Ruby 3.5.0dev (2025-04-03 revision 29dafa5fc21343803127dda7d608f1f1f7908e7b)
default.c
1#include "ruby/internal/config.h"
2
3#include <signal.h>
4
5#ifndef _WIN32
6# include <sys/mman.h>
7# include <unistd.h>
8# ifdef HAVE_SYS_PRCTL_H
9# include <sys/prctl.h>
10# endif
11#endif
12
13#if !defined(PAGE_SIZE) && defined(HAVE_SYS_USER_H)
14/* LIST_HEAD conflicts with sys/queue.h on macOS */
15# include <sys/user.h>
16#endif
17
18#include "internal/bits.h"
19#include "internal/hash.h"
20
21#include "ruby/ruby.h"
22#include "ruby/atomic.h"
23#include "ruby/debug.h"
24#include "ruby/thread.h"
25#include "ruby/util.h"
26#include "ruby/vm.h"
28#include "ccan/list/list.h"
29#include "darray.h"
30#include "gc/gc.h"
31#include "gc/gc_impl.h"
32
33#ifndef BUILDING_MODULAR_GC
34# include "probes.h"
35#endif
36
37#include "debug_counter.h"
38#include "internal/sanitizers.h"
39
40/* MALLOC_HEADERS_BEGIN */
41#ifndef HAVE_MALLOC_USABLE_SIZE
42# ifdef _WIN32
43# define HAVE_MALLOC_USABLE_SIZE
44# define malloc_usable_size(a) _msize(a)
45# elif defined HAVE_MALLOC_SIZE
46# define HAVE_MALLOC_USABLE_SIZE
47# define malloc_usable_size(a) malloc_size(a)
48# endif
49#endif
50
51#ifdef HAVE_MALLOC_USABLE_SIZE
52# ifdef RUBY_ALTERNATIVE_MALLOC_HEADER
53/* Alternative malloc header is included in ruby/missing.h */
54# elif defined(HAVE_MALLOC_H)
55# include <malloc.h>
56# elif defined(HAVE_MALLOC_NP_H)
57# include <malloc_np.h>
58# elif defined(HAVE_MALLOC_MALLOC_H)
59# include <malloc/malloc.h>
60# endif
61#endif
62
63#ifdef HAVE_MALLOC_TRIM
64# include <malloc.h>
65
66# ifdef __EMSCRIPTEN__
67/* malloc_trim is defined in emscripten/emmalloc.h on emscripten. */
68# include <emscripten/emmalloc.h>
69# endif
70#endif
71
72#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
73# include <mach/task.h>
74# include <mach/mach_init.h>
75# include <mach/mach_port.h>
76#endif
77
78#ifndef VM_CHECK_MODE
79# define VM_CHECK_MODE RUBY_DEBUG
80#endif
81
82// From ractor_core.h
83#ifndef RACTOR_CHECK_MODE
84# define RACTOR_CHECK_MODE (VM_CHECK_MODE || RUBY_DEBUG) && (SIZEOF_UINT64_T == SIZEOF_VALUE)
85#endif
86
87#ifndef RUBY_DEBUG_LOG
88# define RUBY_DEBUG_LOG(...)
89#endif
90
91#ifndef GC_HEAP_INIT_SLOTS
92#define GC_HEAP_INIT_SLOTS 10000
93#endif
94#ifndef GC_HEAP_FREE_SLOTS
95#define GC_HEAP_FREE_SLOTS 4096
96#endif
97#ifndef GC_HEAP_GROWTH_FACTOR
98#define GC_HEAP_GROWTH_FACTOR 1.8
99#endif
100#ifndef GC_HEAP_GROWTH_MAX_SLOTS
101#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
102#endif
103#ifndef GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO
104# define GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO 0.01
105#endif
106#ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR
107#define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0
108#endif
109
110#ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO
111#define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.20
112#endif
113#ifndef GC_HEAP_FREE_SLOTS_GOAL_RATIO
114#define GC_HEAP_FREE_SLOTS_GOAL_RATIO 0.40
115#endif
116#ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO
117#define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.65
118#endif
119
120#ifndef GC_MALLOC_LIMIT_MIN
121#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
122#endif
123#ifndef GC_MALLOC_LIMIT_MAX
124#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
125#endif
126#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
127#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
128#endif
129
130#ifndef GC_OLDMALLOC_LIMIT_MIN
131#define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
132#endif
133#ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR
134#define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2
135#endif
136#ifndef GC_OLDMALLOC_LIMIT_MAX
137#define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
138#endif
139
140#ifndef GC_CAN_COMPILE_COMPACTION
141#if defined(__wasi__) /* WebAssembly doesn't support signals */
142# define GC_CAN_COMPILE_COMPACTION 0
143#else
144# define GC_CAN_COMPILE_COMPACTION 1
145#endif
146#endif
147
148#ifndef PRINT_ENTER_EXIT_TICK
149# define PRINT_ENTER_EXIT_TICK 0
150#endif
151#ifndef PRINT_ROOT_TICKS
152#define PRINT_ROOT_TICKS 0
153#endif
154
155#define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_ROOT_TICKS)
156
157#ifndef HEAP_COUNT
158# define HEAP_COUNT 5
159#endif
160
162 struct free_slot *freelist;
163 struct heap_page *using_page;
165
166typedef struct ractor_newobj_cache {
167 size_t incremental_mark_step_allocated_slots;
168 rb_ractor_newobj_heap_cache_t heap_caches[HEAP_COUNT];
170
171typedef struct {
172 size_t heap_init_slots[HEAP_COUNT];
173 size_t heap_free_slots;
174 double growth_factor;
175 size_t growth_max_slots;
176
177 double heap_free_slots_min_ratio;
178 double heap_free_slots_goal_ratio;
179 double heap_free_slots_max_ratio;
180 double uncollectible_wb_unprotected_objects_limit_ratio;
181 double oldobject_limit_factor;
182
183 size_t malloc_limit_min;
184 size_t malloc_limit_max;
185 double malloc_limit_growth_factor;
186
187 size_t oldmalloc_limit_min;
188 size_t oldmalloc_limit_max;
189 double oldmalloc_limit_growth_factor;
191
192static ruby_gc_params_t gc_params = {
193 { GC_HEAP_INIT_SLOTS },
194 GC_HEAP_FREE_SLOTS,
195 GC_HEAP_GROWTH_FACTOR,
196 GC_HEAP_GROWTH_MAX_SLOTS,
197
198 GC_HEAP_FREE_SLOTS_MIN_RATIO,
199 GC_HEAP_FREE_SLOTS_GOAL_RATIO,
200 GC_HEAP_FREE_SLOTS_MAX_RATIO,
201 GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO,
202 GC_HEAP_OLDOBJECT_LIMIT_FACTOR,
203
204 GC_MALLOC_LIMIT_MIN,
205 GC_MALLOC_LIMIT_MAX,
206 GC_MALLOC_LIMIT_GROWTH_FACTOR,
207
208 GC_OLDMALLOC_LIMIT_MIN,
209 GC_OLDMALLOC_LIMIT_MAX,
210 GC_OLDMALLOC_LIMIT_GROWTH_FACTOR,
211};
212
213/* GC_DEBUG:
214 * enable to embed GC debugging information.
215 */
216#ifndef GC_DEBUG
217#define GC_DEBUG 0
218#endif
219
220/* RGENGC_DEBUG:
221 * 1: basic information
222 * 2: remember set operation
223 * 3: mark
224 * 4:
225 * 5: sweep
226 */
227#ifndef RGENGC_DEBUG
228#ifdef RUBY_DEVEL
229#define RGENGC_DEBUG -1
230#else
231#define RGENGC_DEBUG 0
232#endif
233#endif
234#if RGENGC_DEBUG < 0 && !defined(_MSC_VER)
235# define RGENGC_DEBUG_ENABLED(level) (-(RGENGC_DEBUG) >= (level) && ruby_rgengc_debug >= (level))
236#elif defined(HAVE_VA_ARGS_MACRO)
237# define RGENGC_DEBUG_ENABLED(level) ((RGENGC_DEBUG) >= (level))
238#else
239# define RGENGC_DEBUG_ENABLED(level) 0
240#endif
241int ruby_rgengc_debug;
242
243/* RGENGC_PROFILE
244 * 0: disable RGenGC profiling
245 * 1: enable profiling for basic information
246 * 2: enable profiling for each types
247 */
248#ifndef RGENGC_PROFILE
249# define RGENGC_PROFILE 0
250#endif
251
252/* RGENGC_ESTIMATE_OLDMALLOC
253 * Enable/disable to estimate increase size of malloc'ed size by old objects.
254 * If estimation exceeds threshold, then will invoke full GC.
255 * 0: disable estimation.
256 * 1: enable estimation.
257 */
258#ifndef RGENGC_ESTIMATE_OLDMALLOC
259# define RGENGC_ESTIMATE_OLDMALLOC 1
260#endif
261
262#ifndef GC_PROFILE_MORE_DETAIL
263# define GC_PROFILE_MORE_DETAIL 0
264#endif
265#ifndef GC_PROFILE_DETAIL_MEMORY
266# define GC_PROFILE_DETAIL_MEMORY 0
267#endif
268#ifndef GC_ENABLE_LAZY_SWEEP
269# define GC_ENABLE_LAZY_SWEEP 1
270#endif
271#ifndef CALC_EXACT_MALLOC_SIZE
272# define CALC_EXACT_MALLOC_SIZE 0
273#endif
274#if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0
275# ifndef MALLOC_ALLOCATED_SIZE
276# define MALLOC_ALLOCATED_SIZE 0
277# endif
278#else
279# define MALLOC_ALLOCATED_SIZE 0
280#endif
281#ifndef MALLOC_ALLOCATED_SIZE_CHECK
282# define MALLOC_ALLOCATED_SIZE_CHECK 0
283#endif
284
285#ifndef GC_DEBUG_STRESS_TO_CLASS
286# define GC_DEBUG_STRESS_TO_CLASS 1
287#endif
288
289typedef enum {
290 GPR_FLAG_NONE = 0x000,
291 /* major reason */
292 GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
293 GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
294 GPR_FLAG_MAJOR_BY_SHADY = 0x004,
295 GPR_FLAG_MAJOR_BY_FORCE = 0x008,
296#if RGENGC_ESTIMATE_OLDMALLOC
297 GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020,
298#endif
299 GPR_FLAG_MAJOR_MASK = 0x0ff,
300
301 /* gc reason */
302 GPR_FLAG_NEWOBJ = 0x100,
303 GPR_FLAG_MALLOC = 0x200,
304 GPR_FLAG_METHOD = 0x400,
305 GPR_FLAG_CAPI = 0x800,
306 GPR_FLAG_STRESS = 0x1000,
307
308 /* others */
309 GPR_FLAG_IMMEDIATE_SWEEP = 0x2000,
310 GPR_FLAG_HAVE_FINALIZE = 0x4000,
311 GPR_FLAG_IMMEDIATE_MARK = 0x8000,
312 GPR_FLAG_FULL_MARK = 0x10000,
313 GPR_FLAG_COMPACT = 0x20000,
314
315 GPR_DEFAULT_REASON =
316 (GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK |
317 GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_CAPI),
318} gc_profile_record_flag;
319
320typedef struct gc_profile_record {
321 unsigned int flags;
322
323 double gc_time;
324 double gc_invoke_time;
325
326 size_t heap_total_objects;
327 size_t heap_use_size;
328 size_t heap_total_size;
329 size_t moved_objects;
330
331#if GC_PROFILE_MORE_DETAIL
332 double gc_mark_time;
333 double gc_sweep_time;
334
335 size_t heap_use_pages;
336 size_t heap_live_objects;
337 size_t heap_free_objects;
338
339 size_t allocate_increase;
340 size_t allocate_limit;
341
342 double prepare_time;
343 size_t removing_objects;
344 size_t empty_objects;
345#if GC_PROFILE_DETAIL_MEMORY
346 long maxrss;
347 long minflt;
348 long majflt;
349#endif
350#endif
351#if MALLOC_ALLOCATED_SIZE
352 size_t allocated_size;
353#endif
354
355#if RGENGC_PROFILE > 0
356 size_t old_objects;
357 size_t remembered_normal_objects;
358 size_t remembered_shady_objects;
359#endif
361
362struct RMoved {
363 VALUE flags;
364 VALUE dummy;
365 VALUE destination;
366 uint32_t original_shape_id;
367};
368
369#define RMOVED(obj) ((struct RMoved *)(obj))
370
371typedef uintptr_t bits_t;
372enum {
373 BITS_SIZE = sizeof(bits_t),
374 BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
375};
376
378 struct heap_page *page;
379};
380
382 struct heap_page_header header;
383 /* char gap[]; */
384 /* RVALUE values[]; */
385};
386
387#define STACK_CHUNK_SIZE 500
388
389typedef struct stack_chunk {
390 VALUE data[STACK_CHUNK_SIZE];
391 struct stack_chunk *next;
393
394typedef struct mark_stack {
395 stack_chunk_t *chunk;
396 stack_chunk_t *cache;
397 int index;
398 int limit;
399 size_t cache_size;
400 size_t unused_cache_size;
402
403typedef int (*gc_compact_compare_func)(const void *l, const void *r, void *d);
404
405typedef struct rb_heap_struct {
406 short slot_size;
407
408 /* Basic statistics */
409 size_t total_allocated_pages;
410 size_t force_major_gc_count;
411 size_t force_incremental_marking_finish_count;
412 size_t total_allocated_objects;
413 size_t total_freed_objects;
414 size_t final_slots_count;
415
416 /* Sweeping statistics */
417 size_t freed_slots;
418 size_t empty_slots;
419
420 struct heap_page *free_pages;
421 struct ccan_list_head pages;
422 struct heap_page *sweeping_page; /* iterator for .pages */
423 struct heap_page *compact_cursor;
424 uintptr_t compact_cursor_index;
425 struct heap_page *pooled_pages;
426 size_t total_pages; /* total page count in a heap */
427 size_t total_slots; /* total slot count (about total_pages * HEAP_PAGE_OBJ_LIMIT) */
428
429} rb_heap_t;
430
431enum {
432 gc_stress_no_major,
433 gc_stress_no_immediate_sweep,
434 gc_stress_full_mark_after_malloc,
435 gc_stress_max
436};
437
438enum gc_mode {
439 gc_mode_none,
440 gc_mode_marking,
441 gc_mode_sweeping,
442 gc_mode_compacting,
443};
444
445typedef struct rb_objspace {
446 struct {
447 size_t limit;
448 size_t increase;
449#if MALLOC_ALLOCATED_SIZE
450 size_t allocated_size;
451 size_t allocations;
452#endif
453 } malloc_params;
454
456 bool full_mark;
457 } gc_config;
458
459 struct {
460 unsigned int mode : 2;
461 unsigned int immediate_sweep : 1;
462 unsigned int dont_gc : 1;
463 unsigned int dont_incremental : 1;
464 unsigned int during_gc : 1;
465 unsigned int during_compacting : 1;
466 unsigned int during_reference_updating : 1;
467 unsigned int gc_stressful: 1;
468 unsigned int has_newobj_hook: 1;
469 unsigned int during_minor_gc : 1;
470 unsigned int during_incremental_marking : 1;
471 unsigned int measure_gc : 1;
472 } flags;
473
474 rb_event_flag_t hook_events;
475 unsigned long long next_object_id;
476
477 rb_heap_t heaps[HEAP_COUNT];
478 size_t empty_pages_count;
479 struct heap_page *empty_pages;
480
481 struct {
482 rb_atomic_t finalizing;
483 } atomic_flags;
484
486 size_t marked_slots;
487
488 struct {
489 rb_darray(struct heap_page *) sorted;
490
491 size_t allocated_pages;
492 size_t freed_pages;
493 uintptr_t range[2];
494 size_t freeable_pages;
495
496 size_t allocatable_slots;
497
498 /* final */
499 VALUE deferred_final;
500 } heap_pages;
501
502 st_table *finalizer_table;
503
504 struct {
505 int run;
506 unsigned int latest_gc_info;
507 gc_profile_record *records;
508 gc_profile_record *current_record;
509 size_t next_index;
510 size_t size;
511
512#if GC_PROFILE_MORE_DETAIL
513 double prepare_time;
514#endif
515 double invoke_time;
516
517 size_t minor_gc_count;
518 size_t major_gc_count;
519 size_t compact_count;
520 size_t read_barrier_faults;
521#if RGENGC_PROFILE > 0
522 size_t total_generated_normal_object_count;
523 size_t total_generated_shady_object_count;
524 size_t total_shade_operation_count;
525 size_t total_promoted_count;
526 size_t total_remembered_normal_object_count;
527 size_t total_remembered_shady_object_count;
528
529#if RGENGC_PROFILE >= 2
530 size_t generated_normal_object_count_types[RUBY_T_MASK];
531 size_t generated_shady_object_count_types[RUBY_T_MASK];
532 size_t shade_operation_count_types[RUBY_T_MASK];
533 size_t promoted_types[RUBY_T_MASK];
534 size_t remembered_normal_object_count_types[RUBY_T_MASK];
535 size_t remembered_shady_object_count_types[RUBY_T_MASK];
536#endif
537#endif /* RGENGC_PROFILE */
538
539 /* temporary profiling space */
540 double gc_sweep_start_time;
541 size_t total_allocated_objects_at_gc_start;
542 size_t heap_used_at_gc_start;
543
544 /* basic statistics */
545 size_t count;
546 unsigned long long marking_time_ns;
547 struct timespec marking_start_time;
548 unsigned long long sweeping_time_ns;
549 struct timespec sweeping_start_time;
550
551 /* Weak references */
552 size_t weak_references_count;
553 size_t retained_weak_references_count;
554 } profile;
555
556 VALUE gc_stress_mode;
557
558 struct {
559 VALUE parent_object;
560 int need_major_gc;
561 size_t last_major_gc;
562 size_t uncollectible_wb_unprotected_objects;
563 size_t uncollectible_wb_unprotected_objects_limit;
564 size_t old_objects;
565 size_t old_objects_limit;
566
567#if RGENGC_ESTIMATE_OLDMALLOC
568 size_t oldmalloc_increase;
569 size_t oldmalloc_increase_limit;
570#endif
571
572#if RGENGC_CHECK_MODE >= 2
573 struct st_table *allrefs_table;
574 size_t error_count;
575#endif
576 } rgengc;
577
578 struct {
579 size_t considered_count_table[T_MASK];
580 size_t moved_count_table[T_MASK];
581 size_t moved_up_count_table[T_MASK];
582 size_t moved_down_count_table[T_MASK];
583 size_t total_moved;
584
585 /* This function will be used, if set, to sort the heap prior to compaction */
586 gc_compact_compare_func compare_func;
587 } rcompactor;
588
589 struct {
590 size_t pooled_slots;
591 size_t step_slots;
592 } rincgc;
593
594 st_table *id_to_obj_tbl;
595 st_table *obj_to_id_tbl;
596
597#if GC_DEBUG_STRESS_TO_CLASS
598 VALUE stress_to_class;
599#endif
600
601 rb_darray(VALUE *) weak_references;
602 rb_postponed_job_handle_t finalize_deferred_pjob;
603
604 unsigned long live_ractor_cache_count;
606
607#ifndef HEAP_PAGE_ALIGN_LOG
608/* default tiny heap size: 64KiB */
609#define HEAP_PAGE_ALIGN_LOG 16
610#endif
611
612#if RACTOR_CHECK_MODE || GC_DEBUG
613struct rvalue_overhead {
614# if RACTOR_CHECK_MODE
615 uint32_t _ractor_belonging_id;
616# endif
617# if GC_DEBUG
618 const char *file;
619 int line;
620# endif
621};
622
623// Make sure that RVALUE_OVERHEAD aligns to sizeof(VALUE)
624# define RVALUE_OVERHEAD (sizeof(struct { \
625 union { \
626 struct rvalue_overhead overhead; \
627 VALUE value; \
628 }; \
629}))
630size_t rb_gc_impl_obj_slot_size(VALUE obj);
631# define GET_RVALUE_OVERHEAD(obj) ((struct rvalue_overhead *)((uintptr_t)obj + rb_gc_impl_obj_slot_size(obj)))
632#else
633# define RVALUE_OVERHEAD 0
634#endif
635
636#define BASE_SLOT_SIZE (sizeof(struct RBasic) + sizeof(VALUE[RBIMPL_RVALUE_EMBED_LEN_MAX]) + RVALUE_OVERHEAD)
637
638#ifndef MAX
639# define MAX(a, b) (((a) > (b)) ? (a) : (b))
640#endif
641#ifndef MIN
642# define MIN(a, b) (((a) < (b)) ? (a) : (b))
643#endif
644#define roomof(x, y) (((x) + (y) - 1) / (y))
645#define CEILDIV(i, mod) roomof(i, mod)
646enum {
647 HEAP_PAGE_ALIGN = (1UL << HEAP_PAGE_ALIGN_LOG),
648 HEAP_PAGE_ALIGN_MASK = (~(~0UL << HEAP_PAGE_ALIGN_LOG)),
649 HEAP_PAGE_SIZE = HEAP_PAGE_ALIGN,
650 HEAP_PAGE_OBJ_LIMIT = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)) / BASE_SLOT_SIZE),
651 HEAP_PAGE_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_PAGE_SIZE, BASE_SLOT_SIZE), BITS_BITLENGTH),
652 HEAP_PAGE_BITMAP_SIZE = (BITS_SIZE * HEAP_PAGE_BITMAP_LIMIT),
653};
654#define HEAP_PAGE_ALIGN (1 << HEAP_PAGE_ALIGN_LOG)
655#define HEAP_PAGE_SIZE HEAP_PAGE_ALIGN
656
657#if !defined(INCREMENTAL_MARK_STEP_ALLOCATIONS)
658# define INCREMENTAL_MARK_STEP_ALLOCATIONS 500
659#endif
660
661#undef INIT_HEAP_PAGE_ALLOC_USE_MMAP
662/* Must define either HEAP_PAGE_ALLOC_USE_MMAP or
663 * INIT_HEAP_PAGE_ALLOC_USE_MMAP. */
664
665#ifndef HAVE_MMAP
666/* We can't use mmap of course, if it is not available. */
667static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
668
669#elif defined(__wasm__)
670/* wasmtime does not have proper support for mmap.
671 * See https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-rationale.md#why-no-mmap-and-friends
672 */
673static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
674
675#elif HAVE_CONST_PAGE_SIZE
676/* If we have the PAGE_SIZE and it is a constant, then we can directly use it. */
677static const bool HEAP_PAGE_ALLOC_USE_MMAP = (PAGE_SIZE <= HEAP_PAGE_SIZE);
678
679#elif defined(PAGE_MAX_SIZE) && (PAGE_MAX_SIZE <= HEAP_PAGE_SIZE)
680/* If we can use the maximum page size. */
681static const bool HEAP_PAGE_ALLOC_USE_MMAP = true;
682
683#elif defined(PAGE_SIZE)
684/* If the PAGE_SIZE macro can be used dynamically. */
685# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (PAGE_SIZE <= HEAP_PAGE_SIZE)
686
687#elif defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE)
688/* If we can use sysconf to determine the page size. */
689# define INIT_HEAP_PAGE_ALLOC_USE_MMAP (sysconf(_SC_PAGE_SIZE) <= HEAP_PAGE_SIZE)
690
691#else
692/* Otherwise we can't determine the system page size, so don't use mmap. */
693static const bool HEAP_PAGE_ALLOC_USE_MMAP = false;
694#endif
695
696#ifdef INIT_HEAP_PAGE_ALLOC_USE_MMAP
697/* We can determine the system page size at runtime. */
698# define HEAP_PAGE_ALLOC_USE_MMAP (heap_page_alloc_use_mmap != false)
699
700static bool heap_page_alloc_use_mmap;
701#endif
702
703#define RVALUE_AGE_BIT_COUNT 2
704#define RVALUE_AGE_BIT_MASK (((bits_t)1 << RVALUE_AGE_BIT_COUNT) - 1)
705#define RVALUE_OLD_AGE 3
706
707struct free_slot {
708 VALUE flags; /* always 0 for freed obj */
709 struct free_slot *next;
710};
711
712struct heap_page {
713 unsigned short slot_size;
714 unsigned short total_slots;
715 unsigned short free_slots;
716 unsigned short final_slots;
717 unsigned short pinned_slots;
718 struct {
719 unsigned int before_sweep : 1;
720 unsigned int has_remembered_objects : 1;
721 unsigned int has_uncollectible_wb_unprotected_objects : 1;
722 } flags;
723
724 rb_heap_t *heap;
725
726 struct heap_page *free_next;
727 struct heap_page_body *body;
728 uintptr_t start;
729 struct free_slot *freelist;
730 struct ccan_list_node page_node;
731
732 bits_t wb_unprotected_bits[HEAP_PAGE_BITMAP_LIMIT];
733 /* the following three bitmaps are cleared at the beginning of full GC */
734 bits_t mark_bits[HEAP_PAGE_BITMAP_LIMIT];
735 bits_t uncollectible_bits[HEAP_PAGE_BITMAP_LIMIT];
736 bits_t marking_bits[HEAP_PAGE_BITMAP_LIMIT];
737
738 bits_t remembered_bits[HEAP_PAGE_BITMAP_LIMIT];
739
740 /* If set, the object is not movable */
741 bits_t pinned_bits[HEAP_PAGE_BITMAP_LIMIT];
742 bits_t age_bits[HEAP_PAGE_BITMAP_LIMIT * RVALUE_AGE_BIT_COUNT];
743};
744
745/*
746 * When asan is enabled, this will prohibit writing to the freelist until it is unlocked
747 */
748static void
749asan_lock_freelist(struct heap_page *page)
750{
751 asan_poison_memory_region(&page->freelist, sizeof(struct free_list *));
752}
753
754/*
755 * When asan is enabled, this will enable the ability to write to the freelist
756 */
757static void
758asan_unlock_freelist(struct heap_page *page)
759{
760 asan_unpoison_memory_region(&page->freelist, sizeof(struct free_list *), false);
761}
762
763static inline bool
764heap_page_in_global_empty_pages_pool(rb_objspace_t *objspace, struct heap_page *page)
765{
766 if (page->total_slots == 0) {
767 GC_ASSERT(page->start == 0);
768 GC_ASSERT(page->slot_size == 0);
769 GC_ASSERT(page->heap == NULL);
770 GC_ASSERT(page->free_slots == 0);
771 asan_unpoisoning_memory_region(&page->freelist, sizeof(&page->freelist)) {
772 GC_ASSERT(page->freelist == NULL);
773 }
774
775 return true;
776 }
777 else {
778 GC_ASSERT(page->start != 0);
779 GC_ASSERT(page->slot_size != 0);
780 GC_ASSERT(page->heap != NULL);
781
782 return false;
783 }
784}
785
786#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_PAGE_ALIGN_MASK)))
787#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
788#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
789
790#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_PAGE_ALIGN_MASK) / BASE_SLOT_SIZE)
791#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
792#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
793#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
794
795/* Bitmap Operations */
796#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
797#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
798#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
799
800/* getting bitmap */
801#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
802#define GET_HEAP_PINNED_BITS(x) (&GET_HEAP_PAGE(x)->pinned_bits[0])
803#define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0])
804#define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0])
805#define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0])
806
807#define GC_SWEEP_PAGES_FREEABLE_PER_STEP 3
808
809#define RVALUE_AGE_BITMAP_INDEX(n) (NUM_IN_PAGE(n) / (BITS_BITLENGTH / RVALUE_AGE_BIT_COUNT))
810#define RVALUE_AGE_BITMAP_OFFSET(n) ((NUM_IN_PAGE(n) % (BITS_BITLENGTH / RVALUE_AGE_BIT_COUNT)) * RVALUE_AGE_BIT_COUNT)
811
812static int
813RVALUE_AGE_GET(VALUE obj)
814{
815 bits_t *age_bits = GET_HEAP_PAGE(obj)->age_bits;
816 return (int)(age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] >> RVALUE_AGE_BITMAP_OFFSET(obj)) & RVALUE_AGE_BIT_MASK;
817}
818
819static void
820RVALUE_AGE_SET(VALUE obj, int age)
821{
822 RUBY_ASSERT(age <= RVALUE_OLD_AGE);
823 bits_t *age_bits = GET_HEAP_PAGE(obj)->age_bits;
824 // clear the bits
825 age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] &= ~(RVALUE_AGE_BIT_MASK << (RVALUE_AGE_BITMAP_OFFSET(obj)));
826 // shift the correct value in
827 age_bits[RVALUE_AGE_BITMAP_INDEX(obj)] |= ((bits_t)age << RVALUE_AGE_BITMAP_OFFSET(obj));
828 if (age == RVALUE_OLD_AGE) {
830 }
831 else {
833 }
834}
835
836#define malloc_limit objspace->malloc_params.limit
837#define malloc_increase objspace->malloc_params.increase
838#define malloc_allocated_size objspace->malloc_params.allocated_size
839#define heap_pages_lomem objspace->heap_pages.range[0]
840#define heap_pages_himem objspace->heap_pages.range[1]
841#define heap_pages_freeable_pages objspace->heap_pages.freeable_pages
842#define heap_pages_deferred_final objspace->heap_pages.deferred_final
843#define heaps objspace->heaps
844#define during_gc objspace->flags.during_gc
845#define finalizing objspace->atomic_flags.finalizing
846#define finalizer_table objspace->finalizer_table
847#define ruby_gc_stressful objspace->flags.gc_stressful
848#define ruby_gc_stress_mode objspace->gc_stress_mode
849#if GC_DEBUG_STRESS_TO_CLASS
850#define stress_to_class objspace->stress_to_class
851#define set_stress_to_class(c) (stress_to_class = (c))
852#else
853#define stress_to_class ((void)objspace, 0)
854#define set_stress_to_class(c) ((void)objspace, (c))
855#endif
856
857#if 0
858#define dont_gc_on() (fprintf(stderr, "dont_gc_on@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 1)
859#define dont_gc_off() (fprintf(stderr, "dont_gc_off@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 0)
860#define dont_gc_set(b) (fprintf(stderr, "dont_gc_set(%d)@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = (int)(b))
861#define dont_gc_val() (objspace->flags.dont_gc)
862#else
863#define dont_gc_on() (objspace->flags.dont_gc = 1)
864#define dont_gc_off() (objspace->flags.dont_gc = 0)
865#define dont_gc_set(b) (objspace->flags.dont_gc = (int)(b))
866#define dont_gc_val() (objspace->flags.dont_gc)
867#endif
868
869#define gc_config_full_mark_set(b) (objspace->gc_config.full_mark = (int)(b))
870#define gc_config_full_mark_val (objspace->gc_config.full_mark)
871
872#ifndef DURING_GC_COULD_MALLOC_REGION_START
873# define DURING_GC_COULD_MALLOC_REGION_START() \
874 assert(rb_during_gc()); \
875 bool _prev_enabled = rb_gc_impl_gc_enabled_p(objspace); \
876 rb_gc_impl_gc_disable(objspace, false)
877#endif
878
879#ifndef DURING_GC_COULD_MALLOC_REGION_END
880# define DURING_GC_COULD_MALLOC_REGION_END() \
881 if (_prev_enabled) rb_gc_impl_gc_enable(objspace)
882#endif
883
884static inline enum gc_mode
885gc_mode_verify(enum gc_mode mode)
886{
887#if RGENGC_CHECK_MODE > 0
888 switch (mode) {
889 case gc_mode_none:
890 case gc_mode_marking:
891 case gc_mode_sweeping:
892 case gc_mode_compacting:
893 break;
894 default:
895 rb_bug("gc_mode_verify: unreachable (%d)", (int)mode);
896 }
897#endif
898 return mode;
899}
900
901static inline bool
902has_sweeping_pages(rb_objspace_t *objspace)
903{
904 for (int i = 0; i < HEAP_COUNT; i++) {
905 if ((&heaps[i])->sweeping_page) {
906 return TRUE;
907 }
908 }
909 return FALSE;
910}
911
912static inline size_t
913heap_eden_total_pages(rb_objspace_t *objspace)
914{
915 size_t count = 0;
916 for (int i = 0; i < HEAP_COUNT; i++) {
917 count += (&heaps[i])->total_pages;
918 }
919 return count;
920}
921
922static inline size_t
923total_allocated_objects(rb_objspace_t *objspace)
924{
925 size_t count = 0;
926 for (int i = 0; i < HEAP_COUNT; i++) {
927 rb_heap_t *heap = &heaps[i];
928 count += heap->total_allocated_objects;
929 }
930 return count;
931}
932
933static inline size_t
934total_freed_objects(rb_objspace_t *objspace)
935{
936 size_t count = 0;
937 for (int i = 0; i < HEAP_COUNT; i++) {
938 rb_heap_t *heap = &heaps[i];
939 count += heap->total_freed_objects;
940 }
941 return count;
942}
943
944static inline size_t
945total_final_slots_count(rb_objspace_t *objspace)
946{
947 size_t count = 0;
948 for (int i = 0; i < HEAP_COUNT; i++) {
949 rb_heap_t *heap = &heaps[i];
950 count += heap->final_slots_count;
951 }
952 return count;
953}
954
955#define gc_mode(objspace) gc_mode_verify((enum gc_mode)(objspace)->flags.mode)
956#define gc_mode_set(objspace, m) ((objspace)->flags.mode = (unsigned int)gc_mode_verify(m))
957#define gc_needs_major_flags objspace->rgengc.need_major_gc
958
959#define is_marking(objspace) (gc_mode(objspace) == gc_mode_marking)
960#define is_sweeping(objspace) (gc_mode(objspace) == gc_mode_sweeping)
961#define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE)
962#define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE)
963#define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE)
964#define GC_INCREMENTAL_SWEEP_SLOT_COUNT 2048
965#define GC_INCREMENTAL_SWEEP_POOL_SLOT_COUNT 1024
966#define is_lazy_sweeping(objspace) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(objspace))
967
968#if SIZEOF_LONG == SIZEOF_VOIDP
969# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
970#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
971# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
972 ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
973#else
974# error not supported
975#endif
976
977struct RZombie {
978 struct RBasic basic;
979 VALUE next;
980 void (*dfree)(void *);
981 void *data;
982};
983
984#define RZOMBIE(o) ((struct RZombie *)(o))
985
986static bool ruby_enable_autocompact = false;
987#if RGENGC_CHECK_MODE
988static gc_compact_compare_func ruby_autocompact_compare_func;
989#endif
990
991static void init_mark_stack(mark_stack_t *stack);
992static int garbage_collect(rb_objspace_t *, unsigned int reason);
993
994static int gc_start(rb_objspace_t *objspace, unsigned int reason);
995static void gc_rest(rb_objspace_t *objspace);
996
997enum gc_enter_event {
998 gc_enter_event_start,
999 gc_enter_event_continue,
1000 gc_enter_event_rest,
1001 gc_enter_event_finalizer,
1002};
1003
1004static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
1005static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev);
1006static void gc_marking_enter(rb_objspace_t *objspace);
1007static void gc_marking_exit(rb_objspace_t *objspace);
1008static void gc_sweeping_enter(rb_objspace_t *objspace);
1009static void gc_sweeping_exit(rb_objspace_t *objspace);
1010static bool gc_marks_continue(rb_objspace_t *objspace, rb_heap_t *heap);
1011
1012static void gc_sweep(rb_objspace_t *objspace);
1013static void gc_sweep_finish_heap(rb_objspace_t *objspace, rb_heap_t *heap);
1014static void gc_sweep_continue(rb_objspace_t *objspace, rb_heap_t *heap);
1015
1016static inline void gc_mark(rb_objspace_t *objspace, VALUE ptr);
1017static inline void gc_pin(rb_objspace_t *objspace, VALUE ptr);
1018static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE ptr);
1019
1020static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count);
1021NO_SANITIZE("memory", static inline bool is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr));
1022
1023static void gc_verify_internal_consistency(void *objspace_ptr);
1024
1025static double getrusage_time(void);
1026static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason);
1027static inline void gc_prof_timer_start(rb_objspace_t *);
1028static inline void gc_prof_timer_stop(rb_objspace_t *);
1029static inline void gc_prof_mark_timer_start(rb_objspace_t *);
1030static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
1031static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
1032static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
1033static inline void gc_prof_set_malloc_info(rb_objspace_t *);
1034static inline void gc_prof_set_heap_info(rb_objspace_t *);
1035
1036#define gc_prof_record(objspace) (objspace)->profile.current_record
1037#define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record)
1038
1039#ifdef HAVE_VA_ARGS_MACRO
1040# define gc_report(level, objspace, ...) \
1041 if (!RGENGC_DEBUG_ENABLED(level)) {} else gc_report_body(level, objspace, __VA_ARGS__)
1042#else
1043# define gc_report if (!RGENGC_DEBUG_ENABLED(0)) {} else gc_report_body
1044#endif
1045PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4);
1046
1047static void gc_finalize_deferred(void *dmy);
1048
1049#if USE_TICK_T
1050
1051/* the following code is only for internal tuning. */
1052
1053/* Source code to use RDTSC is quoted and modified from
1054 * https://www.mcs.anl.gov/~kazutomo/rdtsc.html
1055 * written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
1056 */
1057
1058#if defined(__GNUC__) && defined(__i386__)
1059typedef unsigned long long tick_t;
1060#define PRItick "llu"
1061static inline tick_t
1062tick(void)
1063{
1064 unsigned long long int x;
1065 __asm__ __volatile__ ("rdtsc" : "=A" (x));
1066 return x;
1067}
1068
1069#elif defined(__GNUC__) && defined(__x86_64__)
1070typedef unsigned long long tick_t;
1071#define PRItick "llu"
1072
1073static __inline__ tick_t
1074tick(void)
1075{
1076 unsigned long hi, lo;
1077 __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
1078 return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
1079}
1080
1081#elif defined(__powerpc64__) && (GCC_VERSION_SINCE(4,8,0) || defined(__clang__))
1082typedef unsigned long long tick_t;
1083#define PRItick "llu"
1084
1085static __inline__ tick_t
1086tick(void)
1087{
1088 unsigned long long val = __builtin_ppc_get_timebase();
1089 return val;
1090}
1091
1092/* Implementation for macOS PPC by @nobu
1093 * See: https://github.com/ruby/ruby/pull/5975#discussion_r890045558
1094 */
1095#elif defined(__POWERPC__) && defined(__APPLE__)
1096typedef unsigned long long tick_t;
1097#define PRItick "llu"
1098
1099static __inline__ tick_t
1100tick(void)
1101{
1102 unsigned long int upper, lower, tmp;
1103 # define mftbu(r) __asm__ volatile("mftbu %0" : "=r"(r))
1104 # define mftb(r) __asm__ volatile("mftb %0" : "=r"(r))
1105 do {
1106 mftbu(upper);
1107 mftb(lower);
1108 mftbu(tmp);
1109 } while (tmp != upper);
1110 return ((tick_t)upper << 32) | lower;
1111}
1112
1113#elif defined(__aarch64__) && defined(__GNUC__)
1114typedef unsigned long tick_t;
1115#define PRItick "lu"
1116
1117static __inline__ tick_t
1118tick(void)
1119{
1120 unsigned long val;
1121 __asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r" (val));
1122 return val;
1123}
1124
1125
1126#elif defined(_WIN32) && defined(_MSC_VER)
1127#include <intrin.h>
1128typedef unsigned __int64 tick_t;
1129#define PRItick "llu"
1130
1131static inline tick_t
1132tick(void)
1133{
1134 return __rdtsc();
1135}
1136
1137#else /* use clock */
1138typedef clock_t tick_t;
1139#define PRItick "llu"
1140
1141static inline tick_t
1142tick(void)
1143{
1144 return clock();
1145}
1146#endif /* TSC */
1147#else /* USE_TICK_T */
1148#define MEASURE_LINE(expr) expr
1149#endif /* USE_TICK_T */
1150
1151static inline VALUE check_rvalue_consistency(rb_objspace_t *objspace, const VALUE obj);
1152
1153#define RVALUE_MARKED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj))
1154#define RVALUE_WB_UNPROTECTED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj))
1155#define RVALUE_MARKING_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj))
1156#define RVALUE_UNCOLLECTIBLE_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj))
1157#define RVALUE_PINNED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), (obj))
1158
1159static inline int
1160RVALUE_MARKED(rb_objspace_t *objspace, VALUE obj)
1161{
1162 check_rvalue_consistency(objspace, obj);
1163 return RVALUE_MARKED_BITMAP(obj) != 0;
1164}
1165
1166static inline int
1167RVALUE_PINNED(rb_objspace_t *objspace, VALUE obj)
1168{
1169 check_rvalue_consistency(objspace, obj);
1170 return RVALUE_PINNED_BITMAP(obj) != 0;
1171}
1172
1173static inline int
1174RVALUE_WB_UNPROTECTED(rb_objspace_t *objspace, VALUE obj)
1175{
1176 check_rvalue_consistency(objspace, obj);
1177 return RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
1178}
1179
1180static inline int
1181RVALUE_MARKING(rb_objspace_t *objspace, VALUE obj)
1182{
1183 check_rvalue_consistency(objspace, obj);
1184 return RVALUE_MARKING_BITMAP(obj) != 0;
1185}
1186
1187static inline int
1188RVALUE_REMEMBERED(rb_objspace_t *objspace, VALUE obj)
1189{
1190 check_rvalue_consistency(objspace, obj);
1191 return MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj) != 0;
1192}
1193
1194static inline int
1195RVALUE_UNCOLLECTIBLE(rb_objspace_t *objspace, VALUE obj)
1196{
1197 check_rvalue_consistency(objspace, obj);
1198 return RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
1199}
1200
1201#define RVALUE_PAGE_WB_UNPROTECTED(page, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj))
1202#define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj))
1203#define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj))
1204
1205static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
1206static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
1207static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
1208
1209static int
1210check_rvalue_consistency_force(rb_objspace_t *objspace, const VALUE obj, int terminate)
1211{
1212 int err = 0;
1213
1214 int lev = rb_gc_vm_lock_no_barrier();
1215 {
1216 if (SPECIAL_CONST_P(obj)) {
1217 fprintf(stderr, "check_rvalue_consistency: %p is a special const.\n", (void *)obj);
1218 err++;
1219 }
1220 else if (!is_pointer_to_heap(objspace, (void *)obj)) {
1221 struct heap_page *empty_page = objspace->empty_pages;
1222 while (empty_page) {
1223 if ((uintptr_t)empty_page->body <= (uintptr_t)obj &&
1224 (uintptr_t)obj < (uintptr_t)empty_page->body + HEAP_PAGE_SIZE) {
1225 GC_ASSERT(heap_page_in_global_empty_pages_pool(objspace, empty_page));
1226 fprintf(stderr, "check_rvalue_consistency: %p is in an empty page (%p).\n",
1227 (void *)obj, (void *)empty_page);
1228 err++;
1229 goto skip;
1230 }
1231 }
1232 fprintf(stderr, "check_rvalue_consistency: %p is not a Ruby object.\n", (void *)obj);
1233 err++;
1234 skip:
1235 ;
1236 }
1237 else {
1238 const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0;
1239 const int uncollectible_bit = RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0;
1240 const int mark_bit = RVALUE_MARKED_BITMAP(obj) != 0;
1241 const int marking_bit = RVALUE_MARKING_BITMAP(obj) != 0;
1242 const int remembered_bit = MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj) != 0;
1243 const int age = RVALUE_AGE_GET((VALUE)obj);
1244
1245 if (heap_page_in_global_empty_pages_pool(objspace, GET_HEAP_PAGE(obj))) {
1246 fprintf(stderr, "check_rvalue_consistency: %s is in tomb page.\n", rb_obj_info(obj));
1247 err++;
1248 }
1249 if (BUILTIN_TYPE(obj) == T_NONE) {
1250 fprintf(stderr, "check_rvalue_consistency: %s is T_NONE.\n", rb_obj_info(obj));
1251 err++;
1252 }
1253 if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
1254 fprintf(stderr, "check_rvalue_consistency: %s is T_ZOMBIE.\n", rb_obj_info(obj));
1255 err++;
1256 }
1257
1258 if (BUILTIN_TYPE(obj) != T_DATA) {
1259 rb_obj_memsize_of((VALUE)obj);
1260 }
1261
1262 /* check generation
1263 *
1264 * OLD == age == 3 && old-bitmap && mark-bit (except incremental marking)
1265 */
1266 if (age > 0 && wb_unprotected_bit) {
1267 fprintf(stderr, "check_rvalue_consistency: %s is not WB protected, but age is %d > 0.\n", rb_obj_info(obj), age);
1268 err++;
1269 }
1270
1271 if (!is_marking(objspace) && uncollectible_bit && !mark_bit) {
1272 fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.\n", rb_obj_info(obj));
1273 err++;
1274 }
1275
1276 if (!is_full_marking(objspace)) {
1277 if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) {
1278 fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.\n",
1279 rb_obj_info(obj), age);
1280 err++;
1281 }
1282 if (remembered_bit && age != RVALUE_OLD_AGE) {
1283 fprintf(stderr, "check_rvalue_consistency: %s is remembered, but not old (age: %d).\n",
1284 rb_obj_info(obj), age);
1285 err++;
1286 }
1287 }
1288
1289 /*
1290 * check coloring
1291 *
1292 * marking:false marking:true
1293 * marked:false white *invalid*
1294 * marked:true black grey
1295 */
1296 if (is_incremental_marking(objspace) && marking_bit) {
1297 if (!is_marking(objspace) && !mark_bit) {
1298 fprintf(stderr, "check_rvalue_consistency: %s is marking, but not marked.\n", rb_obj_info(obj));
1299 err++;
1300 }
1301 }
1302 }
1303 }
1304 rb_gc_vm_unlock_no_barrier(lev);
1305
1306 if (err > 0 && terminate) {
1307 rb_bug("check_rvalue_consistency_force: there is %d errors.", err);
1308 }
1309 return err;
1310}
1311
1312#if RGENGC_CHECK_MODE == 0
1313static inline VALUE
1314check_rvalue_consistency(rb_objspace_t *objspace, const VALUE obj)
1315{
1316 return obj;
1317}
1318#else
1319static VALUE
1320check_rvalue_consistency(rb_objspace_t *objspace, const VALUE obj)
1321{
1322 check_rvalue_consistency_force(objspace, obj, TRUE);
1323 return obj;
1324}
1325#endif
1326
1327static inline bool
1328gc_object_moved_p(rb_objspace_t *objspace, VALUE obj)
1329{
1330 if (RB_SPECIAL_CONST_P(obj)) {
1331 return FALSE;
1332 }
1333 else {
1334 int ret;
1335 asan_unpoisoning_object(obj) {
1336 ret = BUILTIN_TYPE(obj) == T_MOVED;
1337 }
1338 return ret;
1339 }
1340}
1341
1342static inline int
1343RVALUE_OLD_P(rb_objspace_t *objspace, VALUE obj)
1344{
1345 GC_ASSERT(!RB_SPECIAL_CONST_P(obj));
1346 check_rvalue_consistency(objspace, obj);
1347 // Because this will only ever be called on GC controlled objects,
1348 // we can use the faster _RAW function here
1349 return RB_OBJ_PROMOTED_RAW(obj);
1350}
1351
1352static inline void
1353RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
1354{
1355 MARK_IN_BITMAP(&page->uncollectible_bits[0], obj);
1356 objspace->rgengc.old_objects++;
1357
1358#if RGENGC_PROFILE >= 2
1359 objspace->profile.total_promoted_count++;
1360 objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++;
1361#endif
1362}
1363
1364static inline void
1365RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj)
1366{
1367 RB_DEBUG_COUNTER_INC(obj_promote);
1368 RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj);
1369}
1370
1371/* set age to age+1 */
1372static inline void
1373RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj)
1374{
1375 int age = RVALUE_AGE_GET((VALUE)obj);
1376
1377 if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) {
1378 rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", rb_obj_info(obj));
1379 }
1380
1381 age++;
1382 RVALUE_AGE_SET(obj, age);
1383
1384 if (age == RVALUE_OLD_AGE) {
1385 RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj);
1386 }
1387
1388 check_rvalue_consistency(objspace, obj);
1389}
1390
1391static inline void
1392RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj)
1393{
1394 check_rvalue_consistency(objspace, obj);
1395 GC_ASSERT(!RVALUE_OLD_P(objspace, obj));
1396 RVALUE_AGE_SET(obj, RVALUE_OLD_AGE - 1);
1397 check_rvalue_consistency(objspace, obj);
1398}
1399
1400static inline void
1401RVALUE_AGE_RESET(VALUE obj)
1402{
1403 RVALUE_AGE_SET(obj, 0);
1404}
1405
1406static inline void
1407RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj)
1408{
1409 check_rvalue_consistency(objspace, obj);
1410 GC_ASSERT(RVALUE_OLD_P(objspace, obj));
1411
1412 if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(objspace, obj)) {
1413 CLEAR_IN_BITMAP(GET_HEAP_PAGE(obj)->remembered_bits, obj);
1414 }
1415
1416 CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj);
1417 RVALUE_AGE_RESET(obj);
1418
1419 if (RVALUE_MARKED(objspace, obj)) {
1420 objspace->rgengc.old_objects--;
1421 }
1422
1423 check_rvalue_consistency(objspace, obj);
1424}
1425
1426static inline int
1427RVALUE_BLACK_P(rb_objspace_t *objspace, VALUE obj)
1428{
1429 return RVALUE_MARKED(objspace, obj) && !RVALUE_MARKING(objspace, obj);
1430}
1431
1432static inline int
1433RVALUE_WHITE_P(rb_objspace_t *objspace, VALUE obj)
1434{
1435 return !RVALUE_MARKED(objspace, obj);
1436}
1437
1438bool
1439rb_gc_impl_gc_enabled_p(void *objspace_ptr)
1440{
1441 rb_objspace_t *objspace = objspace_ptr;
1442 return !dont_gc_val();
1443}
1444
1445void
1446rb_gc_impl_gc_enable(void *objspace_ptr)
1447{
1448 rb_objspace_t *objspace = objspace_ptr;
1449
1450 dont_gc_off();
1451}
1452
1453void
1454rb_gc_impl_gc_disable(void *objspace_ptr, bool finish_current_gc)
1455{
1456 rb_objspace_t *objspace = objspace_ptr;
1457
1458 if (finish_current_gc) {
1459 gc_rest(objspace);
1460 }
1461
1462 dont_gc_on();
1463}
1464
1465/*
1466 --------------------------- ObjectSpace -----------------------------
1467*/
1468
1469static inline void *
1470calloc1(size_t n)
1471{
1472 return calloc(1, n);
1473}
1474
1475void
1476rb_gc_impl_set_event_hook(void *objspace_ptr, const rb_event_flag_t event)
1477{
1478 rb_objspace_t *objspace = objspace_ptr;
1479 objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
1480 objspace->flags.has_newobj_hook = !!(objspace->hook_events & RUBY_INTERNAL_EVENT_NEWOBJ);
1481}
1482
1483unsigned long long
1484rb_gc_impl_get_total_time(void *objspace_ptr)
1485{
1486 rb_objspace_t *objspace = objspace_ptr;
1487
1488 unsigned long long marking_time = objspace->profile.marking_time_ns;
1489 unsigned long long sweeping_time = objspace->profile.sweeping_time_ns;
1490
1491 return marking_time + sweeping_time;
1492}
1493
1494void
1495rb_gc_impl_set_measure_total_time(void *objspace_ptr, VALUE flag)
1496{
1497 rb_objspace_t *objspace = objspace_ptr;
1498
1499 objspace->flags.measure_gc = RTEST(flag) ? TRUE : FALSE;
1500}
1501
1502bool
1503rb_gc_impl_get_measure_total_time(void *objspace_ptr)
1504{
1505 rb_objspace_t *objspace = objspace_ptr;
1506
1507 return objspace->flags.measure_gc;
1508}
1509
1510static size_t
1511minimum_slots_for_heap(rb_objspace_t *objspace, rb_heap_t *heap)
1512{
1513 size_t heap_idx = heap - heaps;
1514 return gc_params.heap_init_slots[heap_idx];
1515}
1516
1517static int
1518object_id_cmp(st_data_t x, st_data_t y)
1519{
1520 if (RB_TYPE_P(x, T_BIGNUM)) {
1521 return !rb_big_eql(x, y);
1522 }
1523 else {
1524 return x != y;
1525 }
1526}
1527
1528static st_index_t
1529object_id_hash(st_data_t n)
1530{
1531 return FIX2LONG(rb_hash((VALUE)n));
1532}
1533
1534#define OBJ_ID_INCREMENT (RUBY_IMMEDIATE_MASK + 1)
1535#define OBJ_ID_INITIAL (OBJ_ID_INCREMENT)
1536
1537static const struct st_hash_type object_id_hash_type = {
1538 object_id_cmp,
1539 object_id_hash,
1540};
1541
1542/* garbage objects will be collected soon. */
1543bool
1544rb_gc_impl_garbage_object_p(void *objspace_ptr, VALUE ptr)
1545{
1546 rb_objspace_t *objspace = objspace_ptr;
1547
1548 bool dead = false;
1549
1550 asan_unpoisoning_object(ptr) {
1551 switch (BUILTIN_TYPE(ptr)) {
1552 case T_NONE:
1553 case T_MOVED:
1554 case T_ZOMBIE:
1555 dead = true;
1556 break;
1557 default:
1558 break;
1559 }
1560 }
1561
1562 if (dead) return true;
1563 return is_lazy_sweeping(objspace) && GET_HEAP_PAGE(ptr)->flags.before_sweep &&
1564 !RVALUE_MARKED(objspace, ptr);
1565}
1566
1567VALUE
1568rb_gc_impl_object_id(void *objspace_ptr, VALUE obj)
1569{
1570 VALUE id;
1571 rb_objspace_t *objspace = objspace_ptr;
1572
1573 unsigned int lev = rb_gc_vm_lock();
1574 if (FL_TEST(obj, FL_SEEN_OBJ_ID)) {
1575 st_data_t val;
1576 if (st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, &val)) {
1577 id = (VALUE)val;
1578 }
1579 else {
1580 rb_bug("rb_gc_impl_object_id: FL_SEEN_OBJ_ID flag set but not found in table");
1581 }
1582 }
1583 else {
1584 GC_ASSERT(!st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, NULL));
1585
1586 id = ULL2NUM(objspace->next_object_id);
1587 objspace->next_object_id += OBJ_ID_INCREMENT;
1588
1589 st_insert(objspace->obj_to_id_tbl, (st_data_t)obj, (st_data_t)id);
1590 st_insert(objspace->id_to_obj_tbl, (st_data_t)id, (st_data_t)obj);
1591 FL_SET(obj, FL_SEEN_OBJ_ID);
1592 }
1593 rb_gc_vm_unlock(lev);
1594
1595 return id;
1596}
1597
1598VALUE
1599rb_gc_impl_object_id_to_ref(void *objspace_ptr, VALUE object_id)
1600{
1601 rb_objspace_t *objspace = objspace_ptr;
1602
1603 VALUE obj;
1604 if (st_lookup(objspace->id_to_obj_tbl, object_id, &obj) &&
1605 !rb_gc_impl_garbage_object_p(objspace, obj)) {
1606 return obj;
1607 }
1608
1609 if (rb_funcall(object_id, rb_intern(">="), 1, ULL2NUM(objspace->next_object_id))) {
1610 rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_funcall(object_id, rb_intern("to_s"), 1, INT2FIX(10)));
1611 }
1612 else {
1613 rb_raise(rb_eRangeError, "%+"PRIsVALUE" is recycled object", rb_funcall(object_id, rb_intern("to_s"), 1, INT2FIX(10)));
1614 }
1615}
1616
1617static void free_stack_chunks(mark_stack_t *);
1618static void mark_stack_free_cache(mark_stack_t *);
1619static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
1620
1621static inline void
1622heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
1623{
1624 rb_asan_unpoison_object(obj, false);
1625
1626 asan_unlock_freelist(page);
1627
1628 struct free_slot *slot = (struct free_slot *)obj;
1629 slot->flags = 0;
1630 slot->next = page->freelist;
1631 page->freelist = slot;
1632 asan_lock_freelist(page);
1633
1634 RVALUE_AGE_RESET(obj);
1635
1636 if (RGENGC_CHECK_MODE &&
1637 /* obj should belong to page */
1638 !(page->start <= (uintptr_t)obj &&
1639 (uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * page->slot_size)) &&
1640 obj % BASE_SLOT_SIZE == 0)) {
1641 rb_bug("heap_page_add_freeobj: %p is not rvalue.", (void *)obj);
1642 }
1643
1644 rb_asan_poison_object(obj);
1645 gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj);
1646}
1647
1648static void
1649heap_allocatable_slots_expand(rb_objspace_t *objspace,
1650 rb_heap_t *heap, size_t free_slots, size_t total_slots)
1651{
1652 double goal_ratio = gc_params.heap_free_slots_goal_ratio;
1653 size_t target_total_slots;
1654
1655 if (goal_ratio == 0.0) {
1656 target_total_slots = (size_t)(total_slots * gc_params.growth_factor);
1657 }
1658 else if (total_slots == 0) {
1659 target_total_slots = minimum_slots_for_heap(objspace, heap);
1660 }
1661 else {
1662 /* Find `f' where free_slots = f * total_slots * goal_ratio
1663 * => f = (total_slots - free_slots) / ((1 - goal_ratio) * total_slots)
1664 */
1665 double f = (double)(total_slots - free_slots) / ((1 - goal_ratio) * total_slots);
1666
1667 if (f > gc_params.growth_factor) f = gc_params.growth_factor;
1668 if (f < 1.0) f = 1.1;
1669
1670 target_total_slots = (size_t)(f * total_slots);
1671
1672 if (0) {
1673 fprintf(stderr,
1674 "free_slots(%8"PRIuSIZE")/total_slots(%8"PRIuSIZE")=%1.2f,"
1675 " G(%1.2f), f(%1.2f),"
1676 " total_slots(%8"PRIuSIZE") => target_total_slots(%8"PRIuSIZE")\n",
1677 free_slots, total_slots, free_slots/(double)total_slots,
1678 goal_ratio, f, total_slots, target_total_slots);
1679 }
1680 }
1681
1682 if (gc_params.growth_max_slots > 0) {
1683 size_t max_total_slots = (size_t)(total_slots + gc_params.growth_max_slots);
1684 if (target_total_slots > max_total_slots) target_total_slots = max_total_slots;
1685 }
1686
1687 size_t extend_slot_count = target_total_slots - total_slots;
1688 /* Extend by at least 1 page. */
1689 if (extend_slot_count == 0) extend_slot_count = 1;
1690
1691 objspace->heap_pages.allocatable_slots += extend_slot_count;
1692}
1693
1694static inline void
1695heap_add_freepage(rb_heap_t *heap, struct heap_page *page)
1696{
1697 asan_unlock_freelist(page);
1698 GC_ASSERT(page->free_slots != 0);
1699 GC_ASSERT(page->freelist != NULL);
1700
1701 page->free_next = heap->free_pages;
1702 heap->free_pages = page;
1703
1704 RUBY_DEBUG_LOG("page:%p freelist:%p", (void *)page, (void *)page->freelist);
1705
1706 asan_lock_freelist(page);
1707}
1708
1709static inline void
1710heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
1711{
1712 asan_unlock_freelist(page);
1713 GC_ASSERT(page->free_slots != 0);
1714 GC_ASSERT(page->freelist != NULL);
1715
1716 page->free_next = heap->pooled_pages;
1717 heap->pooled_pages = page;
1718 objspace->rincgc.pooled_slots += page->free_slots;
1719
1720 asan_lock_freelist(page);
1721}
1722
1723static void
1724heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
1725{
1726 ccan_list_del(&page->page_node);
1727 heap->total_pages--;
1728 heap->total_slots -= page->total_slots;
1729}
1730
1731static void
1732gc_aligned_free(void *ptr, size_t size)
1733{
1734#if defined __MINGW32__
1735 __mingw_aligned_free(ptr);
1736#elif defined _WIN32
1737 _aligned_free(ptr);
1738#elif defined(HAVE_POSIX_MEMALIGN) || defined(HAVE_MEMALIGN)
1739 free(ptr);
1740#else
1741 free(((void**)ptr)[-1]);
1742#endif
1743}
1744
1745static void
1746heap_page_body_free(struct heap_page_body *page_body)
1747{
1748 GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
1749
1750 if (HEAP_PAGE_ALLOC_USE_MMAP) {
1751#ifdef HAVE_MMAP
1752 GC_ASSERT(HEAP_PAGE_SIZE % sysconf(_SC_PAGE_SIZE) == 0);
1753 if (munmap(page_body, HEAP_PAGE_SIZE)) {
1754 rb_bug("heap_page_body_free: munmap failed");
1755 }
1756#endif
1757 }
1758 else {
1759 gc_aligned_free(page_body, HEAP_PAGE_SIZE);
1760 }
1761}
1762
1763static void
1764heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
1765{
1766 objspace->heap_pages.freed_pages++;
1767 heap_page_body_free(page->body);
1768 free(page);
1769}
1770
1771static void
1772heap_pages_free_unused_pages(rb_objspace_t *objspace)
1773{
1774 size_t pages_to_keep_count =
1775 // Get number of pages estimated for the smallest size pool
1776 CEILDIV(objspace->heap_pages.allocatable_slots, HEAP_PAGE_OBJ_LIMIT) *
1777 // Estimate the average slot size multiple
1778 (1 << (HEAP_COUNT / 2));
1779
1780 if (objspace->empty_pages != NULL && objspace->empty_pages_count > pages_to_keep_count) {
1781 GC_ASSERT(objspace->empty_pages_count > 0);
1782 objspace->empty_pages = NULL;
1783 objspace->empty_pages_count = 0;
1784
1785 size_t i, j;
1786 for (i = j = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
1787 struct heap_page *page = rb_darray_get(objspace->heap_pages.sorted, i);
1788
1789 if (heap_page_in_global_empty_pages_pool(objspace, page) && pages_to_keep_count == 0) {
1790 heap_page_free(objspace, page);
1791 }
1792 else {
1793 if (heap_page_in_global_empty_pages_pool(objspace, page) && pages_to_keep_count > 0) {
1794 page->free_next = objspace->empty_pages;
1795 objspace->empty_pages = page;
1796 objspace->empty_pages_count++;
1797 pages_to_keep_count--;
1798 }
1799
1800 if (i != j) {
1801 rb_darray_set(objspace->heap_pages.sorted, j, page);
1802 }
1803 j++;
1804 }
1805 }
1806
1807 rb_darray_pop(objspace->heap_pages.sorted, i - j);
1808 GC_ASSERT(rb_darray_size(objspace->heap_pages.sorted) == j);
1809
1810 struct heap_page *hipage = rb_darray_get(objspace->heap_pages.sorted, rb_darray_size(objspace->heap_pages.sorted) - 1);
1811 uintptr_t himem = (uintptr_t)hipage->body + HEAP_PAGE_SIZE;
1812 GC_ASSERT(himem <= heap_pages_himem);
1813 heap_pages_himem = himem;
1814
1815 struct heap_page *lopage = rb_darray_get(objspace->heap_pages.sorted, 0);
1816 uintptr_t lomem = (uintptr_t)lopage->body + sizeof(struct heap_page_header);
1817 GC_ASSERT(lomem >= heap_pages_lomem);
1818 heap_pages_lomem = lomem;
1819 }
1820}
1821
1822static void *
1823gc_aligned_malloc(size_t alignment, size_t size)
1824{
1825 /* alignment must be a power of 2 */
1826 GC_ASSERT(((alignment - 1) & alignment) == 0);
1827 GC_ASSERT(alignment % sizeof(void*) == 0);
1828
1829 void *res;
1830
1831#if defined __MINGW32__
1832 res = __mingw_aligned_malloc(size, alignment);
1833#elif defined _WIN32
1834 void *_aligned_malloc(size_t, size_t);
1835 res = _aligned_malloc(size, alignment);
1836#elif defined(HAVE_POSIX_MEMALIGN)
1837 if (posix_memalign(&res, alignment, size) != 0) {
1838 return NULL;
1839 }
1840#elif defined(HAVE_MEMALIGN)
1841 res = memalign(alignment, size);
1842#else
1843 char* aligned;
1844 res = malloc(alignment + size + sizeof(void*));
1845 aligned = (char*)res + alignment + sizeof(void*);
1846 aligned -= ((VALUE)aligned & (alignment - 1));
1847 ((void**)aligned)[-1] = res;
1848 res = (void*)aligned;
1849#endif
1850
1851 GC_ASSERT((uintptr_t)res % alignment == 0);
1852
1853 return res;
1854}
1855
1856static struct heap_page_body *
1857heap_page_body_allocate(void)
1858{
1859 struct heap_page_body *page_body;
1860
1861 if (HEAP_PAGE_ALLOC_USE_MMAP) {
1862#ifdef HAVE_MMAP
1863 GC_ASSERT(HEAP_PAGE_ALIGN % sysconf(_SC_PAGE_SIZE) == 0);
1864
1865 size_t mmap_size = HEAP_PAGE_ALIGN + HEAP_PAGE_SIZE;
1866 char *ptr = mmap(NULL, mmap_size,
1867 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1868 if (ptr == MAP_FAILED) {
1869 return NULL;
1870 }
1871
1872 // If we are building `default.c` as part of the ruby executable, we
1873 // may just call `ruby_annotate_mmap`. But if we are building
1874 // `default.c` as a shared library, we will not have access to private
1875 // symbols, and we have to either call prctl directly or make our own
1876 // wrapper.
1877#if defined(HAVE_SYS_PRCTL_H) && defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
1878 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, ptr, mmap_size, "Ruby:GC:default:heap_page_body_allocate");
1879 errno = 0;
1880#endif
1881
1882 char *aligned = ptr + HEAP_PAGE_ALIGN;
1883 aligned -= ((VALUE)aligned & (HEAP_PAGE_ALIGN - 1));
1884 GC_ASSERT(aligned > ptr);
1885 GC_ASSERT(aligned <= ptr + HEAP_PAGE_ALIGN);
1886
1887 size_t start_out_of_range_size = aligned - ptr;
1888 GC_ASSERT(start_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
1889 if (start_out_of_range_size > 0) {
1890 if (munmap(ptr, start_out_of_range_size)) {
1891 rb_bug("heap_page_body_allocate: munmap failed for start");
1892 }
1893 }
1894
1895 size_t end_out_of_range_size = HEAP_PAGE_ALIGN - start_out_of_range_size;
1896 GC_ASSERT(end_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0);
1897 if (end_out_of_range_size > 0) {
1898 if (munmap(aligned + HEAP_PAGE_SIZE, end_out_of_range_size)) {
1899 rb_bug("heap_page_body_allocate: munmap failed for end");
1900 }
1901 }
1902
1903 page_body = (struct heap_page_body *)aligned;
1904#endif
1905 }
1906 else {
1907 page_body = gc_aligned_malloc(HEAP_PAGE_ALIGN, HEAP_PAGE_SIZE);
1908 }
1909
1910 GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0);
1911
1912 return page_body;
1913}
1914
1915static struct heap_page *
1916heap_page_resurrect(rb_objspace_t *objspace)
1917{
1918 struct heap_page *page = NULL;
1919 if (objspace->empty_pages != NULL) {
1920 GC_ASSERT(objspace->empty_pages_count > 0);
1921 objspace->empty_pages_count--;
1922 page = objspace->empty_pages;
1923 objspace->empty_pages = page->free_next;
1924 }
1925
1926 return page;
1927}
1928
1929static struct heap_page *
1930heap_page_allocate(rb_objspace_t *objspace)
1931{
1932 struct heap_page_body *page_body = heap_page_body_allocate();
1933 if (page_body == 0) {
1934 rb_memerror();
1935 }
1936
1937 struct heap_page *page = calloc1(sizeof(struct heap_page));
1938 if (page == 0) {
1939 heap_page_body_free(page_body);
1940 rb_memerror();
1941 }
1942
1943 uintptr_t start = (uintptr_t)page_body + sizeof(struct heap_page_header);
1944 uintptr_t end = (uintptr_t)page_body + HEAP_PAGE_SIZE;
1945
1946 size_t lo = 0;
1947 size_t hi = rb_darray_size(objspace->heap_pages.sorted);
1948 while (lo < hi) {
1949 struct heap_page *mid_page;
1950
1951 size_t mid = (lo + hi) / 2;
1952 mid_page = rb_darray_get(objspace->heap_pages.sorted, mid);
1953 if ((uintptr_t)mid_page->start < start) {
1954 lo = mid + 1;
1955 }
1956 else if ((uintptr_t)mid_page->start > start) {
1957 hi = mid;
1958 }
1959 else {
1960 rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
1961 }
1962 }
1963
1964 rb_darray_insert_without_gc(&objspace->heap_pages.sorted, hi, page);
1965
1966 if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
1967 if (heap_pages_himem < end) heap_pages_himem = end;
1968
1969 page->body = page_body;
1970 page_body->header.page = page;
1971
1972 objspace->heap_pages.allocated_pages++;
1973
1974 return page;
1975}
1976
1977static void
1978heap_add_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
1979{
1980 /* Adding to eden heap during incremental sweeping is forbidden */
1981 GC_ASSERT(!heap->sweeping_page);
1982 GC_ASSERT(heap_page_in_global_empty_pages_pool(objspace, page));
1983
1984 /* adjust obj_limit (object number available in this page) */
1985 uintptr_t start = (uintptr_t)page->body + sizeof(struct heap_page_header);
1986 if (start % BASE_SLOT_SIZE != 0) {
1987 int delta = BASE_SLOT_SIZE - (start % BASE_SLOT_SIZE);
1988 start = start + delta;
1989 GC_ASSERT(NUM_IN_PAGE(start) == 0 || NUM_IN_PAGE(start) == 1);
1990
1991 /* Find a num in page that is evenly divisible by `stride`.
1992 * This is to ensure that objects are aligned with bit planes.
1993 * In other words, ensure there are an even number of objects
1994 * per bit plane. */
1995 if (NUM_IN_PAGE(start) == 1) {
1996 start += heap->slot_size - BASE_SLOT_SIZE;
1997 }
1998
1999 GC_ASSERT(NUM_IN_PAGE(start) * BASE_SLOT_SIZE % heap->slot_size == 0);
2000 }
2001
2002 int slot_count = (int)((HEAP_PAGE_SIZE - (start - (uintptr_t)page->body))/heap->slot_size);
2003
2004 page->start = start;
2005 page->total_slots = slot_count;
2006 page->slot_size = heap->slot_size;
2007 page->heap = heap;
2008
2009 asan_unlock_freelist(page);
2010 page->freelist = NULL;
2011 asan_unpoison_memory_region(page->body, HEAP_PAGE_SIZE, false);
2012 for (VALUE p = (VALUE)start; p < start + (slot_count * heap->slot_size); p += heap->slot_size) {
2013 heap_page_add_freeobj(objspace, page, p);
2014 }
2015 asan_lock_freelist(page);
2016
2017 page->free_slots = slot_count;
2018
2019 heap->total_allocated_pages++;
2020
2021 ccan_list_add_tail(&heap->pages, &page->page_node);
2022 heap->total_pages++;
2023 heap->total_slots += page->total_slots;
2024}
2025
2026static int
2027heap_page_allocate_and_initialize(rb_objspace_t *objspace, rb_heap_t *heap)
2028{
2029 if (objspace->heap_pages.allocatable_slots > 0) {
2030 gc_report(1, objspace, "heap_page_allocate_and_initialize: rb_darray_size(objspace->heap_pages.sorted): %"PRIdSIZE", "
2031 "allocatable_slots: %"PRIdSIZE", heap->total_pages: %"PRIdSIZE"\n",
2032 rb_darray_size(objspace->heap_pages.sorted), objspace->heap_pages.allocatable_slots, heap->total_pages);
2033
2034 struct heap_page *page = heap_page_resurrect(objspace);
2035 if (page == NULL) {
2036 page = heap_page_allocate(objspace);
2037 }
2038 heap_add_page(objspace, heap, page);
2039 heap_add_freepage(heap, page);
2040
2041 if (objspace->heap_pages.allocatable_slots > (size_t)page->total_slots) {
2042 objspace->heap_pages.allocatable_slots -= page->total_slots;
2043 }
2044 else {
2045 objspace->heap_pages.allocatable_slots = 0;
2046 }
2047
2048 return true;
2049 }
2050
2051 return false;
2052}
2053
2054static void
2055heap_page_allocate_and_initialize_force(rb_objspace_t *objspace, rb_heap_t *heap)
2056{
2057 size_t prev_allocatable_slots = objspace->heap_pages.allocatable_slots;
2058 // Set allocatable slots to 1 to force a page to be created.
2059 objspace->heap_pages.allocatable_slots = 1;
2060 heap_page_allocate_and_initialize(objspace, heap);
2061 GC_ASSERT(heap->free_pages != NULL);
2062 objspace->heap_pages.allocatable_slots = prev_allocatable_slots;
2063}
2064
2065static void
2066gc_continue(rb_objspace_t *objspace, rb_heap_t *heap)
2067{
2068 unsigned int lock_lev;
2069 gc_enter(objspace, gc_enter_event_continue, &lock_lev);
2070
2071 /* Continue marking if in incremental marking. */
2072 if (is_incremental_marking(objspace)) {
2073 if (gc_marks_continue(objspace, heap)) {
2074 gc_sweep(objspace);
2075 }
2076 }
2077
2078 /* Continue sweeping if in lazy sweeping or the previous incremental
2079 * marking finished and did not yield a free page. */
2080 if (heap->free_pages == NULL && is_lazy_sweeping(objspace)) {
2081 gc_sweep_continue(objspace, heap);
2082 }
2083
2084 gc_exit(objspace, gc_enter_event_continue, &lock_lev);
2085}
2086
2087static void
2088heap_prepare(rb_objspace_t *objspace, rb_heap_t *heap)
2089{
2090 GC_ASSERT(heap->free_pages == NULL);
2091
2092 if (heap->total_slots < gc_params.heap_init_slots[heap - heaps] &&
2093 heap->sweeping_page == NULL) {
2094 heap_page_allocate_and_initialize_force(objspace, heap);
2095 GC_ASSERT(heap->free_pages != NULL);
2096 return;
2097 }
2098
2099 /* Continue incremental marking or lazy sweeping, if in any of those steps. */
2100 gc_continue(objspace, heap);
2101
2102 if (heap->free_pages == NULL) {
2103 heap_page_allocate_and_initialize(objspace, heap);
2104 }
2105
2106 /* If we still don't have a free page and not allowed to create a new page,
2107 * we should start a new GC cycle. */
2108 if (heap->free_pages == NULL) {
2109 if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
2110 rb_memerror();
2111 }
2112 else {
2113 if (objspace->heap_pages.allocatable_slots == 0 && !gc_config_full_mark_val) {
2114 heap_allocatable_slots_expand(objspace, heap,
2115 heap->freed_slots + heap->empty_slots,
2116 heap->total_slots);
2117 GC_ASSERT(objspace->heap_pages.allocatable_slots > 0);
2118 }
2119 /* Do steps of incremental marking or lazy sweeping if the GC run permits. */
2120 gc_continue(objspace, heap);
2121
2122 /* If we're not incremental marking (e.g. a minor GC) or finished
2123 * sweeping and still don't have a free page, then
2124 * gc_sweep_finish_heap should allow us to create a new page. */
2125 if (heap->free_pages == NULL && !heap_page_allocate_and_initialize(objspace, heap)) {
2126 if (gc_needs_major_flags == GPR_FLAG_NONE) {
2127 rb_bug("cannot create a new page after GC");
2128 }
2129 else { // Major GC is required, which will allow us to create new page
2130 if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) {
2131 rb_memerror();
2132 }
2133 else {
2134 /* Do steps of incremental marking or lazy sweeping. */
2135 gc_continue(objspace, heap);
2136
2137 if (heap->free_pages == NULL &&
2138 !heap_page_allocate_and_initialize(objspace, heap)) {
2139 rb_bug("cannot create a new page after major GC");
2140 }
2141 }
2142 }
2143 }
2144 }
2145 }
2146
2147 GC_ASSERT(heap->free_pages != NULL);
2148}
2149
2150static inline VALUE
2151newobj_fill(VALUE obj, VALUE v1, VALUE v2, VALUE v3)
2152{
2153 VALUE *p = (VALUE *)obj;
2154 p[2] = v1;
2155 p[3] = v2;
2156 p[4] = v3;
2157 return obj;
2158}
2159
2160#if GC_DEBUG
2161static inline const char*
2162rb_gc_impl_source_location_cstr(int *ptr)
2163{
2164 /* We could directly refer `rb_source_location_cstr()` before, but not any
2165 * longer. We have to heavy lift using our debugging API. */
2166 if (! ptr) {
2167 return NULL;
2168 }
2169 else if (! (*ptr = rb_sourceline())) {
2170 return NULL;
2171 }
2172 else {
2173 return rb_sourcefile();
2174 }
2175}
2176#endif
2177
2178static inline VALUE
2179newobj_init(VALUE klass, VALUE flags, int wb_protected, rb_objspace_t *objspace, VALUE obj)
2180{
2181#if !__has_feature(memory_sanitizer)
2182 GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE);
2183 GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
2184#endif
2185 RBASIC(obj)->flags = flags;
2186 *((VALUE *)&RBASIC(obj)->klass) = klass;
2187
2188 int t = flags & RUBY_T_MASK;
2189 if (t == T_CLASS || t == T_MODULE || t == T_ICLASS) {
2190 RVALUE_AGE_SET_CANDIDATE(objspace, obj);
2191 }
2192
2193#if RACTOR_CHECK_MODE
2194 void rb_ractor_setup_belonging(VALUE obj);
2195 rb_ractor_setup_belonging(obj);
2196#endif
2197
2198#if RGENGC_CHECK_MODE
2199 newobj_fill(obj, 0, 0, 0);
2200
2201 int lev = rb_gc_vm_lock_no_barrier();
2202 {
2203 check_rvalue_consistency(objspace, obj);
2204
2205 GC_ASSERT(RVALUE_MARKED(objspace, obj) == FALSE);
2206 GC_ASSERT(RVALUE_MARKING(objspace, obj) == FALSE);
2207 GC_ASSERT(RVALUE_OLD_P(objspace, obj) == FALSE);
2208 GC_ASSERT(RVALUE_WB_UNPROTECTED(objspace, obj) == FALSE);
2209
2210 if (RVALUE_REMEMBERED(objspace, obj)) rb_bug("newobj: %s is remembered.", rb_obj_info(obj));
2211 }
2212 rb_gc_vm_unlock_no_barrier(lev);
2213#endif
2214
2215 if (RB_UNLIKELY(wb_protected == FALSE)) {
2216 MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
2217 }
2218
2219#if RGENGC_PROFILE
2220 if (wb_protected) {
2221 objspace->profile.total_generated_normal_object_count++;
2222#if RGENGC_PROFILE >= 2
2223 objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
2224#endif
2225 }
2226 else {
2227 objspace->profile.total_generated_shady_object_count++;
2228#if RGENGC_PROFILE >= 2
2229 objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
2230#endif
2231 }
2232#endif
2233
2234#if GC_DEBUG
2235 GET_RVALUE_OVERHEAD(obj)->file = rb_gc_impl_source_location_cstr(&GET_RVALUE_OVERHEAD(obj)->line);
2236 GC_ASSERT(!SPECIAL_CONST_P(obj)); /* check alignment */
2237#endif
2238
2239 gc_report(5, objspace, "newobj: %s\n", rb_obj_info(obj));
2240
2241 RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, rb_obj_info(obj));
2242 return obj;
2243}
2244
2245size_t
2246rb_gc_impl_obj_slot_size(VALUE obj)
2247{
2248 return GET_HEAP_PAGE(obj)->slot_size - RVALUE_OVERHEAD;
2249}
2250
2251static inline size_t
2252heap_slot_size(unsigned char pool_id)
2253{
2254 GC_ASSERT(pool_id < HEAP_COUNT);
2255
2256 size_t slot_size = (1 << pool_id) * BASE_SLOT_SIZE;
2257
2258#if RGENGC_CHECK_MODE
2259 rb_objspace_t *objspace = rb_gc_get_objspace();
2260 GC_ASSERT(heaps[pool_id].slot_size == (short)slot_size);
2261#endif
2262
2263 slot_size -= RVALUE_OVERHEAD;
2264
2265 return slot_size;
2266}
2267
2268bool
2269rb_gc_impl_size_allocatable_p(size_t size)
2270{
2271 return size <= heap_slot_size(HEAP_COUNT - 1);
2272}
2273
2274static inline VALUE
2275ractor_cache_allocate_slot(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache,
2276 size_t heap_idx)
2277{
2278 rb_ractor_newobj_heap_cache_t *heap_cache = &cache->heap_caches[heap_idx];
2279 struct free_slot *p = heap_cache->freelist;
2280
2281 if (RB_UNLIKELY(is_incremental_marking(objspace))) {
2282 // Not allowed to allocate without running an incremental marking step
2283 if (cache->incremental_mark_step_allocated_slots >= INCREMENTAL_MARK_STEP_ALLOCATIONS) {
2284 return Qfalse;
2285 }
2286
2287 if (p) {
2288 cache->incremental_mark_step_allocated_slots++;
2289 }
2290 }
2291
2292 if (RB_LIKELY(p)) {
2293 VALUE obj = (VALUE)p;
2294 rb_asan_unpoison_object(obj, true);
2295 heap_cache->freelist = p->next;
2296#if RGENGC_CHECK_MODE
2297 GC_ASSERT(rb_gc_impl_obj_slot_size(obj) == heap_slot_size(heap_idx));
2298 // zero clear
2299 MEMZERO((char *)obj, char, heap_slot_size(heap_idx));
2300#endif
2301 return obj;
2302 }
2303 else {
2304 return Qfalse;
2305 }
2306}
2307
2308static struct heap_page *
2309heap_next_free_page(rb_objspace_t *objspace, rb_heap_t *heap)
2310{
2311 struct heap_page *page;
2312
2313 if (heap->free_pages == NULL) {
2314 heap_prepare(objspace, heap);
2315 }
2316
2317 page = heap->free_pages;
2318 heap->free_pages = page->free_next;
2319
2320 GC_ASSERT(page->free_slots != 0);
2321
2322 asan_unlock_freelist(page);
2323
2324 return page;
2325}
2326
2327static inline void
2328ractor_cache_set_page(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx,
2329 struct heap_page *page)
2330{
2331 gc_report(3, objspace, "ractor_set_cache: Using page %p\n", (void *)page->body);
2332
2333 rb_ractor_newobj_heap_cache_t *heap_cache = &cache->heap_caches[heap_idx];
2334
2335 GC_ASSERT(heap_cache->freelist == NULL);
2336 GC_ASSERT(page->free_slots != 0);
2337 GC_ASSERT(page->freelist != NULL);
2338
2339 heap_cache->using_page = page;
2340 heap_cache->freelist = page->freelist;
2341 page->free_slots = 0;
2342 page->freelist = NULL;
2343
2344 rb_asan_unpoison_object((VALUE)heap_cache->freelist, false);
2345 GC_ASSERT(RB_TYPE_P((VALUE)heap_cache->freelist, T_NONE));
2346 rb_asan_poison_object((VALUE)heap_cache->freelist);
2347}
2348
2349static inline size_t
2350heap_idx_for_size(size_t size)
2351{
2352 size += RVALUE_OVERHEAD;
2353
2354 size_t slot_count = CEILDIV(size, BASE_SLOT_SIZE);
2355
2356 /* heap_idx is ceil(log2(slot_count)) */
2357 size_t heap_idx = 64 - nlz_int64(slot_count - 1);
2358
2359 if (heap_idx >= HEAP_COUNT) {
2360 rb_bug("heap_idx_for_size: allocation size too large "
2361 "(size=%"PRIuSIZE"u, heap_idx=%"PRIuSIZE"u)", size, heap_idx);
2362 }
2363
2364#if RGENGC_CHECK_MODE
2365 rb_objspace_t *objspace = rb_gc_get_objspace();
2366 GC_ASSERT(size <= (size_t)heaps[heap_idx].slot_size);
2367 if (heap_idx > 0) GC_ASSERT(size > (size_t)heaps[heap_idx - 1].slot_size);
2368#endif
2369
2370 return heap_idx;
2371}
2372
2373size_t
2374rb_gc_impl_heap_id_for_size(void *objspace_ptr, size_t size)
2375{
2376 return heap_idx_for_size(size);
2377}
2378
2379
2380static size_t heap_sizes[HEAP_COUNT + 1] = { 0 };
2381
2382size_t *
2383rb_gc_impl_heap_sizes(void *objspace_ptr)
2384{
2385 if (heap_sizes[0] == 0) {
2386 for (unsigned char i = 0; i < HEAP_COUNT; i++) {
2387 heap_sizes[i] = heap_slot_size(i);
2388 }
2389 }
2390
2391 return heap_sizes;
2392}
2393
2394NOINLINE(static VALUE newobj_cache_miss(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx, bool vm_locked));
2395
2396static VALUE
2397newobj_cache_miss(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx, bool vm_locked)
2398{
2399 rb_heap_t *heap = &heaps[heap_idx];
2400 VALUE obj = Qfalse;
2401
2402 unsigned int lev = 0;
2403 bool unlock_vm = false;
2404
2405 if (!vm_locked) {
2406 lev = rb_gc_cr_lock();
2407 unlock_vm = true;
2408 }
2409
2410 {
2411 if (is_incremental_marking(objspace)) {
2412 gc_continue(objspace, heap);
2413 cache->incremental_mark_step_allocated_slots = 0;
2414
2415 // Retry allocation after resetting incremental_mark_step_allocated_slots
2416 obj = ractor_cache_allocate_slot(objspace, cache, heap_idx);
2417 }
2418
2419 if (obj == Qfalse) {
2420 // Get next free page (possibly running GC)
2421 struct heap_page *page = heap_next_free_page(objspace, heap);
2422 ractor_cache_set_page(objspace, cache, heap_idx, page);
2423
2424 // Retry allocation after moving to new page
2425 obj = ractor_cache_allocate_slot(objspace, cache, heap_idx);
2426 }
2427 }
2428
2429 if (unlock_vm) {
2430 rb_gc_cr_unlock(lev);
2431 }
2432
2433 if (RB_UNLIKELY(obj == Qfalse)) {
2434 rb_memerror();
2435 }
2436 return obj;
2437}
2438
2439static VALUE
2440newobj_alloc(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx, bool vm_locked)
2441{
2442 VALUE obj = ractor_cache_allocate_slot(objspace, cache, heap_idx);
2443
2444 if (RB_UNLIKELY(obj == Qfalse)) {
2445 obj = newobj_cache_miss(objspace, cache, heap_idx, vm_locked);
2446 }
2447
2448 rb_heap_t *heap = &heaps[heap_idx];
2449 heap->total_allocated_objects++;
2450 GC_ASSERT(rb_gc_multi_ractor_p() ||
2451 heap->total_slots >=
2452 (heap->total_allocated_objects - heap->total_freed_objects - heap->final_slots_count));
2453
2454 return obj;
2455}
2456
2457ALWAYS_INLINE(static VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, int wb_protected, size_t heap_idx));
2458
2459static inline VALUE
2460newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, int wb_protected, size_t heap_idx)
2461{
2462 VALUE obj;
2463 unsigned int lev;
2464
2465 lev = rb_gc_cr_lock();
2466 {
2467 if (RB_UNLIKELY(during_gc || ruby_gc_stressful)) {
2468 if (during_gc) {
2469 dont_gc_on();
2470 during_gc = 0;
2471 if (rb_memerror_reentered()) {
2472 rb_memerror();
2473 }
2474 rb_bug("object allocation during garbage collection phase");
2475 }
2476
2477 if (ruby_gc_stressful) {
2478 if (!garbage_collect(objspace, GPR_FLAG_NEWOBJ)) {
2479 rb_memerror();
2480 }
2481 }
2482 }
2483
2484 obj = newobj_alloc(objspace, cache, heap_idx, true);
2485 newobj_init(klass, flags, wb_protected, objspace, obj);
2486 }
2487 rb_gc_cr_unlock(lev);
2488
2489 return obj;
2490}
2491
2492NOINLINE(static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags,
2493 rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx));
2494NOINLINE(static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags,
2495 rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx));
2496
2497static VALUE
2498newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx)
2499{
2500 return newobj_slowpath(klass, flags, objspace, cache, TRUE, heap_idx);
2501}
2502
2503static VALUE
2504newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t heap_idx)
2505{
2506 return newobj_slowpath(klass, flags, objspace, cache, FALSE, heap_idx);
2507}
2508
2509VALUE
2510rb_gc_impl_new_obj(void *objspace_ptr, void *cache_ptr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, bool wb_protected, size_t alloc_size)
2511{
2512 VALUE obj;
2513 rb_objspace_t *objspace = objspace_ptr;
2514
2515 RB_DEBUG_COUNTER_INC(obj_newobj);
2516 (void)RB_DEBUG_COUNTER_INC_IF(obj_newobj_wb_unprotected, !wb_protected);
2517
2518 if (RB_UNLIKELY(stress_to_class)) {
2519 if (RTEST(rb_hash_has_key(stress_to_class, klass))) {
2520 rb_memerror();
2521 }
2522 }
2523
2524 size_t heap_idx = heap_idx_for_size(alloc_size);
2525
2527
2528 if (!RB_UNLIKELY(during_gc || ruby_gc_stressful) &&
2529 wb_protected) {
2530 obj = newobj_alloc(objspace, cache, heap_idx, false);
2531 newobj_init(klass, flags, wb_protected, objspace, obj);
2532 }
2533 else {
2534 RB_DEBUG_COUNTER_INC(obj_newobj_slowpath);
2535
2536 obj = wb_protected ?
2537 newobj_slowpath_wb_protected(klass, flags, objspace, cache, heap_idx) :
2538 newobj_slowpath_wb_unprotected(klass, flags, objspace, cache, heap_idx);
2539 }
2540
2541 return newobj_fill(obj, v1, v2, v3);
2542}
2543
2544static int
2545ptr_in_page_body_p(const void *ptr, const void *memb)
2546{
2547 struct heap_page *page = *(struct heap_page **)memb;
2548 uintptr_t p_body = (uintptr_t)page->body;
2549
2550 if ((uintptr_t)ptr >= p_body) {
2551 return (uintptr_t)ptr < (p_body + HEAP_PAGE_SIZE) ? 0 : 1;
2552 }
2553 else {
2554 return -1;
2555 }
2556}
2557
2558PUREFUNC(static inline struct heap_page *heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr);)
2559static inline struct heap_page *
2560heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr)
2561{
2562 struct heap_page **res;
2563
2564 if (ptr < (uintptr_t)heap_pages_lomem ||
2565 ptr > (uintptr_t)heap_pages_himem) {
2566 return NULL;
2567 }
2568
2569 res = bsearch((void *)ptr, rb_darray_ref(objspace->heap_pages.sorted, 0),
2570 rb_darray_size(objspace->heap_pages.sorted), sizeof(struct heap_page *),
2571 ptr_in_page_body_p);
2572
2573 if (res) {
2574 return *res;
2575 }
2576 else {
2577 return NULL;
2578 }
2579}
2580
2581PUREFUNC(static inline bool is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr);)
2582static inline bool
2583is_pointer_to_heap(rb_objspace_t *objspace, const void *ptr)
2584{
2585 register uintptr_t p = (uintptr_t)ptr;
2586 register struct heap_page *page;
2587
2588 RB_DEBUG_COUNTER_INC(gc_isptr_trial);
2589
2590 if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
2591 RB_DEBUG_COUNTER_INC(gc_isptr_range);
2592
2593 if (p % BASE_SLOT_SIZE != 0) return FALSE;
2594 RB_DEBUG_COUNTER_INC(gc_isptr_align);
2595
2596 page = heap_page_for_ptr(objspace, (uintptr_t)ptr);
2597 if (page) {
2598 RB_DEBUG_COUNTER_INC(gc_isptr_maybe);
2599 if (heap_page_in_global_empty_pages_pool(objspace, page)) {
2600 return FALSE;
2601 }
2602 else {
2603 if (p < page->start) return FALSE;
2604 if (p >= page->start + (page->total_slots * page->slot_size)) return FALSE;
2605 if ((NUM_IN_PAGE(p) * BASE_SLOT_SIZE) % page->slot_size != 0) return FALSE;
2606
2607 return TRUE;
2608 }
2609 }
2610 return FALSE;
2611}
2612
2613bool
2614rb_gc_impl_pointer_to_heap_p(void *objspace_ptr, const void *ptr)
2615{
2616 return is_pointer_to_heap(objspace_ptr, ptr);
2617}
2618
2619#define ZOMBIE_OBJ_KEPT_FLAGS (FL_SEEN_OBJ_ID | FL_FINALIZE)
2620
2621void
2622rb_gc_impl_make_zombie(void *objspace_ptr, VALUE obj, void (*dfree)(void *), void *data)
2623{
2624 rb_objspace_t *objspace = objspace_ptr;
2625
2626 struct RZombie *zombie = RZOMBIE(obj);
2627 zombie->basic.flags = T_ZOMBIE | (zombie->basic.flags & ZOMBIE_OBJ_KEPT_FLAGS);
2628 zombie->dfree = dfree;
2629 zombie->data = data;
2630 VALUE prev, next = heap_pages_deferred_final;
2631 do {
2632 zombie->next = prev = next;
2633 next = RUBY_ATOMIC_VALUE_CAS(heap_pages_deferred_final, prev, obj);
2634 } while (next != prev);
2635
2636 struct heap_page *page = GET_HEAP_PAGE(obj);
2637 page->final_slots++;
2638 page->heap->final_slots_count++;
2639}
2640
2641static void
2642obj_free_object_id(rb_objspace_t *objspace, VALUE obj)
2643{
2644 st_data_t o = (st_data_t)obj, id;
2645
2646 GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE || FL_TEST(obj, FL_SEEN_OBJ_ID));
2648
2649 if (st_delete(objspace->obj_to_id_tbl, &o, &id)) {
2650 GC_ASSERT(id);
2651 st_delete(objspace->id_to_obj_tbl, &id, NULL);
2652 }
2653 else {
2654 rb_bug("Object ID seen, but not in mapping table: %s", rb_obj_info(obj));
2655 }
2656}
2657
2658typedef int each_obj_callback(void *, void *, size_t, void *);
2659typedef int each_page_callback(struct heap_page *, void *);
2660
2663 bool reenable_incremental;
2664
2665 each_obj_callback *each_obj_callback;
2666 each_page_callback *each_page_callback;
2667 void *data;
2668
2669 struct heap_page **pages[HEAP_COUNT];
2670 size_t pages_counts[HEAP_COUNT];
2671};
2672
2673static VALUE
2674objspace_each_objects_ensure(VALUE arg)
2675{
2676 struct each_obj_data *data = (struct each_obj_data *)arg;
2677 rb_objspace_t *objspace = data->objspace;
2678
2679 /* Reenable incremental GC */
2680 if (data->reenable_incremental) {
2681 objspace->flags.dont_incremental = FALSE;
2682 }
2683
2684 for (int i = 0; i < HEAP_COUNT; i++) {
2685 struct heap_page **pages = data->pages[i];
2686 free(pages);
2687 }
2688
2689 return Qnil;
2690}
2691
2692static VALUE
2693objspace_each_objects_try(VALUE arg)
2694{
2695 struct each_obj_data *data = (struct each_obj_data *)arg;
2696 rb_objspace_t *objspace = data->objspace;
2697
2698 /* Copy pages from all heaps to their respective buffers. */
2699 for (int i = 0; i < HEAP_COUNT; i++) {
2700 rb_heap_t *heap = &heaps[i];
2701 size_t size = heap->total_pages * sizeof(struct heap_page *);
2702
2703 struct heap_page **pages = malloc(size);
2704 if (!pages) rb_memerror();
2705
2706 /* Set up pages buffer by iterating over all pages in the current eden
2707 * heap. This will be a snapshot of the state of the heap before we
2708 * call the callback over each page that exists in this buffer. Thus it
2709 * is safe for the callback to allocate objects without possibly entering
2710 * an infinite loop. */
2711 struct heap_page *page = 0;
2712 size_t pages_count = 0;
2713 ccan_list_for_each(&heap->pages, page, page_node) {
2714 pages[pages_count] = page;
2715 pages_count++;
2716 }
2717 data->pages[i] = pages;
2718 data->pages_counts[i] = pages_count;
2719 GC_ASSERT(pages_count == heap->total_pages);
2720 }
2721
2722 for (int i = 0; i < HEAP_COUNT; i++) {
2723 rb_heap_t *heap = &heaps[i];
2724 size_t pages_count = data->pages_counts[i];
2725 struct heap_page **pages = data->pages[i];
2726
2727 struct heap_page *page = ccan_list_top(&heap->pages, struct heap_page, page_node);
2728 for (size_t i = 0; i < pages_count; i++) {
2729 /* If we have reached the end of the linked list then there are no
2730 * more pages, so break. */
2731 if (page == NULL) break;
2732
2733 /* If this page does not match the one in the buffer, then move to
2734 * the next page in the buffer. */
2735 if (pages[i] != page) continue;
2736
2737 uintptr_t pstart = (uintptr_t)page->start;
2738 uintptr_t pend = pstart + (page->total_slots * heap->slot_size);
2739
2740 if (data->each_obj_callback &&
2741 (*data->each_obj_callback)((void *)pstart, (void *)pend, heap->slot_size, data->data)) {
2742 break;
2743 }
2744 if (data->each_page_callback &&
2745 (*data->each_page_callback)(page, data->data)) {
2746 break;
2747 }
2748
2749 page = ccan_list_next(&heap->pages, page, page_node);
2750 }
2751 }
2752
2753 return Qnil;
2754}
2755
2756static void
2757objspace_each_exec(bool protected, struct each_obj_data *each_obj_data)
2758{
2759 /* Disable incremental GC */
2761 bool reenable_incremental = FALSE;
2762 if (protected) {
2763 reenable_incremental = !objspace->flags.dont_incremental;
2764
2765 gc_rest(objspace);
2766 objspace->flags.dont_incremental = TRUE;
2767 }
2768
2769 each_obj_data->reenable_incremental = reenable_incremental;
2770 memset(&each_obj_data->pages, 0, sizeof(each_obj_data->pages));
2771 memset(&each_obj_data->pages_counts, 0, sizeof(each_obj_data->pages_counts));
2772 rb_ensure(objspace_each_objects_try, (VALUE)each_obj_data,
2773 objspace_each_objects_ensure, (VALUE)each_obj_data);
2774}
2775
2776static void
2777objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected)
2778{
2779 struct each_obj_data each_obj_data = {
2780 .objspace = objspace,
2781 .each_obj_callback = callback,
2782 .each_page_callback = NULL,
2783 .data = data,
2784 };
2785 objspace_each_exec(protected, &each_obj_data);
2786}
2787
2788void
2789rb_gc_impl_each_objects(void *objspace_ptr, each_obj_callback *callback, void *data)
2790{
2791 objspace_each_objects(objspace_ptr, callback, data, TRUE);
2792}
2793
2794#if GC_CAN_COMPILE_COMPACTION
2795static void
2796objspace_each_pages(rb_objspace_t *objspace, each_page_callback *callback, void *data, bool protected)
2797{
2798 struct each_obj_data each_obj_data = {
2799 .objspace = objspace,
2800 .each_obj_callback = NULL,
2801 .each_page_callback = callback,
2802 .data = data,
2803 };
2804 objspace_each_exec(protected, &each_obj_data);
2805}
2806#endif
2807
2808VALUE
2809rb_gc_impl_define_finalizer(void *objspace_ptr, VALUE obj, VALUE block)
2810{
2811 rb_objspace_t *objspace = objspace_ptr;
2812 VALUE table;
2813 st_data_t data;
2814
2815 GC_ASSERT(!OBJ_FROZEN(obj));
2816
2817 RBASIC(obj)->flags |= FL_FINALIZE;
2818
2819 if (st_lookup(finalizer_table, obj, &data)) {
2820 table = (VALUE)data;
2821
2822 /* avoid duplicate block, table is usually small */
2823 {
2824 long len = RARRAY_LEN(table);
2825 long i;
2826
2827 for (i = 0; i < len; i++) {
2828 VALUE recv = RARRAY_AREF(table, i);
2829 if (rb_equal(recv, block)) {
2830 return recv;
2831 }
2832 }
2833 }
2834
2835 rb_ary_push(table, block);
2836 }
2837 else {
2838 table = rb_ary_new3(1, block);
2839 rb_obj_hide(table);
2840 st_add_direct(finalizer_table, obj, table);
2841 }
2842
2843 return block;
2844}
2845
2846void
2847rb_gc_impl_undefine_finalizer(void *objspace_ptr, VALUE obj)
2848{
2849 rb_objspace_t *objspace = objspace_ptr;
2850
2851 GC_ASSERT(!OBJ_FROZEN(obj));
2852
2853 st_data_t data = obj;
2854 st_delete(finalizer_table, &data, 0);
2855 FL_UNSET(obj, FL_FINALIZE);
2856}
2857
2858void
2859rb_gc_impl_copy_finalizer(void *objspace_ptr, VALUE dest, VALUE obj)
2860{
2861 rb_objspace_t *objspace = objspace_ptr;
2862 VALUE table;
2863 st_data_t data;
2864
2865 if (!FL_TEST(obj, FL_FINALIZE)) return;
2866
2867 if (RB_LIKELY(st_lookup(finalizer_table, obj, &data))) {
2868 table = (VALUE)data;
2869 st_insert(finalizer_table, dest, table);
2870 FL_SET(dest, FL_FINALIZE);
2871 }
2872 else {
2873 rb_bug("rb_gc_copy_finalizer: FL_FINALIZE set but not found in finalizer_table: %s", rb_obj_info(obj));
2874 }
2875}
2876
2877static VALUE
2878get_object_id_in_finalizer(rb_objspace_t *objspace, VALUE obj)
2879{
2880 if (FL_TEST_RAW(obj, FL_SEEN_OBJ_ID)) {
2881 return rb_gc_impl_object_id(objspace, obj);
2882 }
2883 else {
2884 VALUE id = ULL2NUM(objspace->next_object_id);
2885 objspace->next_object_id += OBJ_ID_INCREMENT;
2886 return id;
2887 }
2888}
2889
2890static VALUE
2891get_final(long i, void *data)
2892{
2893 VALUE table = (VALUE)data;
2894
2895 return RARRAY_AREF(table, i);
2896}
2897
2898static void
2899run_final(rb_objspace_t *objspace, VALUE zombie)
2900{
2901 if (RZOMBIE(zombie)->dfree) {
2902 RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data);
2903 }
2904
2905 st_data_t key = (st_data_t)zombie;
2906 if (FL_TEST_RAW(zombie, FL_FINALIZE)) {
2907 FL_UNSET(zombie, FL_FINALIZE);
2908 st_data_t table;
2909 if (st_delete(finalizer_table, &key, &table)) {
2910 rb_gc_run_obj_finalizer(get_object_id_in_finalizer(objspace, zombie), RARRAY_LEN(table), get_final, (void *)table);
2911 }
2912 else {
2913 rb_bug("FL_FINALIZE flag is set, but finalizers are not found");
2914 }
2915 }
2916 else {
2917 GC_ASSERT(!st_lookup(finalizer_table, key, NULL));
2918 }
2919}
2920
2921static void
2922finalize_list(rb_objspace_t *objspace, VALUE zombie)
2923{
2924 while (zombie) {
2925 VALUE next_zombie;
2926 struct heap_page *page;
2927 rb_asan_unpoison_object(zombie, false);
2928 next_zombie = RZOMBIE(zombie)->next;
2929 page = GET_HEAP_PAGE(zombie);
2930
2931 run_final(objspace, zombie);
2932
2933 int lev = rb_gc_vm_lock();
2934 {
2935 GC_ASSERT(BUILTIN_TYPE(zombie) == T_ZOMBIE);
2936 if (FL_TEST_RAW(zombie, FL_SEEN_OBJ_ID)) {
2937 obj_free_object_id(objspace, zombie);
2938 }
2939
2940 GC_ASSERT(page->heap->final_slots_count > 0);
2941 GC_ASSERT(page->final_slots > 0);
2942
2943 page->heap->final_slots_count--;
2944 page->final_slots--;
2945 page->free_slots++;
2946 heap_page_add_freeobj(objspace, page, zombie);
2947 page->heap->total_freed_objects++;
2948 }
2949 rb_gc_vm_unlock(lev);
2950
2951 zombie = next_zombie;
2952 }
2953}
2954
2955static void
2956finalize_deferred_heap_pages(rb_objspace_t *objspace)
2957{
2958 VALUE zombie;
2959 while ((zombie = RUBY_ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) {
2960 finalize_list(objspace, zombie);
2961 }
2962}
2963
2964static void
2965finalize_deferred(rb_objspace_t *objspace)
2966{
2967 rb_gc_set_pending_interrupt();
2968 finalize_deferred_heap_pages(objspace);
2969 rb_gc_unset_pending_interrupt();
2970}
2971
2972static void
2973gc_finalize_deferred(void *dmy)
2974{
2975 rb_objspace_t *objspace = dmy;
2976 if (RUBY_ATOMIC_EXCHANGE(finalizing, 1)) return;
2977
2978 finalize_deferred(objspace);
2979 RUBY_ATOMIC_SET(finalizing, 0);
2980}
2981
2982static void
2983gc_finalize_deferred_register(rb_objspace_t *objspace)
2984{
2985 /* will enqueue a call to gc_finalize_deferred */
2986 rb_postponed_job_trigger(objspace->finalize_deferred_pjob);
2987}
2988
2989static int pop_mark_stack(mark_stack_t *stack, VALUE *data);
2990
2991static void
2992gc_abort(void *objspace_ptr)
2993{
2994 rb_objspace_t *objspace = objspace_ptr;
2995
2996 if (is_incremental_marking(objspace)) {
2997 /* Remove all objects from the mark stack. */
2998 VALUE obj;
2999 while (pop_mark_stack(&objspace->mark_stack, &obj));
3000
3001 objspace->flags.during_incremental_marking = FALSE;
3002 }
3003
3004 if (is_lazy_sweeping(objspace)) {
3005 for (int i = 0; i < HEAP_COUNT; i++) {
3006 rb_heap_t *heap = &heaps[i];
3007
3008 heap->sweeping_page = NULL;
3009 struct heap_page *page = NULL;
3010
3011 ccan_list_for_each(&heap->pages, page, page_node) {
3012 page->flags.before_sweep = false;
3013 }
3014 }
3015 }
3016
3017 for (int i = 0; i < HEAP_COUNT; i++) {
3018 rb_heap_t *heap = &heaps[i];
3019 rgengc_mark_and_rememberset_clear(objspace, heap);
3020 }
3021
3022 gc_mode_set(objspace, gc_mode_none);
3023}
3024
3025void
3026rb_gc_impl_shutdown_free_objects(void *objspace_ptr)
3027{
3028 rb_objspace_t *objspace = objspace_ptr;
3029
3030 for (size_t i = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
3031 struct heap_page *page = rb_darray_get(objspace->heap_pages.sorted, i);
3032 short stride = page->slot_size;
3033
3034 uintptr_t p = (uintptr_t)page->start;
3035 uintptr_t pend = p + page->total_slots * stride;
3036 for (; p < pend; p += stride) {
3037 VALUE vp = (VALUE)p;
3038 asan_unpoisoning_object(vp) {
3039 if (RB_BUILTIN_TYPE(vp) != T_NONE) {
3040 rb_gc_obj_free_vm_weak_references(vp);
3041 if (rb_gc_obj_free(objspace, vp)) {
3042 RBASIC(vp)->flags = 0;
3043 }
3044 }
3045 }
3046 }
3047 }
3048}
3049
3050static int
3051rb_gc_impl_shutdown_call_finalizer_i(st_data_t key, st_data_t val, st_data_t data)
3052{
3054 VALUE obj = (VALUE)key;
3055 VALUE table = (VALUE)val;
3056
3057 GC_ASSERT(RB_FL_TEST(obj, FL_FINALIZE));
3058 GC_ASSERT(RB_BUILTIN_TYPE(val) == T_ARRAY);
3059
3060 rb_gc_run_obj_finalizer(rb_gc_impl_object_id(objspace, obj), RARRAY_LEN(table), get_final, (void *)table);
3061
3062 FL_UNSET(obj, FL_FINALIZE);
3063
3064 return ST_DELETE;
3065}
3066
3067void
3068rb_gc_impl_shutdown_call_finalizer(void *objspace_ptr)
3069{
3070 rb_objspace_t *objspace = objspace_ptr;
3071
3072#if RGENGC_CHECK_MODE >= 2
3073 gc_verify_internal_consistency(objspace);
3074#endif
3075
3076 /* prohibit incremental GC */
3077 objspace->flags.dont_incremental = 1;
3078
3079 if (RUBY_ATOMIC_EXCHANGE(finalizing, 1)) {
3080 /* Abort incremental marking and lazy sweeping to speed up shutdown. */
3081 gc_abort(objspace);
3082 dont_gc_on();
3083 return;
3084 }
3085
3086 while (finalizer_table->num_entries) {
3087 st_foreach(finalizer_table, rb_gc_impl_shutdown_call_finalizer_i, (st_data_t)objspace);
3088 }
3089
3090 /* run finalizers */
3091 finalize_deferred(objspace);
3092 GC_ASSERT(heap_pages_deferred_final == 0);
3093
3094 /* Abort incremental marking and lazy sweeping to speed up shutdown. */
3095 gc_abort(objspace);
3096
3097 /* prohibit GC because force T_DATA finalizers can break an object graph consistency */
3098 dont_gc_on();
3099
3100 /* running data/file finalizers are part of garbage collection */
3101 unsigned int lock_lev;
3102 gc_enter(objspace, gc_enter_event_finalizer, &lock_lev);
3103
3104 /* run data/file object's finalizers */
3105 for (size_t i = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
3106 struct heap_page *page = rb_darray_get(objspace->heap_pages.sorted, i);
3107 short stride = page->slot_size;
3108
3109 uintptr_t p = (uintptr_t)page->start;
3110 uintptr_t pend = p + page->total_slots * stride;
3111 for (; p < pend; p += stride) {
3112 VALUE vp = (VALUE)p;
3113 asan_unpoisoning_object(vp) {
3114 if (rb_gc_shutdown_call_finalizer_p(vp)) {
3115 rb_gc_obj_free_vm_weak_references(vp);
3116 if (rb_gc_obj_free(objspace, vp)) {
3117 RBASIC(vp)->flags = 0;
3118 }
3119 }
3120 }
3121 }
3122 }
3123
3124 gc_exit(objspace, gc_enter_event_finalizer, &lock_lev);
3125
3126 finalize_deferred_heap_pages(objspace);
3127
3128 st_free_table(finalizer_table);
3129 finalizer_table = 0;
3130 RUBY_ATOMIC_SET(finalizing, 0);
3131}
3132
3133void
3134rb_gc_impl_each_object(void *objspace_ptr, void (*func)(VALUE obj, void *data), void *data)
3135{
3136 rb_objspace_t *objspace = objspace_ptr;
3137
3138 for (size_t i = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
3139 struct heap_page *page = rb_darray_get(objspace->heap_pages.sorted, i);
3140 short stride = page->slot_size;
3141
3142 uintptr_t p = (uintptr_t)page->start;
3143 uintptr_t pend = p + page->total_slots * stride;
3144 for (; p < pend; p += stride) {
3145 VALUE obj = (VALUE)p;
3146
3147 asan_unpoisoning_object(obj) {
3148 func(obj, data);
3149 }
3150 }
3151 }
3152}
3153
3154/*
3155 ------------------------ Garbage Collection ------------------------
3156*/
3157
3158/* Sweeping */
3159
3160static size_t
3161objspace_available_slots(rb_objspace_t *objspace)
3162{
3163 size_t total_slots = 0;
3164 for (int i = 0; i < HEAP_COUNT; i++) {
3165 rb_heap_t *heap = &heaps[i];
3166 total_slots += heap->total_slots;
3167 }
3168 return total_slots;
3169}
3170
3171static size_t
3172objspace_live_slots(rb_objspace_t *objspace)
3173{
3174 return total_allocated_objects(objspace) - total_freed_objects(objspace) - total_final_slots_count(objspace);
3175}
3176
3177static size_t
3178objspace_free_slots(rb_objspace_t *objspace)
3179{
3180 return objspace_available_slots(objspace) - objspace_live_slots(objspace) - total_final_slots_count(objspace);
3181}
3182
3183static void
3184gc_setup_mark_bits(struct heap_page *page)
3185{
3186 /* copy oldgen bitmap to mark bitmap */
3187 memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_PAGE_BITMAP_SIZE);
3188}
3189
3190static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj);
3191static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size);
3192
3193#if defined(_WIN32)
3194enum {HEAP_PAGE_LOCK = PAGE_NOACCESS, HEAP_PAGE_UNLOCK = PAGE_READWRITE};
3195
3196static BOOL
3197protect_page_body(struct heap_page_body *body, DWORD protect)
3198{
3199 DWORD old_protect;
3200 return VirtualProtect(body, HEAP_PAGE_SIZE, protect, &old_protect) != 0;
3201}
3202#elif defined(__wasi__)
3203// wasi-libc's mprotect emulation does not support PROT_NONE
3204enum {HEAP_PAGE_LOCK, HEAP_PAGE_UNLOCK};
3205#define protect_page_body(body, protect) 1
3206#else
3207enum {HEAP_PAGE_LOCK = PROT_NONE, HEAP_PAGE_UNLOCK = PROT_READ | PROT_WRITE};
3208#define protect_page_body(body, protect) !mprotect((body), HEAP_PAGE_SIZE, (protect))
3209#endif
3210
3211static void
3212lock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
3213{
3214 if (!protect_page_body(body, HEAP_PAGE_LOCK)) {
3215 rb_bug("Couldn't protect page %p, errno: %s", (void *)body, strerror(errno));
3216 }
3217 else {
3218 gc_report(5, objspace, "Protecting page in move %p\n", (void *)body);
3219 }
3220}
3221
3222static void
3223unlock_page_body(rb_objspace_t *objspace, struct heap_page_body *body)
3224{
3225 if (!protect_page_body(body, HEAP_PAGE_UNLOCK)) {
3226 rb_bug("Couldn't unprotect page %p, errno: %s", (void *)body, strerror(errno));
3227 }
3228 else {
3229 gc_report(5, objspace, "Unprotecting page in move %p\n", (void *)body);
3230 }
3231}
3232
3233static bool
3234try_move(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *free_page, VALUE src)
3235{
3236 GC_ASSERT(gc_is_moveable_obj(objspace, src));
3237
3238 struct heap_page *src_page = GET_HEAP_PAGE(src);
3239 if (!free_page) {
3240 return false;
3241 }
3242
3243 /* We should return true if either src is successfully moved, or src is
3244 * unmoveable. A false return will cause the sweeping cursor to be
3245 * incremented to the next page, and src will attempt to move again */
3246 GC_ASSERT(RVALUE_MARKED(objspace, src));
3247
3248 asan_unlock_freelist(free_page);
3249 VALUE dest = (VALUE)free_page->freelist;
3250 asan_lock_freelist(free_page);
3251 if (dest) {
3252 rb_asan_unpoison_object(dest, false);
3253 }
3254 else {
3255 /* if we can't get something from the freelist then the page must be
3256 * full */
3257 return false;
3258 }
3259 asan_unlock_freelist(free_page);
3260 free_page->freelist = ((struct free_slot *)dest)->next;
3261 asan_lock_freelist(free_page);
3262
3263 GC_ASSERT(RB_BUILTIN_TYPE(dest) == T_NONE);
3264
3265 if (src_page->slot_size > free_page->slot_size) {
3266 objspace->rcompactor.moved_down_count_table[BUILTIN_TYPE(src)]++;
3267 }
3268 else if (free_page->slot_size > src_page->slot_size) {
3269 objspace->rcompactor.moved_up_count_table[BUILTIN_TYPE(src)]++;
3270 }
3271 objspace->rcompactor.moved_count_table[BUILTIN_TYPE(src)]++;
3272 objspace->rcompactor.total_moved++;
3273
3274 gc_move(objspace, src, dest, src_page->slot_size, free_page->slot_size);
3275 gc_pin(objspace, src);
3276 free_page->free_slots--;
3277
3278 return true;
3279}
3280
3281static void
3282gc_unprotect_pages(rb_objspace_t *objspace, rb_heap_t *heap)
3283{
3284 struct heap_page *cursor = heap->compact_cursor;
3285
3286 while (cursor) {
3287 unlock_page_body(objspace, cursor->body);
3288 cursor = ccan_list_next(&heap->pages, cursor, page_node);
3289 }
3290}
3291
3292static void gc_update_references(rb_objspace_t *objspace);
3293#if GC_CAN_COMPILE_COMPACTION
3294static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page);
3295#endif
3296
3297#if defined(__MINGW32__) || defined(_WIN32)
3298# define GC_COMPACTION_SUPPORTED 1
3299#else
3300/* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for
3301 * the read barrier, so we must disable compaction. */
3302# define GC_COMPACTION_SUPPORTED (GC_CAN_COMPILE_COMPACTION && HEAP_PAGE_ALLOC_USE_MMAP)
3303#endif
3304
3305#if GC_CAN_COMPILE_COMPACTION
3306static void
3307read_barrier_handler(uintptr_t address)
3308{
3309 rb_objspace_t *objspace = (rb_objspace_t *)rb_gc_get_objspace();
3310
3311 struct heap_page_body *page_body = GET_PAGE_BODY(address);
3312
3313 /* If the page_body is NULL, then mprotect cannot handle it and will crash
3314 * with "Cannot allocate memory". */
3315 if (page_body == NULL) {
3316 rb_bug("read_barrier_handler: segmentation fault at %p", (void *)address);
3317 }
3318
3319 int lev = rb_gc_vm_lock();
3320 {
3321 unlock_page_body(objspace, page_body);
3322
3323 objspace->profile.read_barrier_faults++;
3324
3325 invalidate_moved_page(objspace, GET_HEAP_PAGE(address));
3326 }
3327 rb_gc_vm_unlock(lev);
3328}
3329#endif
3330
3331#if !GC_CAN_COMPILE_COMPACTION
3332static void
3333uninstall_handlers(void)
3334{
3335 /* no-op */
3336}
3337
3338static void
3339install_handlers(void)
3340{
3341 /* no-op */
3342}
3343#elif defined(_WIN32)
3344static LPTOP_LEVEL_EXCEPTION_FILTER old_handler;
3345typedef void (*signal_handler)(int);
3346static signal_handler old_sigsegv_handler;
3347
3348static LONG WINAPI
3349read_barrier_signal(EXCEPTION_POINTERS *info)
3350{
3351 /* EXCEPTION_ACCESS_VIOLATION is what's raised by access to protected pages */
3352 if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) {
3353 /* > The second array element specifies the virtual address of the inaccessible data.
3354 * https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record
3355 *
3356 * Use this address to invalidate the page */
3357 read_barrier_handler((uintptr_t)info->ExceptionRecord->ExceptionInformation[1]);
3358 return EXCEPTION_CONTINUE_EXECUTION;
3359 }
3360 else {
3361 return EXCEPTION_CONTINUE_SEARCH;
3362 }
3363}
3364
3365static void
3366uninstall_handlers(void)
3367{
3368 signal(SIGSEGV, old_sigsegv_handler);
3369 SetUnhandledExceptionFilter(old_handler);
3370}
3371
3372static void
3373install_handlers(void)
3374{
3375 /* Remove SEGV handler so that the Unhandled Exception Filter handles it */
3376 old_sigsegv_handler = signal(SIGSEGV, NULL);
3377 /* Unhandled Exception Filter has access to the violation address similar
3378 * to si_addr from sigaction */
3379 old_handler = SetUnhandledExceptionFilter(read_barrier_signal);
3380}
3381#else
3382static struct sigaction old_sigbus_handler;
3383static struct sigaction old_sigsegv_handler;
3384
3385#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
3386static exception_mask_t old_exception_masks[32];
3387static mach_port_t old_exception_ports[32];
3388static exception_behavior_t old_exception_behaviors[32];
3389static thread_state_flavor_t old_exception_flavors[32];
3390static mach_msg_type_number_t old_exception_count;
3391
3392static void
3393disable_mach_bad_access_exc(void)
3394{
3395 old_exception_count = sizeof(old_exception_masks) / sizeof(old_exception_masks[0]);
3396 task_swap_exception_ports(
3397 mach_task_self(), EXC_MASK_BAD_ACCESS,
3398 MACH_PORT_NULL, EXCEPTION_DEFAULT, 0,
3399 old_exception_masks, &old_exception_count,
3400 old_exception_ports, old_exception_behaviors, old_exception_flavors
3401 );
3402}
3403
3404static void
3405restore_mach_bad_access_exc(void)
3406{
3407 for (mach_msg_type_number_t i = 0; i < old_exception_count; i++) {
3408 task_set_exception_ports(
3409 mach_task_self(),
3410 old_exception_masks[i], old_exception_ports[i],
3411 old_exception_behaviors[i], old_exception_flavors[i]
3412 );
3413 }
3414}
3415#endif
3416
3417static void
3418read_barrier_signal(int sig, siginfo_t *info, void *data)
3419{
3420 // setup SEGV/BUS handlers for errors
3421 struct sigaction prev_sigbus, prev_sigsegv;
3422 sigaction(SIGBUS, &old_sigbus_handler, &prev_sigbus);
3423 sigaction(SIGSEGV, &old_sigsegv_handler, &prev_sigsegv);
3424
3425 // enable SIGBUS/SEGV
3426 sigset_t set, prev_set;
3427 sigemptyset(&set);
3428 sigaddset(&set, SIGBUS);
3429 sigaddset(&set, SIGSEGV);
3430 sigprocmask(SIG_UNBLOCK, &set, &prev_set);
3431#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
3432 disable_mach_bad_access_exc();
3433#endif
3434 // run handler
3435 read_barrier_handler((uintptr_t)info->si_addr);
3436
3437 // reset SEGV/BUS handlers
3438#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
3439 restore_mach_bad_access_exc();
3440#endif
3441 sigaction(SIGBUS, &prev_sigbus, NULL);
3442 sigaction(SIGSEGV, &prev_sigsegv, NULL);
3443 sigprocmask(SIG_SETMASK, &prev_set, NULL);
3444}
3445
3446static void
3447uninstall_handlers(void)
3448{
3449#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
3450 restore_mach_bad_access_exc();
3451#endif
3452 sigaction(SIGBUS, &old_sigbus_handler, NULL);
3453 sigaction(SIGSEGV, &old_sigsegv_handler, NULL);
3454}
3455
3456static void
3457install_handlers(void)
3458{
3459 struct sigaction action;
3460 memset(&action, 0, sizeof(struct sigaction));
3461 sigemptyset(&action.sa_mask);
3462 action.sa_sigaction = read_barrier_signal;
3463 action.sa_flags = SA_SIGINFO | SA_ONSTACK;
3464
3465 sigaction(SIGBUS, &action, &old_sigbus_handler);
3466 sigaction(SIGSEGV, &action, &old_sigsegv_handler);
3467#ifdef HAVE_MACH_TASK_EXCEPTION_PORTS
3468 disable_mach_bad_access_exc();
3469#endif
3470}
3471#endif
3472
3473static void
3474gc_compact_finish(rb_objspace_t *objspace)
3475{
3476 for (int i = 0; i < HEAP_COUNT; i++) {
3477 rb_heap_t *heap = &heaps[i];
3478 gc_unprotect_pages(objspace, heap);
3479 }
3480
3481 uninstall_handlers();
3482
3483 gc_update_references(objspace);
3484 objspace->profile.compact_count++;
3485
3486 for (int i = 0; i < HEAP_COUNT; i++) {
3487 rb_heap_t *heap = &heaps[i];
3488 heap->compact_cursor = NULL;
3489 heap->free_pages = NULL;
3490 heap->compact_cursor_index = 0;
3491 }
3492
3493 if (gc_prof_enabled(objspace)) {
3494 gc_profile_record *record = gc_prof_record(objspace);
3495 record->moved_objects = objspace->rcompactor.total_moved - record->moved_objects;
3496 }
3497 objspace->flags.during_compacting = FALSE;
3498}
3499
3501 struct heap_page *page;
3502 int final_slots;
3503 int freed_slots;
3504 int empty_slots;
3505};
3506
3507static inline void
3508gc_sweep_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct gc_sweep_context *ctx)
3509{
3510 struct heap_page *sweep_page = ctx->page;
3511 short slot_size = sweep_page->slot_size;
3512 short slot_bits = slot_size / BASE_SLOT_SIZE;
3513 GC_ASSERT(slot_bits > 0);
3514
3515 do {
3516 VALUE vp = (VALUE)p;
3517 GC_ASSERT(vp % BASE_SLOT_SIZE == 0);
3518
3519 rb_asan_unpoison_object(vp, false);
3520 if (bitset & 1) {
3521 switch (BUILTIN_TYPE(vp)) {
3522 default: /* majority case */
3523 gc_report(2, objspace, "page_sweep: free %p\n", (void *)p);
3524#if RGENGC_CHECK_MODE
3525 if (!is_full_marking(objspace)) {
3526 if (RVALUE_OLD_P(objspace, vp)) rb_bug("page_sweep: %p - old while minor GC.", (void *)p);
3527 if (RVALUE_REMEMBERED(objspace, vp)) rb_bug("page_sweep: %p - remembered.", (void *)p);
3528 }
3529#endif
3530
3531 if (RVALUE_WB_UNPROTECTED(objspace, vp)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(vp), vp);
3532
3533#if RGENGC_CHECK_MODE
3534#define CHECK(x) if (x(objspace, vp) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", rb_obj_info(vp))
3535 CHECK(RVALUE_WB_UNPROTECTED);
3536 CHECK(RVALUE_MARKED);
3537 CHECK(RVALUE_MARKING);
3538 CHECK(RVALUE_UNCOLLECTIBLE);
3539#undef CHECK
3540#endif
3541
3542 rb_gc_event_hook(vp, RUBY_INTERNAL_EVENT_FREEOBJ);
3543
3544 bool has_object_id = FL_TEST_RAW(vp, FL_SEEN_OBJ_ID);
3545 rb_gc_obj_free_vm_weak_references(vp);
3546 if (rb_gc_obj_free(objspace, vp)) {
3547 if (has_object_id) {
3548 obj_free_object_id(objspace, vp);
3549 }
3550 // always add free slots back to the swept pages freelist,
3551 // so that if we're compacting, we can re-use the slots
3552 (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, BASE_SLOT_SIZE);
3553 heap_page_add_freeobj(objspace, sweep_page, vp);
3554 gc_report(3, objspace, "page_sweep: %s is added to freelist\n", rb_obj_info(vp));
3555 ctx->freed_slots++;
3556 }
3557 else {
3558 ctx->final_slots++;
3559 }
3560 break;
3561
3562 case T_MOVED:
3563 if (objspace->flags.during_compacting) {
3564 /* The sweep cursor shouldn't have made it to any
3565 * T_MOVED slots while the compact flag is enabled.
3566 * The sweep cursor and compact cursor move in
3567 * opposite directions, and when they meet references will
3568 * get updated and "during_compacting" should get disabled */
3569 rb_bug("T_MOVED shouldn't be seen until compaction is finished");
3570 }
3571 gc_report(3, objspace, "page_sweep: %s is added to freelist\n", rb_obj_info(vp));
3572 ctx->empty_slots++;
3573 heap_page_add_freeobj(objspace, sweep_page, vp);
3574 break;
3575 case T_ZOMBIE:
3576 /* already counted */
3577 break;
3578 case T_NONE:
3579 ctx->empty_slots++; /* already freed */
3580 break;
3581 }
3582 }
3583 p += slot_size;
3584 bitset >>= slot_bits;
3585 } while (bitset);
3586}
3587
3588static inline void
3589gc_sweep_page(rb_objspace_t *objspace, rb_heap_t *heap, struct gc_sweep_context *ctx)
3590{
3591 struct heap_page *sweep_page = ctx->page;
3592 GC_ASSERT(sweep_page->heap == heap);
3593
3594 uintptr_t p;
3595 bits_t *bits, bitset;
3596
3597 gc_report(2, objspace, "page_sweep: start.\n");
3598
3599#if RGENGC_CHECK_MODE
3600 if (!objspace->flags.immediate_sweep) {
3601 GC_ASSERT(sweep_page->flags.before_sweep == TRUE);
3602 }
3603#endif
3604 sweep_page->flags.before_sweep = FALSE;
3605 sweep_page->free_slots = 0;
3606
3607 p = (uintptr_t)sweep_page->start;
3608 bits = sweep_page->mark_bits;
3609
3610 int page_rvalue_count = sweep_page->total_slots * (sweep_page->slot_size / BASE_SLOT_SIZE);
3611 int out_of_range_bits = (NUM_IN_PAGE(p) + page_rvalue_count) % BITS_BITLENGTH;
3612 if (out_of_range_bits != 0) { // sizeof(RVALUE) == 64
3613 bits[BITMAP_INDEX(p) + page_rvalue_count / BITS_BITLENGTH] |= ~(((bits_t)1 << out_of_range_bits) - 1);
3614 }
3615
3616 /* The last bitmap plane may not be used if the last plane does not
3617 * have enough space for the slot_size. In that case, the last plane must
3618 * be skipped since none of the bits will be set. */
3619 int bitmap_plane_count = CEILDIV(NUM_IN_PAGE(p) + page_rvalue_count, BITS_BITLENGTH);
3620 GC_ASSERT(bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT - 1 ||
3621 bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT);
3622
3623 // Skip out of range slots at the head of the page
3624 bitset = ~bits[0];
3625 bitset >>= NUM_IN_PAGE(p);
3626 if (bitset) {
3627 gc_sweep_plane(objspace, heap, p, bitset, ctx);
3628 }
3629 p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
3630
3631 for (int i = 1; i < bitmap_plane_count; i++) {
3632 bitset = ~bits[i];
3633 if (bitset) {
3634 gc_sweep_plane(objspace, heap, p, bitset, ctx);
3635 }
3636 p += BITS_BITLENGTH * BASE_SLOT_SIZE;
3637 }
3638
3639 if (!heap->compact_cursor) {
3640 gc_setup_mark_bits(sweep_page);
3641 }
3642
3643#if GC_PROFILE_MORE_DETAIL
3644 if (gc_prof_enabled(objspace)) {
3645 gc_profile_record *record = gc_prof_record(objspace);
3646 record->removing_objects += ctx->final_slots + ctx->freed_slots;
3647 record->empty_objects += ctx->empty_slots;
3648 }
3649#endif
3650 if (0) fprintf(stderr, "gc_sweep_page(%"PRIdSIZE"): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n",
3651 rb_gc_count(),
3652 sweep_page->total_slots,
3653 ctx->freed_slots, ctx->empty_slots, ctx->final_slots);
3654
3655 sweep_page->free_slots += ctx->freed_slots + ctx->empty_slots;
3656 sweep_page->heap->total_freed_objects += ctx->freed_slots;
3657
3658 if (heap_pages_deferred_final && !finalizing) {
3659 gc_finalize_deferred_register(objspace);
3660 }
3661
3662#if RGENGC_CHECK_MODE
3663 short freelist_len = 0;
3664 asan_unlock_freelist(sweep_page);
3665 struct free_slot *ptr = sweep_page->freelist;
3666 while (ptr) {
3667 freelist_len++;
3668 rb_asan_unpoison_object((VALUE)ptr, false);
3669 struct free_slot *next = ptr->next;
3670 rb_asan_poison_object((VALUE)ptr);
3671 ptr = next;
3672 }
3673 asan_lock_freelist(sweep_page);
3674 if (freelist_len != sweep_page->free_slots) {
3675 rb_bug("inconsistent freelist length: expected %d but was %d", sweep_page->free_slots, freelist_len);
3676 }
3677#endif
3678
3679 gc_report(2, objspace, "page_sweep: end.\n");
3680}
3681
3682static const char *
3683gc_mode_name(enum gc_mode mode)
3684{
3685 switch (mode) {
3686 case gc_mode_none: return "none";
3687 case gc_mode_marking: return "marking";
3688 case gc_mode_sweeping: return "sweeping";
3689 case gc_mode_compacting: return "compacting";
3690 default: rb_bug("gc_mode_name: unknown mode: %d", (int)mode);
3691 }
3692}
3693
3694static void
3695gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode)
3696{
3697#if RGENGC_CHECK_MODE
3698 enum gc_mode prev_mode = gc_mode(objspace);
3699 switch (prev_mode) {
3700 case gc_mode_none: GC_ASSERT(mode == gc_mode_marking); break;
3701 case gc_mode_marking: GC_ASSERT(mode == gc_mode_sweeping); break;
3702 case gc_mode_sweeping: GC_ASSERT(mode == gc_mode_none || mode == gc_mode_compacting); break;
3703 case gc_mode_compacting: GC_ASSERT(mode == gc_mode_none); break;
3704 }
3705#endif
3706 if (0) fprintf(stderr, "gc_mode_transition: %s->%s\n", gc_mode_name(gc_mode(objspace)), gc_mode_name(mode));
3707 gc_mode_set(objspace, mode);
3708}
3709
3710static void
3711heap_page_freelist_append(struct heap_page *page, struct free_slot *freelist)
3712{
3713 if (freelist) {
3714 asan_unlock_freelist(page);
3715 if (page->freelist) {
3716 struct free_slot *p = page->freelist;
3717 rb_asan_unpoison_object((VALUE)p, false);
3718 while (p->next) {
3719 struct free_slot *prev = p;
3720 p = p->next;
3721 rb_asan_poison_object((VALUE)prev);
3722 rb_asan_unpoison_object((VALUE)p, false);
3723 }
3724 p->next = freelist;
3725 rb_asan_poison_object((VALUE)p);
3726 }
3727 else {
3728 page->freelist = freelist;
3729 }
3730 asan_lock_freelist(page);
3731 }
3732}
3733
3734static void
3735gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap)
3736{
3737 heap->sweeping_page = ccan_list_top(&heap->pages, struct heap_page, page_node);
3738 heap->free_pages = NULL;
3739 heap->pooled_pages = NULL;
3740 if (!objspace->flags.immediate_sweep) {
3741 struct heap_page *page = NULL;
3742
3743 ccan_list_for_each(&heap->pages, page, page_node) {
3744 page->flags.before_sweep = TRUE;
3745 }
3746 }
3747}
3748
3749#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
3750__attribute__((noinline))
3751#endif
3752
3753#if GC_CAN_COMPILE_COMPACTION
3754static void gc_sort_heap_by_compare_func(rb_objspace_t *objspace, gc_compact_compare_func compare_func);
3755static int compare_pinned_slots(const void *left, const void *right, void *d);
3756#endif
3757
3758static void
3759gc_ractor_newobj_cache_clear(void *c, void *data)
3760{
3761 rb_ractor_newobj_cache_t *newobj_cache = c;
3762
3763 newobj_cache->incremental_mark_step_allocated_slots = 0;
3764
3765 for (size_t heap_idx = 0; heap_idx < HEAP_COUNT; heap_idx++) {
3766 rb_ractor_newobj_heap_cache_t *cache = &newobj_cache->heap_caches[heap_idx];
3767
3768 struct heap_page *page = cache->using_page;
3769 struct free_slot *freelist = cache->freelist;
3770 RUBY_DEBUG_LOG("ractor using_page:%p freelist:%p", (void *)page, (void *)freelist);
3771
3772 heap_page_freelist_append(page, freelist);
3773
3774 cache->using_page = NULL;
3775 cache->freelist = NULL;
3776 }
3777}
3778
3779static void
3780gc_sweep_start(rb_objspace_t *objspace)
3781{
3782 gc_mode_transition(objspace, gc_mode_sweeping);
3783 objspace->rincgc.pooled_slots = 0;
3784 objspace->heap_pages.allocatable_slots = 0;
3785
3786#if GC_CAN_COMPILE_COMPACTION
3787 if (objspace->flags.during_compacting) {
3788 gc_sort_heap_by_compare_func(
3789 objspace,
3790 objspace->rcompactor.compare_func ? objspace->rcompactor.compare_func : compare_pinned_slots
3791 );
3792 }
3793#endif
3794
3795 for (int i = 0; i < HEAP_COUNT; i++) {
3796 rb_heap_t *heap = &heaps[i];
3797 gc_sweep_start_heap(objspace, heap);
3798
3799 /* We should call gc_sweep_finish_heap for size pools with no pages. */
3800 if (heap->sweeping_page == NULL) {
3801 GC_ASSERT(heap->total_pages == 0);
3802 GC_ASSERT(heap->total_slots == 0);
3803 gc_sweep_finish_heap(objspace, heap);
3804 }
3805 }
3806
3807 rb_gc_ractor_newobj_cache_foreach(gc_ractor_newobj_cache_clear, NULL);
3808}
3809
3810static void
3811gc_sweep_finish_heap(rb_objspace_t *objspace, rb_heap_t *heap)
3812{
3813 size_t total_slots = heap->total_slots;
3814 size_t swept_slots = heap->freed_slots + heap->empty_slots;
3815
3816 size_t init_slots = gc_params.heap_init_slots[heap - heaps];
3817 size_t min_free_slots = (size_t)(MAX(total_slots, init_slots) * gc_params.heap_free_slots_min_ratio);
3818
3819 if (swept_slots < min_free_slots &&
3820 /* The heap is a growth heap if it freed more slots than had empty slots. */
3821 (heap->empty_slots == 0 || heap->freed_slots > heap->empty_slots)) {
3822 /* If we don't have enough slots and we have pages on the tomb heap, move
3823 * pages from the tomb heap to the eden heap. This may prevent page
3824 * creation thrashing (frequently allocating and deallocting pages) and
3825 * GC thrashing (running GC more frequently than required). */
3826 struct heap_page *resurrected_page;
3827 while (swept_slots < min_free_slots &&
3828 (resurrected_page = heap_page_resurrect(objspace))) {
3829 heap_add_page(objspace, heap, resurrected_page);
3830 heap_add_freepage(heap, resurrected_page);
3831
3832 swept_slots += resurrected_page->free_slots;
3833 }
3834
3835 if (swept_slots < min_free_slots) {
3836 /* Grow this heap if we are in a major GC or if we haven't run at least
3837 * RVALUE_OLD_AGE minor GC since the last major GC. */
3838 if (is_full_marking(objspace) ||
3839 objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) {
3840 heap_allocatable_slots_expand(objspace, heap, swept_slots, heap->total_slots);
3841 }
3842 else {
3843 gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_NOFREE;
3844 heap->force_major_gc_count++;
3845 }
3846 }
3847 }
3848}
3849
3850static void
3851gc_sweep_finish(rb_objspace_t *objspace)
3852{
3853 gc_report(1, objspace, "gc_sweep_finish\n");
3854
3855 gc_prof_set_heap_info(objspace);
3856 heap_pages_free_unused_pages(objspace);
3857
3858 for (int i = 0; i < HEAP_COUNT; i++) {
3859 rb_heap_t *heap = &heaps[i];
3860
3861 heap->freed_slots = 0;
3862 heap->empty_slots = 0;
3863
3864 if (!will_be_incremental_marking(objspace)) {
3865 struct heap_page *end_page = heap->free_pages;
3866 if (end_page) {
3867 while (end_page->free_next) end_page = end_page->free_next;
3868 end_page->free_next = heap->pooled_pages;
3869 }
3870 else {
3871 heap->free_pages = heap->pooled_pages;
3872 }
3873 heap->pooled_pages = NULL;
3874 objspace->rincgc.pooled_slots = 0;
3875 }
3876 }
3877
3878 rb_gc_event_hook(0, RUBY_INTERNAL_EVENT_GC_END_SWEEP);
3879 gc_mode_transition(objspace, gc_mode_none);
3880
3881#if RGENGC_CHECK_MODE >= 2
3882 gc_verify_internal_consistency(objspace);
3883#endif
3884}
3885
3886static int
3887gc_sweep_step(rb_objspace_t *objspace, rb_heap_t *heap)
3888{
3889 struct heap_page *sweep_page = heap->sweeping_page;
3890 int unlink_limit = GC_SWEEP_PAGES_FREEABLE_PER_STEP;
3891 int swept_slots = 0;
3892 int pooled_slots = 0;
3893
3894 if (sweep_page == NULL) return FALSE;
3895
3896#if GC_ENABLE_LAZY_SWEEP
3897 gc_prof_sweep_timer_start(objspace);
3898#endif
3899
3900 do {
3901 RUBY_DEBUG_LOG("sweep_page:%p", (void *)sweep_page);
3902
3903 struct gc_sweep_context ctx = {
3904 .page = sweep_page,
3905 .final_slots = 0,
3906 .freed_slots = 0,
3907 .empty_slots = 0,
3908 };
3909 gc_sweep_page(objspace, heap, &ctx);
3910 int free_slots = ctx.freed_slots + ctx.empty_slots;
3911
3912 heap->sweeping_page = ccan_list_next(&heap->pages, sweep_page, page_node);
3913
3914 if (free_slots == sweep_page->total_slots &&
3915 heap_pages_freeable_pages > 0 &&
3916 unlink_limit > 0) {
3917 heap_pages_freeable_pages--;
3918 unlink_limit--;
3919 /* There are no living objects, so move this page to the global empty pages. */
3920 heap_unlink_page(objspace, heap, sweep_page);
3921
3922 sweep_page->start = 0;
3923 sweep_page->total_slots = 0;
3924 sweep_page->slot_size = 0;
3925 sweep_page->heap = NULL;
3926 sweep_page->free_slots = 0;
3927
3928 asan_unlock_freelist(sweep_page);
3929 sweep_page->freelist = NULL;
3930 asan_lock_freelist(sweep_page);
3931
3932 asan_poison_memory_region(sweep_page->body, HEAP_PAGE_SIZE);
3933
3934 objspace->empty_pages_count++;
3935 sweep_page->free_next = objspace->empty_pages;
3936 objspace->empty_pages = sweep_page;
3937 }
3938 else if (free_slots > 0) {
3939 heap->freed_slots += ctx.freed_slots;
3940 heap->empty_slots += ctx.empty_slots;
3941
3942 if (pooled_slots < GC_INCREMENTAL_SWEEP_POOL_SLOT_COUNT) {
3943 heap_add_poolpage(objspace, heap, sweep_page);
3944 pooled_slots += free_slots;
3945 }
3946 else {
3947 heap_add_freepage(heap, sweep_page);
3948 swept_slots += free_slots;
3949 if (swept_slots > GC_INCREMENTAL_SWEEP_SLOT_COUNT) {
3950 break;
3951 }
3952 }
3953 }
3954 else {
3955 sweep_page->free_next = NULL;
3956 }
3957 } while ((sweep_page = heap->sweeping_page));
3958
3959 if (!heap->sweeping_page) {
3960 gc_sweep_finish_heap(objspace, heap);
3961
3962 if (!has_sweeping_pages(objspace)) {
3963 gc_sweep_finish(objspace);
3964 }
3965 }
3966
3967#if GC_ENABLE_LAZY_SWEEP
3968 gc_prof_sweep_timer_stop(objspace);
3969#endif
3970
3971 return heap->free_pages != NULL;
3972}
3973
3974static void
3975gc_sweep_rest(rb_objspace_t *objspace)
3976{
3977 for (int i = 0; i < HEAP_COUNT; i++) {
3978 rb_heap_t *heap = &heaps[i];
3979
3980 while (heap->sweeping_page) {
3981 gc_sweep_step(objspace, heap);
3982 }
3983 }
3984}
3985
3986static void
3987gc_sweep_continue(rb_objspace_t *objspace, rb_heap_t *sweep_heap)
3988{
3989 GC_ASSERT(dont_gc_val() == FALSE || objspace->profile.latest_gc_info & GPR_FLAG_METHOD);
3990 if (!GC_ENABLE_LAZY_SWEEP) return;
3991
3992 gc_sweeping_enter(objspace);
3993
3994 for (int i = 0; i < HEAP_COUNT; i++) {
3995 rb_heap_t *heap = &heaps[i];
3996 if (!gc_sweep_step(objspace, heap)) {
3997 /* sweep_heap requires a free slot but sweeping did not yield any
3998 * and we cannot allocate a new page. */
3999 if (heap == sweep_heap && objspace->heap_pages.allocatable_slots == 0) {
4000 /* Not allowed to create a new page so finish sweeping. */
4001 gc_sweep_rest(objspace);
4002 break;
4003 }
4004 }
4005 }
4006
4007 gc_sweeping_exit(objspace);
4008}
4009
4010VALUE
4011rb_gc_impl_location(void *objspace_ptr, VALUE value)
4012{
4013 VALUE destination;
4014
4015 asan_unpoisoning_object(value) {
4016 if (BUILTIN_TYPE(value) == T_MOVED) {
4017 destination = (VALUE)RMOVED(value)->destination;
4018 GC_ASSERT(BUILTIN_TYPE(destination) != T_NONE);
4019 }
4020 else {
4021 destination = value;
4022 }
4023 }
4024
4025 return destination;
4026}
4027
4028#if GC_CAN_COMPILE_COMPACTION
4029static void
4030invalidate_moved_plane(rb_objspace_t *objspace, struct heap_page *page, uintptr_t p, bits_t bitset)
4031{
4032 if (bitset) {
4033 do {
4034 if (bitset & 1) {
4035 VALUE forwarding_object = (VALUE)p;
4036 VALUE object;
4037
4038 if (BUILTIN_TYPE(forwarding_object) == T_MOVED) {
4039 GC_ASSERT(RVALUE_PINNED(objspace, forwarding_object));
4040 GC_ASSERT(!RVALUE_MARKED(objspace, forwarding_object));
4041
4042 CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object);
4043
4044 object = rb_gc_impl_location(objspace, forwarding_object);
4045
4046 uint32_t original_shape_id = 0;
4047 if (RB_TYPE_P(object, T_OBJECT)) {
4048 original_shape_id = RMOVED(forwarding_object)->original_shape_id;
4049 }
4050
4051 gc_move(objspace, object, forwarding_object, GET_HEAP_PAGE(object)->slot_size, page->slot_size);
4052 /* forwarding_object is now our actual object, and "object"
4053 * is the free slot for the original page */
4054
4055 if (original_shape_id) {
4056 rb_gc_set_shape(forwarding_object, original_shape_id);
4057 }
4058
4059 struct heap_page *orig_page = GET_HEAP_PAGE(object);
4060 orig_page->free_slots++;
4061 heap_page_add_freeobj(objspace, orig_page, object);
4062
4063 GC_ASSERT(RVALUE_MARKED(objspace, forwarding_object));
4064 GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_MOVED);
4065 GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_NONE);
4066 }
4067 }
4068 p += BASE_SLOT_SIZE;
4069 bitset >>= 1;
4070 } while (bitset);
4071 }
4072}
4073
4074static void
4075invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page)
4076{
4077 int i;
4078 bits_t *mark_bits, *pin_bits;
4079 bits_t bitset;
4080
4081 mark_bits = page->mark_bits;
4082 pin_bits = page->pinned_bits;
4083
4084 uintptr_t p = page->start;
4085
4086 // Skip out of range slots at the head of the page
4087 bitset = pin_bits[0] & ~mark_bits[0];
4088 bitset >>= NUM_IN_PAGE(p);
4089 invalidate_moved_plane(objspace, page, p, bitset);
4090 p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
4091
4092 for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) {
4093 /* Moved objects are pinned but never marked. We reuse the pin bits
4094 * to indicate there is a moved object in this slot. */
4095 bitset = pin_bits[i] & ~mark_bits[i];
4096
4097 invalidate_moved_plane(objspace, page, p, bitset);
4098 p += BITS_BITLENGTH * BASE_SLOT_SIZE;
4099 }
4100}
4101#endif
4102
4103static void
4104gc_compact_start(rb_objspace_t *objspace)
4105{
4106 struct heap_page *page = NULL;
4107 gc_mode_transition(objspace, gc_mode_compacting);
4108
4109 for (int i = 0; i < HEAP_COUNT; i++) {
4110 rb_heap_t *heap = &heaps[i];
4111 ccan_list_for_each(&heap->pages, page, page_node) {
4112 page->flags.before_sweep = TRUE;
4113 }
4114
4115 heap->compact_cursor = ccan_list_tail(&heap->pages, struct heap_page, page_node);
4116 heap->compact_cursor_index = 0;
4117 }
4118
4119 if (gc_prof_enabled(objspace)) {
4120 gc_profile_record *record = gc_prof_record(objspace);
4121 record->moved_objects = objspace->rcompactor.total_moved;
4122 }
4123
4124 memset(objspace->rcompactor.considered_count_table, 0, T_MASK * sizeof(size_t));
4125 memset(objspace->rcompactor.moved_count_table, 0, T_MASK * sizeof(size_t));
4126 memset(objspace->rcompactor.moved_up_count_table, 0, T_MASK * sizeof(size_t));
4127 memset(objspace->rcompactor.moved_down_count_table, 0, T_MASK * sizeof(size_t));
4128
4129 /* Set up read barrier for pages containing MOVED objects */
4130 install_handlers();
4131}
4132
4133static void gc_sweep_compact(rb_objspace_t *objspace);
4134
4135static void
4136gc_sweep(rb_objspace_t *objspace)
4137{
4138 gc_sweeping_enter(objspace);
4139
4140 const unsigned int immediate_sweep = objspace->flags.immediate_sweep;
4141
4142 gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep);
4143
4144 gc_sweep_start(objspace);
4145 if (objspace->flags.during_compacting) {
4146 gc_sweep_compact(objspace);
4147 }
4148
4149 if (immediate_sweep) {
4150#if !GC_ENABLE_LAZY_SWEEP
4151 gc_prof_sweep_timer_start(objspace);
4152#endif
4153 gc_sweep_rest(objspace);
4154#if !GC_ENABLE_LAZY_SWEEP
4155 gc_prof_sweep_timer_stop(objspace);
4156#endif
4157 }
4158 else {
4159
4160 /* Sweep every size pool. */
4161 for (int i = 0; i < HEAP_COUNT; i++) {
4162 rb_heap_t *heap = &heaps[i];
4163 gc_sweep_step(objspace, heap);
4164 }
4165 }
4166
4167 gc_sweeping_exit(objspace);
4168}
4169
4170/* Marking - Marking stack */
4171
4172static stack_chunk_t *
4173stack_chunk_alloc(void)
4174{
4175 stack_chunk_t *res;
4176
4177 res = malloc(sizeof(stack_chunk_t));
4178 if (!res)
4179 rb_memerror();
4180
4181 return res;
4182}
4183
4184static inline int
4185is_mark_stack_empty(mark_stack_t *stack)
4186{
4187 return stack->chunk == NULL;
4188}
4189
4190static size_t
4191mark_stack_size(mark_stack_t *stack)
4192{
4193 size_t size = stack->index;
4194 stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL;
4195
4196 while (chunk) {
4197 size += stack->limit;
4198 chunk = chunk->next;
4199 }
4200 return size;
4201}
4202
4203static void
4204add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
4205{
4206 chunk->next = stack->cache;
4207 stack->cache = chunk;
4208 stack->cache_size++;
4209}
4210
4211static void
4212shrink_stack_chunk_cache(mark_stack_t *stack)
4213{
4214 stack_chunk_t *chunk;
4215
4216 if (stack->unused_cache_size > (stack->cache_size/2)) {
4217 chunk = stack->cache;
4218 stack->cache = stack->cache->next;
4219 stack->cache_size--;
4220 free(chunk);
4221 }
4222 stack->unused_cache_size = stack->cache_size;
4223}
4224
4225static void
4226push_mark_stack_chunk(mark_stack_t *stack)
4227{
4228 stack_chunk_t *next;
4229
4230 GC_ASSERT(stack->index == stack->limit);
4231
4232 if (stack->cache_size > 0) {
4233 next = stack->cache;
4234 stack->cache = stack->cache->next;
4235 stack->cache_size--;
4236 if (stack->unused_cache_size > stack->cache_size)
4237 stack->unused_cache_size = stack->cache_size;
4238 }
4239 else {
4240 next = stack_chunk_alloc();
4241 }
4242 next->next = stack->chunk;
4243 stack->chunk = next;
4244 stack->index = 0;
4245}
4246
4247static void
4248pop_mark_stack_chunk(mark_stack_t *stack)
4249{
4250 stack_chunk_t *prev;
4251
4252 prev = stack->chunk->next;
4253 GC_ASSERT(stack->index == 0);
4254 add_stack_chunk_cache(stack, stack->chunk);
4255 stack->chunk = prev;
4256 stack->index = stack->limit;
4257}
4258
4259static void
4260mark_stack_chunk_list_free(stack_chunk_t *chunk)
4261{
4262 stack_chunk_t *next = NULL;
4263
4264 while (chunk != NULL) {
4265 next = chunk->next;
4266 free(chunk);
4267 chunk = next;
4268 }
4269}
4270
4271static void
4272free_stack_chunks(mark_stack_t *stack)
4273{
4274 mark_stack_chunk_list_free(stack->chunk);
4275}
4276
4277static void
4278mark_stack_free_cache(mark_stack_t *stack)
4279{
4280 mark_stack_chunk_list_free(stack->cache);
4281 stack->cache_size = 0;
4282 stack->unused_cache_size = 0;
4283}
4284
4285static void
4286push_mark_stack(mark_stack_t *stack, VALUE obj)
4287{
4288 switch (BUILTIN_TYPE(obj)) {
4289 case T_OBJECT:
4290 case T_CLASS:
4291 case T_MODULE:
4292 case T_FLOAT:
4293 case T_STRING:
4294 case T_REGEXP:
4295 case T_ARRAY:
4296 case T_HASH:
4297 case T_STRUCT:
4298 case T_BIGNUM:
4299 case T_FILE:
4300 case T_DATA:
4301 case T_MATCH:
4302 case T_COMPLEX:
4303 case T_RATIONAL:
4304 case T_TRUE:
4305 case T_FALSE:
4306 case T_SYMBOL:
4307 case T_IMEMO:
4308 case T_ICLASS:
4309 if (stack->index == stack->limit) {
4310 push_mark_stack_chunk(stack);
4311 }
4312 stack->chunk->data[stack->index++] = obj;
4313 return;
4314
4315 case T_NONE:
4316 case T_NIL:
4317 case T_FIXNUM:
4318 case T_MOVED:
4319 case T_ZOMBIE:
4320 case T_UNDEF:
4321 case T_MASK:
4322 rb_bug("push_mark_stack() called for broken object");
4323 break;
4324
4325 case T_NODE:
4326 rb_bug("push_mark_stack: unexpected T_NODE object");
4327 break;
4328 }
4329
4330 rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
4331 BUILTIN_TYPE(obj), (void *)obj,
4332 is_pointer_to_heap((rb_objspace_t *)rb_gc_get_objspace(), (void *)obj) ? "corrupted object" : "non object");
4333}
4334
4335static int
4336pop_mark_stack(mark_stack_t *stack, VALUE *data)
4337{
4338 if (is_mark_stack_empty(stack)) {
4339 return FALSE;
4340 }
4341 if (stack->index == 1) {
4342 *data = stack->chunk->data[--stack->index];
4343 pop_mark_stack_chunk(stack);
4344 }
4345 else {
4346 *data = stack->chunk->data[--stack->index];
4347 }
4348 return TRUE;
4349}
4350
4351static void
4352init_mark_stack(mark_stack_t *stack)
4353{
4354 int i;
4355
4356 MEMZERO(stack, mark_stack_t, 1);
4357 stack->index = stack->limit = STACK_CHUNK_SIZE;
4358
4359 for (i=0; i < 4; i++) {
4360 add_stack_chunk_cache(stack, stack_chunk_alloc());
4361 }
4362 stack->unused_cache_size = stack->cache_size;
4363}
4364
4365/* Marking */
4366
4367static void
4368rgengc_check_relation(rb_objspace_t *objspace, VALUE obj)
4369{
4370 const VALUE old_parent = objspace->rgengc.parent_object;
4371
4372 if (old_parent) { /* parent object is old */
4373 if (RVALUE_WB_UNPROTECTED(objspace, obj) || !RVALUE_OLD_P(objspace, obj)) {
4374 rgengc_remember(objspace, old_parent);
4375 }
4376 }
4377
4378 GC_ASSERT(old_parent == objspace->rgengc.parent_object);
4379}
4380
4381static inline int
4382gc_mark_set(rb_objspace_t *objspace, VALUE obj)
4383{
4384 if (RVALUE_MARKED(objspace, obj)) return 0;
4385 MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj);
4386 return 1;
4387}
4388
4389static void
4390gc_aging(rb_objspace_t *objspace, VALUE obj)
4391{
4392 /* Disable aging if Major GC's are disabled. This will prevent longish lived
4393 * objects filling up the heap at the expense of marking many more objects.
4394 *
4395 * We should always pre-warm our process when disabling majors, by running
4396 * GC manually several times so that most objects likely to become oldgen
4397 * are already oldgen.
4398 */
4399 if(!gc_config_full_mark_val)
4400 return;
4401
4402 struct heap_page *page = GET_HEAP_PAGE(obj);
4403
4404 GC_ASSERT(RVALUE_MARKING(objspace, obj) == FALSE);
4405 check_rvalue_consistency(objspace, obj);
4406
4407 if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) {
4408 if (!RVALUE_OLD_P(objspace, obj)) {
4409 gc_report(3, objspace, "gc_aging: YOUNG: %s\n", rb_obj_info(obj));
4410 RVALUE_AGE_INC(objspace, obj);
4411 }
4412 else if (is_full_marking(objspace)) {
4413 GC_ASSERT(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE);
4414 RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj);
4415 }
4416 }
4417 check_rvalue_consistency(objspace, obj);
4418
4419 objspace->marked_slots++;
4420}
4421
4422static void
4423gc_grey(rb_objspace_t *objspace, VALUE obj)
4424{
4425#if RGENGC_CHECK_MODE
4426 if (RVALUE_MARKED(objspace, obj) == FALSE) rb_bug("gc_grey: %s is not marked.", rb_obj_info(obj));
4427 if (RVALUE_MARKING(objspace, obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", rb_obj_info(obj));
4428#endif
4429
4430 if (is_incremental_marking(objspace)) {
4431 MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
4432 }
4433
4434 push_mark_stack(&objspace->mark_stack, obj);
4435}
4436
4437static void
4438gc_mark(rb_objspace_t *objspace, VALUE obj)
4439{
4440 GC_ASSERT(during_gc);
4441
4442 rgengc_check_relation(objspace, obj);
4443 if (!gc_mark_set(objspace, obj)) return; /* already marked */
4444
4445 if (0) { // for debug GC marking miss
4446 if (objspace->rgengc.parent_object) {
4447 RUBY_DEBUG_LOG("%p (%s) parent:%p (%s)",
4448 (void *)obj, obj_type_name(obj),
4449 (void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object));
4450 }
4451 else {
4452 RUBY_DEBUG_LOG("%p (%s)", (void *)obj, obj_type_name(obj));
4453 }
4454 }
4455
4456 if (RB_UNLIKELY(RB_TYPE_P(obj, T_NONE))) {
4457 rb_obj_info_dump(obj);
4458 rb_bug("try to mark T_NONE object"); /* check here will help debugging */
4459 }
4460
4461 gc_aging(objspace, obj);
4462 gc_grey(objspace, obj);
4463}
4464
4465static inline void
4466gc_pin(rb_objspace_t *objspace, VALUE obj)
4467{
4468 GC_ASSERT(!SPECIAL_CONST_P(obj));
4469 if (RB_UNLIKELY(objspace->flags.during_compacting)) {
4470 if (RB_LIKELY(during_gc)) {
4471 if (!RVALUE_PINNED(objspace, obj)) {
4472 GC_ASSERT(GET_HEAP_PAGE(obj)->pinned_slots <= GET_HEAP_PAGE(obj)->total_slots);
4473 GET_HEAP_PAGE(obj)->pinned_slots++;
4474 MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj);
4475 }
4476 }
4477 }
4478}
4479
4480static inline void
4481gc_mark_and_pin(rb_objspace_t *objspace, VALUE obj)
4482{
4483 gc_pin(objspace, obj);
4484 gc_mark(objspace, obj);
4485}
4486
4487void
4488rb_gc_impl_mark_and_move(void *objspace_ptr, VALUE *ptr)
4489{
4490 rb_objspace_t *objspace = objspace_ptr;
4491
4492 if (RB_UNLIKELY(objspace->flags.during_reference_updating)) {
4493 GC_ASSERT(objspace->flags.during_compacting);
4494 GC_ASSERT(during_gc);
4495
4496 *ptr = rb_gc_impl_location(objspace, *ptr);
4497 }
4498 else {
4499 gc_mark(objspace, *ptr);
4500 }
4501}
4502
4503void
4504rb_gc_impl_mark(void *objspace_ptr, VALUE obj)
4505{
4506 rb_objspace_t *objspace = objspace_ptr;
4507
4508 gc_mark(objspace, obj);
4509}
4510
4511void
4512rb_gc_impl_mark_and_pin(void *objspace_ptr, VALUE obj)
4513{
4514 rb_objspace_t *objspace = objspace_ptr;
4515
4516 gc_mark_and_pin(objspace, obj);
4517}
4518
4519void
4520rb_gc_impl_mark_maybe(void *objspace_ptr, VALUE obj)
4521{
4522 rb_objspace_t *objspace = objspace_ptr;
4523
4524 (void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
4525
4526 if (is_pointer_to_heap(objspace, (void *)obj)) {
4527 asan_unpoisoning_object(obj) {
4528 /* Garbage can live on the stack, so do not mark or pin */
4529 switch (BUILTIN_TYPE(obj)) {
4530 case T_ZOMBIE:
4531 case T_NONE:
4532 break;
4533 default:
4534 gc_mark_and_pin(objspace, obj);
4535 break;
4536 }
4537 }
4538 }
4539}
4540
4541void
4542rb_gc_impl_mark_weak(void *objspace_ptr, VALUE *ptr)
4543{
4544 rb_objspace_t *objspace = objspace_ptr;
4545
4546 GC_ASSERT(objspace->rgengc.parent_object == 0 || FL_TEST(objspace->rgengc.parent_object, FL_WB_PROTECTED));
4547
4548 VALUE obj = *ptr;
4549
4550 if (RB_UNLIKELY(RB_TYPE_P(obj, T_NONE))) {
4551 rb_obj_info_dump(obj);
4552 rb_bug("try to mark T_NONE object");
4553 }
4554
4555 /* If we are in a minor GC and the other object is old, then obj should
4556 * already be marked and cannot be reclaimed in this GC cycle so we don't
4557 * need to add it to the weak references list. */
4558 if (!is_full_marking(objspace) && RVALUE_OLD_P(objspace, obj)) {
4559 GC_ASSERT(RVALUE_MARKED(objspace, obj));
4560 GC_ASSERT(!objspace->flags.during_compacting);
4561
4562 return;
4563 }
4564
4565 rgengc_check_relation(objspace, obj);
4566
4567 rb_darray_append_without_gc(&objspace->weak_references, ptr);
4568
4569 objspace->profile.weak_references_count++;
4570}
4571
4572void
4573rb_gc_impl_remove_weak(void *objspace_ptr, VALUE parent_obj, VALUE *ptr)
4574{
4575 rb_objspace_t *objspace = objspace_ptr;
4576
4577 /* If we're not incremental marking, then the state of the objects can't
4578 * change so we don't need to do anything. */
4579 if (!is_incremental_marking(objspace)) return;
4580 /* If parent_obj has not been marked, then ptr has not yet been marked
4581 * weak, so we don't need to do anything. */
4582 if (!RVALUE_MARKED(objspace, parent_obj)) return;
4583
4584 VALUE **ptr_ptr;
4585 rb_darray_foreach(objspace->weak_references, i, ptr_ptr) {
4586 if (*ptr_ptr == ptr) {
4587 *ptr_ptr = NULL;
4588 break;
4589 }
4590 }
4591}
4592
4593static int
4594pin_value(st_data_t key, st_data_t value, st_data_t data)
4595{
4596 rb_gc_impl_mark_and_pin((void *)data, (VALUE)value);
4597
4598 return ST_CONTINUE;
4599}
4600
4601static void
4602mark_roots(rb_objspace_t *objspace, const char **categoryp)
4603{
4604#define MARK_CHECKPOINT(category) do { \
4605 if (categoryp) *categoryp = category; \
4606} while (0)
4607
4608 MARK_CHECKPOINT("objspace");
4609 objspace->rgengc.parent_object = Qfalse;
4610
4611 if (finalizer_table != NULL) {
4612 st_foreach(finalizer_table, pin_value, (st_data_t)objspace);
4613 }
4614
4615 st_foreach(objspace->obj_to_id_tbl, gc_mark_tbl_no_pin_i, (st_data_t)objspace);
4616
4617 if (stress_to_class) rb_gc_mark(stress_to_class);
4618
4619 rb_gc_save_machine_context();
4620 rb_gc_mark_roots(objspace, categoryp);
4621}
4622
4623static inline void
4624gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj)
4625{
4626 if (RVALUE_OLD_P(objspace, obj)) {
4627 objspace->rgengc.parent_object = obj;
4628 }
4629 else {
4630 objspace->rgengc.parent_object = Qfalse;
4631 }
4632}
4633
4634static void
4635gc_mark_children(rb_objspace_t *objspace, VALUE obj)
4636{
4637 gc_mark_set_parent(objspace, obj);
4638 rb_gc_mark_children(objspace, obj);
4639}
4640
4645static inline int
4646gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count)
4647{
4648 mark_stack_t *mstack = &objspace->mark_stack;
4649 VALUE obj;
4650 size_t marked_slots_at_the_beginning = objspace->marked_slots;
4651 size_t popped_count = 0;
4652
4653 while (pop_mark_stack(mstack, &obj)) {
4654 if (obj == Qundef) continue; /* skip */
4655
4656 if (RGENGC_CHECK_MODE && !RVALUE_MARKED(objspace, obj)) {
4657 rb_bug("gc_mark_stacked_objects: %s is not marked.", rb_obj_info(obj));
4658 }
4659 gc_mark_children(objspace, obj);
4660
4661 if (incremental) {
4662 if (RGENGC_CHECK_MODE && !RVALUE_MARKING(objspace, obj)) {
4663 rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0");
4664 }
4665 CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj);
4666 popped_count++;
4667
4668 if (popped_count + (objspace->marked_slots - marked_slots_at_the_beginning) > count) {
4669 break;
4670 }
4671 }
4672 else {
4673 /* just ignore marking bits */
4674 }
4675 }
4676
4677 if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace);
4678
4679 if (is_mark_stack_empty(mstack)) {
4680 shrink_stack_chunk_cache(mstack);
4681 return TRUE;
4682 }
4683 else {
4684 return FALSE;
4685 }
4686}
4687
4688static int
4689gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count)
4690{
4691 return gc_mark_stacked_objects(objspace, TRUE, count);
4692}
4693
4694static int
4695gc_mark_stacked_objects_all(rb_objspace_t *objspace)
4696{
4697 return gc_mark_stacked_objects(objspace, FALSE, 0);
4698}
4699
4700#if RGENGC_CHECK_MODE >= 4
4701
4702#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
4703#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
4704#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
4705
4706struct reflist {
4707 VALUE *list;
4708 int pos;
4709 int size;
4710};
4711
4712static struct reflist *
4713reflist_create(VALUE obj)
4714{
4715 struct reflist *refs = xmalloc(sizeof(struct reflist));
4716 refs->size = 1;
4717 refs->list = ALLOC_N(VALUE, refs->size);
4718 refs->list[0] = obj;
4719 refs->pos = 1;
4720 return refs;
4721}
4722
4723static void
4724reflist_destruct(struct reflist *refs)
4725{
4726 xfree(refs->list);
4727 xfree(refs);
4728}
4729
4730static void
4731reflist_add(struct reflist *refs, VALUE obj)
4732{
4733 if (refs->pos == refs->size) {
4734 refs->size *= 2;
4735 SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
4736 }
4737
4738 refs->list[refs->pos++] = obj;
4739}
4740
4741static void
4742reflist_dump(struct reflist *refs)
4743{
4744 int i;
4745 for (i=0; i<refs->pos; i++) {
4746 VALUE obj = refs->list[i];
4747 if (IS_ROOTSIG(obj)) { /* root */
4748 fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
4749 }
4750 else {
4751 fprintf(stderr, "<%s>", rb_obj_info(obj));
4752 }
4753 if (i+1 < refs->pos) fprintf(stderr, ", ");
4754 }
4755}
4756
4757static int
4758reflist_referred_from_machine_context(struct reflist *refs)
4759{
4760 int i;
4761 for (i=0; i<refs->pos; i++) {
4762 VALUE obj = refs->list[i];
4763 if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
4764 }
4765 return 0;
4766}
4767
4768struct allrefs {
4770 /* a -> obj1
4771 * b -> obj1
4772 * c -> obj1
4773 * c -> obj2
4774 * d -> obj3
4775 * #=> {obj1 => [a, b, c], obj2 => [c, d]}
4776 */
4777 struct st_table *references;
4778 const char *category;
4779 VALUE root_obj;
4781};
4782
4783static int
4784allrefs_add(struct allrefs *data, VALUE obj)
4785{
4786 struct reflist *refs;
4787 st_data_t r;
4788
4789 if (st_lookup(data->references, obj, &r)) {
4790 refs = (struct reflist *)r;
4791 reflist_add(refs, data->root_obj);
4792 return 0;
4793 }
4794 else {
4795 refs = reflist_create(data->root_obj);
4796 st_insert(data->references, obj, (st_data_t)refs);
4797 return 1;
4798 }
4799}
4800
4801static void
4802allrefs_i(VALUE obj, void *ptr)
4803{
4804 struct allrefs *data = (struct allrefs *)ptr;
4805
4806 if (allrefs_add(data, obj)) {
4807 push_mark_stack(&data->mark_stack, obj);
4808 }
4809}
4810
4811static void
4812allrefs_roots_i(VALUE obj, void *ptr)
4813{
4814 struct allrefs *data = (struct allrefs *)ptr;
4815 if (strlen(data->category) == 0) rb_bug("!!!");
4816 data->root_obj = MAKE_ROOTSIG(data->category);
4817
4818 if (allrefs_add(data, obj)) {
4819 push_mark_stack(&data->mark_stack, obj);
4820 }
4821}
4822#define PUSH_MARK_FUNC_DATA(v) do { \
4823 struct gc_mark_func_data_struct *prev_mark_func_data = GET_VM()->gc.mark_func_data; \
4824 GET_VM()->gc.mark_func_data = (v);
4825
4826#define POP_MARK_FUNC_DATA() GET_VM()->gc.mark_func_data = prev_mark_func_data;} while (0)
4827
4828static st_table *
4829objspace_allrefs(rb_objspace_t *objspace)
4830{
4831 struct allrefs data;
4832 struct gc_mark_func_data_struct mfd;
4833 VALUE obj;
4834 int prev_dont_gc = dont_gc_val();
4835 dont_gc_on();
4836
4837 data.objspace = objspace;
4838 data.references = st_init_numtable();
4839 init_mark_stack(&data.mark_stack);
4840
4841 mfd.mark_func = allrefs_roots_i;
4842 mfd.data = &data;
4843
4844 /* traverse root objects */
4845 PUSH_MARK_FUNC_DATA(&mfd);
4846 GET_VM()->gc.mark_func_data = &mfd;
4847 mark_roots(objspace, &data.category);
4848 POP_MARK_FUNC_DATA();
4849
4850 /* traverse rest objects reachable from root objects */
4851 while (pop_mark_stack(&data.mark_stack, &obj)) {
4852 rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
4853 }
4854 free_stack_chunks(&data.mark_stack);
4855
4856 dont_gc_set(prev_dont_gc);
4857 return data.references;
4858}
4859
4860static int
4861objspace_allrefs_destruct_i(st_data_t key, st_data_t value, st_data_t ptr)
4862{
4863 struct reflist *refs = (struct reflist *)value;
4864 reflist_destruct(refs);
4865 return ST_CONTINUE;
4866}
4867
4868static void
4869objspace_allrefs_destruct(struct st_table *refs)
4870{
4871 st_foreach(refs, objspace_allrefs_destruct_i, 0);
4872 st_free_table(refs);
4873}
4874
4875#if RGENGC_CHECK_MODE >= 5
4876static int
4877allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
4878{
4879 VALUE obj = (VALUE)k;
4880 struct reflist *refs = (struct reflist *)v;
4881 fprintf(stderr, "[allrefs_dump_i] %s <- ", rb_obj_info(obj));
4882 reflist_dump(refs);
4883 fprintf(stderr, "\n");
4884 return ST_CONTINUE;
4885}
4886
4887static void
4888allrefs_dump(rb_objspace_t *objspace)
4889{
4890 VALUE size = objspace->rgengc.allrefs_table->num_entries;
4891 fprintf(stderr, "[all refs] (size: %"PRIuVALUE")\n", size);
4892 st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
4893}
4894#endif
4895
4896static int
4897gc_check_after_marks_i(st_data_t k, st_data_t v, st_data_t ptr)
4898{
4899 VALUE obj = k;
4900 struct reflist *refs = (struct reflist *)v;
4902
4903 /* object should be marked or oldgen */
4904 if (!RVALUE_MARKED(objspace, obj)) {
4905 fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", rb_obj_info(obj));
4906 fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
4907 reflist_dump(refs);
4908
4909 if (reflist_referred_from_machine_context(refs)) {
4910 fprintf(stderr, " (marked from machine stack).\n");
4911 /* marked from machine context can be false positive */
4912 }
4913 else {
4914 objspace->rgengc.error_count++;
4915 fprintf(stderr, "\n");
4916 }
4917 }
4918 return ST_CONTINUE;
4919}
4920
4921static void
4922gc_marks_check(rb_objspace_t *objspace, st_foreach_callback_func *checker_func, const char *checker_name)
4923{
4924 size_t saved_malloc_increase = objspace->malloc_params.increase;
4925#if RGENGC_ESTIMATE_OLDMALLOC
4926 size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase;
4927#endif
4928 VALUE already_disabled = rb_objspace_gc_disable(objspace);
4929
4930 objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
4931
4932 if (checker_func) {
4933 st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
4934 }
4935
4936 if (objspace->rgengc.error_count > 0) {
4937#if RGENGC_CHECK_MODE >= 5
4938 allrefs_dump(objspace);
4939#endif
4940 if (checker_name) rb_bug("%s: GC has problem.", checker_name);
4941 }
4942
4943 objspace_allrefs_destruct(objspace->rgengc.allrefs_table);
4944 objspace->rgengc.allrefs_table = 0;
4945
4946 if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace);
4947 objspace->malloc_params.increase = saved_malloc_increase;
4948#if RGENGC_ESTIMATE_OLDMALLOC
4949 objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase;
4950#endif
4951}
4952#endif /* RGENGC_CHECK_MODE >= 4 */
4953
4956 int err_count;
4957 size_t live_object_count;
4958 size_t zombie_object_count;
4959
4960 VALUE parent;
4961 size_t old_object_count;
4962 size_t remembered_shady_count;
4963};
4964
4965static void
4966check_generation_i(const VALUE child, void *ptr)
4967{
4969 const VALUE parent = data->parent;
4970
4971 if (RGENGC_CHECK_MODE) GC_ASSERT(RVALUE_OLD_P(data->objspace, parent));
4972
4973 if (!RVALUE_OLD_P(data->objspace, child)) {
4974 if (!RVALUE_REMEMBERED(data->objspace, parent) &&
4975 !RVALUE_REMEMBERED(data->objspace, child) &&
4976 !RVALUE_UNCOLLECTIBLE(data->objspace, child)) {
4977 fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", rb_obj_info(parent), rb_obj_info(child));
4978 data->err_count++;
4979 }
4980 }
4981}
4982
4983static void
4984check_color_i(const VALUE child, void *ptr)
4985{
4987 const VALUE parent = data->parent;
4988
4989 if (!RVALUE_WB_UNPROTECTED(data->objspace, parent) && RVALUE_WHITE_P(data->objspace, child)) {
4990 fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n",
4991 rb_obj_info(parent), rb_obj_info(child));
4992 data->err_count++;
4993 }
4994}
4995
4996static void
4997check_children_i(const VALUE child, void *ptr)
4998{
5000 if (check_rvalue_consistency_force(data->objspace, child, FALSE) != 0) {
5001 fprintf(stderr, "check_children_i: %s has error (referenced from %s)",
5002 rb_obj_info(child), rb_obj_info(data->parent));
5003
5004 data->err_count++;
5005 }
5006}
5007
5008static int
5009verify_internal_consistency_i(void *page_start, void *page_end, size_t stride,
5011{
5012 VALUE obj;
5013 rb_objspace_t *objspace = data->objspace;
5014
5015 for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) {
5016 asan_unpoisoning_object(obj) {
5017 if (!rb_gc_impl_garbage_object_p(objspace, obj)) {
5018 /* count objects */
5019 data->live_object_count++;
5020 data->parent = obj;
5021
5022 /* Normally, we don't expect T_MOVED objects to be in the heap.
5023 * But they can stay alive on the stack, */
5024 if (!gc_object_moved_p(objspace, obj)) {
5025 /* moved slots don't have children */
5026 rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data);
5027 }
5028
5029 /* check health of children */
5030 if (RVALUE_OLD_P(objspace, obj)) data->old_object_count++;
5031 if (RVALUE_WB_UNPROTECTED(objspace, obj) && RVALUE_UNCOLLECTIBLE(objspace, obj)) data->remembered_shady_count++;
5032
5033 if (!is_marking(objspace) && RVALUE_OLD_P(objspace, obj)) {
5034 /* reachable objects from an oldgen object should be old or (young with remember) */
5035 data->parent = obj;
5036 rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data);
5037 }
5038
5039 if (is_incremental_marking(objspace)) {
5040 if (RVALUE_BLACK_P(objspace, obj)) {
5041 /* reachable objects from black objects should be black or grey objects */
5042 data->parent = obj;
5043 rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data);
5044 }
5045 }
5046 }
5047 else {
5048 if (BUILTIN_TYPE(obj) == T_ZOMBIE) {
5049 data->zombie_object_count++;
5050
5051 if ((RBASIC(obj)->flags & ~ZOMBIE_OBJ_KEPT_FLAGS) != T_ZOMBIE) {
5052 fprintf(stderr, "verify_internal_consistency_i: T_ZOMBIE has extra flags set: %s\n",
5053 rb_obj_info(obj));
5054 data->err_count++;
5055 }
5056
5057 if (!!FL_TEST(obj, FL_FINALIZE) != !!st_is_member(finalizer_table, obj)) {
5058 fprintf(stderr, "verify_internal_consistency_i: FL_FINALIZE %s but %s finalizer_table: %s\n",
5059 FL_TEST(obj, FL_FINALIZE) ? "set" : "not set", st_is_member(finalizer_table, obj) ? "in" : "not in",
5060 rb_obj_info(obj));
5061 data->err_count++;
5062 }
5063 }
5064 }
5065 }
5066 }
5067
5068 return 0;
5069}
5070
5071static int
5072gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
5073{
5074 unsigned int has_remembered_shady = FALSE;
5075 unsigned int has_remembered_old = FALSE;
5076 int remembered_old_objects = 0;
5077 int free_objects = 0;
5078 int zombie_objects = 0;
5079
5080 short slot_size = page->slot_size;
5081 uintptr_t start = (uintptr_t)page->start;
5082 uintptr_t end = start + page->total_slots * slot_size;
5083
5084 for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
5085 VALUE val = (VALUE)ptr;
5086 asan_unpoisoning_object(val) {
5087 enum ruby_value_type type = BUILTIN_TYPE(val);
5088
5089 if (type == T_NONE) free_objects++;
5090 if (type == T_ZOMBIE) zombie_objects++;
5091 if (RVALUE_PAGE_UNCOLLECTIBLE(page, val) && RVALUE_PAGE_WB_UNPROTECTED(page, val)) {
5092 has_remembered_shady = TRUE;
5093 }
5094 if (RVALUE_PAGE_MARKING(page, val)) {
5095 has_remembered_old = TRUE;
5096 remembered_old_objects++;
5097 }
5098 }
5099 }
5100
5101 if (!is_incremental_marking(objspace) &&
5102 page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) {
5103
5104 for (uintptr_t ptr = start; ptr < end; ptr += slot_size) {
5105 VALUE val = (VALUE)ptr;
5106 if (RVALUE_PAGE_MARKING(page, val)) {
5107 fprintf(stderr, "marking -> %s\n", rb_obj_info(val));
5108 }
5109 }
5110 rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s",
5111 (void *)page, remembered_old_objects, obj ? rb_obj_info(obj) : "");
5112 }
5113
5114 if (page->flags.has_uncollectible_wb_unprotected_objects == FALSE && has_remembered_shady == TRUE) {
5115 rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s",
5116 (void *)page, obj ? rb_obj_info(obj) : "");
5117 }
5118
5119 if (0) {
5120 /* free_slots may not equal to free_objects */
5121 if (page->free_slots != free_objects) {
5122 rb_bug("page %p's free_slots should be %d, but %d", (void *)page, page->free_slots, free_objects);
5123 }
5124 }
5125 if (page->final_slots != zombie_objects) {
5126 rb_bug("page %p's final_slots should be %d, but %d", (void *)page, page->final_slots, zombie_objects);
5127 }
5128
5129 return remembered_old_objects;
5130}
5131
5132static int
5133gc_verify_heap_pages_(rb_objspace_t *objspace, struct ccan_list_head *head)
5134{
5135 int remembered_old_objects = 0;
5136 struct heap_page *page = 0;
5137
5138 ccan_list_for_each(head, page, page_node) {
5139 asan_unlock_freelist(page);
5140 struct free_slot *p = page->freelist;
5141 while (p) {
5142 VALUE vp = (VALUE)p;
5143 VALUE prev = vp;
5144 rb_asan_unpoison_object(vp, false);
5145 if (BUILTIN_TYPE(vp) != T_NONE) {
5146 fprintf(stderr, "freelist slot expected to be T_NONE but was: %s\n", rb_obj_info(vp));
5147 }
5148 p = p->next;
5149 rb_asan_poison_object(prev);
5150 }
5151 asan_lock_freelist(page);
5152
5153 if (page->flags.has_remembered_objects == FALSE) {
5154 remembered_old_objects += gc_verify_heap_page(objspace, page, Qfalse);
5155 }
5156 }
5157
5158 return remembered_old_objects;
5159}
5160
5161static int
5162gc_verify_heap_pages(rb_objspace_t *objspace)
5163{
5164 int remembered_old_objects = 0;
5165 for (int i = 0; i < HEAP_COUNT; i++) {
5166 remembered_old_objects += gc_verify_heap_pages_(objspace, &((&heaps[i])->pages));
5167 }
5168 return remembered_old_objects;
5169}
5170
5171static void
5172gc_verify_internal_consistency_(rb_objspace_t *objspace)
5173{
5174 struct verify_internal_consistency_struct data = {0};
5175
5176 data.objspace = objspace;
5177 gc_report(5, objspace, "gc_verify_internal_consistency: start\n");
5178
5179 /* check relations */
5180 for (size_t i = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
5181 struct heap_page *page = rb_darray_get(objspace->heap_pages.sorted, i);
5182 short slot_size = page->slot_size;
5183
5184 uintptr_t start = (uintptr_t)page->start;
5185 uintptr_t end = start + page->total_slots * slot_size;
5186
5187 verify_internal_consistency_i((void *)start, (void *)end, slot_size, &data);
5188 }
5189
5190 if (data.err_count != 0) {
5191#if RGENGC_CHECK_MODE >= 5
5192 objspace->rgengc.error_count = data.err_count;
5193 gc_marks_check(objspace, NULL, NULL);
5194 allrefs_dump(objspace);
5195#endif
5196 rb_bug("gc_verify_internal_consistency: found internal inconsistency.");
5197 }
5198
5199 /* check heap_page status */
5200 gc_verify_heap_pages(objspace);
5201
5202 /* check counters */
5203
5204 if (!is_lazy_sweeping(objspace) &&
5205 !finalizing &&
5206 !rb_gc_multi_ractor_p()) {
5207 if (objspace_live_slots(objspace) != data.live_object_count) {
5208 fprintf(stderr, "heap_pages_final_slots: %"PRIdSIZE", total_freed_objects: %"PRIdSIZE"\n",
5209 total_final_slots_count(objspace), total_freed_objects(objspace));
5210 rb_bug("inconsistent live slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
5211 objspace_live_slots(objspace), data.live_object_count);
5212 }
5213 }
5214
5215 if (!is_marking(objspace)) {
5216 if (objspace->rgengc.old_objects != data.old_object_count) {
5217 rb_bug("inconsistent old slot number: expect %"PRIuSIZE", but %"PRIuSIZE".",
5218 objspace->rgengc.old_objects, data.old_object_count);
5219 }
5220 if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) {
5221 rb_bug("inconsistent number of wb unprotected objects: expect %"PRIuSIZE", but %"PRIuSIZE".",
5222 objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count);
5223 }
5224 }
5225
5226 if (!finalizing) {
5227 size_t list_count = 0;
5228
5229 {
5230 VALUE z = heap_pages_deferred_final;
5231 while (z) {
5232 list_count++;
5233 z = RZOMBIE(z)->next;
5234 }
5235 }
5236
5237 if (total_final_slots_count(objspace) != data.zombie_object_count ||
5238 total_final_slots_count(objspace) != list_count) {
5239
5240 rb_bug("inconsistent finalizing object count:\n"
5241 " expect %"PRIuSIZE"\n"
5242 " but %"PRIuSIZE" zombies\n"
5243 " heap_pages_deferred_final list has %"PRIuSIZE" items.",
5244 total_final_slots_count(objspace),
5245 data.zombie_object_count,
5246 list_count);
5247 }
5248 }
5249
5250 gc_report(5, objspace, "gc_verify_internal_consistency: OK\n");
5251}
5252
5253static void
5254gc_verify_internal_consistency(void *objspace_ptr)
5255{
5256 rb_objspace_t *objspace = objspace_ptr;
5257
5258 unsigned int lev = rb_gc_vm_lock();
5259 {
5260 rb_gc_vm_barrier(); // stop other ractors
5261
5262 unsigned int prev_during_gc = during_gc;
5263 during_gc = FALSE; // stop gc here
5264 {
5265 gc_verify_internal_consistency_(objspace);
5266 }
5267 during_gc = prev_during_gc;
5268 }
5269 rb_gc_vm_unlock(lev);
5270}
5271
5272static void
5273heap_move_pooled_pages_to_free_pages(rb_heap_t *heap)
5274{
5275 if (heap->pooled_pages) {
5276 if (heap->free_pages) {
5277 struct heap_page *free_pages_tail = heap->free_pages;
5278 while (free_pages_tail->free_next) {
5279 free_pages_tail = free_pages_tail->free_next;
5280 }
5281 free_pages_tail->free_next = heap->pooled_pages;
5282 }
5283 else {
5284 heap->free_pages = heap->pooled_pages;
5285 }
5286
5287 heap->pooled_pages = NULL;
5288 }
5289}
5290
5291static int
5292gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj)
5293{
5294 struct heap_page *page = GET_HEAP_PAGE(obj);
5295 bits_t *uncollectible_bits = &page->uncollectible_bits[0];
5296
5297 if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) {
5298 page->flags.has_uncollectible_wb_unprotected_objects = TRUE;
5299 MARK_IN_BITMAP(uncollectible_bits, obj);
5300 objspace->rgengc.uncollectible_wb_unprotected_objects++;
5301
5302#if RGENGC_PROFILE > 0
5303 objspace->profile.total_remembered_shady_object_count++;
5304#if RGENGC_PROFILE >= 2
5305 objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
5306#endif
5307#endif
5308 return TRUE;
5309 }
5310 else {
5311 return FALSE;
5312 }
5313}
5314
5315static inline void
5316gc_marks_wb_unprotected_objects_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bits)
5317{
5318 if (bits) {
5319 do {
5320 if (bits & 1) {
5321 gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", rb_obj_info((VALUE)p));
5322 GC_ASSERT(RVALUE_WB_UNPROTECTED(objspace, (VALUE)p));
5323 GC_ASSERT(RVALUE_MARKED(objspace, (VALUE)p));
5324 gc_mark_children(objspace, (VALUE)p);
5325 }
5326 p += BASE_SLOT_SIZE;
5327 bits >>= 1;
5328 } while (bits);
5329 }
5330}
5331
5332static void
5333gc_marks_wb_unprotected_objects(rb_objspace_t *objspace, rb_heap_t *heap)
5334{
5335 struct heap_page *page = 0;
5336
5337 ccan_list_for_each(&heap->pages, page, page_node) {
5338 bits_t *mark_bits = page->mark_bits;
5339 bits_t *wbun_bits = page->wb_unprotected_bits;
5340 uintptr_t p = page->start;
5341 size_t j;
5342
5343 bits_t bits = mark_bits[0] & wbun_bits[0];
5344 bits >>= NUM_IN_PAGE(p);
5345 gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
5346 p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
5347
5348 for (j=1; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
5349 bits_t bits = mark_bits[j] & wbun_bits[j];
5350
5351 gc_marks_wb_unprotected_objects_plane(objspace, p, bits);
5352 p += BITS_BITLENGTH * BASE_SLOT_SIZE;
5353 }
5354 }
5355
5356 gc_mark_stacked_objects_all(objspace);
5357}
5358
5359static void
5360gc_update_weak_references(rb_objspace_t *objspace)
5361{
5362 size_t retained_weak_references_count = 0;
5363 VALUE **ptr_ptr;
5364 rb_darray_foreach(objspace->weak_references, i, ptr_ptr) {
5365 if (!*ptr_ptr) continue;
5366
5367 VALUE obj = **ptr_ptr;
5368
5369 if (RB_SPECIAL_CONST_P(obj)) continue;
5370
5371 if (!RVALUE_MARKED(objspace, obj)) {
5372 **ptr_ptr = Qundef;
5373 }
5374 else {
5375 retained_weak_references_count++;
5376 }
5377 }
5378
5379 objspace->profile.retained_weak_references_count = retained_weak_references_count;
5380
5381 rb_darray_clear(objspace->weak_references);
5382 rb_darray_resize_capa_without_gc(&objspace->weak_references, retained_weak_references_count);
5383}
5384
5385static void
5386gc_marks_finish(rb_objspace_t *objspace)
5387{
5388 /* finish incremental GC */
5389 if (is_incremental_marking(objspace)) {
5390 if (RGENGC_CHECK_MODE && is_mark_stack_empty(&objspace->mark_stack) == 0) {
5391 rb_bug("gc_marks_finish: mark stack is not empty (%"PRIdSIZE").",
5392 mark_stack_size(&objspace->mark_stack));
5393 }
5394
5395 mark_roots(objspace, NULL);
5396 while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == false);
5397
5398#if RGENGC_CHECK_MODE >= 2
5399 if (gc_verify_heap_pages(objspace) != 0) {
5400 rb_bug("gc_marks_finish (incremental): there are remembered old objects.");
5401 }
5402#endif
5403
5404 objspace->flags.during_incremental_marking = FALSE;
5405 /* check children of all marked wb-unprotected objects */
5406 for (int i = 0; i < HEAP_COUNT; i++) {
5407 gc_marks_wb_unprotected_objects(objspace, &heaps[i]);
5408 }
5409 }
5410
5411 gc_update_weak_references(objspace);
5412
5413#if RGENGC_CHECK_MODE >= 2
5414 gc_verify_internal_consistency(objspace);
5415#endif
5416
5417#if RGENGC_CHECK_MODE >= 4
5418 during_gc = FALSE;
5419 gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
5420 during_gc = TRUE;
5421#endif
5422
5423 {
5424 const unsigned long r_mul = objspace->live_ractor_cache_count > 8 ? 8 : objspace->live_ractor_cache_count; // upto 8
5425
5426 size_t total_slots = objspace_available_slots(objspace);
5427 size_t sweep_slots = total_slots - objspace->marked_slots; /* will be swept slots */
5428 size_t max_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_max_ratio);
5429 size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio);
5430 if (min_free_slots < gc_params.heap_free_slots * r_mul) {
5431 min_free_slots = gc_params.heap_free_slots * r_mul;
5432 }
5433
5434 int full_marking = is_full_marking(objspace);
5435
5436 GC_ASSERT(objspace_available_slots(objspace) >= objspace->marked_slots);
5437
5438 /* Setup freeable slots. */
5439 size_t total_init_slots = 0;
5440 for (int i = 0; i < HEAP_COUNT; i++) {
5441 total_init_slots += gc_params.heap_init_slots[i] * r_mul;
5442 }
5443
5444 if (max_free_slots < total_init_slots) {
5445 max_free_slots = total_init_slots;
5446 }
5447
5448 if (sweep_slots > max_free_slots) {
5449 heap_pages_freeable_pages = (sweep_slots - max_free_slots) / HEAP_PAGE_OBJ_LIMIT;
5450 }
5451 else {
5452 heap_pages_freeable_pages = 0;
5453 }
5454
5455 if (objspace->heap_pages.allocatable_slots == 0 && sweep_slots < min_free_slots) {
5456 if (!full_marking) {
5457 if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) {
5458 full_marking = TRUE;
5459 }
5460 else {
5461 gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n");
5462 gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_NOFREE;
5463 }
5464 }
5465 }
5466
5467 if (full_marking) {
5468 /* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */
5469 const double r = gc_params.oldobject_limit_factor;
5470 objspace->rgengc.uncollectible_wb_unprotected_objects_limit = MAX(
5471 (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r),
5472 (size_t)(objspace->rgengc.old_objects * gc_params.uncollectible_wb_unprotected_objects_limit_ratio)
5473 );
5474 objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r);
5475 }
5476
5477 if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) {
5478 gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_SHADY;
5479 }
5480 if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) {
5481 gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_OLDGEN;
5482 }
5483
5484 gc_report(1, objspace, "gc_marks_finish (marks %"PRIdSIZE" objects, "
5485 "old %"PRIdSIZE" objects, total %"PRIdSIZE" slots, "
5486 "sweep %"PRIdSIZE" slots, allocatable %"PRIdSIZE" slots, next GC: %s)\n",
5487 objspace->marked_slots, objspace->rgengc.old_objects, objspace_available_slots(objspace), sweep_slots, objspace->heap_pages.allocatable_slots,
5488 gc_needs_major_flags ? "major" : "minor");
5489 }
5490
5491 // TODO: refactor so we don't need to call this
5492 rb_ractor_finish_marking();
5493
5494 rb_gc_event_hook(0, RUBY_INTERNAL_EVENT_GC_END_MARK);
5495}
5496
5497static bool
5498gc_compact_heap_cursors_met_p(rb_heap_t *heap)
5499{
5500 return heap->sweeping_page == heap->compact_cursor;
5501}
5502
5503
5504static rb_heap_t *
5505gc_compact_destination_pool(rb_objspace_t *objspace, rb_heap_t *src_pool, VALUE obj)
5506{
5507 size_t obj_size = rb_gc_obj_optimal_size(obj);
5508 if (obj_size == 0) {
5509 return src_pool;
5510 }
5511
5512 size_t idx = 0;
5513 if (rb_gc_impl_size_allocatable_p(obj_size)) {
5514 idx = heap_idx_for_size(obj_size);
5515 }
5516
5517 return &heaps[idx];
5518}
5519
5520static bool
5521gc_compact_move(rb_objspace_t *objspace, rb_heap_t *heap, VALUE src)
5522{
5523 GC_ASSERT(BUILTIN_TYPE(src) != T_MOVED);
5524 GC_ASSERT(gc_is_moveable_obj(objspace, src));
5525
5526 rb_heap_t *dest_pool = gc_compact_destination_pool(objspace, heap, src);
5527 uint32_t orig_shape = 0;
5528 uint32_t new_shape = 0;
5529
5530 if (gc_compact_heap_cursors_met_p(dest_pool)) {
5531 return dest_pool != heap;
5532 }
5533
5534 if (RB_TYPE_P(src, T_OBJECT)) {
5535 orig_shape = rb_gc_get_shape(src);
5536
5537 if (dest_pool != heap) {
5538 new_shape = rb_gc_rebuild_shape(src, dest_pool - heaps);
5539
5540 if (new_shape == 0) {
5541 dest_pool = heap;
5542 }
5543 }
5544 }
5545
5546 while (!try_move(objspace, dest_pool, dest_pool->free_pages, src)) {
5547 struct gc_sweep_context ctx = {
5548 .page = dest_pool->sweeping_page,
5549 .final_slots = 0,
5550 .freed_slots = 0,
5551 .empty_slots = 0,
5552 };
5553
5554 /* The page of src could be partially compacted, so it may contain
5555 * T_MOVED. Sweeping a page may read objects on this page, so we
5556 * need to lock the page. */
5557 lock_page_body(objspace, GET_PAGE_BODY(src));
5558 gc_sweep_page(objspace, dest_pool, &ctx);
5559 unlock_page_body(objspace, GET_PAGE_BODY(src));
5560
5561 if (dest_pool->sweeping_page->free_slots > 0) {
5562 heap_add_freepage(dest_pool, dest_pool->sweeping_page);
5563 }
5564
5565 dest_pool->sweeping_page = ccan_list_next(&dest_pool->pages, dest_pool->sweeping_page, page_node);
5566 if (gc_compact_heap_cursors_met_p(dest_pool)) {
5567 return dest_pool != heap;
5568 }
5569 }
5570
5571 if (orig_shape != 0) {
5572 if (new_shape != 0) {
5573 VALUE dest = rb_gc_impl_location(objspace, src);
5574 rb_gc_set_shape(dest, new_shape);
5575 }
5576 RMOVED(src)->original_shape_id = orig_shape;
5577 }
5578
5579 return true;
5580}
5581
5582static bool
5583gc_compact_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct heap_page *page)
5584{
5585 short slot_size = page->slot_size;
5586 short slot_bits = slot_size / BASE_SLOT_SIZE;
5587 GC_ASSERT(slot_bits > 0);
5588
5589 do {
5590 VALUE vp = (VALUE)p;
5591 GC_ASSERT(vp % BASE_SLOT_SIZE == 0);
5592
5593 if (bitset & 1) {
5594 objspace->rcompactor.considered_count_table[BUILTIN_TYPE(vp)]++;
5595
5596 if (gc_is_moveable_obj(objspace, vp)) {
5597 if (!gc_compact_move(objspace, heap, vp)) {
5598 //the cursors met. bubble up
5599 return false;
5600 }
5601 }
5602 }
5603 p += slot_size;
5604 bitset >>= slot_bits;
5605 } while (bitset);
5606
5607 return true;
5608}
5609
5610// Iterate up all the objects in page, moving them to where they want to go
5611static bool
5612gc_compact_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
5613{
5614 GC_ASSERT(page == heap->compact_cursor);
5615
5616 bits_t *mark_bits, *pin_bits;
5617 bits_t bitset;
5618 uintptr_t p = page->start;
5619
5620 mark_bits = page->mark_bits;
5621 pin_bits = page->pinned_bits;
5622
5623 // objects that can be moved are marked and not pinned
5624 bitset = (mark_bits[0] & ~pin_bits[0]);
5625 bitset >>= NUM_IN_PAGE(p);
5626 if (bitset) {
5627 if (!gc_compact_plane(objspace, heap, (uintptr_t)p, bitset, page))
5628 return false;
5629 }
5630 p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
5631
5632 for (int j = 1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
5633 bitset = (mark_bits[j] & ~pin_bits[j]);
5634 if (bitset) {
5635 if (!gc_compact_plane(objspace, heap, (uintptr_t)p, bitset, page))
5636 return false;
5637 }
5638 p += BITS_BITLENGTH * BASE_SLOT_SIZE;
5639 }
5640
5641 return true;
5642}
5643
5644static bool
5645gc_compact_all_compacted_p(rb_objspace_t *objspace)
5646{
5647 for (int i = 0; i < HEAP_COUNT; i++) {
5648 rb_heap_t *heap = &heaps[i];
5649
5650 if (heap->total_pages > 0 &&
5651 !gc_compact_heap_cursors_met_p(heap)) {
5652 return false;
5653 }
5654 }
5655
5656 return true;
5657}
5658
5659static void
5660gc_sweep_compact(rb_objspace_t *objspace)
5661{
5662 gc_compact_start(objspace);
5663#if RGENGC_CHECK_MODE >= 2
5664 gc_verify_internal_consistency(objspace);
5665#endif
5666
5667 while (!gc_compact_all_compacted_p(objspace)) {
5668 for (int i = 0; i < HEAP_COUNT; i++) {
5669 rb_heap_t *heap = &heaps[i];
5670
5671 if (gc_compact_heap_cursors_met_p(heap)) {
5672 continue;
5673 }
5674
5675 struct heap_page *start_page = heap->compact_cursor;
5676
5677 if (!gc_compact_page(objspace, heap, start_page)) {
5678 lock_page_body(objspace, start_page->body);
5679
5680 continue;
5681 }
5682
5683 // If we get here, we've finished moving all objects on the compact_cursor page
5684 // So we can lock it and move the cursor on to the next one.
5685 lock_page_body(objspace, start_page->body);
5686 heap->compact_cursor = ccan_list_prev(&heap->pages, heap->compact_cursor, page_node);
5687 }
5688 }
5689
5690 gc_compact_finish(objspace);
5691
5692#if RGENGC_CHECK_MODE >= 2
5693 gc_verify_internal_consistency(objspace);
5694#endif
5695}
5696
5697static void
5698gc_marks_rest(rb_objspace_t *objspace)
5699{
5700 gc_report(1, objspace, "gc_marks_rest\n");
5701
5702 for (int i = 0; i < HEAP_COUNT; i++) {
5703 (&heaps[i])->pooled_pages = NULL;
5704 }
5705
5706 if (is_incremental_marking(objspace)) {
5707 while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE);
5708 }
5709 else {
5710 gc_mark_stacked_objects_all(objspace);
5711 }
5712
5713 gc_marks_finish(objspace);
5714}
5715
5716static bool
5717gc_marks_step(rb_objspace_t *objspace, size_t slots)
5718{
5719 bool marking_finished = false;
5720
5721 GC_ASSERT(is_marking(objspace));
5722 if (gc_mark_stacked_objects_incremental(objspace, slots)) {
5723 gc_marks_finish(objspace);
5724
5725 marking_finished = true;
5726 }
5727
5728 return marking_finished;
5729}
5730
5731static bool
5732gc_marks_continue(rb_objspace_t *objspace, rb_heap_t *heap)
5733{
5734 GC_ASSERT(dont_gc_val() == FALSE || objspace->profile.latest_gc_info & GPR_FLAG_METHOD);
5735 bool marking_finished = true;
5736
5737 gc_marking_enter(objspace);
5738
5739 if (heap->free_pages) {
5740 gc_report(2, objspace, "gc_marks_continue: has pooled pages");
5741
5742 marking_finished = gc_marks_step(objspace, objspace->rincgc.step_slots);
5743 }
5744 else {
5745 gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %"PRIdSIZE").\n",
5746 mark_stack_size(&objspace->mark_stack));
5747 heap->force_incremental_marking_finish_count++;
5748 gc_marks_rest(objspace);
5749 }
5750
5751 gc_marking_exit(objspace);
5752
5753 return marking_finished;
5754}
5755
5756static void
5757gc_marks_start(rb_objspace_t *objspace, int full_mark)
5758{
5759 /* start marking */
5760 gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor");
5761 gc_mode_transition(objspace, gc_mode_marking);
5762
5763 if (full_mark) {
5764 size_t incremental_marking_steps = (objspace->rincgc.pooled_slots / INCREMENTAL_MARK_STEP_ALLOCATIONS) + 1;
5765 objspace->rincgc.step_slots = (objspace->marked_slots * 2) / incremental_marking_steps;
5766
5767 if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE", "
5768 "objspace->rincgc.pooled_page_num: %"PRIdSIZE", "
5769 "objspace->rincgc.step_slots: %"PRIdSIZE", \n",
5770 objspace->marked_slots, objspace->rincgc.pooled_slots, objspace->rincgc.step_slots);
5771 objspace->flags.during_minor_gc = FALSE;
5772 if (ruby_enable_autocompact) {
5773 objspace->flags.during_compacting |= TRUE;
5774 }
5775 objspace->profile.major_gc_count++;
5776 objspace->rgengc.uncollectible_wb_unprotected_objects = 0;
5777 objspace->rgengc.old_objects = 0;
5778 objspace->rgengc.last_major_gc = objspace->profile.count;
5779 objspace->marked_slots = 0;
5780
5781 for (int i = 0; i < HEAP_COUNT; i++) {
5782 rb_heap_t *heap = &heaps[i];
5783 rgengc_mark_and_rememberset_clear(objspace, heap);
5784 heap_move_pooled_pages_to_free_pages(heap);
5785
5786 if (objspace->flags.during_compacting) {
5787 struct heap_page *page = NULL;
5788
5789 ccan_list_for_each(&heap->pages, page, page_node) {
5790 page->pinned_slots = 0;
5791 }
5792 }
5793 }
5794 }
5795 else {
5796 objspace->flags.during_minor_gc = TRUE;
5797 objspace->marked_slots =
5798 objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */
5799 objspace->profile.minor_gc_count++;
5800
5801 for (int i = 0; i < HEAP_COUNT; i++) {
5802 rgengc_rememberset_mark(objspace, &heaps[i]);
5803 }
5804 }
5805
5806 mark_roots(objspace, NULL);
5807
5808 gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %"PRIdSIZE"\n",
5809 full_mark ? "full" : "minor", mark_stack_size(&objspace->mark_stack));
5810}
5811
5812static bool
5813gc_marks(rb_objspace_t *objspace, int full_mark)
5814{
5815 gc_prof_mark_timer_start(objspace);
5816 gc_marking_enter(objspace);
5817
5818 bool marking_finished = false;
5819
5820 /* setup marking */
5821
5822 gc_marks_start(objspace, full_mark);
5823 if (!is_incremental_marking(objspace)) {
5824 gc_marks_rest(objspace);
5825 marking_finished = true;
5826 }
5827
5828#if RGENGC_PROFILE > 0
5829 if (gc_prof_record(objspace)) {
5830 gc_profile_record *record = gc_prof_record(objspace);
5831 record->old_objects = objspace->rgengc.old_objects;
5832 }
5833#endif
5834
5835 gc_marking_exit(objspace);
5836 gc_prof_mark_timer_stop(objspace);
5837
5838 return marking_finished;
5839}
5840
5841/* RGENGC */
5842
5843static void
5844gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
5845{
5846 if (level <= RGENGC_DEBUG) {
5847 char buf[1024];
5848 FILE *out = stderr;
5849 va_list args;
5850 const char *status = " ";
5851
5852 if (during_gc) {
5853 status = is_full_marking(objspace) ? "+" : "-";
5854 }
5855 else {
5856 if (is_lazy_sweeping(objspace)) {
5857 status = "S";
5858 }
5859 if (is_incremental_marking(objspace)) {
5860 status = "M";
5861 }
5862 }
5863
5864 va_start(args, fmt);
5865 vsnprintf(buf, 1024, fmt, args);
5866 va_end(args);
5867
5868 fprintf(out, "%s|", status);
5869 fputs(buf, out);
5870 }
5871}
5872
5873/* bit operations */
5874
5875static int
5876rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
5877{
5878 struct heap_page *page = GET_HEAP_PAGE(obj);
5879 bits_t *bits = &page->remembered_bits[0];
5880
5881 if (MARKED_IN_BITMAP(bits, obj)) {
5882 return FALSE;
5883 }
5884 else {
5885 page->flags.has_remembered_objects = TRUE;
5886 MARK_IN_BITMAP(bits, obj);
5887 return TRUE;
5888 }
5889}
5890
5891/* wb, etc */
5892
5893/* return FALSE if already remembered */
5894static int
5895rgengc_remember(rb_objspace_t *objspace, VALUE obj)
5896{
5897 gc_report(6, objspace, "rgengc_remember: %s %s\n", rb_obj_info(obj),
5898 RVALUE_REMEMBERED(objspace, obj) ? "was already remembered" : "is remembered now");
5899
5900 check_rvalue_consistency(objspace, obj);
5901
5902 if (RGENGC_CHECK_MODE) {
5903 if (RVALUE_WB_UNPROTECTED(objspace, obj)) rb_bug("rgengc_remember: %s is not wb protected.", rb_obj_info(obj));
5904 }
5905
5906#if RGENGC_PROFILE > 0
5907 if (!RVALUE_REMEMBERED(objspace, obj)) {
5908 if (RVALUE_WB_UNPROTECTED(objspace, obj) == 0) {
5909 objspace->profile.total_remembered_normal_object_count++;
5910#if RGENGC_PROFILE >= 2
5911 objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
5912#endif
5913 }
5914 }
5915#endif /* RGENGC_PROFILE > 0 */
5916
5917 return rgengc_remembersetbits_set(objspace, obj);
5918}
5919
5920#ifndef PROFILE_REMEMBERSET_MARK
5921#define PROFILE_REMEMBERSET_MARK 0
5922#endif
5923
5924static inline void
5925rgengc_rememberset_mark_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bitset)
5926{
5927 if (bitset) {
5928 do {
5929 if (bitset & 1) {
5930 VALUE obj = (VALUE)p;
5931 gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", rb_obj_info(obj));
5932 GC_ASSERT(RVALUE_UNCOLLECTIBLE(objspace, obj));
5933 GC_ASSERT(RVALUE_OLD_P(objspace, obj) || RVALUE_WB_UNPROTECTED(objspace, obj));
5934
5935 gc_mark_children(objspace, obj);
5936 }
5937 p += BASE_SLOT_SIZE;
5938 bitset >>= 1;
5939 } while (bitset);
5940 }
5941}
5942
5943static void
5944rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
5945{
5946 size_t j;
5947 struct heap_page *page = 0;
5948#if PROFILE_REMEMBERSET_MARK
5949 int has_old = 0, has_shady = 0, has_both = 0, skip = 0;
5950#endif
5951 gc_report(1, objspace, "rgengc_rememberset_mark: start\n");
5952
5953 ccan_list_for_each(&heap->pages, page, page_node) {
5954 if (page->flags.has_remembered_objects | page->flags.has_uncollectible_wb_unprotected_objects) {
5955 uintptr_t p = page->start;
5956 bits_t bitset, bits[HEAP_PAGE_BITMAP_LIMIT];
5957 bits_t *remembered_bits = page->remembered_bits;
5958 bits_t *uncollectible_bits = page->uncollectible_bits;
5959 bits_t *wb_unprotected_bits = page->wb_unprotected_bits;
5960#if PROFILE_REMEMBERSET_MARK
5961 if (page->flags.has_remembered_objects && page->flags.has_uncollectible_wb_unprotected_objects) has_both++;
5962 else if (page->flags.has_remembered_objects) has_old++;
5963 else if (page->flags.has_uncollectible_wb_unprotected_objects) has_shady++;
5964#endif
5965 for (j=0; j<HEAP_PAGE_BITMAP_LIMIT; j++) {
5966 bits[j] = remembered_bits[j] | (uncollectible_bits[j] & wb_unprotected_bits[j]);
5967 remembered_bits[j] = 0;
5968 }
5969 page->flags.has_remembered_objects = FALSE;
5970
5971 bitset = bits[0];
5972 bitset >>= NUM_IN_PAGE(p);
5973 rgengc_rememberset_mark_plane(objspace, p, bitset);
5974 p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE;
5975
5976 for (j=1; j < HEAP_PAGE_BITMAP_LIMIT; j++) {
5977 bitset = bits[j];
5978 rgengc_rememberset_mark_plane(objspace, p, bitset);
5979 p += BITS_BITLENGTH * BASE_SLOT_SIZE;
5980 }
5981 }
5982#if PROFILE_REMEMBERSET_MARK
5983 else {
5984 skip++;
5985 }
5986#endif
5987 }
5988
5989#if PROFILE_REMEMBERSET_MARK
5990 fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip);
5991#endif
5992 gc_report(1, objspace, "rgengc_rememberset_mark: finished\n");
5993}
5994
5995static void
5996rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
5997{
5998 struct heap_page *page = 0;
5999
6000 ccan_list_for_each(&heap->pages, page, page_node) {
6001 memset(&page->mark_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
6002 memset(&page->uncollectible_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
6003 memset(&page->marking_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
6004 memset(&page->remembered_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
6005 memset(&page->pinned_bits[0], 0, HEAP_PAGE_BITMAP_SIZE);
6006 page->flags.has_uncollectible_wb_unprotected_objects = FALSE;
6007 page->flags.has_remembered_objects = FALSE;
6008 }
6009}
6010
6011/* RGENGC: APIs */
6012
6013NOINLINE(static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace));
6014
6015static void
6016gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace)
6017{
6018 if (RGENGC_CHECK_MODE) {
6019 if (!RVALUE_OLD_P(objspace, a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", rb_obj_info(a));
6020 if ( RVALUE_OLD_P(objspace, b)) rb_bug("gc_writebarrier_generational: %s is an old object.", rb_obj_info(b));
6021 if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", rb_obj_info(a), rb_obj_info(b));
6022 }
6023
6024 /* mark `a' and remember (default behavior) */
6025 if (!RVALUE_REMEMBERED(objspace, a)) {
6026 int lev = rb_gc_vm_lock_no_barrier();
6027 {
6028 rgengc_remember(objspace, a);
6029 }
6030 rb_gc_vm_unlock_no_barrier(lev);
6031
6032 gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", rb_obj_info(a), rb_obj_info(b));
6033 }
6034
6035 check_rvalue_consistency(objspace, a);
6036 check_rvalue_consistency(objspace, b);
6037}
6038
6039static void
6040gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent)
6041{
6042 gc_mark_set_parent(objspace, parent);
6043 rgengc_check_relation(objspace, obj);
6044 if (gc_mark_set(objspace, obj) == FALSE) return;
6045 gc_aging(objspace, obj);
6046 gc_grey(objspace, obj);
6047}
6048
6049NOINLINE(static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace));
6050
6051static void
6052gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace)
6053{
6054 gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %p -> %s\n", (void *)a, rb_obj_info(b));
6055
6056 if (RVALUE_BLACK_P(objspace, a)) {
6057 if (RVALUE_WHITE_P(objspace, b)) {
6058 if (!RVALUE_WB_UNPROTECTED(objspace, a)) {
6059 gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %p -> %s\n", (void *)a, rb_obj_info(b));
6060 gc_mark_from(objspace, b, a);
6061 }
6062 }
6063 else if (RVALUE_OLD_P(objspace, a) && !RVALUE_OLD_P(objspace, b)) {
6064 rgengc_remember(objspace, a);
6065 }
6066
6067 if (RB_UNLIKELY(objspace->flags.during_compacting)) {
6068 MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(b), b);
6069 }
6070 }
6071}
6072
6073void
6074rb_gc_impl_writebarrier(void *objspace_ptr, VALUE a, VALUE b)
6075{
6076 rb_objspace_t *objspace = objspace_ptr;
6077
6078 if (RGENGC_CHECK_MODE) {
6079 if (SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const: %"PRIxVALUE, a);
6080 if (SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const: %"PRIxVALUE, b);
6081 }
6082
6083 GC_ASSERT(RB_BUILTIN_TYPE(a) != T_NONE);
6084 GC_ASSERT(RB_BUILTIN_TYPE(a) != T_MOVED);
6085 GC_ASSERT(RB_BUILTIN_TYPE(a) != T_ZOMBIE);
6086 GC_ASSERT(RB_BUILTIN_TYPE(b) != T_NONE);
6087 GC_ASSERT(RB_BUILTIN_TYPE(b) != T_MOVED);
6088 GC_ASSERT(RB_BUILTIN_TYPE(b) != T_ZOMBIE);
6089
6090 retry:
6091 if (!is_incremental_marking(objspace)) {
6092 if (!RVALUE_OLD_P(objspace, a) || RVALUE_OLD_P(objspace, b)) {
6093 // do nothing
6094 }
6095 else {
6096 gc_writebarrier_generational(a, b, objspace);
6097 }
6098 }
6099 else {
6100 bool retry = false;
6101 /* slow path */
6102 int lev = rb_gc_vm_lock_no_barrier();
6103 {
6104 if (is_incremental_marking(objspace)) {
6105 gc_writebarrier_incremental(a, b, objspace);
6106 }
6107 else {
6108 retry = true;
6109 }
6110 }
6111 rb_gc_vm_unlock_no_barrier(lev);
6112
6113 if (retry) goto retry;
6114 }
6115 return;
6116}
6117
6118void
6119rb_gc_impl_writebarrier_unprotect(void *objspace_ptr, VALUE obj)
6120{
6121 rb_objspace_t *objspace = objspace_ptr;
6122
6123 if (RVALUE_WB_UNPROTECTED(objspace, obj)) {
6124 return;
6125 }
6126 else {
6127 gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", rb_obj_info(obj),
6128 RVALUE_REMEMBERED(objspace, obj) ? " (already remembered)" : "");
6129
6130 unsigned int lev = rb_gc_vm_lock_no_barrier();
6131 {
6132 if (RVALUE_OLD_P(objspace, obj)) {
6133 gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", rb_obj_info(obj));
6134 RVALUE_DEMOTE(objspace, obj);
6135 gc_mark_set(objspace, obj);
6136 gc_remember_unprotected(objspace, obj);
6137
6138#if RGENGC_PROFILE
6139 objspace->profile.total_shade_operation_count++;
6140#if RGENGC_PROFILE >= 2
6141 objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
6142#endif /* RGENGC_PROFILE >= 2 */
6143#endif /* RGENGC_PROFILE */
6144 }
6145 else {
6146 RVALUE_AGE_RESET(obj);
6147 }
6148
6149 RB_DEBUG_COUNTER_INC(obj_wb_unprotect);
6150 MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj);
6151 }
6152 rb_gc_vm_unlock_no_barrier(lev);
6153 }
6154}
6155
6156void
6157rb_gc_impl_copy_attributes(void *objspace_ptr, VALUE dest, VALUE obj)
6158{
6159 rb_objspace_t *objspace = objspace_ptr;
6160
6161 if (RVALUE_WB_UNPROTECTED(objspace, obj)) {
6162 rb_gc_impl_writebarrier_unprotect(objspace, dest);
6163 }
6164 rb_gc_impl_copy_finalizer(objspace, dest, obj);
6165}
6166
6167const char *
6168rb_gc_impl_active_gc_name(void)
6169{
6170 return "default";
6171}
6172
6173void
6174rb_gc_impl_writebarrier_remember(void *objspace_ptr, VALUE obj)
6175{
6176 rb_objspace_t *objspace = objspace_ptr;
6177
6178 gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", rb_obj_info(obj));
6179
6180 if (is_incremental_marking(objspace)) {
6181 if (RVALUE_BLACK_P(objspace, obj)) {
6182 gc_grey(objspace, obj);
6183 }
6184 }
6185 else {
6186 if (RVALUE_OLD_P(objspace, obj)) {
6187 rgengc_remember(objspace, obj);
6188 }
6189 }
6190}
6191
6192#define RB_GC_OBJECT_METADATA_ENTRY_COUNT 7
6193static struct rb_gc_object_metadata_entry object_metadata_entries[RB_GC_OBJECT_METADATA_ENTRY_COUNT + 1];
6194
6196rb_gc_impl_object_metadata(void *objspace_ptr, VALUE obj)
6197{
6198 rb_objspace_t *objspace = objspace_ptr;
6199 size_t n = 0;
6200 static ID ID_wb_protected, ID_age, ID_old, ID_uncollectible, ID_marking, ID_marked, ID_pinned, ID_object_id;
6201
6202 if (!ID_marked) {
6203#define I(s) ID_##s = rb_intern(#s);
6204 I(wb_protected);
6205 I(age);
6206 I(old);
6207 I(uncollectible);
6208 I(marking);
6209 I(marked);
6210 I(pinned);
6211 I(object_id);
6212#undef I
6213 }
6214
6215#define SET_ENTRY(na, v) do { \
6216 GC_ASSERT(n <= RB_GC_OBJECT_METADATA_ENTRY_COUNT); \
6217 object_metadata_entries[n].name = ID_##na; \
6218 object_metadata_entries[n].val = v; \
6219 n++; \
6220} while (0)
6221
6222 if (!RVALUE_WB_UNPROTECTED(objspace, obj)) SET_ENTRY(wb_protected, Qtrue);
6223 SET_ENTRY(age, INT2FIX(RVALUE_AGE_GET(obj)));
6224 if (RVALUE_OLD_P(objspace, obj)) SET_ENTRY(old, Qtrue);
6225 if (RVALUE_UNCOLLECTIBLE(objspace, obj)) SET_ENTRY(uncollectible, Qtrue);
6226 if (RVALUE_MARKING(objspace, obj)) SET_ENTRY(marking, Qtrue);
6227 if (RVALUE_MARKED(objspace, obj)) SET_ENTRY(marked, Qtrue);
6228 if (RVALUE_PINNED(objspace, obj)) SET_ENTRY(pinned, Qtrue);
6229 if (FL_TEST(obj, FL_SEEN_OBJ_ID)) SET_ENTRY(object_id, rb_obj_id(obj));
6230
6231 object_metadata_entries[n].name = 0;
6232 object_metadata_entries[n].val = 0;
6233#undef SET_ENTRY
6234
6235 return object_metadata_entries;
6236}
6237
6238void *
6239rb_gc_impl_ractor_cache_alloc(void *objspace_ptr, void *ractor)
6240{
6241 rb_objspace_t *objspace = objspace_ptr;
6242
6243 objspace->live_ractor_cache_count++;
6244
6245 return calloc1(sizeof(rb_ractor_newobj_cache_t));
6246}
6247
6248void
6249rb_gc_impl_ractor_cache_free(void *objspace_ptr, void *cache)
6250{
6251 rb_objspace_t *objspace = objspace_ptr;
6252
6253 objspace->live_ractor_cache_count--;
6254
6255 gc_ractor_newobj_cache_clear(cache, NULL);
6256 free(cache);
6257}
6258
6259static void
6260heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap)
6261{
6262 if (!heap->free_pages) {
6263 if (!heap_page_allocate_and_initialize(objspace, heap)) {
6264 objspace->heap_pages.allocatable_slots = 1;
6265 heap_page_allocate_and_initialize(objspace, heap);
6266 }
6267 }
6268}
6269
6270static int
6271ready_to_gc(rb_objspace_t *objspace)
6272{
6273 if (dont_gc_val() || during_gc) {
6274 for (int i = 0; i < HEAP_COUNT; i++) {
6275 rb_heap_t *heap = &heaps[i];
6276 heap_ready_to_gc(objspace, heap);
6277 }
6278 return FALSE;
6279 }
6280 else {
6281 return TRUE;
6282 }
6283}
6284
6285static void
6286gc_reset_malloc_info(rb_objspace_t *objspace, bool full_mark)
6287{
6288 gc_prof_set_malloc_info(objspace);
6289 {
6290 size_t inc = RUBY_ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
6291 size_t old_limit = malloc_limit;
6292
6293 if (inc > malloc_limit) {
6294 malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
6295 if (malloc_limit > gc_params.malloc_limit_max) {
6296 malloc_limit = gc_params.malloc_limit_max;
6297 }
6298 }
6299 else {
6300 malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
6301 if (malloc_limit < gc_params.malloc_limit_min) {
6302 malloc_limit = gc_params.malloc_limit_min;
6303 }
6304 }
6305
6306 if (0) {
6307 if (old_limit != malloc_limit) {
6308 fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
6309 rb_gc_count(), old_limit, malloc_limit);
6310 }
6311 else {
6312 fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
6313 rb_gc_count(), malloc_limit);
6314 }
6315 }
6316 }
6317
6318 /* reset oldmalloc info */
6319#if RGENGC_ESTIMATE_OLDMALLOC
6320 if (!full_mark) {
6321 if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) {
6322 gc_needs_major_flags |= GPR_FLAG_MAJOR_BY_OLDMALLOC;
6323 objspace->rgengc.oldmalloc_increase_limit =
6324 (size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor);
6325
6326 if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) {
6327 objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max;
6328 }
6329 }
6330
6331 if (0) fprintf(stderr, "%"PRIdSIZE"\t%d\t%"PRIuSIZE"\t%"PRIuSIZE"\t%"PRIdSIZE"\n",
6332 rb_gc_count(),
6333 gc_needs_major_flags,
6334 objspace->rgengc.oldmalloc_increase,
6335 objspace->rgengc.oldmalloc_increase_limit,
6336 gc_params.oldmalloc_limit_max);
6337 }
6338 else {
6339 /* major GC */
6340 objspace->rgengc.oldmalloc_increase = 0;
6341
6342 if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) {
6343 objspace->rgengc.oldmalloc_increase_limit =
6344 (size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1));
6345 if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) {
6346 objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
6347 }
6348 }
6349 }
6350#endif
6351}
6352
6353static int
6354garbage_collect(rb_objspace_t *objspace, unsigned int reason)
6355{
6356 int ret;
6357
6358 int lev = rb_gc_vm_lock();
6359 {
6360#if GC_PROFILE_MORE_DETAIL
6361 objspace->profile.prepare_time = getrusage_time();
6362#endif
6363
6364 gc_rest(objspace);
6365
6366#if GC_PROFILE_MORE_DETAIL
6367 objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
6368#endif
6369
6370 ret = gc_start(objspace, reason);
6371 }
6372 rb_gc_vm_unlock(lev);
6373
6374 return ret;
6375}
6376
6377static int
6378gc_start(rb_objspace_t *objspace, unsigned int reason)
6379{
6380 unsigned int do_full_mark = !!(reason & GPR_FLAG_FULL_MARK);
6381
6382 /* reason may be clobbered, later, so keep set immediate_sweep here */
6383 objspace->flags.immediate_sweep = !!(reason & GPR_FLAG_IMMEDIATE_SWEEP);
6384
6385 if (!rb_darray_size(objspace->heap_pages.sorted)) return TRUE; /* heap is not ready */
6386 if (!(reason & GPR_FLAG_METHOD) && !ready_to_gc(objspace)) return TRUE; /* GC is not allowed */
6387
6388 GC_ASSERT(gc_mode(objspace) == gc_mode_none);
6389 GC_ASSERT(!is_lazy_sweeping(objspace));
6390 GC_ASSERT(!is_incremental_marking(objspace));
6391
6392 unsigned int lock_lev;
6393 gc_enter(objspace, gc_enter_event_start, &lock_lev);
6394
6395#if RGENGC_CHECK_MODE >= 2
6396 gc_verify_internal_consistency(objspace);
6397#endif
6398
6399 if (ruby_gc_stressful) {
6400 int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0;
6401
6402 if ((flag & (1 << gc_stress_no_major)) == 0) {
6403 do_full_mark = TRUE;
6404 }
6405
6406 objspace->flags.immediate_sweep = !(flag & (1<<gc_stress_no_immediate_sweep));
6407 }
6408
6409 if (gc_needs_major_flags) {
6410 reason |= gc_needs_major_flags;
6411 do_full_mark = TRUE;
6412 }
6413
6414 /* if major gc has been disabled, never do a full mark */
6415 if (!gc_config_full_mark_val) {
6416 do_full_mark = FALSE;
6417 }
6418 gc_needs_major_flags = GPR_FLAG_NONE;
6419
6420 if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) {
6421 reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */
6422 }
6423
6424 if (objspace->flags.dont_incremental ||
6425 reason & GPR_FLAG_IMMEDIATE_MARK ||
6426 ruby_gc_stressful) {
6427 objspace->flags.during_incremental_marking = FALSE;
6428 }
6429 else {
6430 objspace->flags.during_incremental_marking = do_full_mark;
6431 }
6432
6433 /* Explicitly enable compaction (GC.compact) */
6434 if (do_full_mark && ruby_enable_autocompact) {
6435 objspace->flags.during_compacting = TRUE;
6436#if RGENGC_CHECK_MODE
6437 objspace->rcompactor.compare_func = ruby_autocompact_compare_func;
6438#endif
6439 }
6440 else {
6441 objspace->flags.during_compacting = !!(reason & GPR_FLAG_COMPACT);
6442 }
6443
6444 if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) {
6445 objspace->flags.immediate_sweep = TRUE;
6446 }
6447
6448 if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
6449
6450 gc_report(1, objspace, "gc_start(reason: %x) => %u, %d, %d\n",
6451 reason,
6452 do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep);
6453
6454#if USE_DEBUG_COUNTER
6455 RB_DEBUG_COUNTER_INC(gc_count);
6456
6457 if (reason & GPR_FLAG_MAJOR_MASK) {
6458 (void)RB_DEBUG_COUNTER_INC_IF(gc_major_nofree, reason & GPR_FLAG_MAJOR_BY_NOFREE);
6459 (void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldgen, reason & GPR_FLAG_MAJOR_BY_OLDGEN);
6460 (void)RB_DEBUG_COUNTER_INC_IF(gc_major_shady, reason & GPR_FLAG_MAJOR_BY_SHADY);
6461 (void)RB_DEBUG_COUNTER_INC_IF(gc_major_force, reason & GPR_FLAG_MAJOR_BY_FORCE);
6462#if RGENGC_ESTIMATE_OLDMALLOC
6463 (void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldmalloc, reason & GPR_FLAG_MAJOR_BY_OLDMALLOC);
6464#endif
6465 }
6466 else {
6467 (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_newobj, reason & GPR_FLAG_NEWOBJ);
6468 (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_malloc, reason & GPR_FLAG_MALLOC);
6469 (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_method, reason & GPR_FLAG_METHOD);
6470 (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_capi, reason & GPR_FLAG_CAPI);
6471 (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_stress, reason & GPR_FLAG_STRESS);
6472 }
6473#endif
6474
6475 objspace->profile.count++;
6476 objspace->profile.latest_gc_info = reason;
6477 objspace->profile.total_allocated_objects_at_gc_start = total_allocated_objects(objspace);
6478 objspace->profile.heap_used_at_gc_start = rb_darray_size(objspace->heap_pages.sorted);
6479 objspace->profile.weak_references_count = 0;
6480 objspace->profile.retained_weak_references_count = 0;
6481 gc_prof_setup_new_record(objspace, reason);
6482 gc_reset_malloc_info(objspace, do_full_mark);
6483
6484 rb_gc_event_hook(0, RUBY_INTERNAL_EVENT_GC_START);
6485
6486 GC_ASSERT(during_gc);
6487
6488 gc_prof_timer_start(objspace);
6489 {
6490 if (gc_marks(objspace, do_full_mark)) {
6491 gc_sweep(objspace);
6492 }
6493 }
6494 gc_prof_timer_stop(objspace);
6495
6496 gc_exit(objspace, gc_enter_event_start, &lock_lev);
6497 return TRUE;
6498}
6499
6500static void
6501gc_rest(rb_objspace_t *objspace)
6502{
6503 if (is_incremental_marking(objspace) || is_lazy_sweeping(objspace)) {
6504 unsigned int lock_lev;
6505 gc_enter(objspace, gc_enter_event_rest, &lock_lev);
6506
6507 if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(objspace);
6508
6509 if (is_incremental_marking(objspace)) {
6510 gc_marking_enter(objspace);
6511 gc_marks_rest(objspace);
6512 gc_marking_exit(objspace);
6513
6514 gc_sweep(objspace);
6515 }
6516
6517 if (is_lazy_sweeping(objspace)) {
6518 gc_sweeping_enter(objspace);
6519 gc_sweep_rest(objspace);
6520 gc_sweeping_exit(objspace);
6521 }
6522
6523 gc_exit(objspace, gc_enter_event_rest, &lock_lev);
6524 }
6525}
6526
6529 unsigned int reason;
6530};
6531
6532static void
6533gc_current_status_fill(rb_objspace_t *objspace, char *buff)
6534{
6535 int i = 0;
6536 if (is_marking(objspace)) {
6537 buff[i++] = 'M';
6538 if (is_full_marking(objspace)) buff[i++] = 'F';
6539 if (is_incremental_marking(objspace)) buff[i++] = 'I';
6540 }
6541 else if (is_sweeping(objspace)) {
6542 buff[i++] = 'S';
6543 if (is_lazy_sweeping(objspace)) buff[i++] = 'L';
6544 }
6545 else {
6546 buff[i++] = 'N';
6547 }
6548 buff[i] = '\0';
6549}
6550
6551static const char *
6552gc_current_status(rb_objspace_t *objspace)
6553{
6554 static char buff[0x10];
6555 gc_current_status_fill(objspace, buff);
6556 return buff;
6557}
6558
6559#if PRINT_ENTER_EXIT_TICK
6560
6561static tick_t last_exit_tick;
6562static tick_t enter_tick;
6563static int enter_count = 0;
6564static char last_gc_status[0x10];
6565
6566static inline void
6567gc_record(rb_objspace_t *objspace, int direction, const char *event)
6568{
6569 if (direction == 0) { /* enter */
6570 enter_count++;
6571 enter_tick = tick();
6572 gc_current_status_fill(objspace, last_gc_status);
6573 }
6574 else { /* exit */
6575 tick_t exit_tick = tick();
6576 char current_gc_status[0x10];
6577 gc_current_status_fill(objspace, current_gc_status);
6578#if 1
6579 /* [last mutator time] [gc time] [event] */
6580 fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
6581 enter_tick - last_exit_tick,
6582 exit_tick - enter_tick,
6583 event,
6584 last_gc_status, current_gc_status,
6585 (objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
6586 last_exit_tick = exit_tick;
6587#else
6588 /* [enter_tick] [gc time] [event] */
6589 fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n",
6590 enter_tick,
6591 exit_tick - enter_tick,
6592 event,
6593 last_gc_status, current_gc_status,
6594 (objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-');
6595#endif
6596 }
6597}
6598#else /* PRINT_ENTER_EXIT_TICK */
6599static inline void
6600gc_record(rb_objspace_t *objspace, int direction, const char *event)
6601{
6602 /* null */
6603}
6604#endif /* PRINT_ENTER_EXIT_TICK */
6605
6606static const char *
6607gc_enter_event_cstr(enum gc_enter_event event)
6608{
6609 switch (event) {
6610 case gc_enter_event_start: return "start";
6611 case gc_enter_event_continue: return "continue";
6612 case gc_enter_event_rest: return "rest";
6613 case gc_enter_event_finalizer: return "finalizer";
6614 }
6615 return NULL;
6616}
6617
6618static void
6619gc_enter_count(enum gc_enter_event event)
6620{
6621 switch (event) {
6622 case gc_enter_event_start: RB_DEBUG_COUNTER_INC(gc_enter_start); break;
6623 case gc_enter_event_continue: RB_DEBUG_COUNTER_INC(gc_enter_continue); break;
6624 case gc_enter_event_rest: RB_DEBUG_COUNTER_INC(gc_enter_rest); break;
6625 case gc_enter_event_finalizer: RB_DEBUG_COUNTER_INC(gc_enter_finalizer); break;
6626 }
6627}
6628
6629static bool current_process_time(struct timespec *ts);
6630
6631static void
6632gc_clock_start(struct timespec *ts)
6633{
6634 if (!current_process_time(ts)) {
6635 ts->tv_sec = 0;
6636 ts->tv_nsec = 0;
6637 }
6638}
6639
6640static unsigned long long
6641gc_clock_end(struct timespec *ts)
6642{
6643 struct timespec end_time;
6644
6645 if ((ts->tv_sec > 0 || ts->tv_nsec > 0) &&
6646 current_process_time(&end_time) &&
6647 end_time.tv_sec >= ts->tv_sec) {
6648 return (unsigned long long)(end_time.tv_sec - ts->tv_sec) * (1000 * 1000 * 1000) +
6649 (end_time.tv_nsec - ts->tv_nsec);
6650 }
6651
6652 return 0;
6653}
6654
6655static inline void
6656gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
6657{
6658 *lock_lev = rb_gc_vm_lock();
6659
6660 switch (event) {
6661 case gc_enter_event_rest:
6662 if (!is_marking(objspace)) break;
6663 // fall through
6664 case gc_enter_event_start:
6665 case gc_enter_event_continue:
6666 // stop other ractors
6667 rb_gc_vm_barrier();
6668 break;
6669 default:
6670 break;
6671 }
6672
6673 gc_enter_count(event);
6674 if (RB_UNLIKELY(during_gc != 0)) rb_bug("during_gc != 0");
6675 if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace);
6676
6677 during_gc = TRUE;
6678 RUBY_DEBUG_LOG("%s (%s)",gc_enter_event_cstr(event), gc_current_status(objspace));
6679 gc_report(1, objspace, "gc_enter: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
6680 gc_record(objspace, 0, gc_enter_event_cstr(event));
6681
6682 rb_gc_event_hook(0, RUBY_INTERNAL_EVENT_GC_ENTER);
6683}
6684
6685static inline void
6686gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev)
6687{
6688 GC_ASSERT(during_gc != 0);
6689
6690 rb_gc_event_hook(0, RUBY_INTERNAL_EVENT_GC_EXIT);
6691
6692 gc_record(objspace, 1, gc_enter_event_cstr(event));
6693 RUBY_DEBUG_LOG("%s (%s)", gc_enter_event_cstr(event), gc_current_status(objspace));
6694 gc_report(1, objspace, "gc_exit: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace));
6695 during_gc = FALSE;
6696
6697 rb_gc_vm_unlock(*lock_lev);
6698}
6699
6700#ifndef MEASURE_GC
6701#define MEASURE_GC (objspace->flags.measure_gc)
6702#endif
6703
6704static void
6705gc_marking_enter(rb_objspace_t *objspace)
6706{
6707 GC_ASSERT(during_gc != 0);
6708
6709 if (MEASURE_GC) {
6710 gc_clock_start(&objspace->profile.marking_start_time);
6711 }
6712}
6713
6714static void
6715gc_marking_exit(rb_objspace_t *objspace)
6716{
6717 GC_ASSERT(during_gc != 0);
6718
6719 if (MEASURE_GC) {
6720 objspace->profile.marking_time_ns += gc_clock_end(&objspace->profile.marking_start_time);
6721 }
6722}
6723
6724static void
6725gc_sweeping_enter(rb_objspace_t *objspace)
6726{
6727 GC_ASSERT(during_gc != 0);
6728
6729 if (MEASURE_GC) {
6730 gc_clock_start(&objspace->profile.sweeping_start_time);
6731 }
6732}
6733
6734static void
6735gc_sweeping_exit(rb_objspace_t *objspace)
6736{
6737 GC_ASSERT(during_gc != 0);
6738
6739 if (MEASURE_GC) {
6740 objspace->profile.sweeping_time_ns += gc_clock_end(&objspace->profile.sweeping_start_time);
6741 }
6742}
6743
6744static void *
6745gc_with_gvl(void *ptr)
6746{
6747 struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
6748 return (void *)(VALUE)garbage_collect(oar->objspace, oar->reason);
6749}
6750
6751int ruby_thread_has_gvl_p(void);
6752
6753static int
6754garbage_collect_with_gvl(rb_objspace_t *objspace, unsigned int reason)
6755{
6756 if (dont_gc_val()) {
6757 return TRUE;
6758 }
6759 else if (!ruby_native_thread_p()) {
6760 return TRUE;
6761 }
6762 else if (!ruby_thread_has_gvl_p()) {
6763 void *ret;
6764 struct objspace_and_reason oar;
6765 oar.objspace = objspace;
6766 oar.reason = reason;
6767 ret = rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
6768
6769 return !!ret;
6770 }
6771 else {
6772 return garbage_collect(objspace, reason);
6773 }
6774}
6775
6776static int
6777gc_set_candidate_object_i(void *vstart, void *vend, size_t stride, void *data)
6778{
6780
6781 VALUE v = (VALUE)vstart;
6782 for (; v != (VALUE)vend; v += stride) {
6783 asan_unpoisoning_object(v) {
6784 switch (BUILTIN_TYPE(v)) {
6785 case T_NONE:
6786 case T_ZOMBIE:
6787 break;
6788 default:
6789 rb_gc_prepare_heap_process_object(v);
6790 if (!RVALUE_OLD_P(objspace, v) && !RVALUE_WB_UNPROTECTED(objspace, v)) {
6791 RVALUE_AGE_SET_CANDIDATE(objspace, v);
6792 }
6793 }
6794 }
6795 }
6796
6797 return 0;
6798}
6799
6800void
6801rb_gc_impl_start(void *objspace_ptr, bool full_mark, bool immediate_mark, bool immediate_sweep, bool compact)
6802{
6803 rb_objspace_t *objspace = objspace_ptr;
6804 unsigned int reason = (GPR_FLAG_FULL_MARK |
6805 GPR_FLAG_IMMEDIATE_MARK |
6806 GPR_FLAG_IMMEDIATE_SWEEP |
6807 GPR_FLAG_METHOD);
6808
6809 int full_marking_p = gc_config_full_mark_val;
6810 gc_config_full_mark_set(TRUE);
6811
6812 /* For now, compact implies full mark / sweep, so ignore other flags */
6813 if (compact) {
6814 GC_ASSERT(GC_COMPACTION_SUPPORTED);
6815
6816 reason |= GPR_FLAG_COMPACT;
6817 }
6818 else {
6819 if (!full_mark) reason &= ~GPR_FLAG_FULL_MARK;
6820 if (!immediate_mark) reason &= ~GPR_FLAG_IMMEDIATE_MARK;
6821 if (!immediate_sweep) reason &= ~GPR_FLAG_IMMEDIATE_SWEEP;
6822 }
6823
6824 garbage_collect(objspace, reason);
6825 gc_finalize_deferred(objspace);
6826
6827 gc_config_full_mark_set(full_marking_p);
6828}
6829
6830void
6831rb_gc_impl_prepare_heap(void *objspace_ptr)
6832{
6833 rb_objspace_t *objspace = objspace_ptr;
6834
6835 size_t orig_total_slots = objspace_available_slots(objspace);
6836 size_t orig_allocatable_slots = objspace->heap_pages.allocatable_slots;
6837
6838 rb_gc_impl_each_objects(objspace, gc_set_candidate_object_i, objspace_ptr);
6839
6840 double orig_max_free_slots = gc_params.heap_free_slots_max_ratio;
6841 /* Ensure that all empty pages are moved onto empty_pages. */
6842 gc_params.heap_free_slots_max_ratio = 0.0;
6843 rb_gc_impl_start(objspace, true, true, true, true);
6844 gc_params.heap_free_slots_max_ratio = orig_max_free_slots;
6845
6846 objspace->heap_pages.allocatable_slots = 0;
6847 heap_pages_free_unused_pages(objspace_ptr);
6848 GC_ASSERT(objspace->empty_pages_count == 0);
6849 objspace->heap_pages.allocatable_slots = orig_allocatable_slots;
6850
6851 size_t total_slots = objspace_available_slots(objspace);
6852 if (orig_total_slots > total_slots) {
6853 objspace->heap_pages.allocatable_slots += orig_total_slots - total_slots;
6854 }
6855
6856#if defined(HAVE_MALLOC_TRIM) && !defined(RUBY_ALTERNATIVE_MALLOC_HEADER)
6857 malloc_trim(0);
6858#endif
6859}
6860
6861static int
6862gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj)
6863{
6864 GC_ASSERT(!SPECIAL_CONST_P(obj));
6865
6866 switch (BUILTIN_TYPE(obj)) {
6867 case T_NONE:
6868 case T_MOVED:
6869 case T_ZOMBIE:
6870 return FALSE;
6871 case T_SYMBOL:
6872 // TODO: restore original behavior
6873 // if (RSYMBOL(obj)->id & ~ID_SCOPE_MASK) {
6874 // return FALSE;
6875 // }
6876 return false;
6877 /* fall through */
6878 case T_STRING:
6879 case T_OBJECT:
6880 case T_FLOAT:
6881 case T_IMEMO:
6882 case T_ARRAY:
6883 case T_BIGNUM:
6884 case T_ICLASS:
6885 case T_MODULE:
6886 case T_REGEXP:
6887 case T_DATA:
6888 case T_MATCH:
6889 case T_STRUCT:
6890 case T_HASH:
6891 case T_FILE:
6892 case T_COMPLEX:
6893 case T_RATIONAL:
6894 case T_NODE:
6895 case T_CLASS:
6896 if (FL_TEST_RAW(obj, FL_FINALIZE)) {
6897 /* The finalizer table is a numtable. It looks up objects by address.
6898 * We can't mark the keys in the finalizer table because that would
6899 * prevent the objects from being collected. This check prevents
6900 * objects that are keys in the finalizer table from being moved
6901 * without directly pinning them. */
6902 GC_ASSERT(st_is_member(finalizer_table, obj));
6903
6904 return FALSE;
6905 }
6906 GC_ASSERT(RVALUE_MARKED(objspace, obj));
6907 GC_ASSERT(!RVALUE_PINNED(objspace, obj));
6908
6909 return TRUE;
6910
6911 default:
6912 rb_bug("gc_is_moveable_obj: unreachable (%d)", (int)BUILTIN_TYPE(obj));
6913 break;
6914 }
6915
6916 return FALSE;
6917}
6918
6919void rb_mv_generic_ivar(VALUE src, VALUE dst);
6920
6921static VALUE
6922gc_move(rb_objspace_t *objspace, VALUE src, VALUE dest, size_t src_slot_size, size_t slot_size)
6923{
6924 int marked;
6925 int wb_unprotected;
6926 int uncollectible;
6927 int age;
6928
6929 gc_report(4, objspace, "Moving object: %p -> %p\n", (void *)src, (void *)dest);
6930
6931 GC_ASSERT(BUILTIN_TYPE(src) != T_NONE);
6932 GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(dest), dest));
6933
6934 GC_ASSERT(!RVALUE_MARKING(objspace, src));
6935
6936 /* Save off bits for current object. */
6937 marked = RVALUE_MARKED(objspace, src);
6938 wb_unprotected = RVALUE_WB_UNPROTECTED(objspace, src);
6939 uncollectible = RVALUE_UNCOLLECTIBLE(objspace, src);
6940 bool remembered = RVALUE_REMEMBERED(objspace, src);
6941 age = RVALUE_AGE_GET(src);
6942
6943 /* Clear bits for eventual T_MOVED */
6944 CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(src), src);
6945 CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(src), src);
6946 CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(src), src);
6947 CLEAR_IN_BITMAP(GET_HEAP_PAGE(src)->remembered_bits, src);
6948
6949 if (FL_TEST_RAW(src, FL_SEEN_OBJ_ID)) {
6950 /* If the source object's object_id has been seen, we need to update
6951 * the object to object id mapping. */
6952 st_data_t srcid = (st_data_t)src, id;
6953
6954 gc_report(4, objspace, "Moving object with seen id: %p -> %p\n", (void *)src, (void *)dest);
6955 /* Resizing the st table could cause a malloc */
6956 DURING_GC_COULD_MALLOC_REGION_START();
6957 {
6958 if (!st_delete(objspace->obj_to_id_tbl, &srcid, &id)) {
6959 rb_bug("gc_move: object ID seen, but not in mapping table: %s", rb_obj_info((VALUE)src));
6960 }
6961
6962 st_insert(objspace->obj_to_id_tbl, (st_data_t)dest, id);
6963 }
6964 DURING_GC_COULD_MALLOC_REGION_END();
6965 }
6966 else {
6967 GC_ASSERT(!st_lookup(objspace->obj_to_id_tbl, (st_data_t)src, NULL));
6968 }
6969
6970 /* Move the object */
6971 memcpy((void *)dest, (void *)src, MIN(src_slot_size, slot_size));
6972
6973 if (RVALUE_OVERHEAD > 0) {
6974 void *dest_overhead = (void *)(((uintptr_t)dest) + slot_size - RVALUE_OVERHEAD);
6975 void *src_overhead = (void *)(((uintptr_t)src) + src_slot_size - RVALUE_OVERHEAD);
6976
6977 memcpy(dest_overhead, src_overhead, RVALUE_OVERHEAD);
6978 }
6979
6980 memset((void *)src, 0, src_slot_size);
6981 RVALUE_AGE_RESET(src);
6982
6983 /* Set bits for object in new location */
6984 if (remembered) {
6985 MARK_IN_BITMAP(GET_HEAP_PAGE(dest)->remembered_bits, dest);
6986 }
6987 else {
6988 CLEAR_IN_BITMAP(GET_HEAP_PAGE(dest)->remembered_bits, dest);
6989 }
6990
6991 if (marked) {
6992 MARK_IN_BITMAP(GET_HEAP_MARK_BITS(dest), dest);
6993 }
6994 else {
6995 CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(dest), dest);
6996 }
6997
6998 if (wb_unprotected) {
6999 MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest);
7000 }
7001 else {
7002 CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest);
7003 }
7004
7005 if (uncollectible) {
7006 MARK_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(dest), dest);
7007 }
7008 else {
7009 CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(dest), dest);
7010 }
7011
7012 RVALUE_AGE_SET(dest, age);
7013 /* Assign forwarding address */
7014 RMOVED(src)->flags = T_MOVED;
7015 RMOVED(src)->dummy = Qundef;
7016 RMOVED(src)->destination = dest;
7017 GC_ASSERT(BUILTIN_TYPE(dest) != T_NONE);
7018
7019 GET_HEAP_PAGE(src)->heap->total_freed_objects++;
7020 GET_HEAP_PAGE(dest)->heap->total_allocated_objects++;
7021
7022 return src;
7023}
7024
7025#if GC_CAN_COMPILE_COMPACTION
7026static int
7027compare_pinned_slots(const void *left, const void *right, void *dummy)
7028{
7029 struct heap_page *left_page;
7030 struct heap_page *right_page;
7031
7032 left_page = *(struct heap_page * const *)left;
7033 right_page = *(struct heap_page * const *)right;
7034
7035 return left_page->pinned_slots - right_page->pinned_slots;
7036}
7037
7038static int
7039compare_free_slots(const void *left, const void *right, void *dummy)
7040{
7041 struct heap_page *left_page;
7042 struct heap_page *right_page;
7043
7044 left_page = *(struct heap_page * const *)left;
7045 right_page = *(struct heap_page * const *)right;
7046
7047 return left_page->free_slots - right_page->free_slots;
7048}
7049
7050static void
7051gc_sort_heap_by_compare_func(rb_objspace_t *objspace, gc_compact_compare_func compare_func)
7052{
7053 for (int j = 0; j < HEAP_COUNT; j++) {
7054 rb_heap_t *heap = &heaps[j];
7055
7056 size_t total_pages = heap->total_pages;
7057 size_t size = rb_size_mul_or_raise(total_pages, sizeof(struct heap_page *), rb_eRuntimeError);
7058 struct heap_page *page = 0, **page_list = malloc(size);
7059 size_t i = 0;
7060
7061 heap->free_pages = NULL;
7062 ccan_list_for_each(&heap->pages, page, page_node) {
7063 page_list[i++] = page;
7064 GC_ASSERT(page);
7065 }
7066
7067 GC_ASSERT((size_t)i == total_pages);
7068
7069 /* Sort the heap so "filled pages" are first. `heap_add_page` adds to the
7070 * head of the list, so empty pages will end up at the start of the heap */
7071 ruby_qsort(page_list, total_pages, sizeof(struct heap_page *), compare_func, NULL);
7072
7073 /* Reset the eden heap */
7074 ccan_list_head_init(&heap->pages);
7075
7076 for (i = 0; i < total_pages; i++) {
7077 ccan_list_add(&heap->pages, &page_list[i]->page_node);
7078 if (page_list[i]->free_slots != 0) {
7079 heap_add_freepage(heap, page_list[i]);
7080 }
7081 }
7082
7083 free(page_list);
7084 }
7085}
7086#endif
7087
7088bool
7089rb_gc_impl_object_moved_p(void *objspace_ptr, VALUE obj)
7090{
7091 return gc_object_moved_p(objspace_ptr, obj);
7092}
7093
7094static int
7095gc_ref_update(void *vstart, void *vend, size_t stride, rb_objspace_t *objspace, struct heap_page *page)
7096{
7097 VALUE v = (VALUE)vstart;
7098
7099 page->flags.has_uncollectible_wb_unprotected_objects = FALSE;
7100 page->flags.has_remembered_objects = FALSE;
7101
7102 /* For each object on the page */
7103 for (; v != (VALUE)vend; v += stride) {
7104 asan_unpoisoning_object(v) {
7105 switch (BUILTIN_TYPE(v)) {
7106 case T_NONE:
7107 case T_MOVED:
7108 case T_ZOMBIE:
7109 break;
7110 default:
7111 if (RVALUE_WB_UNPROTECTED(objspace, v)) {
7112 page->flags.has_uncollectible_wb_unprotected_objects = TRUE;
7113 }
7114 if (RVALUE_REMEMBERED(objspace, v)) {
7115 page->flags.has_remembered_objects = TRUE;
7116 }
7117 if (page->flags.before_sweep) {
7118 if (RVALUE_MARKED(objspace, v)) {
7119 rb_gc_update_object_references(objspace, v);
7120 }
7121 }
7122 else {
7123 rb_gc_update_object_references(objspace, v);
7124 }
7125 }
7126 }
7127 }
7128
7129 return 0;
7130}
7131
7132static int
7133gc_update_references_weak_table_i(VALUE obj, void *data)
7134{
7135 int ret;
7136 asan_unpoisoning_object(obj) {
7137 ret = BUILTIN_TYPE(obj) == T_MOVED ? ST_REPLACE : ST_CONTINUE;
7138 }
7139 return ret;
7140}
7141
7142static int
7143gc_update_references_weak_table_replace_i(VALUE *obj, void *data)
7144{
7145 *obj = rb_gc_location(*obj);
7146
7147 return ST_CONTINUE;
7148}
7149
7150static void
7151gc_update_references(rb_objspace_t *objspace)
7152{
7153 objspace->flags.during_reference_updating = true;
7154
7155 struct heap_page *page = NULL;
7156
7157 for (int i = 0; i < HEAP_COUNT; i++) {
7158 bool should_set_mark_bits = TRUE;
7159 rb_heap_t *heap = &heaps[i];
7160
7161 ccan_list_for_each(&heap->pages, page, page_node) {
7162 uintptr_t start = (uintptr_t)page->start;
7163 uintptr_t end = start + (page->total_slots * heap->slot_size);
7164
7165 gc_ref_update((void *)start, (void *)end, heap->slot_size, objspace, page);
7166 if (page == heap->sweeping_page) {
7167 should_set_mark_bits = FALSE;
7168 }
7169 if (should_set_mark_bits) {
7170 gc_setup_mark_bits(page);
7171 }
7172 }
7173 }
7174 gc_ref_update_table_values_only(objspace->obj_to_id_tbl);
7175 gc_update_table_refs(objspace->id_to_obj_tbl);
7176 gc_update_table_refs(finalizer_table);
7177
7178 rb_gc_update_vm_references((void *)objspace);
7179
7180 for (int table = 0; table < RB_GC_VM_WEAK_TABLE_COUNT; table++) {
7181 rb_gc_vm_weak_table_foreach(
7182 gc_update_references_weak_table_i,
7183 gc_update_references_weak_table_replace_i,
7184 NULL,
7185 false,
7186 table
7187 );
7188 }
7189
7190 objspace->flags.during_reference_updating = false;
7191}
7192
7193#if GC_CAN_COMPILE_COMPACTION
7194static void
7195root_obj_check_moved_i(const char *category, VALUE obj, void *data)
7196{
7197 rb_objspace_t *objspace = data;
7198
7199 if (gc_object_moved_p(objspace, obj)) {
7200 rb_bug("ROOT %s points to MOVED: %p -> %s", category, (void *)obj, rb_obj_info(rb_gc_impl_location(objspace, obj)));
7201 }
7202}
7203
7204static void
7205reachable_object_check_moved_i(VALUE ref, void *data)
7206{
7207 VALUE parent = (VALUE)data;
7208 if (gc_object_moved_p(rb_gc_get_objspace(), ref)) {
7209 rb_bug("Object %s points to MOVED: %p -> %s", rb_obj_info(parent), (void *)ref, rb_obj_info(rb_gc_impl_location(rb_gc_get_objspace(), ref)));
7210 }
7211}
7212
7213static int
7214heap_check_moved_i(void *vstart, void *vend, size_t stride, void *data)
7215{
7216 rb_objspace_t *objspace = data;
7217
7218 VALUE v = (VALUE)vstart;
7219 for (; v != (VALUE)vend; v += stride) {
7220 if (gc_object_moved_p(objspace, v)) {
7221 /* Moved object still on the heap, something may have a reference. */
7222 }
7223 else {
7224 asan_unpoisoning_object(v) {
7225 switch (BUILTIN_TYPE(v)) {
7226 case T_NONE:
7227 case T_ZOMBIE:
7228 break;
7229 default:
7230 if (!rb_gc_impl_garbage_object_p(objspace, v)) {
7231 rb_objspace_reachable_objects_from(v, reachable_object_check_moved_i, (void *)v);
7232 }
7233 }
7234 }
7235 }
7236 }
7237
7238 return 0;
7239}
7240#endif
7241
7242bool
7243rb_gc_impl_during_gc_p(void *objspace_ptr)
7244{
7245 rb_objspace_t *objspace = objspace_ptr;
7246
7247 return during_gc;
7248}
7249
7250#if RGENGC_PROFILE >= 2
7251
7252static const char*
7253type_name(int type, VALUE obj)
7254{
7255 switch ((enum ruby_value_type)type) {
7256 case RUBY_T_NONE: return "T_NONE";
7257 case RUBY_T_OBJECT: return "T_OBJECT";
7258 case RUBY_T_CLASS: return "T_CLASS";
7259 case RUBY_T_MODULE: return "T_MODULE";
7260 case RUBY_T_FLOAT: return "T_FLOAT";
7261 case RUBY_T_STRING: return "T_STRING";
7262 case RUBY_T_REGEXP: return "T_REGEXP";
7263 case RUBY_T_ARRAY: return "T_ARRAY";
7264 case RUBY_T_HASH: return "T_HASH";
7265 case RUBY_T_STRUCT: return "T_STRUCT";
7266 case RUBY_T_BIGNUM: return "T_BIGNUM";
7267 case RUBY_T_FILE: return "T_FILE";
7268 case RUBY_T_DATA: return "T_DATA";
7269 case RUBY_T_MATCH: return "T_MATCH";
7270 case RUBY_T_COMPLEX: return "T_COMPLEX";
7271 case RUBY_T_RATIONAL: return "T_RATIONAL";
7272 case RUBY_T_NIL: return "T_NIL";
7273 case RUBY_T_TRUE: return "T_TRUE";
7274 case RUBY_T_FALSE: return "T_FALSE";
7275 case RUBY_T_SYMBOL: return "T_SYMBOL";
7276 case RUBY_T_FIXNUM: return "T_FIXNUM";
7277 case RUBY_T_UNDEF: return "T_UNDEF";
7278 case RUBY_T_IMEMO: return "T_IMEMO";
7279 case RUBY_T_NODE: return "T_NODE";
7280 case RUBY_T_ICLASS: return "T_ICLASS";
7281 case RUBY_T_ZOMBIE: return "T_ZOMBIE";
7282 case RUBY_T_MOVED: return "T_MOVED";
7283 default: return "unknown";
7284 }
7285}
7286
7287static void
7288gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
7289{
7290 VALUE result = rb_hash_new_with_size(T_MASK);
7291 int i;
7292 for (i=0; i<T_MASK; i++) {
7293 const char *type = type_name(i, 0);
7294 rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
7295 }
7296 rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
7297}
7298#endif
7299
7300size_t
7301rb_gc_impl_gc_count(void *objspace_ptr)
7302{
7303 rb_objspace_t *objspace = objspace_ptr;
7304
7305 return objspace->profile.count;
7306}
7307
7308static VALUE
7309gc_info_decode(rb_objspace_t *objspace, const VALUE hash_or_key, const unsigned int orig_flags)
7310{
7311 static VALUE sym_major_by = Qnil, sym_gc_by, sym_immediate_sweep, sym_have_finalizer, sym_state, sym_need_major_by;
7312 static VALUE sym_nofree, sym_oldgen, sym_shady, sym_force, sym_stress;
7313#if RGENGC_ESTIMATE_OLDMALLOC
7314 static VALUE sym_oldmalloc;
7315#endif
7316 static VALUE sym_newobj, sym_malloc, sym_method, sym_capi;
7317 static VALUE sym_none, sym_marking, sym_sweeping;
7318 static VALUE sym_weak_references_count, sym_retained_weak_references_count;
7319 VALUE hash = Qnil, key = Qnil;
7320 VALUE major_by, need_major_by;
7321 unsigned int flags = orig_flags ? orig_flags : objspace->profile.latest_gc_info;
7322
7323 if (SYMBOL_P(hash_or_key)) {
7324 key = hash_or_key;
7325 }
7326 else if (RB_TYPE_P(hash_or_key, T_HASH)) {
7327 hash = hash_or_key;
7328 }
7329 else {
7330 rb_bug("gc_info_decode: non-hash or symbol given");
7331 }
7332
7333 if (NIL_P(sym_major_by)) {
7334#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
7335 S(major_by);
7336 S(gc_by);
7337 S(immediate_sweep);
7338 S(have_finalizer);
7339 S(state);
7340 S(need_major_by);
7341
7342 S(stress);
7343 S(nofree);
7344 S(oldgen);
7345 S(shady);
7346 S(force);
7347#if RGENGC_ESTIMATE_OLDMALLOC
7348 S(oldmalloc);
7349#endif
7350 S(newobj);
7351 S(malloc);
7352 S(method);
7353 S(capi);
7354
7355 S(none);
7356 S(marking);
7357 S(sweeping);
7358
7359 S(weak_references_count);
7360 S(retained_weak_references_count);
7361#undef S
7362 }
7363
7364#define SET(name, attr) \
7365 if (key == sym_##name) \
7366 return (attr); \
7367 else if (hash != Qnil) \
7368 rb_hash_aset(hash, sym_##name, (attr));
7369
7370 major_by =
7371 (flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
7372 (flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
7373 (flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
7374 (flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
7375#if RGENGC_ESTIMATE_OLDMALLOC
7376 (flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
7377#endif
7378 Qnil;
7379 SET(major_by, major_by);
7380
7381 if (orig_flags == 0) { /* set need_major_by only if flags not set explicitly */
7382 unsigned int need_major_flags = gc_needs_major_flags;
7383 need_major_by =
7384 (need_major_flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree :
7385 (need_major_flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen :
7386 (need_major_flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady :
7387 (need_major_flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force :
7388#if RGENGC_ESTIMATE_OLDMALLOC
7389 (need_major_flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc :
7390#endif
7391 Qnil;
7392 SET(need_major_by, need_major_by);
7393 }
7394
7395 SET(gc_by,
7396 (flags & GPR_FLAG_NEWOBJ) ? sym_newobj :
7397 (flags & GPR_FLAG_MALLOC) ? sym_malloc :
7398 (flags & GPR_FLAG_METHOD) ? sym_method :
7399 (flags & GPR_FLAG_CAPI) ? sym_capi :
7400 (flags & GPR_FLAG_STRESS) ? sym_stress :
7401 Qnil
7402 );
7403
7404 SET(have_finalizer, (flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
7405 SET(immediate_sweep, (flags & GPR_FLAG_IMMEDIATE_SWEEP) ? Qtrue : Qfalse);
7406
7407 if (orig_flags == 0) {
7408 SET(state, gc_mode(objspace) == gc_mode_none ? sym_none :
7409 gc_mode(objspace) == gc_mode_marking ? sym_marking : sym_sweeping);
7410 }
7411
7412 SET(weak_references_count, LONG2FIX(objspace->profile.weak_references_count));
7413 SET(retained_weak_references_count, LONG2FIX(objspace->profile.retained_weak_references_count));
7414#undef SET
7415
7416 if (!NIL_P(key)) {
7417 // Matched key should return above
7418 return Qundef;
7419 }
7420
7421 return hash;
7422}
7423
7424VALUE
7425rb_gc_impl_latest_gc_info(void *objspace_ptr, VALUE key)
7426{
7427 rb_objspace_t *objspace = objspace_ptr;
7428
7429 return gc_info_decode(objspace, key, 0);
7430}
7431
7432
7433enum gc_stat_sym {
7434 gc_stat_sym_count,
7435 gc_stat_sym_time,
7436 gc_stat_sym_marking_time,
7437 gc_stat_sym_sweeping_time,
7438 gc_stat_sym_heap_allocated_pages,
7439 gc_stat_sym_heap_empty_pages,
7440 gc_stat_sym_heap_allocatable_slots,
7441 gc_stat_sym_heap_available_slots,
7442 gc_stat_sym_heap_live_slots,
7443 gc_stat_sym_heap_free_slots,
7444 gc_stat_sym_heap_final_slots,
7445 gc_stat_sym_heap_marked_slots,
7446 gc_stat_sym_heap_eden_pages,
7447 gc_stat_sym_total_allocated_pages,
7448 gc_stat_sym_total_freed_pages,
7449 gc_stat_sym_total_allocated_objects,
7450 gc_stat_sym_total_freed_objects,
7451 gc_stat_sym_malloc_increase_bytes,
7452 gc_stat_sym_malloc_increase_bytes_limit,
7453 gc_stat_sym_minor_gc_count,
7454 gc_stat_sym_major_gc_count,
7455 gc_stat_sym_compact_count,
7456 gc_stat_sym_read_barrier_faults,
7457 gc_stat_sym_total_moved_objects,
7458 gc_stat_sym_remembered_wb_unprotected_objects,
7459 gc_stat_sym_remembered_wb_unprotected_objects_limit,
7460 gc_stat_sym_old_objects,
7461 gc_stat_sym_old_objects_limit,
7462#if RGENGC_ESTIMATE_OLDMALLOC
7463 gc_stat_sym_oldmalloc_increase_bytes,
7464 gc_stat_sym_oldmalloc_increase_bytes_limit,
7465#endif
7466 gc_stat_sym_weak_references_count,
7467#if RGENGC_PROFILE
7468 gc_stat_sym_total_generated_normal_object_count,
7469 gc_stat_sym_total_generated_shady_object_count,
7470 gc_stat_sym_total_shade_operation_count,
7471 gc_stat_sym_total_promoted_count,
7472 gc_stat_sym_total_remembered_normal_object_count,
7473 gc_stat_sym_total_remembered_shady_object_count,
7474#endif
7475 gc_stat_sym_last
7476};
7477
7478static VALUE gc_stat_symbols[gc_stat_sym_last];
7479
7480static void
7481setup_gc_stat_symbols(void)
7482{
7483 if (gc_stat_symbols[0] == 0) {
7484#define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s))
7485 S(count);
7486 S(time);
7487 S(marking_time),
7488 S(sweeping_time),
7489 S(heap_allocated_pages);
7490 S(heap_empty_pages);
7491 S(heap_allocatable_slots);
7492 S(heap_available_slots);
7493 S(heap_live_slots);
7494 S(heap_free_slots);
7495 S(heap_final_slots);
7496 S(heap_marked_slots);
7497 S(heap_eden_pages);
7498 S(total_allocated_pages);
7499 S(total_freed_pages);
7500 S(total_allocated_objects);
7501 S(total_freed_objects);
7502 S(malloc_increase_bytes);
7503 S(malloc_increase_bytes_limit);
7504 S(minor_gc_count);
7505 S(major_gc_count);
7506 S(compact_count);
7507 S(read_barrier_faults);
7508 S(total_moved_objects);
7509 S(remembered_wb_unprotected_objects);
7510 S(remembered_wb_unprotected_objects_limit);
7511 S(old_objects);
7512 S(old_objects_limit);
7513#if RGENGC_ESTIMATE_OLDMALLOC
7514 S(oldmalloc_increase_bytes);
7515 S(oldmalloc_increase_bytes_limit);
7516#endif
7517 S(weak_references_count);
7518#if RGENGC_PROFILE
7519 S(total_generated_normal_object_count);
7520 S(total_generated_shady_object_count);
7521 S(total_shade_operation_count);
7522 S(total_promoted_count);
7523 S(total_remembered_normal_object_count);
7524 S(total_remembered_shady_object_count);
7525#endif /* RGENGC_PROFILE */
7526#undef S
7527 }
7528}
7529
7530static uint64_t
7531ns_to_ms(uint64_t ns)
7532{
7533 return ns / (1000 * 1000);
7534}
7535
7536VALUE
7537rb_gc_impl_stat(void *objspace_ptr, VALUE hash_or_sym)
7538{
7539 rb_objspace_t *objspace = objspace_ptr;
7540 VALUE hash = Qnil, key = Qnil;
7541
7542 setup_gc_stat_symbols();
7543
7544 if (RB_TYPE_P(hash_or_sym, T_HASH)) {
7545 hash = hash_or_sym;
7546 }
7547 else if (SYMBOL_P(hash_or_sym)) {
7548 key = hash_or_sym;
7549 }
7550 else {
7551 rb_bug("non-hash or symbol given");
7552 }
7553
7554#define SET(name, attr) \
7555 if (key == gc_stat_symbols[gc_stat_sym_##name]) \
7556 return SIZET2NUM(attr); \
7557 else if (hash != Qnil) \
7558 rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr));
7559
7560 SET(count, objspace->profile.count);
7561 SET(time, (size_t)ns_to_ms(objspace->profile.marking_time_ns + objspace->profile.sweeping_time_ns)); // TODO: UINT64T2NUM
7562 SET(marking_time, (size_t)ns_to_ms(objspace->profile.marking_time_ns));
7563 SET(sweeping_time, (size_t)ns_to_ms(objspace->profile.sweeping_time_ns));
7564
7565 /* implementation dependent counters */
7566 SET(heap_allocated_pages, rb_darray_size(objspace->heap_pages.sorted));
7567 SET(heap_empty_pages, objspace->empty_pages_count)
7568 SET(heap_allocatable_slots, objspace->heap_pages.allocatable_slots);
7569 SET(heap_available_slots, objspace_available_slots(objspace));
7570 SET(heap_live_slots, objspace_live_slots(objspace));
7571 SET(heap_free_slots, objspace_free_slots(objspace));
7572 SET(heap_final_slots, total_final_slots_count(objspace));
7573 SET(heap_marked_slots, objspace->marked_slots);
7574 SET(heap_eden_pages, heap_eden_total_pages(objspace));
7575 SET(total_allocated_pages, objspace->heap_pages.allocated_pages);
7576 SET(total_freed_pages, objspace->heap_pages.freed_pages);
7577 SET(total_allocated_objects, total_allocated_objects(objspace));
7578 SET(total_freed_objects, total_freed_objects(objspace));
7579 SET(malloc_increase_bytes, malloc_increase);
7580 SET(malloc_increase_bytes_limit, malloc_limit);
7581 SET(minor_gc_count, objspace->profile.minor_gc_count);
7582 SET(major_gc_count, objspace->profile.major_gc_count);
7583 SET(compact_count, objspace->profile.compact_count);
7584 SET(read_barrier_faults, objspace->profile.read_barrier_faults);
7585 SET(total_moved_objects, objspace->rcompactor.total_moved);
7586 SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects);
7587 SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit);
7588 SET(old_objects, objspace->rgengc.old_objects);
7589 SET(old_objects_limit, objspace->rgengc.old_objects_limit);
7590#if RGENGC_ESTIMATE_OLDMALLOC
7591 SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase);
7592 SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit);
7593#endif
7594
7595#if RGENGC_PROFILE
7596 SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count);
7597 SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count);
7598 SET(total_shade_operation_count, objspace->profile.total_shade_operation_count);
7599 SET(total_promoted_count, objspace->profile.total_promoted_count);
7600 SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count);
7601 SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count);
7602#endif /* RGENGC_PROFILE */
7603#undef SET
7604
7605 if (!NIL_P(key)) {
7606 // Matched key should return above
7607 return Qundef;
7608 }
7609
7610#if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2
7611 if (hash != Qnil) {
7612 gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
7613 gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
7614 gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
7615 gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types);
7616 gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
7617 gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
7618 }
7619#endif
7620
7621 return hash;
7622}
7623
7624enum gc_stat_heap_sym {
7625 gc_stat_heap_sym_slot_size,
7626 gc_stat_heap_sym_heap_eden_pages,
7627 gc_stat_heap_sym_heap_eden_slots,
7628 gc_stat_heap_sym_total_allocated_pages,
7629 gc_stat_heap_sym_force_major_gc_count,
7630 gc_stat_heap_sym_force_incremental_marking_finish_count,
7631 gc_stat_heap_sym_total_allocated_objects,
7632 gc_stat_heap_sym_total_freed_objects,
7633 gc_stat_heap_sym_last
7634};
7635
7636static VALUE gc_stat_heap_symbols[gc_stat_heap_sym_last];
7637
7638static void
7639setup_gc_stat_heap_symbols(void)
7640{
7641 if (gc_stat_heap_symbols[0] == 0) {
7642#define S(s) gc_stat_heap_symbols[gc_stat_heap_sym_##s] = ID2SYM(rb_intern_const(#s))
7643 S(slot_size);
7644 S(heap_eden_pages);
7645 S(heap_eden_slots);
7646 S(total_allocated_pages);
7647 S(force_major_gc_count);
7648 S(force_incremental_marking_finish_count);
7649 S(total_allocated_objects);
7650 S(total_freed_objects);
7651#undef S
7652 }
7653}
7654
7655static VALUE
7656stat_one_heap(rb_heap_t *heap, VALUE hash, VALUE key)
7657{
7658#define SET(name, attr) \
7659 if (key == gc_stat_heap_symbols[gc_stat_heap_sym_##name]) \
7660 return SIZET2NUM(attr); \
7661 else if (hash != Qnil) \
7662 rb_hash_aset(hash, gc_stat_heap_symbols[gc_stat_heap_sym_##name], SIZET2NUM(attr));
7663
7664 SET(slot_size, heap->slot_size);
7665 SET(heap_eden_pages, heap->total_pages);
7666 SET(heap_eden_slots, heap->total_slots);
7667 SET(total_allocated_pages, heap->total_allocated_pages);
7668 SET(force_major_gc_count, heap->force_major_gc_count);
7669 SET(force_incremental_marking_finish_count, heap->force_incremental_marking_finish_count);
7670 SET(total_allocated_objects, heap->total_allocated_objects);
7671 SET(total_freed_objects, heap->total_freed_objects);
7672#undef SET
7673
7674 if (!NIL_P(key)) {
7675 // Matched key should return above
7676 return Qundef;
7677 }
7678
7679 return hash;
7680}
7681
7682VALUE
7683rb_gc_impl_stat_heap(void *objspace_ptr, VALUE heap_name, VALUE hash_or_sym)
7684{
7685 rb_objspace_t *objspace = objspace_ptr;
7686
7687 setup_gc_stat_heap_symbols();
7688
7689 if (NIL_P(heap_name)) {
7690 if (!RB_TYPE_P(hash_or_sym, T_HASH)) {
7691 rb_bug("non-hash given");
7692 }
7693
7694 for (int i = 0; i < HEAP_COUNT; i++) {
7695 VALUE hash = rb_hash_aref(hash_or_sym, INT2FIX(i));
7696 if (NIL_P(hash)) {
7697 hash = rb_hash_new();
7698 rb_hash_aset(hash_or_sym, INT2FIX(i), hash);
7699 }
7700
7701 stat_one_heap(&heaps[i], hash, Qnil);
7702 }
7703 }
7704 else if (FIXNUM_P(heap_name)) {
7705 int heap_idx = FIX2INT(heap_name);
7706
7707 if (heap_idx < 0 || heap_idx >= HEAP_COUNT) {
7708 rb_raise(rb_eArgError, "size pool index out of range");
7709 }
7710
7711 if (SYMBOL_P(hash_or_sym)) {
7712 return stat_one_heap(&heaps[heap_idx], Qnil, hash_or_sym);
7713 }
7714 else if (RB_TYPE_P(hash_or_sym, T_HASH)) {
7715 return stat_one_heap(&heaps[heap_idx], hash_or_sym, Qnil);
7716 }
7717 else {
7718 rb_bug("non-hash or symbol given");
7719 }
7720 }
7721 else {
7722 rb_bug("heap_name must be nil or an Integer");
7723 }
7724
7725 return hash_or_sym;
7726}
7727
7728/* I could include internal.h for this, but doing so undefines some Array macros
7729 * necessary for initialising objects, and I don't want to include all the array
7730 * headers to get them back
7731 * TODO: Investigate why RARRAY_AREF gets undefined in internal.h
7732 */
7733#ifndef RBOOL
7734#define RBOOL(v) (v ? Qtrue : Qfalse)
7735#endif
7736
7737VALUE
7738rb_gc_impl_config_get(void *objspace_ptr)
7739{
7740#define sym(name) ID2SYM(rb_intern_const(name))
7741 rb_objspace_t *objspace = objspace_ptr;
7742 VALUE hash = rb_hash_new();
7743
7744 rb_hash_aset(hash, sym("rgengc_allow_full_mark"), RBOOL(gc_config_full_mark_val));
7745
7746 return hash;
7747}
7748
7749static int
7750gc_config_set_key(st_data_t key, st_data_t value, st_data_t data)
7751{
7753 if (rb_sym2id(key) == rb_intern("rgengc_allow_full_mark")) {
7754 gc_rest(objspace);
7755 gc_config_full_mark_set(RTEST(value));
7756 }
7757 return ST_CONTINUE;
7758}
7759
7760void
7761rb_gc_impl_config_set(void *objspace_ptr, VALUE hash)
7762{
7763 rb_objspace_t *objspace = objspace_ptr;
7764
7765 if (!RB_TYPE_P(hash, T_HASH)) {
7766 rb_raise(rb_eArgError, "expected keyword arguments");
7767 }
7768
7769 rb_hash_stlike_foreach(hash, gc_config_set_key, (st_data_t)objspace);
7770}
7771
7772VALUE
7773rb_gc_impl_stress_get(void *objspace_ptr)
7774{
7775 rb_objspace_t *objspace = objspace_ptr;
7776 return ruby_gc_stress_mode;
7777}
7778
7779void
7780rb_gc_impl_stress_set(void *objspace_ptr, VALUE flag)
7781{
7782 rb_objspace_t *objspace = objspace_ptr;
7783
7784 objspace->flags.gc_stressful = RTEST(flag);
7785 objspace->gc_stress_mode = flag;
7786}
7787
7788static int
7789get_envparam_size(const char *name, size_t *default_value, size_t lower_bound)
7790{
7791 const char *ptr = getenv(name);
7792 ssize_t val;
7793
7794 if (ptr != NULL && *ptr) {
7795 size_t unit = 0;
7796 char *end;
7797#if SIZEOF_SIZE_T == SIZEOF_LONG_LONG
7798 val = strtoll(ptr, &end, 0);
7799#else
7800 val = strtol(ptr, &end, 0);
7801#endif
7802 switch (*end) {
7803 case 'k': case 'K':
7804 unit = 1024;
7805 ++end;
7806 break;
7807 case 'm': case 'M':
7808 unit = 1024*1024;
7809 ++end;
7810 break;
7811 case 'g': case 'G':
7812 unit = 1024*1024*1024;
7813 ++end;
7814 break;
7815 }
7816 while (*end && isspace((unsigned char)*end)) end++;
7817 if (*end) {
7818 if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
7819 return 0;
7820 }
7821 if (unit > 0) {
7822 if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) {
7823 if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr);
7824 return 0;
7825 }
7826 val *= unit;
7827 }
7828 if (val > 0 && (size_t)val > lower_bound) {
7829 if (RTEST(ruby_verbose)) {
7830 fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE")\n", name, val, *default_value);
7831 }
7832 *default_value = (size_t)val;
7833 return 1;
7834 }
7835 else {
7836 if (RTEST(ruby_verbose)) {
7837 fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE") is ignored because it must be greater than %"PRIuSIZE".\n",
7838 name, val, *default_value, lower_bound);
7839 }
7840 return 0;
7841 }
7842 }
7843 return 0;
7844}
7845
7846static int
7847get_envparam_double(const char *name, double *default_value, double lower_bound, double upper_bound, int accept_zero)
7848{
7849 const char *ptr = getenv(name);
7850 double val;
7851
7852 if (ptr != NULL && *ptr) {
7853 char *end;
7854 val = strtod(ptr, &end);
7855 if (!*ptr || *end) {
7856 if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr);
7857 return 0;
7858 }
7859
7860 if (accept_zero && val == 0.0) {
7861 goto accept;
7862 }
7863 else if (val <= lower_bound) {
7864 if (RTEST(ruby_verbose)) {
7865 fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n",
7866 name, val, *default_value, lower_bound);
7867 }
7868 }
7869 else if (upper_bound != 0.0 && /* ignore upper_bound if it is 0.0 */
7870 val > upper_bound) {
7871 if (RTEST(ruby_verbose)) {
7872 fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be lower than %f.\n",
7873 name, val, *default_value, upper_bound);
7874 }
7875 }
7876 else {
7877 goto accept;
7878 }
7879 }
7880 return 0;
7881
7882 accept:
7883 if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value);
7884 *default_value = val;
7885 return 1;
7886}
7887
7888/*
7889 * GC tuning environment variables
7890 *
7891 * * RUBY_GC_HEAP_FREE_SLOTS
7892 * - Prepare at least this amount of slots after GC.
7893 * - Allocate slots if there are not enough slots.
7894 * * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
7895 * - Allocate slots by this factor.
7896 * - (next slots number) = (current slots number) * (this factor)
7897 * * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
7898 * - Allocation rate is limited to this number of slots.
7899 * * RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO (new from 2.4)
7900 * - Allocate additional pages when the number of free slots is
7901 * lower than the value (total_slots * (this ratio)).
7902 * * RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO (new from 2.4)
7903 * - Allocate slots to satisfy this formula:
7904 * free_slots = total_slots * goal_ratio
7905 * - In other words, prepare (total_slots * goal_ratio) free slots.
7906 * - if this value is 0.0, then use RUBY_GC_HEAP_GROWTH_FACTOR directly.
7907 * * RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO (new from 2.4)
7908 * - Allow to free pages when the number of free slots is
7909 * greater than the value (total_slots * (this ratio)).
7910 * * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1)
7911 * - Do full GC when the number of old objects is more than R * N
7912 * where R is this factor and
7913 * N is the number of old objects just after last full GC.
7914 *
7915 * * obsolete
7916 * * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
7917 * * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
7918 *
7919 * * RUBY_GC_MALLOC_LIMIT
7920 * * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
7921 * * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
7922 *
7923 * * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1)
7924 * * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1)
7925 * * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
7926 */
7927
7928void
7929rb_gc_impl_set_params(void *objspace_ptr)
7930{
7931 rb_objspace_t *objspace = objspace_ptr;
7932 /* RUBY_GC_HEAP_FREE_SLOTS */
7933 if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) {
7934 /* ok */
7935 }
7936
7937 for (int i = 0; i < HEAP_COUNT; i++) {
7938 char env_key[sizeof("RUBY_GC_HEAP_" "_INIT_SLOTS") + DECIMAL_SIZE_OF_BITS(sizeof(int) * CHAR_BIT)];
7939 snprintf(env_key, sizeof(env_key), "RUBY_GC_HEAP_%d_INIT_SLOTS", i);
7940
7941 get_envparam_size(env_key, &gc_params.heap_init_slots[i], 0);
7942 }
7943
7944 get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0, 0.0, FALSE);
7945 get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
7946 get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO", &gc_params.heap_free_slots_min_ratio,
7947 0.0, 1.0, FALSE);
7948 get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO", &gc_params.heap_free_slots_max_ratio,
7949 gc_params.heap_free_slots_min_ratio, 1.0, FALSE);
7950 get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO", &gc_params.heap_free_slots_goal_ratio,
7951 gc_params.heap_free_slots_min_ratio, gc_params.heap_free_slots_max_ratio, TRUE);
7952 get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0, 0.0, TRUE);
7953 get_envparam_double("RUBY_GC_HEAP_REMEMBERED_WB_UNPROTECTED_OBJECTS_LIMIT_RATIO", &gc_params.uncollectible_wb_unprotected_objects_limit_ratio, 0.0, 0.0, TRUE);
7954
7955 if (get_envparam_size("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0)) {
7956 malloc_limit = gc_params.malloc_limit_min;
7957 }
7958 get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
7959 if (!gc_params.malloc_limit_max) { /* ignore max-check if 0 */
7960 gc_params.malloc_limit_max = SIZE_MAX;
7961 }
7962 get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0, 0.0, FALSE);
7963
7964#if RGENGC_ESTIMATE_OLDMALLOC
7965 if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) {
7966 objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
7967 }
7968 get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0);
7969 get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0, 0.0, FALSE);
7970#endif
7971}
7972
7973static inline size_t
7974objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint)
7975{
7976#ifdef HAVE_MALLOC_USABLE_SIZE
7977 if (!hint) {
7978 hint = malloc_usable_size(ptr);
7979 }
7980#endif
7981 return hint;
7982}
7983
7984enum memop_type {
7985 MEMOP_TYPE_MALLOC = 0,
7986 MEMOP_TYPE_FREE,
7987 MEMOP_TYPE_REALLOC
7988};
7989
7990static inline void
7991atomic_sub_nounderflow(size_t *var, size_t sub)
7992{
7993 if (sub == 0) return;
7994
7995 while (1) {
7996 size_t val = *var;
7997 if (val < sub) sub = val;
7998 if (RUBY_ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break;
7999 }
8000}
8001
8002#define gc_stress_full_mark_after_malloc_p() \
8003 (FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<<gc_stress_full_mark_after_malloc)))
8004
8005static void
8006objspace_malloc_gc_stress(rb_objspace_t *objspace)
8007{
8008 if (ruby_gc_stressful && ruby_native_thread_p()) {
8009 unsigned int reason = (GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP |
8010 GPR_FLAG_STRESS | GPR_FLAG_MALLOC);
8011
8012 if (gc_stress_full_mark_after_malloc_p()) {
8013 reason |= GPR_FLAG_FULL_MARK;
8014 }
8015 garbage_collect_with_gvl(objspace, reason);
8016 }
8017}
8018
8019static inline bool
8020objspace_malloc_increase_report(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
8021{
8022 if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %"PRIdSIZE", old_size: %"PRIdSIZE"\n",
8023 mem,
8024 type == MEMOP_TYPE_MALLOC ? "malloc" :
8025 type == MEMOP_TYPE_FREE ? "free " :
8026 type == MEMOP_TYPE_REALLOC ? "realloc": "error",
8027 new_size, old_size);
8028 return false;
8029}
8030
8031static bool
8032objspace_malloc_increase_body(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type)
8033{
8034 if (new_size > old_size) {
8035 RUBY_ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
8036#if RGENGC_ESTIMATE_OLDMALLOC
8037 RUBY_ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size);
8038#endif
8039 }
8040 else {
8041 atomic_sub_nounderflow(&malloc_increase, old_size - new_size);
8042#if RGENGC_ESTIMATE_OLDMALLOC
8043 atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size);
8044#endif
8045 }
8046
8047 if (type == MEMOP_TYPE_MALLOC) {
8048 retry:
8049 if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc_val()) {
8050 if (ruby_thread_has_gvl_p() && is_lazy_sweeping(objspace)) {
8051 gc_rest(objspace); /* gc_rest can reduce malloc_increase */
8052 goto retry;
8053 }
8054 garbage_collect_with_gvl(objspace, GPR_FLAG_MALLOC);
8055 }
8056 }
8057
8058#if MALLOC_ALLOCATED_SIZE
8059 if (new_size >= old_size) {
8060 RUBY_ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size);
8061 }
8062 else {
8063 size_t dec_size = old_size - new_size;
8064
8065#if MALLOC_ALLOCATED_SIZE_CHECK
8066 size_t allocated_size = objspace->malloc_params.allocated_size;
8067 if (allocated_size < dec_size) {
8068 rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size.");
8069 }
8070#endif
8071 atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size);
8072 }
8073
8074 switch (type) {
8075 case MEMOP_TYPE_MALLOC:
8076 RUBY_ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
8077 break;
8078 case MEMOP_TYPE_FREE:
8079 {
8080 size_t allocations = objspace->malloc_params.allocations;
8081 if (allocations > 0) {
8082 atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1);
8083 }
8084#if MALLOC_ALLOCATED_SIZE_CHECK
8085 else {
8086 GC_ASSERT(objspace->malloc_params.allocations > 0);
8087 }
8088#endif
8089 }
8090 break;
8091 case MEMOP_TYPE_REALLOC: /* ignore */ break;
8092 }
8093#endif
8094 return true;
8095}
8096
8097#define objspace_malloc_increase(...) \
8098 for (bool malloc_increase_done = objspace_malloc_increase_report(__VA_ARGS__); \
8099 !malloc_increase_done; \
8100 malloc_increase_done = objspace_malloc_increase_body(__VA_ARGS__))
8101
8102struct malloc_obj_info { /* 4 words */
8103 size_t size;
8104};
8105
8106static inline size_t
8107objspace_malloc_prepare(rb_objspace_t *objspace, size_t size)
8108{
8109 if (size == 0) size = 1;
8110
8111#if CALC_EXACT_MALLOC_SIZE
8112 size += sizeof(struct malloc_obj_info);
8113#endif
8114
8115 return size;
8116}
8117
8118static bool
8119malloc_during_gc_p(rb_objspace_t *objspace)
8120{
8121 /* malloc is not allowed during GC when we're not using multiple ractors
8122 * (since ractors can run while another thread is sweeping) and when we
8123 * have the GVL (since if we don't have the GVL, we'll try to acquire the
8124 * GVL which will block and ensure the other thread finishes GC). */
8125 return during_gc && !dont_gc_val() && !rb_gc_multi_ractor_p() && ruby_thread_has_gvl_p();
8126}
8127
8128static inline void *
8129objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
8130{
8131 size = objspace_malloc_size(objspace, mem, size);
8132 objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC) {}
8133
8134#if CALC_EXACT_MALLOC_SIZE
8135 {
8136 struct malloc_obj_info *info = mem;
8137 info->size = size;
8138 mem = info + 1;
8139 }
8140#endif
8141
8142 return mem;
8143}
8144
8145#if defined(__GNUC__) && RUBY_DEBUG
8146#define RB_BUG_INSTEAD_OF_RB_MEMERROR 1
8147#endif
8148
8149#ifndef RB_BUG_INSTEAD_OF_RB_MEMERROR
8150# define RB_BUG_INSTEAD_OF_RB_MEMERROR 0
8151#endif
8152
8153#define GC_MEMERROR(...) \
8154 ((RB_BUG_INSTEAD_OF_RB_MEMERROR+0) ? rb_bug("" __VA_ARGS__) : (void)0)
8155
8156#define TRY_WITH_GC(siz, expr) do { \
8157 const gc_profile_record_flag gpr = \
8158 GPR_FLAG_FULL_MARK | \
8159 GPR_FLAG_IMMEDIATE_MARK | \
8160 GPR_FLAG_IMMEDIATE_SWEEP | \
8161 GPR_FLAG_MALLOC; \
8162 objspace_malloc_gc_stress(objspace); \
8163 \
8164 if (RB_LIKELY((expr))) { \
8165 /* Success on 1st try */ \
8166 } \
8167 else if (!garbage_collect_with_gvl(objspace, gpr)) { \
8168 /* @shyouhei thinks this doesn't happen */ \
8169 GC_MEMERROR("TRY_WITH_GC: could not GC"); \
8170 } \
8171 else if ((expr)) { \
8172 /* Success on 2nd try */ \
8173 } \
8174 else { \
8175 GC_MEMERROR("TRY_WITH_GC: could not allocate:" \
8176 "%"PRIdSIZE" bytes for %s", \
8177 siz, # expr); \
8178 } \
8179 } while (0)
8180
8181static void
8182check_malloc_not_in_gc(rb_objspace_t *objspace, const char *msg)
8183{
8184 if (RB_UNLIKELY(malloc_during_gc_p(objspace))) {
8185 dont_gc_on();
8186 during_gc = false;
8187 rb_bug("Cannot %s during GC", msg);
8188 }
8189}
8190
8191void
8192rb_gc_impl_free(void *objspace_ptr, void *ptr, size_t old_size)
8193{
8194 rb_objspace_t *objspace = objspace_ptr;
8195
8196 if (!ptr) {
8197 /*
8198 * ISO/IEC 9899 says "If ptr is a null pointer, no action occurs" since
8199 * its first version. We would better follow.
8200 */
8201 return;
8202 }
8203#if CALC_EXACT_MALLOC_SIZE
8204 struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
8205 ptr = info;
8206 old_size = info->size;
8207#endif
8208 old_size = objspace_malloc_size(objspace, ptr, old_size);
8209
8210 objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE) {
8211 free(ptr);
8212 ptr = NULL;
8213 RB_DEBUG_COUNTER_INC(heap_xfree);
8214 }
8215}
8216
8217void *
8218rb_gc_impl_malloc(void *objspace_ptr, size_t size)
8219{
8220 rb_objspace_t *objspace = objspace_ptr;
8221 check_malloc_not_in_gc(objspace, "malloc");
8222
8223 void *mem;
8224
8225 size = objspace_malloc_prepare(objspace, size);
8226 TRY_WITH_GC(size, mem = malloc(size));
8227 RB_DEBUG_COUNTER_INC(heap_xmalloc);
8228 if (!mem) return mem;
8229 return objspace_malloc_fixup(objspace, mem, size);
8230}
8231
8232void *
8233rb_gc_impl_calloc(void *objspace_ptr, size_t size)
8234{
8235 rb_objspace_t *objspace = objspace_ptr;
8236
8237 if (RB_UNLIKELY(malloc_during_gc_p(objspace))) {
8238 rb_warn("calloc during GC detected, this could cause crashes if it triggers another GC");
8239#if RGENGC_CHECK_MODE || RUBY_DEBUG
8240 rb_bug("Cannot calloc during GC");
8241#endif
8242 }
8243
8244 void *mem;
8245
8246 size = objspace_malloc_prepare(objspace, size);
8247 TRY_WITH_GC(size, mem = calloc1(size));
8248 if (!mem) return mem;
8249 return objspace_malloc_fixup(objspace, mem, size);
8250}
8251
8252void *
8253rb_gc_impl_realloc(void *objspace_ptr, void *ptr, size_t new_size, size_t old_size)
8254{
8255 rb_objspace_t *objspace = objspace_ptr;
8256
8257 check_malloc_not_in_gc(objspace, "realloc");
8258
8259 void *mem;
8260
8261 if (!ptr) return rb_gc_impl_malloc(objspace, new_size);
8262
8263 /*
8264 * The behavior of realloc(ptr, 0) is implementation defined.
8265 * Therefore we don't use realloc(ptr, 0) for portability reason.
8266 * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
8267 */
8268 if (new_size == 0) {
8269 if ((mem = rb_gc_impl_malloc(objspace, 0)) != NULL) {
8270 /*
8271 * - OpenBSD's malloc(3) man page says that when 0 is passed, it
8272 * returns a non-NULL pointer to an access-protected memory page.
8273 * The returned pointer cannot be read / written at all, but
8274 * still be a valid argument of free().
8275 *
8276 * https://man.openbsd.org/malloc.3
8277 *
8278 * - Linux's malloc(3) man page says that it _might_ perhaps return
8279 * a non-NULL pointer when its argument is 0. That return value
8280 * is safe (and is expected) to be passed to free().
8281 *
8282 * https://man7.org/linux/man-pages/man3/malloc.3.html
8283 *
8284 * - As I read the implementation jemalloc's malloc() returns fully
8285 * normal 16 bytes memory region when its argument is 0.
8286 *
8287 * - As I read the implementation musl libc's malloc() returns
8288 * fully normal 32 bytes memory region when its argument is 0.
8289 *
8290 * - Other malloc implementations can also return non-NULL.
8291 */
8292 rb_gc_impl_free(objspace, ptr, old_size);
8293 return mem;
8294 }
8295 else {
8296 /*
8297 * It is dangerous to return NULL here, because that could lead to
8298 * RCE. Fallback to 1 byte instead of zero.
8299 *
8300 * https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932
8301 */
8302 new_size = 1;
8303 }
8304 }
8305
8306#if CALC_EXACT_MALLOC_SIZE
8307 {
8308 struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
8309 new_size += sizeof(struct malloc_obj_info);
8310 ptr = info;
8311 old_size = info->size;
8312 }
8313#endif
8314
8315 old_size = objspace_malloc_size(objspace, ptr, old_size);
8316 TRY_WITH_GC(new_size, mem = RB_GNUC_EXTENSION_BLOCK(realloc(ptr, new_size)));
8317 if (!mem) return mem;
8318 new_size = objspace_malloc_size(objspace, mem, new_size);
8319
8320#if CALC_EXACT_MALLOC_SIZE
8321 {
8322 struct malloc_obj_info *info = mem;
8323 info->size = new_size;
8324 mem = info + 1;
8325 }
8326#endif
8327
8328 objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC);
8329
8330 RB_DEBUG_COUNTER_INC(heap_xrealloc);
8331 return mem;
8332}
8333
8334void
8335rb_gc_impl_adjust_memory_usage(void *objspace_ptr, ssize_t diff)
8336{
8337 rb_objspace_t *objspace = objspace_ptr;
8338
8339 if (diff > 0) {
8340 objspace_malloc_increase(objspace, 0, diff, 0, MEMOP_TYPE_REALLOC);
8341 }
8342 else if (diff < 0) {
8343 objspace_malloc_increase(objspace, 0, 0, -diff, MEMOP_TYPE_REALLOC);
8344 }
8345}
8346
8347// TODO: move GC profiler stuff back into gc.c
8348/*
8349 ------------------------------ GC profiler ------------------------------
8350*/
8351
8352#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
8353
8354static bool
8355current_process_time(struct timespec *ts)
8356{
8357#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
8358 {
8359 static int try_clock_gettime = 1;
8360 if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ts) == 0) {
8361 return true;
8362 }
8363 else {
8364 try_clock_gettime = 0;
8365 }
8366 }
8367#endif
8368
8369#ifdef RUSAGE_SELF
8370 {
8371 struct rusage usage;
8372 struct timeval time;
8373 if (getrusage(RUSAGE_SELF, &usage) == 0) {
8374 time = usage.ru_utime;
8375 ts->tv_sec = time.tv_sec;
8376 ts->tv_nsec = (int32_t)time.tv_usec * 1000;
8377 return true;
8378 }
8379 }
8380#endif
8381
8382#ifdef _WIN32
8383 {
8384 FILETIME creation_time, exit_time, kernel_time, user_time;
8385 ULARGE_INTEGER ui;
8386
8387 if (GetProcessTimes(GetCurrentProcess(),
8388 &creation_time, &exit_time, &kernel_time, &user_time) != 0) {
8389 memcpy(&ui, &user_time, sizeof(FILETIME));
8390#define PER100NSEC (uint64_t)(1000 * 1000 * 10)
8391 ts->tv_nsec = (long)(ui.QuadPart % PER100NSEC);
8392 ts->tv_sec = (time_t)(ui.QuadPart / PER100NSEC);
8393 return true;
8394 }
8395 }
8396#endif
8397
8398 return false;
8399}
8400
8401static double
8402getrusage_time(void)
8403{
8404 struct timespec ts;
8405 if (current_process_time(&ts)) {
8406 return ts.tv_sec + ts.tv_nsec * 1e-9;
8407 }
8408 else {
8409 return 0.0;
8410 }
8411}
8412
8413
8414static inline void
8415gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason)
8416{
8417 if (objspace->profile.run) {
8418 size_t index = objspace->profile.next_index;
8419 gc_profile_record *record;
8420
8421 /* create new record */
8422 objspace->profile.next_index++;
8423
8424 if (!objspace->profile.records) {
8425 objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
8426 objspace->profile.records = malloc(xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
8427 }
8428 if (index >= objspace->profile.size) {
8429 void *ptr;
8430 objspace->profile.size += 1000;
8431 ptr = realloc(objspace->profile.records, xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size));
8432 if (!ptr) rb_memerror();
8433 objspace->profile.records = ptr;
8434 }
8435 if (!objspace->profile.records) {
8436 rb_bug("gc_profile malloc or realloc miss");
8437 }
8438 record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
8439 MEMZERO(record, gc_profile_record, 1);
8440
8441 /* setup before-GC parameter */
8442 record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0);
8443#if MALLOC_ALLOCATED_SIZE
8444 record->allocated_size = malloc_allocated_size;
8445#endif
8446#if GC_PROFILE_MORE_DETAIL && GC_PROFILE_DETAIL_MEMORY
8447#ifdef RUSAGE_SELF
8448 {
8449 struct rusage usage;
8450 if (getrusage(RUSAGE_SELF, &usage) == 0) {
8451 record->maxrss = usage.ru_maxrss;
8452 record->minflt = usage.ru_minflt;
8453 record->majflt = usage.ru_majflt;
8454 }
8455 }
8456#endif
8457#endif
8458 }
8459}
8460
8461static inline void
8462gc_prof_timer_start(rb_objspace_t *objspace)
8463{
8464 if (gc_prof_enabled(objspace)) {
8465 gc_profile_record *record = gc_prof_record(objspace);
8466#if GC_PROFILE_MORE_DETAIL
8467 record->prepare_time = objspace->profile.prepare_time;
8468#endif
8469 record->gc_time = 0;
8470 record->gc_invoke_time = getrusage_time();
8471 }
8472}
8473
8474static double
8475elapsed_time_from(double time)
8476{
8477 double now = getrusage_time();
8478 if (now > time) {
8479 return now - time;
8480 }
8481 else {
8482 return 0;
8483 }
8484}
8485
8486static inline void
8487gc_prof_timer_stop(rb_objspace_t *objspace)
8488{
8489 if (gc_prof_enabled(objspace)) {
8490 gc_profile_record *record = gc_prof_record(objspace);
8491 record->gc_time = elapsed_time_from(record->gc_invoke_time);
8492 record->gc_invoke_time -= objspace->profile.invoke_time;
8493 }
8494}
8495
8496#ifdef BUILDING_MODULAR_GC
8497# define RUBY_DTRACE_GC_HOOK(name)
8498#else
8499# define RUBY_DTRACE_GC_HOOK(name) \
8500 do {if (RUBY_DTRACE_GC_##name##_ENABLED()) RUBY_DTRACE_GC_##name();} while (0)
8501#endif
8502
8503static inline void
8504gc_prof_mark_timer_start(rb_objspace_t *objspace)
8505{
8506 RUBY_DTRACE_GC_HOOK(MARK_BEGIN);
8507#if GC_PROFILE_MORE_DETAIL
8508 if (gc_prof_enabled(objspace)) {
8509 gc_prof_record(objspace)->gc_mark_time = getrusage_time();
8510 }
8511#endif
8512}
8513
8514static inline void
8515gc_prof_mark_timer_stop(rb_objspace_t *objspace)
8516{
8517 RUBY_DTRACE_GC_HOOK(MARK_END);
8518#if GC_PROFILE_MORE_DETAIL
8519 if (gc_prof_enabled(objspace)) {
8520 gc_profile_record *record = gc_prof_record(objspace);
8521 record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
8522 }
8523#endif
8524}
8525
8526static inline void
8527gc_prof_sweep_timer_start(rb_objspace_t *objspace)
8528{
8529 RUBY_DTRACE_GC_HOOK(SWEEP_BEGIN);
8530 if (gc_prof_enabled(objspace)) {
8531 gc_profile_record *record = gc_prof_record(objspace);
8532
8533 if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
8534 objspace->profile.gc_sweep_start_time = getrusage_time();
8535 }
8536 }
8537}
8538
8539static inline void
8540gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
8541{
8542 RUBY_DTRACE_GC_HOOK(SWEEP_END);
8543
8544 if (gc_prof_enabled(objspace)) {
8545 double sweep_time;
8546 gc_profile_record *record = gc_prof_record(objspace);
8547
8548 if (record->gc_time > 0) {
8549 sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
8550 /* need to accumulate GC time for lazy sweep after gc() */
8551 record->gc_time += sweep_time;
8552 }
8553 else if (GC_PROFILE_MORE_DETAIL) {
8554 sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
8555 }
8556
8557#if GC_PROFILE_MORE_DETAIL
8558 record->gc_sweep_time += sweep_time;
8559 if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
8560#endif
8561 if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE;
8562 }
8563}
8564
8565static inline void
8566gc_prof_set_malloc_info(rb_objspace_t *objspace)
8567{
8568#if GC_PROFILE_MORE_DETAIL
8569 if (gc_prof_enabled(objspace)) {
8570 gc_profile_record *record = gc_prof_record(objspace);
8571 record->allocate_increase = malloc_increase;
8572 record->allocate_limit = malloc_limit;
8573 }
8574#endif
8575}
8576
8577static inline void
8578gc_prof_set_heap_info(rb_objspace_t *objspace)
8579{
8580 if (gc_prof_enabled(objspace)) {
8581 gc_profile_record *record = gc_prof_record(objspace);
8582 size_t live = objspace->profile.total_allocated_objects_at_gc_start - total_freed_objects(objspace);
8583 size_t total = objspace->profile.heap_used_at_gc_start * HEAP_PAGE_OBJ_LIMIT;
8584
8585#if GC_PROFILE_MORE_DETAIL
8586 record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
8587 record->heap_live_objects = live;
8588 record->heap_free_objects = total - live;
8589#endif
8590
8591 record->heap_total_objects = total;
8592 record->heap_use_size = live * BASE_SLOT_SIZE;
8593 record->heap_total_size = total * BASE_SLOT_SIZE;
8594 }
8595}
8596
8597/*
8598 * call-seq:
8599 * GC::Profiler.clear -> nil
8600 *
8601 * Clears the \GC profiler data.
8602 *
8603 */
8604
8605static VALUE
8606gc_profile_clear(VALUE _)
8607{
8608 rb_objspace_t *objspace = rb_gc_get_objspace();
8609 void *p = objspace->profile.records;
8610 objspace->profile.records = NULL;
8611 objspace->profile.size = 0;
8612 objspace->profile.next_index = 0;
8613 objspace->profile.current_record = 0;
8614 free(p);
8615 return Qnil;
8616}
8617
8618/*
8619 * call-seq:
8620 * GC::Profiler.raw_data -> [Hash, ...]
8621 *
8622 * Returns an Array of individual raw profile data Hashes ordered
8623 * from earliest to latest by +:GC_INVOKE_TIME+.
8624 *
8625 * For example:
8626 *
8627 * [
8628 * {
8629 * :GC_TIME=>1.3000000000000858e-05,
8630 * :GC_INVOKE_TIME=>0.010634999999999999,
8631 * :HEAP_USE_SIZE=>289640,
8632 * :HEAP_TOTAL_SIZE=>588960,
8633 * :HEAP_TOTAL_OBJECTS=>14724,
8634 * :GC_IS_MARKED=>false
8635 * },
8636 * # ...
8637 * ]
8638 *
8639 * The keys mean:
8640 *
8641 * +:GC_TIME+::
8642 * Time elapsed in seconds for this GC run
8643 * +:GC_INVOKE_TIME+::
8644 * Time elapsed in seconds from startup to when the GC was invoked
8645 * +:HEAP_USE_SIZE+::
8646 * Total bytes of heap used
8647 * +:HEAP_TOTAL_SIZE+::
8648 * Total size of heap in bytes
8649 * +:HEAP_TOTAL_OBJECTS+::
8650 * Total number of objects
8651 * +:GC_IS_MARKED+::
8652 * Returns +true+ if the GC is in mark phase
8653 *
8654 * If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
8655 * to the following hash keys:
8656 *
8657 * +:GC_MARK_TIME+::
8658 * +:GC_SWEEP_TIME+::
8659 * +:ALLOCATE_INCREASE+::
8660 * +:ALLOCATE_LIMIT+::
8661 * +:HEAP_USE_PAGES+::
8662 * +:HEAP_LIVE_OBJECTS+::
8663 * +:HEAP_FREE_OBJECTS+::
8664 * +:HAVE_FINALIZE+::
8665 *
8666 */
8667
8668static VALUE
8669gc_profile_record_get(VALUE _)
8670{
8671 VALUE prof;
8672 VALUE gc_profile = rb_ary_new();
8673 size_t i;
8674 rb_objspace_t *objspace = rb_gc_get_objspace();
8675
8676 if (!objspace->profile.run) {
8677 return Qnil;
8678 }
8679
8680 for (i =0; i < objspace->profile.next_index; i++) {
8681 gc_profile_record *record = &objspace->profile.records[i];
8682
8683 prof = rb_hash_new();
8684 rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(objspace, rb_hash_new(), record->flags));
8685 rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
8686 rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
8687 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
8688 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
8689 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
8690 rb_hash_aset(prof, ID2SYM(rb_intern("MOVED_OBJECTS")), SIZET2NUM(record->moved_objects));
8691 rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
8692#if GC_PROFILE_MORE_DETAIL
8693 rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
8694 rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
8695 rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
8696 rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
8697 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
8698 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
8699 rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
8700
8701 rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
8702 rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
8703
8704 rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
8705#endif
8706
8707#if RGENGC_PROFILE > 0
8708 rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
8709 rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
8710 rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
8711#endif
8712 rb_ary_push(gc_profile, prof);
8713 }
8714
8715 return gc_profile;
8716}
8717
8718#if GC_PROFILE_MORE_DETAIL
8719#define MAJOR_REASON_MAX 0x10
8720
8721static char *
8722gc_profile_dump_major_reason(unsigned int flags, char *buff)
8723{
8724 unsigned int reason = flags & GPR_FLAG_MAJOR_MASK;
8725 int i = 0;
8726
8727 if (reason == GPR_FLAG_NONE) {
8728 buff[0] = '-';
8729 buff[1] = 0;
8730 }
8731 else {
8732#define C(x, s) \
8733 if (reason & GPR_FLAG_MAJOR_BY_##x) { \
8734 buff[i++] = #x[0]; \
8735 if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \
8736 buff[i] = 0; \
8737 }
8738 C(NOFREE, N);
8739 C(OLDGEN, O);
8740 C(SHADY, S);
8741#if RGENGC_ESTIMATE_OLDMALLOC
8742 C(OLDMALLOC, M);
8743#endif
8744#undef C
8745 }
8746 return buff;
8747}
8748#endif
8749
8750
8751
8752static void
8753gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
8754{
8755 rb_objspace_t *objspace = rb_gc_get_objspace();
8756 size_t count = objspace->profile.next_index;
8757#ifdef MAJOR_REASON_MAX
8758 char reason_str[MAJOR_REASON_MAX];
8759#endif
8760
8761 if (objspace->profile.run && count /* > 1 */) {
8762 size_t i;
8763 const gc_profile_record *record;
8764
8765 append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
8766 append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
8767
8768 for (i = 0; i < count; i++) {
8769 record = &objspace->profile.records[i];
8770 append(out, rb_sprintf("%5"PRIuSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
8771 i+1, record->gc_invoke_time, record->heap_use_size,
8772 record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
8773 }
8774
8775#if GC_PROFILE_MORE_DETAIL
8776 const char *str = "\n\n" \
8777 "More detail.\n" \
8778 "Prepare Time = Previously GC's rest sweep time\n"
8779 "Index Flags Allocate Inc. Allocate Limit"
8780#if CALC_EXACT_MALLOC_SIZE
8781 " Allocated Size"
8782#endif
8783 " Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
8784#if RGENGC_PROFILE
8785 " OldgenObj RemNormObj RemShadObj"
8786#endif
8787#if GC_PROFILE_DETAIL_MEMORY
8788 " MaxRSS(KB) MinorFLT MajorFLT"
8789#endif
8790 "\n";
8791 append(out, rb_str_new_cstr(str));
8792
8793 for (i = 0; i < count; i++) {
8794 record = &objspace->profile.records[i];
8795 append(out, rb_sprintf("%5"PRIuSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
8796#if CALC_EXACT_MALLOC_SIZE
8797 " %15"PRIuSIZE
8798#endif
8799 " %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
8800#if RGENGC_PROFILE
8801 "%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
8802#endif
8803#if GC_PROFILE_DETAIL_MEMORY
8804 "%11ld %8ld %8ld"
8805#endif
8806
8807 "\n",
8808 i+1,
8809 gc_profile_dump_major_reason(record->flags, reason_str),
8810 (record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
8811 (record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
8812 (record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
8813 (record->flags & GPR_FLAG_METHOD) ? "METHOD" :
8814 (record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
8815 (record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
8816 record->allocate_increase, record->allocate_limit,
8817#if CALC_EXACT_MALLOC_SIZE
8818 record->allocated_size,
8819#endif
8820 record->heap_use_pages,
8821 record->gc_mark_time*1000,
8822 record->gc_sweep_time*1000,
8823 record->prepare_time*1000,
8824
8825 record->heap_live_objects,
8826 record->heap_free_objects,
8827 record->removing_objects,
8828 record->empty_objects
8829#if RGENGC_PROFILE
8830 ,
8831 record->old_objects,
8832 record->remembered_normal_objects,
8833 record->remembered_shady_objects
8834#endif
8835#if GC_PROFILE_DETAIL_MEMORY
8836 ,
8837 record->maxrss / 1024,
8838 record->minflt,
8839 record->majflt
8840#endif
8841
8842 ));
8843 }
8844#endif
8845 }
8846}
8847
8848/*
8849 * call-seq:
8850 * GC::Profiler.result -> String
8851 *
8852 * Returns a profile data report such as:
8853 *
8854 * GC 1 invokes.
8855 * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
8856 * 1 0.012 159240 212940 10647 0.00000000000001530000
8857 */
8858
8859static VALUE
8860gc_profile_result(VALUE _)
8861{
8862 VALUE str = rb_str_buf_new(0);
8863 gc_profile_dump_on(str, rb_str_buf_append);
8864 return str;
8865}
8866
8867/*
8868 * call-seq:
8869 * GC::Profiler.report
8870 * GC::Profiler.report(io)
8871 *
8872 * Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
8873 *
8874 */
8875
8876static VALUE
8877gc_profile_report(int argc, VALUE *argv, VALUE self)
8878{
8879 VALUE out;
8880
8881 out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]);
8882 gc_profile_dump_on(out, rb_io_write);
8883
8884 return Qnil;
8885}
8886
8887/*
8888 * call-seq:
8889 * GC::Profiler.total_time -> float
8890 *
8891 * The total time used for garbage collection in seconds
8892 */
8893
8894static VALUE
8895gc_profile_total_time(VALUE self)
8896{
8897 double time = 0;
8898 rb_objspace_t *objspace = rb_gc_get_objspace();
8899
8900 if (objspace->profile.run && objspace->profile.next_index > 0) {
8901 size_t i;
8902 size_t count = objspace->profile.next_index;
8903
8904 for (i = 0; i < count; i++) {
8905 time += objspace->profile.records[i].gc_time;
8906 }
8907 }
8908 return DBL2NUM(time);
8909}
8910
8911/*
8912 * call-seq:
8913 * GC::Profiler.enabled? -> true or false
8914 *
8915 * The current status of \GC profile mode.
8916 */
8917
8918static VALUE
8919gc_profile_enable_get(VALUE self)
8920{
8921 rb_objspace_t *objspace = rb_gc_get_objspace();
8922 return objspace->profile.run ? Qtrue : Qfalse;
8923}
8924
8925/*
8926 * call-seq:
8927 * GC::Profiler.enable -> nil
8928 *
8929 * Starts the \GC profiler.
8930 *
8931 */
8932
8933static VALUE
8934gc_profile_enable(VALUE _)
8935{
8936 rb_objspace_t *objspace = rb_gc_get_objspace();
8937 objspace->profile.run = TRUE;
8938 objspace->profile.current_record = 0;
8939 return Qnil;
8940}
8941
8942/*
8943 * call-seq:
8944 * GC::Profiler.disable -> nil
8945 *
8946 * Stops the \GC profiler.
8947 *
8948 */
8949
8950static VALUE
8951gc_profile_disable(VALUE _)
8952{
8953 rb_objspace_t *objspace = rb_gc_get_objspace();
8954
8955 objspace->profile.run = FALSE;
8956 objspace->profile.current_record = 0;
8957 return Qnil;
8958}
8959
8960/*
8961 * call-seq:
8962 * GC.verify_internal_consistency -> nil
8963 *
8964 * Verify internal consistency.
8965 *
8966 * This method is implementation specific.
8967 * Now this method checks generational consistency
8968 * if RGenGC is supported.
8969 */
8970static VALUE
8971gc_verify_internal_consistency_m(VALUE dummy)
8972{
8973 gc_verify_internal_consistency(rb_gc_get_objspace());
8974 return Qnil;
8975}
8976
8977#if GC_CAN_COMPILE_COMPACTION
8978/*
8979 * call-seq:
8980 * GC.auto_compact = flag
8981 *
8982 * Updates automatic compaction mode.
8983 *
8984 * When enabled, the compactor will execute on every major collection.
8985 *
8986 * Enabling compaction will degrade performance on major collections.
8987 */
8988static VALUE
8989gc_set_auto_compact(VALUE _, VALUE v)
8990{
8991 GC_ASSERT(GC_COMPACTION_SUPPORTED);
8992
8993 ruby_enable_autocompact = RTEST(v);
8994
8995#if RGENGC_CHECK_MODE
8996 ruby_autocompact_compare_func = NULL;
8997
8998 if (SYMBOL_P(v)) {
8999 ID id = RB_SYM2ID(v);
9000 if (id == rb_intern("empty")) {
9001 ruby_autocompact_compare_func = compare_free_slots;
9002 }
9003 }
9004#endif
9005
9006 return v;
9007}
9008#else
9009# define gc_set_auto_compact rb_f_notimplement
9010#endif
9011
9012#if GC_CAN_COMPILE_COMPACTION
9013/*
9014 * call-seq:
9015 * GC.auto_compact -> true or false
9016 *
9017 * Returns whether or not automatic compaction has been enabled.
9018 */
9019static VALUE
9020gc_get_auto_compact(VALUE _)
9021{
9022 return ruby_enable_autocompact ? Qtrue : Qfalse;
9023}
9024#else
9025# define gc_get_auto_compact rb_f_notimplement
9026#endif
9027
9028#if GC_CAN_COMPILE_COMPACTION
9029/*
9030 * call-seq:
9031 * GC.latest_compact_info -> hash
9032 *
9033 * Returns information about object moved in the most recent \GC compaction.
9034 *
9035 * The returned +hash+ contains the following keys:
9036 *
9037 * [considered]
9038 * Hash containing the type of the object as the key and the number of
9039 * objects of that type that were considered for movement.
9040 * [moved]
9041 * Hash containing the type of the object as the key and the number of
9042 * objects of that type that were actually moved.
9043 * [moved_up]
9044 * Hash containing the type of the object as the key and the number of
9045 * objects of that type that were increased in size.
9046 * [moved_down]
9047 * Hash containing the type of the object as the key and the number of
9048 * objects of that type that were decreased in size.
9049 *
9050 * Some objects can't be moved (due to pinning) so these numbers can be used to
9051 * calculate compaction efficiency.
9052 */
9053static VALUE
9054gc_compact_stats(VALUE self)
9055{
9056 rb_objspace_t *objspace = rb_gc_get_objspace();
9057 VALUE h = rb_hash_new();
9058 VALUE considered = rb_hash_new();
9059 VALUE moved = rb_hash_new();
9060 VALUE moved_up = rb_hash_new();
9061 VALUE moved_down = rb_hash_new();
9062
9063 for (size_t i = 0; i < T_MASK; i++) {
9064 if (objspace->rcompactor.considered_count_table[i]) {
9065 rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i]));
9066 }
9067
9068 if (objspace->rcompactor.moved_count_table[i]) {
9069 rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i]));
9070 }
9071
9072 if (objspace->rcompactor.moved_up_count_table[i]) {
9073 rb_hash_aset(moved_up, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_up_count_table[i]));
9074 }
9075
9076 if (objspace->rcompactor.moved_down_count_table[i]) {
9077 rb_hash_aset(moved_down, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_down_count_table[i]));
9078 }
9079 }
9080
9081 rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered);
9082 rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved);
9083 rb_hash_aset(h, ID2SYM(rb_intern("moved_up")), moved_up);
9084 rb_hash_aset(h, ID2SYM(rb_intern("moved_down")), moved_down);
9085
9086 return h;
9087}
9088#else
9089# define gc_compact_stats rb_f_notimplement
9090#endif
9091
9092#if GC_CAN_COMPILE_COMPACTION
9093/*
9094 * call-seq:
9095 * GC.compact -> hash
9096 *
9097 * This function compacts objects together in Ruby's heap. It eliminates
9098 * unused space (or fragmentation) in the heap by moving objects in to that
9099 * unused space.
9100 *
9101 * The returned +hash+ contains statistics about the objects that were moved;
9102 * see GC.latest_compact_info.
9103 *
9104 * This method is only expected to work on CRuby.
9105 *
9106 * To test whether \GC compaction is supported, use the idiom:
9107 *
9108 * GC.respond_to?(:compact)
9109 */
9110static VALUE
9111gc_compact(VALUE self)
9112{
9113 rb_objspace_t *objspace = rb_gc_get_objspace();
9114 int full_marking_p = gc_config_full_mark_val;
9115 gc_config_full_mark_set(TRUE);
9116
9117 /* Run GC with compaction enabled */
9118 rb_gc_impl_start(rb_gc_get_objspace(), true, true, true, true);
9119 gc_config_full_mark_set(full_marking_p);
9120
9121 return gc_compact_stats(self);
9122}
9123#else
9124# define gc_compact rb_f_notimplement
9125#endif
9126
9127#if GC_CAN_COMPILE_COMPACTION
9128struct desired_compaction_pages_i_data {
9130 size_t required_slots[HEAP_COUNT];
9131};
9132
9133static int
9134desired_compaction_pages_i(struct heap_page *page, void *data)
9135{
9136 struct desired_compaction_pages_i_data *tdata = data;
9137 rb_objspace_t *objspace = tdata->objspace;
9138 VALUE vstart = (VALUE)page->start;
9139 VALUE vend = vstart + (VALUE)(page->total_slots * page->heap->slot_size);
9140
9141
9142 for (VALUE v = vstart; v != vend; v += page->heap->slot_size) {
9143 asan_unpoisoning_object(v) {
9144 /* skip T_NONEs; they won't be moved */
9145 if (BUILTIN_TYPE(v) != T_NONE) {
9146 rb_heap_t *dest_pool = gc_compact_destination_pool(objspace, page->heap, v);
9147 size_t dest_pool_idx = dest_pool - heaps;
9148 tdata->required_slots[dest_pool_idx]++;
9149 }
9150 }
9151 }
9152
9153 return 0;
9154}
9155
9156/* call-seq:
9157 * GC.verify_compaction_references(toward: nil, double_heap: false) -> hash
9158 *
9159 * Verify compaction reference consistency.
9160 *
9161 * This method is implementation specific. During compaction, objects that
9162 * were moved are replaced with T_MOVED objects. No object should have a
9163 * reference to a T_MOVED object after compaction.
9164 *
9165 * This function expands the heap to ensure room to move all objects,
9166 * compacts the heap to make sure everything moves, updates all references,
9167 * then performs a full \GC. If any object contains a reference to a T_MOVED
9168 * object, that object should be pushed on the mark stack, and will
9169 * make a SEGV.
9170 */
9171static VALUE
9172gc_verify_compaction_references(int argc, VALUE* argv, VALUE self)
9173{
9174 static ID keywords[3] = {0};
9175 if (!keywords[0]) {
9176 keywords[0] = rb_intern("toward");
9177 keywords[1] = rb_intern("double_heap");
9178 keywords[2] = rb_intern("expand_heap");
9179 }
9180
9181 VALUE options;
9182 rb_scan_args_kw(rb_keyword_given_p(), argc, argv, ":", &options);
9183
9184 VALUE arguments[3] = { Qnil, Qfalse, Qfalse };
9185 int kwarg_count = rb_get_kwargs(options, keywords, 0, 3, arguments);
9186 bool toward_empty = kwarg_count > 0 && SYMBOL_P(arguments[0]) && SYM2ID(arguments[0]) == rb_intern("empty");
9187 bool expand_heap = (kwarg_count > 1 && RTEST(arguments[1])) || (kwarg_count > 2 && RTEST(arguments[2]));
9188
9189 rb_objspace_t *objspace = rb_gc_get_objspace();
9190
9191 /* Clear the heap. */
9192 rb_gc_impl_start(objspace, true, true, true, false);
9193
9194 unsigned int lev = rb_gc_vm_lock();
9195 {
9196 gc_rest(objspace);
9197
9198 /* if both double_heap and expand_heap are set, expand_heap takes precedence */
9199 if (expand_heap) {
9200 struct desired_compaction_pages_i_data desired_compaction = {
9201 .objspace = objspace,
9202 .required_slots = {0},
9203 };
9204 /* Work out how many objects want to be in each size pool, taking account of moves */
9205 objspace_each_pages(objspace, desired_compaction_pages_i, &desired_compaction, TRUE);
9206
9207 /* Find out which pool has the most pages */
9208 size_t max_existing_pages = 0;
9209 for (int i = 0; i < HEAP_COUNT; i++) {
9210 rb_heap_t *heap = &heaps[i];
9211 max_existing_pages = MAX(max_existing_pages, heap->total_pages);
9212 }
9213
9214 /* Add pages to each size pool so that compaction is guaranteed to move every object */
9215 for (int i = 0; i < HEAP_COUNT; i++) {
9216 rb_heap_t *heap = &heaps[i];
9217
9218 size_t pages_to_add = 0;
9219 /*
9220 * Step 1: Make sure every pool has the same number of pages, by adding empty pages
9221 * to smaller pools. This is required to make sure the compact cursor can advance
9222 * through all of the pools in `gc_sweep_compact` without hitting the "sweep &
9223 * compact cursors met" condition on some pools before fully compacting others
9224 */
9225 pages_to_add += max_existing_pages - heap->total_pages;
9226 /*
9227 * Step 2: Now add additional free pages to each size pool sufficient to hold all objects
9228 * that want to be in that size pool, whether moved into it or moved within it
9229 */
9230 objspace->heap_pages.allocatable_slots = desired_compaction.required_slots[i];
9231 while (objspace->heap_pages.allocatable_slots > 0) {
9232 heap_page_allocate_and_initialize(objspace, heap);
9233 }
9234 /*
9235 * Step 3: Add two more pages so that the compact & sweep cursors will meet _after_ all objects
9236 * have been moved, and not on the last iteration of the `gc_sweep_compact` loop
9237 */
9238 pages_to_add += 2;
9239
9240 for (; pages_to_add > 0; pages_to_add--) {
9241 heap_page_allocate_and_initialize_force(objspace, heap);
9242 }
9243 }
9244 }
9245
9246 if (toward_empty) {
9247 objspace->rcompactor.compare_func = compare_free_slots;
9248 }
9249 }
9250 rb_gc_vm_unlock(lev);
9251
9252 rb_gc_impl_start(rb_gc_get_objspace(), true, true, true, true);
9253
9254 rb_objspace_reachable_objects_from_root(root_obj_check_moved_i, objspace);
9255 objspace_each_objects(objspace, heap_check_moved_i, objspace, TRUE);
9256
9257 objspace->rcompactor.compare_func = NULL;
9258
9259 return gc_compact_stats(self);
9260}
9261#else
9262# define gc_verify_compaction_references rb_f_notimplement
9263#endif
9264
9265void
9266rb_gc_impl_objspace_free(void *objspace_ptr)
9267{
9268 rb_objspace_t *objspace = objspace_ptr;
9269
9270 if (is_lazy_sweeping(objspace))
9271 rb_bug("lazy sweeping underway when freeing object space");
9272
9273 free(objspace->profile.records);
9274 objspace->profile.records = NULL;
9275
9276 for (size_t i = 0; i < rb_darray_size(objspace->heap_pages.sorted); i++) {
9277 heap_page_free(objspace, rb_darray_get(objspace->heap_pages.sorted, i));
9278 }
9279 rb_darray_free_without_gc(objspace->heap_pages.sorted);
9280 heap_pages_lomem = 0;
9281 heap_pages_himem = 0;
9282
9283 for (int i = 0; i < HEAP_COUNT; i++) {
9284 rb_heap_t *heap = &heaps[i];
9285 heap->total_pages = 0;
9286 heap->total_slots = 0;
9287 }
9288
9289 st_free_table(objspace->id_to_obj_tbl);
9290 st_free_table(objspace->obj_to_id_tbl);
9291
9292 free_stack_chunks(&objspace->mark_stack);
9293 mark_stack_free_cache(&objspace->mark_stack);
9294
9295 rb_darray_free_without_gc(objspace->weak_references);
9296
9297 free(objspace);
9298}
9299
9300#if MALLOC_ALLOCATED_SIZE
9301/*
9302 * call-seq:
9303 * GC.malloc_allocated_size -> Integer
9304 *
9305 * Returns the size of memory allocated by malloc().
9306 *
9307 * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
9308 */
9309
9310static VALUE
9311gc_malloc_allocated_size(VALUE self)
9312{
9313 rb_objspace_t *objspace = (rb_objspace_t *)rb_gc_get_objspace();
9314 return ULL2NUM(objspace->malloc_params.allocated_size);
9315}
9316
9317/*
9318 * call-seq:
9319 * GC.malloc_allocations -> Integer
9320 *
9321 * Returns the number of malloc() allocations.
9322 *
9323 * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
9324 */
9325
9326static VALUE
9327gc_malloc_allocations(VALUE self)
9328{
9329 rb_objspace_t *objspace = (rb_objspace_t *)rb_gc_get_objspace();
9330 return ULL2NUM(objspace->malloc_params.allocations);
9331}
9332#endif
9333
9334void rb_gc_impl_before_fork(void *objspace_ptr) { /* no-op */ }
9335void rb_gc_impl_after_fork(void *objspace_ptr, rb_pid_t pid) { /* no-op */ }
9336
9337/*
9338 * call-seq:
9339 * GC.add_stress_to_class(class[, ...])
9340 *
9341 * Raises NoMemoryError when allocating an instance of the given classes.
9342 *
9343 */
9344static VALUE
9345rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self)
9346{
9347 rb_objspace_t *objspace = rb_gc_get_objspace();
9348
9349 if (!stress_to_class) {
9350 set_stress_to_class(rb_ident_hash_new_with_size(argc));
9351 }
9352
9353 for (int i = 0; i < argc; i++) {
9354 VALUE klass = argv[i];
9355 rb_hash_aset(stress_to_class, klass, Qtrue);
9356 }
9357
9358 return self;
9359}
9360
9361/*
9362 * call-seq:
9363 * GC.remove_stress_to_class(class[, ...])
9364 *
9365 * No longer raises NoMemoryError when allocating an instance of the
9366 * given classes.
9367 *
9368 */
9369static VALUE
9370rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self)
9371{
9372 rb_objspace_t *objspace = rb_gc_get_objspace();
9373
9374 if (stress_to_class) {
9375 for (int i = 0; i < argc; ++i) {
9376 rb_hash_delete(stress_to_class, argv[i]);
9377 }
9378
9379 if (rb_hash_size(stress_to_class) == 0) {
9380 stress_to_class = 0;
9381 }
9382 }
9383
9384 return Qnil;
9385}
9386
9387void *
9388rb_gc_impl_objspace_alloc(void)
9389{
9390 rb_objspace_t *objspace = calloc1(sizeof(rb_objspace_t));
9391
9392 return objspace;
9393}
9394
9395void
9396rb_gc_impl_objspace_init(void *objspace_ptr)
9397{
9398 rb_objspace_t *objspace = objspace_ptr;
9399
9400 gc_config_full_mark_set(TRUE);
9401
9402 objspace->flags.measure_gc = true;
9403 malloc_limit = gc_params.malloc_limit_min;
9404 objspace->finalize_deferred_pjob = rb_postponed_job_preregister(0, gc_finalize_deferred, objspace);
9405 if (objspace->finalize_deferred_pjob == POSTPONED_JOB_HANDLE_INVALID) {
9406 rb_bug("Could not preregister postponed job for GC");
9407 }
9408
9409 for (int i = 0; i < HEAP_COUNT; i++) {
9410 rb_heap_t *heap = &heaps[i];
9411
9412 heap->slot_size = (1 << i) * BASE_SLOT_SIZE;
9413
9414 ccan_list_head_init(&heap->pages);
9415 }
9416
9417 rb_darray_make_without_gc(&objspace->heap_pages.sorted, 0);
9418 rb_darray_make_without_gc(&objspace->weak_references, 0);
9419
9420 // TODO: debug why on Windows Ruby crashes on boot when GC is on.
9421#ifdef _WIN32
9422 dont_gc_on();
9423#endif
9424
9425#if defined(INIT_HEAP_PAGE_ALLOC_USE_MMAP)
9426 /* Need to determine if we can use mmap at runtime. */
9427 heap_page_alloc_use_mmap = INIT_HEAP_PAGE_ALLOC_USE_MMAP;
9428#endif
9429 objspace->next_object_id = OBJ_ID_INITIAL;
9430 objspace->id_to_obj_tbl = st_init_table(&object_id_hash_type);
9431 objspace->obj_to_id_tbl = st_init_numtable();
9432#if RGENGC_ESTIMATE_OLDMALLOC
9433 objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min;
9434#endif
9435 /* Set size pools allocatable pages. */
9436 for (int i = 0; i < HEAP_COUNT; i++) {
9437 /* Set the default value of heap_init_slots. */
9438 gc_params.heap_init_slots[i] = GC_HEAP_INIT_SLOTS;
9439 }
9440
9441 init_mark_stack(&objspace->mark_stack);
9442
9443 objspace->profile.invoke_time = getrusage_time();
9444 finalizer_table = st_init_numtable();
9445}
9446
9447void
9448rb_gc_impl_init(void)
9449{
9450 VALUE gc_constants = rb_hash_new();
9451 rb_hash_aset(gc_constants, ID2SYM(rb_intern("DEBUG")), GC_DEBUG ? Qtrue : Qfalse);
9452 rb_hash_aset(gc_constants, ID2SYM(rb_intern("BASE_SLOT_SIZE")), SIZET2NUM(BASE_SLOT_SIZE - RVALUE_OVERHEAD));
9453 rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_OVERHEAD")), SIZET2NUM(RVALUE_OVERHEAD));
9454 rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_OBJ_LIMIT")), SIZET2NUM(HEAP_PAGE_OBJ_LIMIT));
9455 rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_SIZE")), SIZET2NUM(HEAP_PAGE_BITMAP_SIZE));
9456 rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_SIZE")), SIZET2NUM(HEAP_PAGE_SIZE));
9457 rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_COUNT")), LONG2FIX(HEAP_COUNT));
9458 rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVARGC_MAX_ALLOCATE_SIZE")), LONG2FIX(heap_slot_size(HEAP_COUNT - 1)));
9459 rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_OLD_AGE")), LONG2FIX(RVALUE_OLD_AGE));
9460 if (RB_BUG_INSTEAD_OF_RB_MEMERROR+0) {
9461 rb_hash_aset(gc_constants, ID2SYM(rb_intern("RB_BUG_INSTEAD_OF_RB_MEMERROR")), Qtrue);
9462 }
9463 OBJ_FREEZE(gc_constants);
9464 /* Internal constants in the garbage collector. */
9465 rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants);
9466
9467 if (GC_COMPACTION_SUPPORTED) {
9468 rb_define_singleton_method(rb_mGC, "compact", gc_compact, 0);
9469 rb_define_singleton_method(rb_mGC, "auto_compact", gc_get_auto_compact, 0);
9470 rb_define_singleton_method(rb_mGC, "auto_compact=", gc_set_auto_compact, 1);
9471 rb_define_singleton_method(rb_mGC, "latest_compact_info", gc_compact_stats, 0);
9472 rb_define_singleton_method(rb_mGC, "verify_compaction_references", gc_verify_compaction_references, -1);
9473 }
9474 else {
9478 rb_define_singleton_method(rb_mGC, "latest_compact_info", rb_f_notimplement, 0);
9479 rb_define_singleton_method(rb_mGC, "verify_compaction_references", rb_f_notimplement, -1);
9480 }
9481
9482 if (GC_DEBUG_STRESS_TO_CLASS) {
9483 rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1);
9484 rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1);
9485 }
9486
9487 /* internal methods */
9488 rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency_m, 0);
9489
9490#if MALLOC_ALLOCATED_SIZE
9491 rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
9492 rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
9493#endif
9494
9495 VALUE rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
9496 rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
9497 rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
9498 rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
9499 rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
9500 rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
9501 rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
9502 rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
9503 rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
9504
9505 {
9506 VALUE opts;
9507 /* \GC build options */
9508 rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
9509#define OPT(o) if (o) rb_ary_push(opts, rb_interned_str(#o, sizeof(#o) - 1))
9510 OPT(GC_DEBUG);
9511 OPT(USE_RGENGC);
9512 OPT(RGENGC_DEBUG);
9513 OPT(RGENGC_CHECK_MODE);
9514 OPT(RGENGC_PROFILE);
9515 OPT(RGENGC_ESTIMATE_OLDMALLOC);
9516 OPT(GC_PROFILE_MORE_DETAIL);
9517 OPT(GC_ENABLE_LAZY_SWEEP);
9518 OPT(CALC_EXACT_MALLOC_SIZE);
9519 OPT(MALLOC_ALLOCATED_SIZE);
9520 OPT(MALLOC_ALLOCATED_SIZE_CHECK);
9521 OPT(GC_PROFILE_DETAIL_MEMORY);
9522 OPT(GC_COMPACTION_SUPPORTED);
9523#undef OPT
9524 OBJ_FREEZE(opts);
9525 }
9526}
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
Atomic operations.
#define RUBY_ATOMIC_VALUE_CAS(var, oldval, newval)
Identical to RUBY_ATOMIC_CAS, except it expects its arguments are VALUE.
Definition atomic.h:343
#define RUBY_ATOMIC_SIZE_EXCHANGE(var, val)
Identical to RUBY_ATOMIC_EXCHANGE, except it expects its arguments are size_t.
Definition atomic.h:233
#define RUBY_ATOMIC_SIZE_INC(var)
Identical to RUBY_ATOMIC_INC, except it expects its argument is size_t.
Definition atomic.h:209
#define RUBY_ATOMIC_SIZE_CAS(var, oldval, newval)
Identical to RUBY_ATOMIC_CAS, except it expects its arguments are size_t.
Definition atomic.h:247
std::atomic< unsigned > rb_atomic_t
Type that is eligible for atomic operations.
Definition atomic.h:69
#define RUBY_ATOMIC_SIZE_ADD(var, val)
Identical to RUBY_ATOMIC_ADD, except it expects its arguments are size_t.
Definition atomic.h:260
#define RUBY_ATOMIC_VALUE_EXCHANGE(var, val)
Identical to RUBY_ATOMIC_EXCHANGE, except it expects its arguments are VALUE.
Definition atomic.h:329
#define RUBY_ATOMIC_SET(var, val)
Identical to RUBY_ATOMIC_EXCHANGE, except for the return type.
Definition atomic.h:160
#define RUBY_ATOMIC_EXCHANGE(var, val)
Atomically replaces the value pointed by var with val.
Definition atomic.h:127
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
unsigned int rb_postponed_job_handle_t
The type of a handle returned from rb_postponed_job_preregister and passed to rb_postponed_job_trigge...
Definition debug.h:703
void rb_postponed_job_trigger(rb_postponed_job_handle_t h)
Triggers a pre-registered job registered with rb_postponed_job_preregister, scheduling it for executi...
Definition vm_trace.c:1783
rb_postponed_job_handle_t rb_postponed_job_preregister(unsigned int flags, rb_postponed_job_func_t func, void *data)
Pre-registers a func in Ruby's postponed job preregistration table, returning an opaque handle which ...
Definition vm_trace.c:1749
#define RUBY_INTERNAL_EVENT_GC_EXIT
gc_exit() is called.
Definition event.h:99
#define RUBY_INTERNAL_EVENT_GC_ENTER
gc_enter() is called.
Definition event.h:98
#define RUBY_INTERNAL_EVENT_GC_END_SWEEP
GC ended sweep phase.
Definition event.h:97
#define RUBY_INTERNAL_EVENT_GC_END_MARK
GC ended mark phase.
Definition event.h:96
#define RUBY_INTERNAL_EVENT_OBJSPACE_MASK
Bitmask of GC events.
Definition event.h:100
#define RUBY_INTERNAL_EVENT_FREEOBJ
Object swept.
Definition event.h:94
#define RUBY_INTERNAL_EVENT_GC_START
GC started.
Definition event.h:95
uint32_t rb_event_flag_t
Represents event(s).
Definition event.h:108
#define RUBY_INTERNAL_EVENT_NEWOBJ
Object allocated.
Definition event.h:93
static VALUE RB_FL_TEST(VALUE obj, VALUE flags)
Tests if the given flag(s) are set or not.
Definition fl_type.h:495
static void RB_FL_SET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_SET().
Definition fl_type.h:606
static void RB_FL_UNSET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_UNSET().
Definition fl_type.h:666
@ RUBY_FL_PROMOTED
Ruby objects are "generational".
Definition fl_type.h:218
VALUE rb_define_module_under(VALUE outer, const char *name)
Defines a module under the namespace of outer.
Definition class.c:1122
int rb_scan_args_kw(int kw_flag, int argc, const VALUE *argv, const char *fmt,...)
Identical to rb_scan_args(), except it also accepts kw_splat.
Definition class.c:2651
int rb_keyword_given_p(void)
Determines if the current method is given a keyword argument.
Definition eval.c:949
int rb_get_kwargs(VALUE keyword_hash, const ID *table, int required, int optional, VALUE *values)
Keyword argument deconstructor.
Definition class.c:2427
#define T_COMPLEX
Old name of RUBY_T_COMPLEX.
Definition value_type.h:59
#define T_FILE
Old name of RUBY_T_FILE.
Definition value_type.h:62
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define T_MASK
Old name of RUBY_T_MASK.
Definition value_type.h:68
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define OBJ_FROZEN
Old name of RB_OBJ_FROZEN.
Definition fl_type.h:137
#define T_NIL
Old name of RUBY_T_NIL.
Definition value_type.h:72
#define T_FLOAT
Old name of RUBY_T_FLOAT.
Definition value_type.h:64
#define T_IMEMO
Old name of RUBY_T_IMEMO.
Definition value_type.h:67
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
Definition value_type.h:57
#define SPECIAL_CONST_P
Old name of RB_SPECIAL_CONST_P.
#define T_STRUCT
Old name of RUBY_T_STRUCT.
Definition value_type.h:79
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:135
#define T_FIXNUM
Old name of RUBY_T_FIXNUM.
Definition value_type.h:63
#define SYM2ID
Old name of RB_SYM2ID.
Definition symbol.h:45
#define T_DATA
Old name of RUBY_T_DATA.
Definition value_type.h:60
#define FL_SEEN_OBJ_ID
Old name of RUBY_FL_SEEN_OBJ_ID.
Definition fl_type.h:65
#define T_NONE
Old name of RUBY_T_NONE.
Definition value_type.h:74
#define T_NODE
Old name of RUBY_T_NODE.
Definition value_type.h:73
#define SIZET2NUM
Old name of RB_SIZE2NUM.
Definition size_t.h:62
#define xmalloc
Old name of ruby_xmalloc.
Definition xmalloc.h:53
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define FL_FINALIZE
Old name of RUBY_FL_FINALIZE.
Definition fl_type.h:61
#define T_MODULE
Old name of RUBY_T_MODULE.
Definition value_type.h:70
#define T_TRUE
Old name of RUBY_T_TRUE.
Definition value_type.h:81
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define T_ICLASS
Old name of RUBY_T_ICLASS.
Definition value_type.h:66
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define ALLOC_N
Old name of RB_ALLOC_N.
Definition memory.h:399
#define FL_TEST_RAW
Old name of RB_FL_TEST_RAW.
Definition fl_type.h:132
#define FL_SET
Old name of RB_FL_SET.
Definition fl_type.h:129
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define T_FALSE
Old name of RUBY_T_FALSE.
Definition value_type.h:61
#define ULL2NUM
Old name of RB_ULL2NUM.
Definition long_long.h:31
#define T_UNDEF
Old name of RUBY_T_UNDEF.
Definition value_type.h:82
#define Qtrue
Old name of RUBY_Qtrue.
#define T_ZOMBIE
Old name of RUBY_T_ZOMBIE.
Definition value_type.h:83
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define T_OBJECT
Old name of RUBY_T_OBJECT.
Definition value_type.h:75
#define NIL_P
Old name of RB_NIL_P.
#define FL_WB_PROTECTED
Old name of RUBY_FL_WB_PROTECTED.
Definition fl_type.h:59
#define T_SYMBOL
Old name of RUBY_T_SYMBOL.
Definition value_type.h:80
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define T_MATCH
Old name of RUBY_T_MATCH.
Definition value_type.h:69
#define T_CLASS
Old name of RUBY_T_CLASS.
Definition value_type.h:58
#define BUILTIN_TYPE
Old name of RB_BUILTIN_TYPE.
Definition value_type.h:85
#define T_MOVED
Old name of RUBY_T_MOVED.
Definition value_type.h:71
#define FL_TEST
Old name of RB_FL_TEST.
Definition fl_type.h:131
#define FL_UNSET
Old name of RB_FL_UNSET.
Definition fl_type.h:133
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define SYMBOL_P
Old name of RB_SYMBOL_P.
Definition value_type.h:88
#define T_REGEXP
Old name of RUBY_T_REGEXP.
Definition value_type.h:77
VALUE rb_eRangeError
RangeError exception.
Definition error.c:1434
#define ruby_verbose
This variable controls whether the interpreter is in debug mode.
Definition error.h:475
VALUE rb_eRuntimeError
RuntimeError exception.
Definition error.c:1428
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
VALUE rb_obj_hide(VALUE obj)
Make the object invisible from Ruby code.
Definition object.c:104
VALUE rb_mGC
GC module.
Definition gc.c:431
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition object.c:179
VALUE rb_stdout
STDOUT constant.
Definition io.c:201
#define RB_GNUC_EXTENSION_BLOCK(x)
This is expanded to the passed token for non-GCC compilers.
Definition defines.h:91
Routines to manipulate encodings of strings.
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1099
static bool RB_OBJ_PROMOTED_RAW(VALUE obj)
This is the implementation of RB_OBJ_PROMOTED().
Definition gc.h:706
#define USE_RGENGC
Definition gc.h:428
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
VALUE rb_str_buf_append(VALUE dst, VALUE src)
Identical to rb_str_cat_cstr(), except it takes Ruby's string instead of C's.
Definition string.c:3661
VALUE rb_str_buf_new(long capa)
Allocates a "string buffer".
Definition string.c:1660
#define rb_str_new_cstr(str)
Identical to rb_str_new, except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1514
const char * rb_sourcefile(void)
Resembles __FILE__.
Definition vm.c:1873
VALUE rb_f_notimplement(int argc, const VALUE *argv, VALUE obj, VALUE marker)
Raises rb_eNotImpError.
Definition vm_method.c:474
int rb_sourceline(void)
Resembles __LINE__.
Definition vm.c:1887
#define RB_SYM2ID
Just another name of rb_sym2id.
Definition symbol.h:43
ID rb_sym2id(VALUE obj)
Converts an instance of rb_cSymbol into an ID.
Definition symbol.c:933
int len
Length of the buffer.
Definition io.h:8
void * rb_thread_call_with_gvl(void *(*func)(void *), void *data1)
(Re-)acquires the GVL.
Definition thread.c:1902
#define strtod(s, e)
Just another name of ruby_strtod.
Definition util.h:223
void ruby_qsort(void *, const size_t, const size_t, int(*)(const void *, const void *, void *), void *)
Reentrant implementation of quick sort.
#define DECIMAL_SIZE_OF_BITS(n)
an approximation of ceil(n * log10(2)), up to 1,048,576 (1<<20) without overflow within 32-bit calcul...
Definition util.h:39
#define MEMZERO(p, type, n)
Handy macro to erase a region of memory.
Definition memory.h:360
VALUE type(ANYARGS)
ANYARGS-ed function type.
VALUE rb_ensure(type *q, VALUE w, type *e, VALUE r)
An equivalent of ensure clause.
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define RBASIC(obj)
Convenient casting macro.
Definition rbasic.h:40
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
int ruby_native_thread_p(void)
Queries if the thread which calls this function is a ruby's thread.
Definition thread.c:5551
static bool RB_SPECIAL_CONST_P(VALUE obj)
Checks if the given object is of enum ruby_special_consts.
#define RTEST
This is an old name of RB_TEST.
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
Ruby object's base components.
Definition rbasic.h:63
VALUE flags
Per-object flags.
Definition rbasic.h:75
Definition gc_impl.h:15
Definition st.h:79
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static enum ruby_value_type RB_BUILTIN_TYPE(VALUE obj)
Queries the type of the object.
Definition value_type.h:182
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376
ruby_value_type
C-level type of an object.
Definition value_type.h:113
@ RUBY_T_SYMBOL
Definition value_type.h:135
@ RUBY_T_MATCH
Definition value_type.h:128
@ RUBY_T_MODULE
Definition value_type.h:118
@ RUBY_T_ICLASS
Hidden classes known as IClasses.
Definition value_type.h:141
@ RUBY_T_MOVED
Definition value_type.h:143
@ RUBY_T_FIXNUM
Integers formerly known as Fixnums.
Definition value_type.h:136
@ RUBY_T_IMEMO
Definition value_type.h:139
@ RUBY_T_NODE
Definition value_type.h:140
@ RUBY_T_OBJECT
Definition value_type.h:116
@ RUBY_T_DATA
Definition value_type.h:127
@ RUBY_T_FALSE
Definition value_type.h:134
@ RUBY_T_UNDEF
Definition value_type.h:137
@ RUBY_T_COMPLEX
Definition value_type.h:129
@ RUBY_T_STRING
Definition value_type.h:120
@ RUBY_T_HASH
Definition value_type.h:123
@ RUBY_T_NIL
Definition value_type.h:132
@ RUBY_T_CLASS
Definition value_type.h:117
@ RUBY_T_ARRAY
Definition value_type.h:122
@ RUBY_T_MASK
Bitmask of ruby_value_type.
Definition value_type.h:145
@ RUBY_T_RATIONAL
Definition value_type.h:130
@ RUBY_T_ZOMBIE
Definition value_type.h:142
@ RUBY_T_BIGNUM
Definition value_type.h:125
@ RUBY_T_TRUE
Definition value_type.h:133
@ RUBY_T_FLOAT
Definition value_type.h:119
@ RUBY_T_STRUCT
Definition value_type.h:124
@ RUBY_T_NONE
Non-object (swept etc.)
Definition value_type.h:114
@ RUBY_T_REGEXP
Definition value_type.h:121
@ RUBY_T_FILE
Definition value_type.h:126