gc_location((VALUE)cfp->block_code);
3387
3388 if (!VM_ENV_LOCAL_P(ep)) {
3389 const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
3390 if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) {
3391 VM_FORCE_WRITE(&prev_ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(prev_ep[VM_ENV_DATA_INDEX_ENV]));
3392 }
3393
3394 if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) {
3395 VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ENV], rb_gc_location(ep[VM_ENV_DATA_INDEX_ENV]));
3396 VM_FORCE_WRITE(&ep[VM_ENV_DATA_INDEX_ME_CREF], rb_gc_location(ep[VM_ENV_DATA_INDEX_ME_CREF]));
3397 }
3398 }
3399
3400 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
3401 }
3402 }
3403
3404 ec->storage = rb_gc_location(ec->storage);
3405}
3406
3407static enum rb_id_table_iterator_result
3408mark_local_storage_i(VALUE local, void *data)
3409{
3410 rb_gc_mark(local);
3411 return ID_TABLE_CONTINUE;
3412}
3413
3414void
3415rb_execution_context_mark(const rb_execution_context_t *ec)
3416{
3417 /* mark VM stack */
3418 if (ec->vm_stack) {
3419 VM_ASSERT(ec->cfp);
3420 VALUE *p = ec->vm_stack;
3421 VALUE *sp = ec->cfp->sp;
3422 rb_control_frame_t *cfp = ec->cfp;
3423 rb_control_frame_t *limit_cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
3424
3425 VM_ASSERT(sp == ec->cfp->sp);
3426 rb_gc_mark_vm_stack_values((long)(sp - p), p);
3427
3428 while (cfp != limit_cfp) {
3429 const VALUE *ep = cfp->ep;
3430 VM_ASSERT(!!VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED) == vm_ep_in_heap_p_(ec, ep));
3431
3432 rb_gc_mark_movable(cfp->self);
3433 rb_gc_mark_movable((VALUE)cfp->iseq);
3434 rb_gc_mark_movable((VALUE)cfp->block_code);
3435
3436 if (!VM_ENV_LOCAL_P(ep)) {
3437 const VALUE *prev_ep = VM_ENV_PREV_EP(ep);
3438 if (VM_ENV_FLAGS(prev_ep, VM_ENV_FLAG_ESCAPED)) {
3439 rb_gc_mark_movable(prev_ep[VM_ENV_DATA_INDEX_ENV]);
3440 }
3441
3442 if (VM_ENV_FLAGS(ep, VM_ENV_FLAG_ESCAPED)) {
3443 rb_gc_mark_movable(ep[VM_ENV_DATA_INDEX_ENV]);
3444 rb_gc_mark(ep[VM_ENV_DATA_INDEX_ME_CREF]);
3445 }
3446 }
3447
3448 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
3449 }
3450 }
3451
3452 /* mark machine stack */
3453 if (ec->machine.stack_start && ec->machine.stack_end &&
3454 ec != GET_EC() /* marked for current ec at the first stage of marking */
3455 ) {
3456 rb_gc_mark_machine_context(ec);
3457 }
3458
3459 rb_gc_mark(ec->errinfo);
3460 rb_gc_mark(ec->root_svar);
3461 if (ec->local_storage) {
3462 rb_id_table_foreach_values(ec->local_storage, mark_local_storage_i, NULL);
3463 }
3464 rb_gc_mark(ec->local_storage_recursive_hash);
3465 rb_gc_mark(ec->local_storage_recursive_hash_for_trace);
3466 rb_gc_mark(ec->private_const_reference);
3467
3468 rb_gc_mark_movable(ec->storage);
3469}
3470
3471void rb_fiber_mark_self(rb_fiber_t *fib);
3472void rb_fiber_update_self(rb_fiber_t *fib);
3473void rb_threadptr_root_fiber_setup(rb_thread_t *th);
3474void rb_threadptr_root_fiber_release(rb_thread_t *th);
3475
3476static void
3477thread_compact(void *ptr)
3478{
3479 rb_thread_t *th = ptr;
3480
3481 th->self = rb_gc_location(th->self);
3482
3483 if (!th->root_fiber) {
3484 rb_execution_context_update(th->ec);
3485 }
3486}
3487
3488static void
3489thread_mark(void *ptr)
3490{
3491 rb_thread_t *th = ptr;
3492 RUBY_MARK_ENTER("thread");
3493 rb_fiber_mark_self(th->ec->fiber_ptr);
3494
3495 /* mark ruby objects */
3496 switch (th->invoke_type) {
3497 case thread_invoke_type_proc:
3498 case thread_invoke_type_ractor_proc:
3499 rb_gc_mark(th->invoke_arg.proc.proc);
3500 rb_gc_mark(th->invoke_arg.proc.args);
3501 break;
3502 case thread_invoke_type_func:
3503 rb_gc_mark_maybe((VALUE)th->invoke_arg.func.arg);
3504 break;
3505 default:
3506 break;
3507 }
3508
3509 rb_gc_mark(rb_ractor_self(th->ractor));
3510 rb_gc_mark(th->thgroup);
3511 rb_gc_mark(th->value);
3512 rb_gc_mark(th->pending_interrupt_queue);
3513 rb_gc_mark(th->pending_interrupt_mask_stack);
3514 rb_gc_mark(th->top_self);
3515 rb_gc_mark(th->top_wrapper);
3516 if (th->root_fiber) rb_fiber_mark_self(th->root_fiber);
3517
3518 RUBY_ASSERT(th->ec == rb_fiberptr_get_ec(th->ec->fiber_ptr));
3519 rb_gc_mark(th->last_status);
3520 rb_gc_mark(th->locking_mutex);
3521 rb_gc_mark(th->name);
3522
3523 rb_gc_mark(th->scheduler);
3524
3525 rb_threadptr_interrupt_exec_task_mark(th);
3526
3527 RUBY_MARK_LEAVE("thread");
3528}
3529
3530void rb_threadptr_sched_free(rb_thread_t *th); // thread_*.c
3531
3532static void
3533thread_free(void *ptr)
3534{
3535 rb_thread_t *th = ptr;
3536 RUBY_FREE_ENTER("thread");
3537
3538 rb_threadptr_sched_free(th);
3539
3540 if (th->locking_mutex != Qfalse) {
3541 rb_bug("thread_free: locking_mutex must be NULL (%p:%p)", (void *)th, (void *)th->locking_mutex);
3542 }
3543 if (th->keeping_mutexes != NULL) {
3544 rb_bug("thread_free: keeping_mutexes must be NULL (%p:%p)", (void *)th, (void *)th->keeping_mutexes);
3545 }
3546
3547 ruby_xfree(th->specific_storage);
3548
3549 rb_threadptr_root_fiber_release(th);
3550
3551 if (th->vm && th->vm->ractor.main_thread == th) {
3552 RUBY_GC_INFO("MRI main thread\n");
3553 }
3554 else {
3555 // ruby_xfree(th->nt);
3556 // TODO: MN system collect nt, but without MN system it should be freed here.
3557 ruby_xfree(th);
3558 }
3559
3560 RUBY_FREE_LEAVE("thread");
3561}
3562
3563static size_t
3564thread_memsize(const void *ptr)
3565{
3566 const rb_thread_t *th = ptr;
3567 size_t size = sizeof(rb_thread_t);
3568
3569 if (!th->root_fiber) {
3570 size += th->ec->vm_stack_size * sizeof(VALUE);
3571 }
3572 if (th->ec->local_storage) {
3573 size += rb_id_table_memsize(th->ec->local_storage);
3574 }
3575 return size;
3576}
3577
3578#define thread_data_type ruby_threadptr_data_type
3579const rb_data_type_t ruby_threadptr_data_type = {
3580 "VM/thread",
3581 {
3582 thread_mark,
3583 thread_free,
3584 thread_memsize,
3585 thread_compact,
3586 },
3587 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
3588};
3589
3590VALUE
3591rb_obj_is_thread(VALUE obj)
3592{
3593 return RBOOL(rb_typeddata_is_kind_of(obj, &thread_data_type));
3594}
3595
3596static VALUE
3597thread_alloc(VALUE klass)
3598{
3599 rb_thread_t *th;
3600 return TypedData_Make_Struct(klass, rb_thread_t, &thread_data_type, th);
3601}
3602
3603void
3604rb_ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
3605{
3606 ec->vm_stack = stack;
3607 ec->vm_stack_size = size;
3608}
3609
3610void
3611rb_ec_initialize_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
3612{
3613 rb_ec_set_vm_stack(ec, stack, size);
3614
3615#if VM_CHECK_MODE > 0
3616 MEMZERO(stack, VALUE, size); // malloc memory could have the VM canary in it
3617#endif
3618
3619 ec->cfp = (void *)(ec->vm_stack + ec->vm_stack_size);
3620
3621 vm_push_frame(ec,
3622 NULL /* dummy iseq */,
3623 VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME /* dummy frame */,
3624 Qnil /* dummy self */, VM_BLOCK_HANDLER_NONE /* dummy block ptr */,
3625 0 /* dummy cref/me */,
3626 0 /* dummy pc */, ec->vm_stack, 0, 0
3627 );
3628}
3629
3630void
3631rb_ec_clear_vm_stack(rb_execution_context_t *ec)
3632{
3633 rb_ec_set_vm_stack(ec, NULL, 0);
3634
3635 // Avoid dangling pointers:
3636 ec->cfp = NULL;
3637}
3638
3639static void
3640th_init(rb_thread_t *th, VALUE self, rb_vm_t *vm)
3641{
3642 th->self = self;
3643
3644 rb_threadptr_root_fiber_setup(th);
3645
3646 /* All threads are blocking until a non-blocking fiber is scheduled */
3647 th->blocking = 1;
3648 th->scheduler = Qnil;
3649
3650 if (self == 0) {
3651 size_t size = vm->default_params.thread_vm_stack_size / sizeof(VALUE);
3652 rb_ec_initialize_vm_stack(th->ec, ALLOC_N(VALUE, size), size);
3653 }
3654 else {
3655 VM_ASSERT(th->ec->cfp == NULL);
3656 VM_ASSERT(th->ec->vm_stack == NULL);
3657 VM_ASSERT(th->ec->vm_stack_size == 0);
3658 }
3659
3660 th->status = THREAD_RUNNABLE;
3661 th->last_status = Qnil;
3662 th->top_wrapper = 0;
3663 th->top_self = vm->top_self; // 0 while self == 0
3664 th->value = Qundef;
3665
3666 th->ec->errinfo = Qnil;
3667 th->ec->root_svar = Qfalse;
3668 th->ec->local_storage_recursive_hash = Qnil;
3669 th->ec->local_storage_recursive_hash_for_trace = Qnil;
3670
3671 th->ec->storage = Qnil;
3672
3673#if OPT_CALL_THREADED_CODE
3674 th->retval = Qundef;
3675#endif
3676 th->name = Qnil;
3677 th->report_on_exception = vm->thread_report_on_exception;
3678 th->ext_config.ractor_safe = true;
3679
3680 ccan_list_head_init(&th->interrupt_exec_tasks);
3681
3682#if USE_RUBY_DEBUG_LOG
3683 static rb_atomic_t thread_serial = 1;
3684 th->serial = RUBY_ATOMIC_FETCH_ADD(thread_serial, 1);
3685
3686 RUBY_DEBUG_LOG("th:%u", th->serial);
3687#endif
3688}
3689
3690VALUE
3691rb_thread_alloc(VALUE klass)
3692{
3693 VALUE self = thread_alloc(klass);
3694 rb_thread_t *target_th = rb_thread_ptr(self);
3695 target_th->ractor = GET_RACTOR();
3696 th_init(target_th, self, target_th->vm = GET_VM());
3697 return self;
3698}
3699
3700#define REWIND_CFP(expr) do { \
3701 rb_execution_context_t *ec__ = GET_EC(); \
3702 VALUE *const curr_sp = (ec__->cfp++)->sp; \
3703 VALUE *const saved_sp = ec__->cfp->sp; \
3704 ec__->cfp->sp = curr_sp; \
3705 expr; \
3706 (ec__->cfp--)->sp = saved_sp; \
3707} while (0)
3708
3709static VALUE
3710m_core_set_method_alias(VALUE self, VALUE cbase, VALUE sym1, VALUE sym2)
3711{
3712 REWIND_CFP({
3713 rb_alias(cbase, SYM2ID(sym1), SYM2ID(sym2));
3714 });
3715 return Qnil;
3716}
3717
3718static VALUE
3719m_core_set_variable_alias(VALUE self, VALUE sym1, VALUE sym2)
3720{
3721 REWIND_CFP({
3722 rb_alias_variable(SYM2ID(sym1), SYM2ID(sym2));
3723 });
3724 return Qnil;
3725}
3726
3727static VALUE
3728m_core_undef_method(VALUE self, VALUE cbase, VALUE sym)
3729{
3730 REWIND_CFP({
3731 ID mid = SYM2ID(sym);
3732 rb_undef(cbase, mid);
3733 rb_clear_method_cache(self, mid);
3734 });
3735 return Qnil;
3736}
3737
3738static VALUE
3739m_core_set_postexe(VALUE self)
3740{
3741 rb_set_end_proc(rb_call_end_proc, rb_block_proc());
3742 return Qnil;
3743}
3744
3745static VALUE core_hash_merge_kwd(VALUE hash, VALUE kw);
3746
3747static VALUE
3748core_hash_merge(VALUE hash, long argc, const VALUE *argv)
3749{
3750 Check_Type(hash, T_HASH);
3751 VM_ASSERT(argc % 2 == 0);
3752 rb_hash_bulk_insert(argc, argv, hash);
3753 return hash;
3754}
3755
3756static VALUE
3757m_core_hash_merge_ptr(int argc, VALUE *argv, VALUE recv)
3758{
3759 VALUE hash = argv[0];
3760
3761 REWIND_CFP(hash = core_hash_merge(hash, argc-1, argv+1));
3762
3763 return hash;
3764}
3765
3766static int
3767kwmerge_i(VALUE key, VALUE value, VALUE hash)
3768{
3769 rb_hash_aset(hash, key, value);
3770 return ST_CONTINUE;
3771}
3772
3773static VALUE
3774m_core_hash_merge_kwd(VALUE recv, VALUE hash, VALUE kw)
3775{
3776 if (!NIL_P(kw)) {
3777 REWIND_CFP(hash = core_hash_merge_kwd(hash, kw));
3778 }
3779 return hash;
3780}
3781
3782static VALUE
3783m_core_make_shareable(VALUE recv, VALUE obj)
3784{
3785 return rb_ractor_make_shareable(obj);
3786}
3787
3788static VALUE
3789m_core_make_shareable_copy(VALUE recv, VALUE obj)
3790{
3792}
3793
3794static VALUE
3795m_core_ensure_shareable(VALUE recv, VALUE obj, VALUE name)
3796{
3797 return rb_ractor_ensure_shareable(obj, name);
3798}
3799
3800static VALUE
3801core_hash_merge_kwd(VALUE hash, VALUE kw)
3802{
3803 rb_hash_foreach(rb_to_hash_type(kw), kwmerge_i, hash);
3804 return hash;
3805}
3806
3807extern VALUE *rb_gc_stack_start;
3808extern size_t rb_gc_stack_maxsize;
3809
3810/* debug functions */
3811
3812/* :nodoc: */
3813static VALUE
3814sdr(VALUE self)
3815{
3816 rb_vm_bugreport(NULL, stderr);
3817 return Qnil;
3818}
3819
3820/* :nodoc: */
3821static VALUE
3822nsdr(VALUE self)
3823{
3824 VALUE ary = rb_ary_new();
3825#ifdef HAVE_BACKTRACE
3826#include <execinfo.h>
3827#define MAX_NATIVE_TRACE 1024
3828 static void *trace[MAX_NATIVE_TRACE];
3829 int n = (int)backtrace(trace, MAX_NATIVE_TRACE);
3830 char **syms = backtrace_symbols(trace, n);
3831 int i;
3832
3833 if (syms == 0) {
3834 rb_memerror();
3835 }
3836
3837 for (i=0; i<n; i++) {
3838 rb_ary_push(ary, rb_str_new2(syms[i]));
3839 }
3840 free(syms); /* OK */
3841#endif
3842 return ary;
3843}
3844
3845#if VM_COLLECT_USAGE_DETAILS
3846static VALUE usage_analysis_insn_start(VALUE self);
3847static VALUE usage_analysis_operand_start(VALUE self);
3848static VALUE usage_analysis_register_start(VALUE self);
3849static VALUE usage_analysis_insn_stop(VALUE self);
3850static VALUE usage_analysis_operand_stop(VALUE self);
3851static VALUE usage_analysis_register_stop(VALUE self);
3852static VALUE usage_analysis_insn_running(VALUE self);
3853static VALUE usage_analysis_operand_running(VALUE self);
3854static VALUE usage_analysis_register_running(VALUE self);
3855static VALUE usage_analysis_insn_clear(VALUE self);
3856static VALUE usage_analysis_operand_clear(VALUE self);
3857static VALUE usage_analysis_register_clear(VALUE self);
3858#endif
3859
3860static VALUE
3861f_raise(int c, VALUE *v, VALUE _)
3862{
3863 return rb_f_raise(c, v);
3864}
3865
3866static VALUE
3867f_proc(VALUE _)
3868{
3869 return rb_block_proc();
3870}
3871
3872static VALUE
3873f_lambda(VALUE _)
3874{
3875 return rb_block_lambda();
3876}
3877
3878static VALUE
3879f_sprintf(int c, const VALUE *v, VALUE _)
3880{
3881 return rb_f_sprintf(c, v);
3882}
3883
3884/* :nodoc: */
3885static VALUE
3886vm_mtbl(VALUE self, VALUE obj, VALUE sym)
3887{
3888 vm_mtbl_dump(CLASS_OF(obj), RTEST(sym) ? SYM2ID(sym) : 0);
3889 return Qnil;
3890}
3891
3892/* :nodoc: */
3893static VALUE
3894vm_mtbl2(VALUE self, VALUE obj, VALUE sym)
3895{
3896 vm_mtbl_dump(obj, RTEST(sym) ? SYM2ID(sym) : 0);
3897 return Qnil;
3898}
3899
3900/*
3901 * call-seq:
3902 * RubyVM.keep_script_lines -> true or false
3903 *
3904 * Return current +keep_script_lines+ status. Now it only returns
3905 * +true+ of +false+, but it can return other objects in future.
3906 *
3907 * Note that this is an API for ruby internal use, debugging,
3908 * and research. Do not use this for any other purpose.
3909 * The compatibility is not guaranteed.
3910 */
3911static VALUE
3912vm_keep_script_lines(VALUE self)
3913{
3914 return RBOOL(ruby_vm_keep_script_lines);
3915}
3916
3917/*
3918 * call-seq:
3919 * RubyVM.keep_script_lines = true / false
3920 *
3921 * It set +keep_script_lines+ flag. If the flag is set, all
3922 * loaded scripts are recorded in a interpreter process.
3923 *
3924 * Note that this is an API for ruby internal use, debugging,
3925 * and research. Do not use this for any other purpose.
3926 * The compatibility is not guaranteed.
3927 */
3928static VALUE
3929vm_keep_script_lines_set(VALUE self, VALUE flags)
3930{
3931 ruby_vm_keep_script_lines = RTEST(flags);
3932 return flags;
3933}
3934
3935void
3936Init_VM(void)
3937{
3938 VALUE opts;
3939 VALUE klass;
3940 VALUE fcore;
3941
3942 /*
3943 * Document-class: RubyVM
3944 *
3945 * The RubyVM module only exists on MRI. +RubyVM+ is not defined in
3946 * other Ruby implementations such as JRuby and TruffleRuby.
3947 *
3948 * The RubyVM module provides some access to MRI internals.
3949 * This module is for very limited purposes, such as debugging,
3950 * prototyping, and research. Normal users must not use it.
3951 * This module is not portable between Ruby implementations.
3952 */
3953 rb_cRubyVM = rb_define_class("RubyVM", rb_cObject);
3954 rb_undef_alloc_func(rb_cRubyVM);
3955 rb_undef_method(CLASS_OF(rb_cRubyVM), "new");
3956 rb_define_singleton_method(rb_cRubyVM, "stat", vm_stat, -1);
3957 rb_define_singleton_method(rb_cRubyVM, "keep_script_lines", vm_keep_script_lines, 0);
3958 rb_define_singleton_method(rb_cRubyVM, "keep_script_lines=", vm_keep_script_lines_set, 1);
3959
3960#if USE_DEBUG_COUNTER
3961 rb_define_singleton_method(rb_cRubyVM, "reset_debug_counters", rb_debug_counter_reset, 0);
3962 rb_define_singleton_method(rb_cRubyVM, "show_debug_counters", rb_debug_counter_show, 0);
3963#endif
3964
3965 /* FrozenCore (hidden) */
3967 rb_set_class_path(fcore, rb_cRubyVM, "FrozenCore");
3968 rb_vm_register_global_object(rb_class_path_cached(fcore));
3969 RB_FL_UNSET_RAW(fcore, T_MASK);
3970 RB_FL_SET_RAW(fcore, T_ICLASS);
3971 klass = rb_singleton_class(fcore);
3972 rb_define_method_id(klass, id_core_set_method_alias, m_core_set_method_alias, 3);
3973 rb_define_method_id(klass, id_core_set_variable_alias, m_core_set_variable_alias, 2);
3974 rb_define_method_id(klass, id_core_undef_method, m_core_undef_method, 2);
3975 rb_define_method_id(klass, id_core_set_postexe, m_core_set_postexe, 0);
3976 rb_define_method_id(klass, id_core_hash_merge_ptr, m_core_hash_merge_ptr, -1);
3977 rb_define_method_id(klass, id_core_hash_merge_kwd, m_core_hash_merge_kwd, 2);
3978 rb_define_method_id(klass, id_core_raise, f_raise, -1);
3979 rb_define_method_id(klass, id_core_sprintf, f_sprintf, -1);
3980 rb_define_method_id(klass, idProc, f_proc, 0);
3981 rb_define_method_id(klass, idLambda, f_lambda, 0);
3982 rb_define_method(klass, "make_shareable", m_core_make_shareable, 1);
3983 rb_define_method(klass, "make_shareable_copy", m_core_make_shareable_copy, 1);
3984 rb_define_method(klass, "ensure_shareable", m_core_ensure_shareable, 2);
3985 rb_obj_freeze(fcore);
3986 RBASIC_CLEAR_CLASS(klass);
3987 rb_obj_freeze(klass);
3988 rb_vm_register_global_object(fcore);
3989 rb_mRubyVMFrozenCore = fcore;
3990
3991 /*
3992 * Document-class: Thread
3993 *
3994 * Threads are the Ruby implementation for a concurrent programming model.
3995 *
3996 * Programs that require multiple threads of execution are a perfect
3997 * candidate for Ruby's Thread class.
3998 *
3999 * For example, we can create a new thread separate from the main thread's
4000 * execution using ::new.
4001 *
4002 * thr = Thread.new { puts "What's the big deal" }
4003 *
4004 * Then we are able to pause the execution of the main thread and allow
4005 * our new thread to finish, using #join:
4006 *
4007 * thr.join #=> "What's the big deal"
4008 *
4009 * If we don't call +thr.join+ before the main thread terminates, then all
4010 * other threads including +thr+ will be killed.
4011 *
4012 * Alternatively, you can use an array for handling multiple threads at
4013 * once, like in the following example:
4014 *
4015 * threads = []
4016 * threads << Thread.new { puts "What's the big deal" }
4017 * threads << Thread.new { 3.times { puts "Threads are fun!" } }
4018 *
4019 * After creating a few threads we wait for them all to finish
4020 * consecutively.
4021 *
4022 * threads.each { |thr| thr.join }
4023 *
4024 * To retrieve the last value of a thread, use #value
4025 *
4026 * thr = Thread.new { sleep 1; "Useful value" }
4027 * thr.value #=> "Useful value"
4028 *
4029 * === Thread initialization
4030 *
4031 * In order to create new threads, Ruby provides ::new, ::start, and
4032 * ::fork. A block must be provided with each of these methods, otherwise
4033 * a ThreadError will be raised.
4034 *
4035 * When subclassing the Thread class, the +initialize+ method of your
4036 * subclass will be ignored by ::start and ::fork. Otherwise, be sure to
4037 * call super in your +initialize+ method.
4038 *
4039 * === Thread termination
4040 *
4041 * For terminating threads, Ruby provides a variety of ways to do this.
4042 *
4043 * The class method ::kill, is meant to exit a given thread:
4044 *
4045 * thr = Thread.new { sleep }
4046 * Thread.kill(thr) # sends exit() to thr
4047 *
4048 * Alternatively, you can use the instance method #exit, or any of its
4049 * aliases #kill or #terminate.
4050 *
4051 * thr.exit
4052 *
4053 * === Thread status
4054 *
4055 * Ruby provides a few instance methods for querying the state of a given
4056 * thread. To get a string with the current thread's state use #status
4057 *
4058 * thr = Thread.new { sleep }
4059 * thr.status # => "sleep"
4060 * thr.exit
4061 * thr.status # => false
4062 *
4063 * You can also use #alive? to tell if the thread is running or sleeping,
4064 * and #stop? if the thread is dead or sleeping.
4065 *
4066 * === Thread variables and scope
4067 *
4068 * Since threads are created with blocks, the same rules apply to other
4069 * Ruby blocks for variable scope. Any local variables created within this
4070 * block are accessible to only this thread.
4071 *
4072 * ==== Fiber-local vs. Thread-local
4073 *
4074 * Each fiber has its own bucket for Thread#[] storage. When you set a
4075 * new fiber-local it is only accessible within this Fiber. To illustrate:
4076 *
4077 * Thread.new {
4078 * Thread.current[:foo] = "bar"
4079 * Fiber.new {
4080 * p Thread.current[:foo] # => nil
4081 * }.resume
4082 * }.join
4083 *
4084 * This example uses #[] for getting and #[]= for setting fiber-locals,
4085 * you can also use #keys to list the fiber-locals for a given
4086 * thread and #key? to check if a fiber-local exists.
4087 *
4088 * When it comes to thread-locals, they are accessible within the entire
4089 * scope of the thread. Given the following example:
4090 *
4091 * Thread.new{
4092 * Thread.current.thread_variable_set(:foo, 1)
4093 * p Thread.current.thread_variable_get(:foo) # => 1
4094 * Fiber.new{
4095 * Thread.current.thread_variable_set(:foo, 2)
4096 * p Thread.current.thread_variable_get(:foo) # => 2
4097 * }.resume
4098 * p Thread.current.thread_variable_get(:foo) # => 2
4099 * }.join
4100 *
4101 * You can see that the thread-local +:foo+ carried over into the fiber
4102 * and was changed to +2+ by the end of the thread.
4103 *
4104 * This example makes use of #thread_variable_set to create new
4105 * thread-locals, and #thread_variable_get to reference them.
4106 *
4107 * There is also #thread_variables to list all thread-locals, and
4108 * #thread_variable? to check if a given thread-local exists.
4109 *
4110 * === Exception handling
4111 *
4112 * When an unhandled exception is raised inside a thread, it will
4113 * terminate. By default, this exception will not propagate to other
4114 * threads. The exception is stored and when another thread calls #value
4115 * or #join, the exception will be re-raised in that thread.
4116 *
4117 * t = Thread.new{ raise 'something went wrong' }
4118 * t.value #=> RuntimeError: something went wrong
4119 *
4120 * An exception can be raised from outside the thread using the
4121 * Thread#raise instance method, which takes the same parameters as
4122 * Kernel#raise.
4123 *
4124 * Setting Thread.abort_on_exception = true, Thread#abort_on_exception =
4125 * true, or $DEBUG = true will cause a subsequent unhandled exception
4126 * raised in a thread to be automatically re-raised in the main thread.
4127 *
4128 * With the addition of the class method ::handle_interrupt, you can now
4129 * handle exceptions asynchronously with threads.
4130 *
4131 * === Scheduling
4132 *
4133 * Ruby provides a few ways to support scheduling threads in your program.
4134 *
4135 * The first way is by using the class method ::stop, to put the current
4136 * running thread to sleep and schedule the execution of another thread.
4137 *
4138 * Once a thread is asleep, you can use the instance method #wakeup to
4139 * mark your thread as eligible for scheduling.
4140 *
4141 * You can also try ::pass, which attempts to pass execution to another
4142 * thread but is dependent on the OS whether a running thread will switch
4143 * or not. The same goes for #priority, which lets you hint to the thread
4144 * scheduler which threads you want to take precedence when passing
4145 * execution. This method is also dependent on the OS and may be ignored
4146 * on some platforms.
4147 *
4148 */
4149 rb_cThread = rb_define_class("Thread", rb_cObject);
4151
4152#if VM_COLLECT_USAGE_DETAILS
4153 /* ::RubyVM::USAGE_ANALYSIS_* */
4154#define define_usage_analysis_hash(name) /* shut up rdoc -C */ \
4155 rb_define_const(rb_cRubyVM, "USAGE_ANALYSIS_" #name, rb_hash_new())
4156 define_usage_analysis_hash(INSN);
4157 define_usage_analysis_hash(REGS);
4158 define_usage_analysis_hash(INSN_BIGRAM);
4159
4160 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_START", usage_analysis_insn_start, 0);
4161 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_START", usage_analysis_operand_start, 0);
4162 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_START", usage_analysis_register_start, 0);
4163 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_STOP", usage_analysis_insn_stop, 0);
4164 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_STOP", usage_analysis_operand_stop, 0);
4165 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_STOP", usage_analysis_register_stop, 0);
4166 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_RUNNING", usage_analysis_insn_running, 0);
4167 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_RUNNING", usage_analysis_operand_running, 0);
4168 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_RUNNING", usage_analysis_register_running, 0);
4169 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_INSN_CLEAR", usage_analysis_insn_clear, 0);
4170 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_OPERAND_CLEAR", usage_analysis_operand_clear, 0);
4171 rb_define_singleton_method(rb_cRubyVM, "USAGE_ANALYSIS_REGISTER_CLEAR", usage_analysis_register_clear, 0);
4172#endif
4173
4174 /* ::RubyVM::OPTS
4175 * An Array of VM build options.
4176 * This constant is MRI specific.
4177 */
4178 rb_define_const(rb_cRubyVM, "OPTS", opts = rb_ary_new());
4179
4180#if OPT_DIRECT_THREADED_CODE
4181 rb_ary_push(opts, rb_str_new2("direct threaded code"));
4182#elif OPT_TOKEN_THREADED_CODE
4183 rb_ary_push(opts, rb_str_new2("token threaded code"));
4184#elif OPT_CALL_THREADED_CODE
4185 rb_ary_push(opts, rb_str_new2("call threaded code"));
4186#endif
4187
4188#if OPT_OPERANDS_UNIFICATION
4189 rb_ary_push(opts, rb_str_new2("operands unification"));
4190#endif
4191#if OPT_INSTRUCTIONS_UNIFICATION
4192 rb_ary_push(opts, rb_str_new2("instructions unification"));
4193#endif
4194#if OPT_INLINE_METHOD_CACHE
4195 rb_ary_push(opts, rb_str_new2("inline method cache"));
4196#endif
4197
4198 /* ::RubyVM::INSTRUCTION_NAMES
4199 * A list of bytecode instruction names in MRI.
4200 * This constant is MRI specific.
4201 */
4202 rb_define_const(rb_cRubyVM, "INSTRUCTION_NAMES", rb_insns_name_array());
4203
4204 /* ::RubyVM::DEFAULT_PARAMS
4205 * This constant exposes the VM's default parameters.
4206 * Note that changing these values does not affect VM execution.
4207 * Specification is not stable and you should not depend on this value.
4208 * Of course, this constant is MRI specific.
4209 */
4210 rb_define_const(rb_cRubyVM, "DEFAULT_PARAMS", vm_default_params());
4211
4212 /* debug functions ::RubyVM::SDR(), ::RubyVM::NSDR() */
4213#if VMDEBUG
4214 rb_define_singleton_method(rb_cRubyVM, "SDR", sdr, 0);
4215 rb_define_singleton_method(rb_cRubyVM, "NSDR", nsdr, 0);
4216 rb_define_singleton_method(rb_cRubyVM, "mtbl", vm_mtbl, 2);
4217 rb_define_singleton_method(rb_cRubyVM, "mtbl2", vm_mtbl2, 2);
4218#else
4219 (void)sdr;
4220 (void)nsdr;
4221 (void)vm_mtbl;
4222 (void)vm_mtbl2;
4223#endif
4224
4225 /* VM bootstrap: phase 2 */
4226 {
4227 rb_vm_t *vm = ruby_current_vm_ptr;
4228 rb_thread_t *th = GET_THREAD();
4229 VALUE filename = rb_fstring_lit("<main>");
4230 const rb_iseq_t *iseq = rb_iseq_new(Qnil, filename, filename, Qnil, 0, ISEQ_TYPE_TOP);
4231
4232 // Ractor setup
4233 rb_ractor_main_setup(vm, th->ractor, th);
4234
4235 /* create vm object */
4236 vm->self = TypedData_Wrap_Struct(rb_cRubyVM, &vm_data_type, vm);
4237
4238 /* create main thread */
4239 th->self = TypedData_Wrap_Struct(rb_cThread, &thread_data_type, th);
4240 vm->ractor.main_thread = th;
4241 vm->ractor.main_ractor = th->ractor;
4242 th->vm = vm;
4243 th->top_wrapper = 0;
4244 th->top_self = rb_vm_top_self();
4245
4246 rb_vm_register_global_object((VALUE)iseq);
4247 th->ec->cfp->iseq = iseq;
4248 th->ec->cfp->pc = ISEQ_BODY(iseq)->iseq_encoded;
4249 th->ec->cfp->self = th->top_self;
4250
4251 VM_ENV_FLAGS_UNSET(th->ec->cfp->ep, VM_FRAME_FLAG_CFRAME);
4252 VM_STACK_ENV_WRITE(th->ec->cfp->ep, VM_ENV_DATA_INDEX_ME_CREF, (VALUE)vm_cref_new(rb_cObject, METHOD_VISI_PRIVATE, FALSE, NULL, FALSE, FALSE));
4253
4254 /*
4255 * The Binding of the top level scope
4256 */
4257 rb_define_global_const("TOPLEVEL_BINDING", rb_binding_new());
4258
4259#ifdef _WIN32
4260 rb_objspace_gc_enable(vm->gc.objspace);
4261#endif
4262 }
4263 vm_init_redefined_flag();
4264
4265 rb_block_param_proxy = rb_obj_alloc(rb_cObject);
4266 rb_add_method_optimized(rb_singleton_class(rb_block_param_proxy), idCall,
4267 OPTIMIZED_METHOD_TYPE_BLOCK_CALL, 0, METHOD_VISI_PUBLIC);
4268 rb_obj_freeze(rb_block_param_proxy);
4269 rb_vm_register_global_object(rb_block_param_proxy);
4270
4271 /* vm_backtrace.c */
4272 Init_vm_backtrace();
4273}
4274
4275void
4276rb_vm_set_progname(VALUE filename)
4277{
4278 rb_thread_t *th = GET_VM()->ractor.main_thread;
4279 rb_control_frame_t *cfp = (void *)(th->ec->vm_stack + th->ec->vm_stack_size);
4280 --cfp;
4281
4282 filename = rb_str_new_frozen(filename);
4283 rb_iseq_pathobj_set(cfp->iseq, filename, rb_iseq_realpath(cfp->iseq));
4284}
4285
4286extern const struct st_hash_type rb_fstring_hash_type;
4287
4288void
4289Init_BareVM(void)
4290{
4291 /* VM bootstrap: phase 1 */
4292 rb_vm_t *vm = ruby_mimcalloc(1, sizeof(*vm));
4293 rb_thread_t *th = ruby_mimcalloc(1, sizeof(*th));
4294 if (!vm || !th) {
4295 fputs("[FATAL] failed to allocate memory\n", stderr);
4296 exit(EXIT_FAILURE);
4297 }
4298
4299 // setup the VM
4300 vm_init2(vm);
4301
4302 rb_vm_postponed_job_queue_init(vm);
4303 ruby_current_vm_ptr = vm;
4304 rb_objspace_alloc();
4305 vm->negative_cme_table = rb_id_table_create(16);
4306 vm->overloaded_cme_table = st_init_numtable();
4307 vm->constant_cache = rb_id_table_create(0);
4308 vm->unused_block_warning_table = st_init_numtable();
4309
4310 // setup main thread
4311 th->nt = ZALLOC(struct rb_native_thread);
4312 th->vm = vm;
4313 th->ractor = vm->ractor.main_ractor = rb_ractor_main_alloc();
4314 Init_native_thread(th);
4315 rb_jit_cont_init();
4316 th_init(th, 0, vm);
4317
4318 rb_ractor_set_current_ec(th->ractor, th->ec);
4319 /* n.b. native_main_thread_stack_top is set by the INIT_STACK macro */
4320 ruby_thread_init_stack(th, native_main_thread_stack_top);
4321
4322 // setup ractor system
4323 rb_native_mutex_initialize(&vm->ractor.sync.lock);
4324 rb_native_cond_initialize(&vm->ractor.sync.terminate_cond);
4325
4326 vm_opt_method_def_table = st_init_numtable();
4327 vm_opt_mid_table = st_init_numtable();
4328
4329#ifdef RUBY_THREAD_WIN32_H
4330 rb_native_cond_initialize(&vm->ractor.sync.barrier_cond);
4331#endif
4332}
4333
4334void
4336{
4337 native_main_thread_stack_top = addr;
4338}
4339
4340#ifndef _WIN32
4341#include <unistd.h>
4342#include <sys/mman.h>
4343#endif
4344
4345
4346#ifndef MARK_OBJECT_ARY_BUCKET_SIZE
4347#define MARK_OBJECT_ARY_BUCKET_SIZE 1024
4348#endif
4349
4351 VALUE next;
4352 long len;
4353 VALUE *array;
4354};
4355
4356static void
4357pin_array_list_mark(void *data)
4358{
4359 struct pin_array_list *array = (struct pin_array_list *)data;
4360 rb_gc_mark_movable(array->next);
4361
4362 rb_gc_mark_vm_stack_values(array->len, array->array);
4363}
4364
4365static void
4366pin_array_list_free(void *data)
4367{
4368 struct pin_array_list *array = (struct pin_array_list *)data;
4369 xfree(array->array);
4370}
4371
4372static size_t
4373pin_array_list_memsize(const void *data)
4374{
4375 return sizeof(struct pin_array_list) + (MARK_OBJECT_ARY_BUCKET_SIZE * sizeof(VALUE));
4376}
4377
4378static void
4379pin_array_list_update_references(void *data)
4380{
4381 struct pin_array_list *array = (struct pin_array_list *)data;
4382 array->next = rb_gc_location(array->next);
4383}
4384
4385static const rb_data_type_t pin_array_list_type = {
4386 .wrap_struct_name = "VM/pin_array_list",
4387 .function = {
4388 .dmark = pin_array_list_mark,
4389 .dfree = pin_array_list_free,
4390 .dsize = pin_array_list_memsize,
4391 .dcompact = pin_array_list_update_references,
4392 },
4393 .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE,
4394};
4395
4396static VALUE
4397pin_array_list_new(VALUE next)
4398{
4399 struct pin_array_list *array_list;
4400 VALUE obj = TypedData_Make_Struct(0, struct pin_array_list, &pin_array_list_type, array_list);
4401 RB_OBJ_WRITE(obj, &array_list->next, next);
4402 array_list->array = ALLOC_N(VALUE, MARK_OBJECT_ARY_BUCKET_SIZE);
4403 return obj;
4404}
4405
4406static VALUE
4407pin_array_list_append(VALUE obj, VALUE item)
4408{
4409 struct pin_array_list *array_list;
4410 TypedData_Get_Struct(obj, struct pin_array_list, &pin_array_list_type, array_list);
4411
4412 if (array_list->len >= MARK_OBJECT_ARY_BUCKET_SIZE) {
4413 obj = pin_array_list_new(obj);
4414 TypedData_Get_Struct(obj, struct pin_array_list, &pin_array_list_type, array_list);
4415 }
4416
4417 RB_OBJ_WRITE(obj, &array_list->array[array_list->len], item);
4418 array_list->len++;
4419 return obj;
4420}
4421
4422void
4423rb_vm_register_global_object(VALUE obj)
4424{
4426 if (RB_SPECIAL_CONST_P(obj)) {
4427 return;
4428 }
4429
4430 switch (RB_BUILTIN_TYPE(obj)) {
4431 case T_CLASS:
4432 case T_MODULE:
4433 if (FL_TEST(obj, RCLASS_IS_ROOT)) {
4434 return;
4435 }
4436 FL_SET(obj, RCLASS_IS_ROOT);
4437 break;
4438 default:
4439 break;
4440 }
4441 RB_VM_LOCK_ENTER();
4442 {
4443 VALUE list = GET_VM()->mark_object_ary;
4444 VALUE head = pin_array_list_append(list, obj);
4445 if (head != list) {
4446 GET_VM()->mark_object_ary = head;
4447 }
4448 RB_GC_GUARD(obj);
4449 }
4450 RB_VM_LOCK_LEAVE();
4451}
4452
4453void
4454Init_vm_objects(void)
4455{
4456 rb_vm_t *vm = GET_VM();
4457
4458 /* initialize mark object array, hash */
4459 vm->mark_object_ary = pin_array_list_new(Qnil);
4460 vm->loading_table = st_init_strtable();
4461 vm->ci_table = st_init_table(&vm_ci_hashtype);
4462}
4463
4464// Stub for builtin function when not building YJIT units
4465#if !USE_YJIT
4466void Init_builtin_yjit(void) {}
4467#endif
4468
4469// Whether YJIT is enabled or not, we load yjit_hook.rb to remove Kernel#with_yjit.
4470#include "yjit_hook.rbinc"
4471
4472// Stub for builtin function when not building ZJIT units
4473#if !USE_ZJIT
4474void Init_builtin_zjit(void) {}
4475#endif
4476
4477/* top self */
4478
4479static VALUE
4480main_to_s(VALUE obj)
4481{
4482 return rb_str_new2("main");
4483}
4484
4485VALUE
4486rb_vm_top_self(void)
4487{
4488 return GET_VM()->top_self;
4489}
4490
4491void
4492Init_top_self(void)
4493{
4494 rb_vm_t *vm = GET_VM();
4495
4496 vm->top_self = rb_obj_alloc(rb_cObject);
4497 rb_define_singleton_method(rb_vm_top_self(), "to_s", main_to_s, 0);
4498 rb_define_alias(rb_singleton_class(rb_vm_top_self()), "inspect", "to_s");
4499}
4500
4501VALUE *
4503{
4504 rb_ractor_t *cr = GET_RACTOR();
4505 return &cr->verbose;
4506}
4507
4508VALUE *
4510{
4511 rb_ractor_t *cr = GET_RACTOR();
4512 return &cr->debug;
4513}
4514
4515bool rb_free_at_exit = false;
4516
4517bool
4518ruby_free_at_exit_p(void)
4519{
4520 return rb_free_at_exit;
4521}
4522
4523/* iseq.c */
4524VALUE rb_insn_operand_intern(const rb_iseq_t *iseq,
4525 VALUE insn, int op_no, VALUE op,
4526 int len, size_t pos, VALUE *pnop, VALUE child);
4527
4528#if VM_COLLECT_USAGE_DETAILS
4529
4530#define HASH_ASET(h, k, v) rb_hash_aset((h), (st_data_t)(k), (st_data_t)(v))
4531
4532/* uh = {
4533 * insn(Fixnum) => ihash(Hash)
4534 * }
4535 * ihash = {
4536 * -1(Fixnum) => count, # insn usage
4537 * 0(Fixnum) => ophash, # operand usage
4538 * }
4539 * ophash = {
4540 * val(interned string) => count(Fixnum)
4541 * }
4542 */
4543static void
4544vm_analysis_insn(int insn)
4545{
4546 ID usage_hash;
4547 ID bigram_hash;
4548 static int prev_insn = -1;
4549
4550 VALUE uh;
4551 VALUE ihash;
4552 VALUE cv;
4553
4554 CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
4555 CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
4556 uh = rb_const_get(rb_cRubyVM, usage_hash);
4557 if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) {
4558 ihash = rb_hash_new();
4559 HASH_ASET(uh, INT2FIX(insn), ihash);
4560 }
4561 if (NIL_P(cv = rb_hash_aref(ihash, INT2FIX(-1)))) {
4562 cv = INT2FIX(0);
4563 }
4564 HASH_ASET(ihash, INT2FIX(-1), INT2FIX(FIX2INT(cv) + 1));
4565
4566 /* calc bigram */
4567 if (prev_insn != -1) {
4568 VALUE bi;
4569 VALUE ary[2];
4570 VALUE cv;
4571
4572 ary[0] = INT2FIX(prev_insn);
4573 ary[1] = INT2FIX(insn);
4574 bi = rb_ary_new4(2, &ary[0]);
4575
4576 uh = rb_const_get(rb_cRubyVM, bigram_hash);
4577 if (NIL_P(cv = rb_hash_aref(uh, bi))) {
4578 cv = INT2FIX(0);
4579 }
4580 HASH_ASET(uh, bi, INT2FIX(FIX2INT(cv) + 1));
4581 }
4582 prev_insn = insn;
4583}
4584
4585static void
4586vm_analysis_operand(int insn, int n, VALUE op)
4587{
4588 ID usage_hash;
4589
4590 VALUE uh;
4591 VALUE ihash;
4592 VALUE ophash;
4593 VALUE valstr;
4594 VALUE cv;
4595
4596 CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
4597
4598 uh = rb_const_get(rb_cRubyVM, usage_hash);
4599 if (NIL_P(ihash = rb_hash_aref(uh, INT2FIX(insn)))) {
4600 ihash = rb_hash_new();
4601 HASH_ASET(uh, INT2FIX(insn), ihash);
4602 }
4603 if (NIL_P(ophash = rb_hash_aref(ihash, INT2FIX(n)))) {
4604 ophash = rb_hash_new();
4605 HASH_ASET(ihash, INT2FIX(n), ophash);
4606 }
4607 /* intern */
4608 valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
4609
4610 /* set count */
4611 if (NIL_P(cv = rb_hash_aref(ophash, valstr))) {
4612 cv = INT2FIX(0);
4613 }
4614 HASH_ASET(ophash, valstr, INT2FIX(FIX2INT(cv) + 1));
4615}
4616
4617static void
4618vm_analysis_register(int reg, int isset)
4619{
4620 ID usage_hash;
4621 VALUE uh;
4622 VALUE valstr;
4623 static const char regstrs[][5] = {
4624 "pc", /* 0 */
4625 "sp", /* 1 */
4626 "ep", /* 2 */
4627 "cfp", /* 3 */
4628 "self", /* 4 */
4629 "iseq", /* 5 */
4630 };
4631 static const char getsetstr[][4] = {
4632 "get",
4633 "set",
4634 };
4635 static VALUE syms[sizeof(regstrs) / sizeof(regstrs[0])][2];
4636
4637 VALUE cv;
4638
4639 CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
4640 if (syms[0] == 0) {
4641 char buff[0x10];
4642 int i;
4643
4644 for (i = 0; i < (int)(sizeof(regstrs) / sizeof(regstrs[0])); i++) {
4645 int j;
4646 for (j = 0; j < 2; j++) {
4647 snprintf(buff, 0x10, "%d %s %-4s", i, getsetstr[j], regstrs[i]);
4648 syms[i][j] = ID2SYM(rb_intern(buff));
4649 }
4650 }
4651 }
4652 valstr = syms[reg][isset];
4653
4654 uh = rb_const_get(rb_cRubyVM, usage_hash);
4655 if (NIL_P(cv = rb_hash_aref(uh, valstr))) {
4656 cv = INT2FIX(0);
4657 }
4658 HASH_ASET(uh, valstr, INT2FIX(FIX2INT(cv) + 1));
4659}
4660
4661#undef HASH_ASET
4662
4663static void (*ruby_vm_collect_usage_func_insn)(int insn) = NULL;
4664static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op) = NULL;
4665static void (*ruby_vm_collect_usage_func_register)(int reg, int isset) = NULL;
4666
4667/* :nodoc: */
4668static VALUE
4669usage_analysis_insn_start(VALUE self)
4670{
4671 ruby_vm_collect_usage_func_insn = vm_analysis_insn;
4672 return Qnil;
4673}
4674
4675/* :nodoc: */
4676static VALUE
4677usage_analysis_operand_start(VALUE self)
4678{
4679 ruby_vm_collect_usage_func_operand = vm_analysis_operand;
4680 return Qnil;
4681}
4682
4683/* :nodoc: */
4684static VALUE
4685usage_analysis_register_start(VALUE self)
4686{
4687 ruby_vm_collect_usage_func_register = vm_analysis_register;
4688 return Qnil;
4689}
4690
4691/* :nodoc: */
4692static VALUE
4693usage_analysis_insn_stop(VALUE self)
4694{
4695 ruby_vm_collect_usage_func_insn = 0;
4696 return Qnil;
4697}
4698
4699/* :nodoc: */
4700static VALUE
4701usage_analysis_operand_stop(VALUE self)
4702{
4703 ruby_vm_collect_usage_func_operand = 0;
4704 return Qnil;
4705}
4706
4707/* :nodoc: */
4708static VALUE
4709usage_analysis_register_stop(VALUE self)
4710{
4711 ruby_vm_collect_usage_func_register = 0;
4712 return Qnil;
4713}
4714
4715/* :nodoc: */
4716static VALUE
4717usage_analysis_insn_running(VALUE self)
4718{
4719 return RBOOL(ruby_vm_collect_usage_func_insn != 0);
4720}
4721
4722/* :nodoc: */
4723static VALUE
4724usage_analysis_operand_running(VALUE self)
4725{
4726 return RBOOL(ruby_vm_collect_usage_func_operand != 0);
4727}
4728
4729/* :nodoc: */
4730static VALUE
4731usage_analysis_register_running(VALUE self)
4732{
4733 return RBOOL(ruby_vm_collect_usage_func_register != 0);
4734}
4735
4736static VALUE
4737usage_analysis_clear(VALUE self, ID usage_hash)
4738{
4739 VALUE uh;
4740 uh = rb_const_get(self, usage_hash);
4741 rb_hash_clear(uh);
4742
4743 return Qtrue;
4744}
4745
4746
4747/* :nodoc: */
4748static VALUE
4749usage_analysis_insn_clear(VALUE self)
4750{
4751 ID usage_hash;
4752 ID bigram_hash;
4753
4754 CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
4755 CONST_ID(bigram_hash, "USAGE_ANALYSIS_INSN_BIGRAM");
4756 usage_analysis_clear(rb_cRubyVM, usage_hash);
4757 return usage_analysis_clear(rb_cRubyVM, bigram_hash);
4758}
4759
4760/* :nodoc: */
4761static VALUE
4762usage_analysis_operand_clear(VALUE self)
4763{
4764 ID usage_hash;
4765
4766 CONST_ID(usage_hash, "USAGE_ANALYSIS_INSN");
4767 return usage_analysis_clear(self, usage_hash);
4768}
4769
4770/* :nodoc: */
4771static VALUE
4772usage_analysis_register_clear(VALUE self)
4773{
4774 ID usage_hash;
4775
4776 CONST_ID(usage_hash, "USAGE_ANALYSIS_REGS");
4777 return usage_analysis_clear(self, usage_hash);
4778}
4779
4780#else
4781
4782MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_insn)(int insn)) = 0;
4783MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_operand)(int insn, int n, VALUE op)) = 0;
4784MAYBE_UNUSED(static void (*ruby_vm_collect_usage_func_register)(int reg, int isset)) = 0;
4785
4786#endif
4787
4788#if VM_COLLECT_USAGE_DETAILS
4789/* @param insn instruction number */
4790static void
4791vm_collect_usage_insn(int insn)
4792{
4793 if (RUBY_DTRACE_INSN_ENABLED()) {
4794 RUBY_DTRACE_INSN(rb_insns_name(insn));
4795 }
4796 if (ruby_vm_collect_usage_func_insn)
4797 (*ruby_vm_collect_usage_func_insn)(insn);
4798}
4799
4800/* @param insn instruction number
4801 * @param n n-th operand
4802 * @param op operand value
4803 */
4804static void
4805vm_collect_usage_operand(int insn, int n, VALUE op)
4806{
4807 if (RUBY_DTRACE_INSN_OPERAND_ENABLED()) {
4808 VALUE valstr;
4809
4810 valstr = rb_insn_operand_intern(GET_EC()->cfp->iseq, insn, n, op, 0, 0, 0, 0);
4811
4812 RUBY_DTRACE_INSN_OPERAND(RSTRING_PTR(valstr), rb_insns_name(insn));
4813 RB_GC_GUARD(valstr);
4814 }
4815 if (ruby_vm_collect_usage_func_operand)
4816 (*ruby_vm_collect_usage_func_operand)(insn, n, op);
4817}
4818
4819/* @param reg register id. see code of vm_analysis_register() */
4820/* @param isset 0: read, 1: write */
4821static void
4822vm_collect_usage_register(int reg, int isset)
4823{
4824 if (ruby_vm_collect_usage_func_register)
4825 (*ruby_vm_collect_usage_func_register)(reg, isset);
4826}
4827#endif
4828
4829const struct rb_callcache *
4830rb_vm_empty_cc(void)
4831{
4832 return &vm_empty_cc;
4833}
4834
4835const struct rb_callcache *
4836rb_vm_empty_cc_for_super(void)
4837{
4838 return &vm_empty_cc_for_super;
4839}
4840
4841#include "vm_call_iseq_optimized.inc" /* required from vm_insnhelper.c */
#define RUBY_ASSERT_MESG(expr,...)
Asserts that the expression is truthy.
Definition assert.h:186
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
std::atomic< unsigned > rb_atomic_t
Type that is eligible for atomic operations.
Definition atomic.h:69
#define RUBY_ATOMIC_FETCH_ADD(var, val)
Atomically replaces the value pointed by var with the result of addition of val to the old value of v...
Definition atomic.h:93
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_method_id(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
#define RUBY_EVENT_END
Encountered an end of a class clause.
Definition event.h:40
#define RUBY_EVENT_B_RETURN
Encountered a next statement.
Definition event.h:56
#define RUBY_EVENT_RETURN
Encountered a return statement.
Definition event.h:42
#define RUBY_EVENT_C_RETURN
Return from a method, written in C.
Definition event.h:44
uint32_t rb_event_flag_t
Represents event(s).
Definition event.h:108
static void RB_FL_SET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_SET().
Definition fl_type.h:606
static void RB_FL_UNSET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_UNSET().
Definition fl_type.h:666
@ RUBY_FL_SHAREABLE
This flag has something to do with Ractor.
Definition fl_type.h:266
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition class.c:980
VALUE rb_class_new(VALUE super)
Creates a new, anonymous class.
Definition class.c:359
VALUE rb_singleton_class(VALUE obj)
Finds or creates the singleton class of the passed object.
Definition class.c:2297
void rb_define_alias(VALUE klass, const char *name1, const char *name2)
Defines an alias of a method.
Definition class.c:2345
void rb_undef_method(VALUE klass, const char *name)
Defines an undef of a method.
Definition class.c:2166
#define rb_str_new2
Old name of rb_str_new_cstr.
Definition string.h:1675
#define NUM2ULONG
Old name of RB_NUM2ULONG.
Definition long.h:52
#define ALLOCV
Old name of RB_ALLOCV.
Definition memory.h:404
#define ALLOC
Old name of RB_ALLOC.
Definition memory.h:400
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define T_MASK
Old name of RUBY_T_MASK.
Definition value_type.h:68
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define T_IMEMO
Old name of RUBY_T_IMEMO.
Definition value_type.h:67
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:135
#define ULONG2NUM
Old name of RB_ULONG2NUM.
Definition long.h:60
#define SYM2ID
Old name of RB_SYM2ID.
Definition symbol.h:45
#define ZALLOC
Old name of RB_ZALLOC.
Definition memory.h:402
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:203
#define rb_ary_new4
Old name of rb_ary_new_from_values.
Definition array.h:659
#define SIZET2NUM
Old name of RB_SIZE2NUM.
Definition size_t.h:62
#define rb_exc_new2
Old name of rb_exc_new_cstr.
Definition error.h:37
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define T_MODULE
Old name of RUBY_T_MODULE.
Definition value_type.h:70
#define ZALLOC_N
Old name of RB_ZALLOC_N.
Definition memory.h:401
#define ASSUME
Old name of RBIMPL_ASSUME.
Definition assume.h:27
#define T_ICLASS
Old name of RUBY_T_ICLASS.
Definition value_type.h:66
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define ALLOC_N
Old name of RB_ALLOC_N.
Definition memory.h:399
#define FL_SET
Old name of RB_FL_SET.
Definition fl_type.h:129
#define rb_exc_new3
Old name of rb_exc_new_str.
Definition error.h:38
#define ULL2NUM
Old name of RB_ULL2NUM.
Definition long_long.h:31
#define Qtrue
Old name of RUBY_Qtrue.
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define NIL_P
Old name of RB_NIL_P.
#define NUM2ULL
Old name of RB_NUM2ULL.
Definition long_long.h:35
#define T_CLASS
Old name of RUBY_T_CLASS.
Definition value_type.h:58
#define BUILTIN_TYPE
Old name of RB_BUILTIN_TYPE.
Definition value_type.h:85
#define FL_TEST
Old name of RB_FL_TEST.
Definition fl_type.h:131
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define FL_USHIFT
Old name of RUBY_FL_USHIFT.
Definition fl_type.h:69
#define CONST_ID
Old name of RUBY_CONST_ID.
Definition symbol.h:47
#define FL_SET_RAW
Old name of RB_FL_SET_RAW.
Definition fl_type.h:130
#define ALLOCV_END
Old name of RB_ALLOCV_END.
Definition memory.h:406
#define SYMBOL_P
Old name of RB_SYMBOL_P.
Definition value_type.h:88
void ruby_init_stack(void *addr)
Set stack bottom of Ruby implementation.
Definition vm.c:4335
VALUE rb_eLocalJumpError
LocalJumpError exception.
Definition eval.c:48
void rb_category_warn(rb_warning_category_t category, const char *fmt,...)
Identical to rb_category_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:476
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition eval.c:676
int rb_typeddata_is_kind_of(VALUE obj, const rb_data_type_t *data_type)
Checks if the given object is of given kind.
Definition error.c:1380
void rb_iter_break(void)
Breaks from a block.
Definition vm.c:2108
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
void rb_iter_break_value(VALUE val)
Identical to rb_iter_break(), except it additionally takes the "value" of this breakage.
Definition vm.c:2114
VALUE rb_eRuntimeError
RuntimeError exception.
Definition error.c:1428
VALUE * rb_ruby_verbose_ptr(void)
This is an implementation detail of ruby_verbose.
Definition vm.c:4502
VALUE rb_exc_new_str(VALUE etype, VALUE str)
Identical to rb_exc_new_cstr(), except it takes a Ruby's string instead of C's.
Definition error.c:1481
VALUE * rb_ruby_debug_ptr(void)
This is an implementation detail of ruby_debug.
Definition vm.c:4509
VALUE rb_eSysStackError
SystemStackError exception.
Definition eval.c:49
@ RB_WARN_CATEGORY_PERFORMANCE
Warning is for performance issues (not enabled by -w).
Definition error.h:54
VALUE rb_cTime
Time class.
Definition time.c:678
VALUE rb_cArray
Array class.
Definition array.c:41
VALUE rb_obj_alloc(VALUE klass)
Allocates an instance of the given class.
Definition object.c:2121
VALUE rb_cInteger
Module class.
Definition numeric.c:198
VALUE rb_cNilClass
NilClass class.
Definition object.c:71
VALUE rb_cBinding
Binding class.
Definition proc.c:43
VALUE rb_cRegexp
Regexp class.
Definition re.c:2661
VALUE rb_cHash
Hash class.
Definition hash.c:113
VALUE rb_cFalseClass
FalseClass class.
Definition object.c:73
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:247
VALUE rb_cSymbol
Symbol class.
Definition string.c:81
VALUE rb_cBasicObject
BasicObject class.
Definition object.c:64
VALUE rb_cThread
Thread class.
Definition vm.c:551
VALUE rb_obj_freeze(VALUE obj)
Just calls rb_obj_freeze_inline() inside.
Definition object.c:1284
VALUE rb_cFloat
Float class.
Definition numeric.c:197
VALUE rb_cProc
Proc class.
Definition proc.c:44
VALUE rb_cTrueClass
TrueClass class.
Definition object.c:72
VALUE rb_cString
String class.
Definition string.c:80
#define RB_OBJ_WRITTEN(old, oldv, young)
Identical to RB_OBJ_WRITE(), except it doesn't write any values, but only a WB declaration.
Definition gc.h:615
#define RB_OBJ_WRITE(old, slot, young)
Declaration of a "back" pointer.
Definition gc.h:603
Defines RBIMPL_HAS_BUILTIN.
void rb_undef(VALUE mod, ID mid)
Inserts a method entry that hides previous method definition of the given name.
Definition vm_method.c:1904
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
VALUE rb_backref_get(void)
Queries the last match, or Regexp.last_match, or the $~.
Definition vm.c:1858
void rb_lastline_set(VALUE str)
Updates $_.
Definition vm.c:1876
VALUE rb_lastline_get(void)
Queries the last line, or the $_.
Definition vm.c:1870
void rb_backref_set(VALUE md)
Updates $~.
Definition vm.c:1864
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition proc.c:839
VALUE rb_block_lambda(void)
Identical to rb_proc_new(), except it returns a lambda.
Definition proc.c:858
VALUE rb_binding_new(void)
Snapshots the current execution context and turn it into an instance of rb_cBinding.
Definition proc.c:324
VALUE rb_str_append(VALUE dst, VALUE src)
Identical to rb_str_buf_append(), except it converts the right hand side before concatenating.
Definition string.c:4068
VALUE rb_str_new_frozen(VALUE str)
Creates a frozen copy of the string, if necessary.
Definition string.c:1831
#define rb_str_cat_cstr(buf, str)
Identical to rb_str_cat(), except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1656
VALUE rb_const_get(VALUE space, ID name)
Identical to rb_const_defined(), except it returns the actual defined value.
Definition variable.c:3215
void rb_set_class_path(VALUE klass, VALUE space, const char *name)
Names a class.
Definition variable.c:433
VALUE rb_class_path_cached(VALUE mod)
Just another name of rb_mod_name.
Definition variable.c:382
void rb_alias_variable(ID dst, ID src)
Aliases a global variable.
Definition variable.c:1079
VALUE rb_class_path(VALUE mod)
Identical to rb_mod_name(), except it returns #<Class: ...> style inspection for anonymous modules.
Definition variable.c:373
void rb_undef_alloc_func(VALUE klass)
Deletes the allocator function of a class.
Definition vm_method.c:1289
const char * rb_sourcefile(void)
Resembles __FILE__.
Definition vm.c:1895
void rb_alias(VALUE klass, ID dst, ID src)
Resembles alias.
Definition vm_method.c:2287
int rb_frame_method_id_and_class(ID *idp, VALUE *klassp)
Resembles __method__.
Definition vm.c:2911
int rb_sourceline(void)
Resembles __LINE__.
Definition vm.c:1909
VALUE rb_sym2str(VALUE symbol)
Obtain a frozen string representation of a symbol (not including the leading colon).
Definition symbol.c:986
void rb_define_global_const(const char *name, VALUE val)
Identical to rb_define_const(), except it defines that of "global", i.e.
Definition variable.c:3792
VALUE rb_iv_set(VALUE obj, const char *name, VALUE val)
Assigns to an instance variable.
Definition variable.c:4276
int len
Length of the buffer.
Definition io.h:8
VALUE rb_ractor_make_shareable_copy(VALUE obj)
Identical to rb_ractor_make_shareable(), except it returns a (deep) copy of the passed one instead of...
Definition ractor.c:3110
static bool rb_ractor_shareable_p(VALUE obj)
Queries if multiple Ractors can share the passed object or not.
Definition ractor.h:249
#define RB_OBJ_SHAREABLE_P(obj)
Queries if the passed object has previously classified as shareable or not.
Definition ractor.h:235
VALUE rb_ractor_make_shareable(VALUE obj)
Destructively transforms the passed object so that multiple Ractors can share it.
Definition ractor.c:3101
void ruby_vm_at_exit(void(*func)(ruby_vm_t *))
ruby_vm_at_exit registers a function func to be invoked when a VM passed away.
Definition vm.c:885
int ruby_vm_destruct(ruby_vm_t *vm)
Destructs the passed VM.
Definition vm.c:3092
VALUE rb_f_sprintf(int argc, const VALUE *argv)
Identical to rb_str_format(), except how the arguments are arranged.
Definition sprintf.c:209
#define MEMCPY(p1, p2, type, n)
Handy macro to call memcpy.
Definition memory.h:372
#define MEMZERO(p, type, n)
Handy macro to erase a region of memory.
Definition memory.h:360
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
VALUE type(ANYARGS)
ANYARGS-ed function type.
void rb_hash_foreach(VALUE q, int_type *w, VALUE e)
Iteration over the given hash.
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
static int RARRAY_LENINT(VALUE ary)
Identical to rb_array_len(), except it differs for the return type.
Definition rarray.h:281
#define RARRAY_AREF(a, i)
Definition rarray.h:403
static VALUE RBASIC_CLASS(VALUE obj)
Queries the class of an object.
Definition rbasic.h:150
#define RBASIC(obj)
Convenient casting macro.
Definition rbasic.h:40
#define RCLASS(obj)
Convenient casting macro.
Definition rclass.h:38
#define RHASH_EMPTY_P(h)
Checks if the hash is empty.
Definition rhash.h:79
#define StringValuePtr(v)
Identical to StringValue, except it returns a char*.
Definition rstring.h:76
#define RTYPEDDATA_DATA(v)
Convenient getter macro.
Definition rtypeddata.h:102
#define TypedData_Get_Struct(obj, type, data_type, sval)
Obtains a C struct from inside of a wrapper Ruby object.
Definition rtypeddata.h:515
#define TypedData_Wrap_Struct(klass, data_type, sval)
Converts sval, a pointer to your struct, into a Ruby object.
Definition rtypeddata.h:449
#define TypedData_Make_Struct(klass, type, data_type, sval)
Identical to TypedData_Wrap_Struct, except it allocates a new data region internally instead of takin...
Definition rtypeddata.h:497
const char * rb_class2name(VALUE klass)
Queries the name of the passed class.
Definition variable.c:498
#define RB_NO_KEYWORDS
Do not pass keywords.
Definition scan_args.h:69
static bool RB_SPECIAL_CONST_P(VALUE obj)
Checks if the given object is of enum ruby_special_consts.
#define RTEST
This is an old name of RB_TEST.
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
Definition proc.c:29
Definition iseq.h:280
Definition method.h:63
CREF (Class REFerence)
Definition method.h:45
This is the struct that holds necessary info for a struct.
Definition rtypeddata.h:200
const char * wrap_struct_name
Name of structs of this kind.
Definition rtypeddata.h:207
Definition method.h:55
Definition st.h:79
IFUNC (Internal FUNCtion)
Definition imemo.h:84
THROW_DATA.
Definition imemo.h:57
void rb_native_cond_initialize(rb_nativethread_cond_t *cond)
Fills the passed condition variable with an initial value.
void rb_native_mutex_initialize(rb_nativethread_lock_t *lock)
Just another name of rb_nativethread_lock_initialize.
void rb_native_mutex_destroy(rb_nativethread_lock_t *lock)
Just another name of rb_nativethread_lock_destroy.
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static enum ruby_value_type RB_BUILTIN_TYPE(VALUE obj)
Queries the type of the object.
Definition value_type.h:182
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition value_type.h:433
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376
ruby_value_type
C-level type of an object.
Definition value_type.h:113