Ruby 3.5.0dev (2025-11-03 revision 4a3d8346a6d0e068508631541f6bc43e8b154ea1)
variable.c (4a3d8346a6d0e068508631541f6bc43e8b154ea1)
1/**********************************************************************
2
3 variable.c -
4
5 $Author$
6 created at: Tue Apr 19 23:55:15 JST 1994
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
11
12**********************************************************************/
13
14#include "ruby/internal/config.h"
15#include <stddef.h>
17#include "ccan/list/list.h"
18#include "constant.h"
19#include "debug_counter.h"
20#include "id.h"
21#include "id_table.h"
22#include "internal.h"
23#include "internal/class.h"
24#include "internal/compilers.h"
25#include "internal/error.h"
26#include "internal/eval.h"
27#include "internal/hash.h"
28#include "internal/namespace.h"
29#include "internal/object.h"
30#include "internal/gc.h"
31#include "internal/re.h"
32#include "internal/struct.h"
33#include "internal/symbol.h"
34#include "internal/thread.h"
35#include "internal/variable.h"
36#include "ruby/encoding.h"
37#include "ruby/st.h"
38#include "ruby/util.h"
39#include "shape.h"
40#include "symbol.h"
41#include "variable.h"
42#include "vm_core.h"
43#include "ractor_core.h"
44#include "vm_sync.h"
45
46RUBY_EXTERN rb_serial_t ruby_vm_global_cvar_state;
47#define GET_GLOBAL_CVAR_STATE() (ruby_vm_global_cvar_state)
48
49typedef void rb_gvar_compact_t(void *var);
50
51static struct rb_id_table *rb_global_tbl;
52static ID autoload;
53
54// This hash table maps file paths to loadable features. We use this to track
55// autoload state until it's no longer needed.
56// feature (file path) => struct autoload_data
57static VALUE autoload_features;
58
59// This mutex is used to protect autoloading state. We use a global mutex which
60// is held until a per-feature mutex can be created. This ensures there are no
61// race conditions relating to autoload state.
62static VALUE autoload_mutex;
63
64static void check_before_mod_set(VALUE, ID, VALUE, const char *);
65static void setup_const_entry(rb_const_entry_t *, VALUE, VALUE, rb_const_flag_t);
66static VALUE rb_const_search(VALUE klass, ID id, int exclude, int recurse, int visibility);
67static st_table *generic_fields_tbl_;
68
69typedef int rb_ivar_foreach_callback_func(ID key, VALUE val, st_data_t arg);
70static void rb_field_foreach(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg, bool ivar_only);
71
72void
73Init_var_tables(void)
74{
75 rb_global_tbl = rb_id_table_create(0);
76 generic_fields_tbl_ = st_init_numtable();
77 autoload = rb_intern_const("__autoload__");
78
79 autoload_mutex = rb_mutex_new();
80 rb_obj_hide(autoload_mutex);
81 rb_vm_register_global_object(autoload_mutex);
82
83 autoload_features = rb_ident_hash_new();
84 rb_obj_hide(autoload_features);
85 rb_vm_register_global_object(autoload_features);
86}
87
88static inline bool
89rb_namespace_p(VALUE obj)
90{
91 if (RB_SPECIAL_CONST_P(obj)) return false;
92 switch (RB_BUILTIN_TYPE(obj)) {
93 case T_MODULE: case T_CLASS: return true;
94 default: break;
95 }
96 return false;
97}
98
109static VALUE
110classname(VALUE klass, bool *permanent)
111{
112 *permanent = false;
113
114 VALUE classpath = RCLASS_CLASSPATH(klass);
115 if (classpath == 0) return Qnil;
116
117 *permanent = RCLASS_PERMANENT_CLASSPATH_P(klass);
118
119 return classpath;
120}
121
122VALUE
123rb_mod_name0(VALUE klass, bool *permanent)
124{
125 return classname(klass, permanent);
126}
127
128/*
129 * call-seq:
130 * mod.name -> string or nil
131 *
132 * Returns the name of the module <i>mod</i>. Returns +nil+ for anonymous modules.
133 */
134
135VALUE
137{
138 // YJIT needs this function to not allocate.
139 bool permanent;
140 return classname(mod, &permanent);
141}
142
143// Similar to logic in rb_mod_const_get().
144static bool
145is_constant_path(VALUE name)
146{
147 const char *path = RSTRING_PTR(name);
148 const char *pend = RSTRING_END(name);
149 rb_encoding *enc = rb_enc_get(name);
150
151 const char *p = path;
152
153 if (p >= pend || !*p) {
154 return false;
155 }
156
157 while (p < pend) {
158 if (p + 2 <= pend && p[0] == ':' && p[1] == ':') {
159 p += 2;
160 }
161
162 const char *pbeg = p;
163 while (p < pend && *p != ':') p++;
164
165 if (pbeg == p) return false;
166
167 if (rb_enc_symname_type(pbeg, p - pbeg, enc, 0) != ID_CONST) {
168 return false;
169 }
170 }
171
172 return true;
173}
174
176 VALUE names;
177 ID last;
178};
179
180static VALUE build_const_path(VALUE head, ID tail);
181static void set_sub_temporary_name_foreach(VALUE mod, struct sub_temporary_name_args *args, VALUE name);
182
183static VALUE
184set_sub_temporary_name_recursive(VALUE mod, VALUE data, int recursive)
185{
186 if (recursive) return Qfalse;
187
188 struct sub_temporary_name_args *args = (void *)data;
189 VALUE name = 0;
190 if (args->names) {
191 name = build_const_path(rb_ary_last(0, 0, args->names), args->last);
192 }
193 set_sub_temporary_name_foreach(mod, args, name);
194 return Qtrue;
195}
196
197static VALUE
198set_sub_temporary_name_topmost(VALUE mod, VALUE data, int recursive)
199{
200 if (recursive) return Qfalse;
201
202 struct sub_temporary_name_args *args = (void *)data;
203 VALUE name = args->names;
204 if (name) {
205 args->names = rb_ary_hidden_new(0);
206 }
207 set_sub_temporary_name_foreach(mod, args, name);
208 return Qtrue;
209}
210
211static enum rb_id_table_iterator_result
212set_sub_temporary_name_i(ID id, VALUE val, void *data)
213{
214 val = ((rb_const_entry_t *)val)->value;
215 if (rb_namespace_p(val) && !RCLASS_PERMANENT_CLASSPATH_P(val)) {
216 VALUE arg = (VALUE)data;
217 struct sub_temporary_name_args *args = data;
218 args->last = id;
219 rb_exec_recursive_paired(set_sub_temporary_name_recursive, val, arg, arg);
220 }
221 return ID_TABLE_CONTINUE;
222}
223
224static void
225set_sub_temporary_name_foreach(VALUE mod, struct sub_temporary_name_args *args, VALUE name)
226{
227 RCLASS_WRITE_CLASSPATH(mod, name, FALSE);
228 struct rb_id_table *tbl = RCLASS_CONST_TBL(mod);
229 if (!tbl) return;
230 if (!name) {
231 rb_id_table_foreach(tbl, set_sub_temporary_name_i, args);
232 }
233 else {
234 long names_len = RARRAY_LEN(args->names); // paranoiac check?
235 rb_ary_push(args->names, name);
236 rb_id_table_foreach(tbl, set_sub_temporary_name_i, args);
237 rb_ary_set_len(args->names, names_len);
238 }
239}
240
241static void
242set_sub_temporary_name(VALUE mod, VALUE name)
243{
244 struct sub_temporary_name_args args = {name};
245 VALUE arg = (VALUE)&args;
246 rb_exec_recursive_paired(set_sub_temporary_name_topmost, mod, arg, arg);
247}
248
249/*
250 * call-seq:
251 * mod.set_temporary_name(string) -> self
252 * mod.set_temporary_name(nil) -> self
253 *
254 * Sets the temporary name of the module. This name is reflected in
255 * introspection of the module and the values that are related to it, such
256 * as instances, constants, and methods.
257 *
258 * The name should be +nil+ or a non-empty string that is not a valid constant
259 * path (to avoid confusing between permanent and temporary names).
260 *
261 * The method can be useful to distinguish dynamically generated classes and
262 * modules without assigning them to constants.
263 *
264 * If the module is given a permanent name by assigning it to a constant,
265 * the temporary name is discarded. A temporary name can't be assigned to
266 * modules that have a permanent name.
267 *
268 * If the given name is +nil+, the module becomes anonymous again.
269 *
270 * Example:
271 *
272 * m = Module.new # => #<Module:0x0000000102c68f38>
273 * m.name #=> nil
274 *
275 * m.set_temporary_name("fake_name") # => fake_name
276 * m.name #=> "fake_name"
277 *
278 * m.set_temporary_name(nil) # => #<Module:0x0000000102c68f38>
279 * m.name #=> nil
280 *
281 * c = Class.new
282 * c.set_temporary_name("MyClass(with description)")
283 *
284 * c.new # => #<MyClass(with description):0x0....>
285 *
286 * c::M = m
287 * c::M.name #=> "MyClass(with description)::M"
288 *
289 * # Assigning to a constant replaces the name with a permanent one
290 * C = c
291 *
292 * C.name #=> "C"
293 * C::M.name #=> "C::M"
294 * c.new # => #<C:0x0....>
295 */
296
297VALUE
298rb_mod_set_temporary_name(VALUE mod, VALUE name)
299{
300 // We don't allow setting the name if the classpath is already permanent:
301 if (RCLASS_PERMANENT_CLASSPATH_P(mod)) {
302 rb_raise(rb_eRuntimeError, "can't change permanent name");
303 }
304
305 if (NIL_P(name)) {
306 // Set the temporary classpath to NULL (anonymous):
307 RB_VM_LOCKING() {
308 set_sub_temporary_name(mod, 0);
309 }
310 }
311 else {
312 // Ensure the name is a string:
313 StringValue(name);
314
315 if (RSTRING_LEN(name) == 0) {
316 rb_raise(rb_eArgError, "empty class/module name");
317 }
318
319 if (is_constant_path(name)) {
320 rb_raise(rb_eArgError, "the temporary name must not be a constant path to avoid confusion");
321 }
322
323 name = rb_str_new_frozen(name);
324 RB_OBJ_SET_SHAREABLE(name);
325
326 // Set the temporary classpath to the given name:
327 RB_VM_LOCKING() {
328 set_sub_temporary_name(mod, name);
329 }
330 }
331
332 return mod;
333}
334
335static VALUE
336make_temporary_path(VALUE obj, VALUE klass)
337{
338 VALUE path;
339 switch (klass) {
340 case Qnil:
341 path = rb_sprintf("#<Class:%p>", (void*)obj);
342 break;
343 case Qfalse:
344 path = rb_sprintf("#<Module:%p>", (void*)obj);
345 break;
346 default:
347 path = rb_sprintf("#<%"PRIsVALUE":%p>", klass, (void*)obj);
348 break;
349 }
350 OBJ_FREEZE(path);
351 return path;
352}
353
354typedef VALUE (*fallback_func)(VALUE obj, VALUE name);
355
356static VALUE
357rb_tmp_class_path(VALUE klass, bool *permanent, fallback_func fallback)
358{
359 VALUE path = classname(klass, permanent);
360
361 if (!NIL_P(path)) {
362 return path;
363 }
364
365 if (RB_TYPE_P(klass, T_MODULE)) {
366 if (rb_obj_class(klass) == rb_cModule) {
367 path = Qfalse;
368 }
369 else {
370 bool perm;
371 path = rb_tmp_class_path(RBASIC(klass)->klass, &perm, fallback);
372 }
373 }
374
375 *permanent = false;
376 return fallback(klass, path);
377}
378
379VALUE
381{
382 bool permanent;
383 VALUE path = rb_tmp_class_path(klass, &permanent, make_temporary_path);
384 if (!NIL_P(path)) path = rb_str_dup(path);
385 return path;
386}
387
388VALUE
390{
391 return rb_mod_name(klass);
392}
393
394static VALUE
395no_fallback(VALUE obj, VALUE name)
396{
397 return name;
398}
399
400VALUE
401rb_search_class_path(VALUE klass)
402{
403 bool permanent;
404 return rb_tmp_class_path(klass, &permanent, no_fallback);
405}
406
407static VALUE
408build_const_pathname(VALUE head, VALUE tail)
409{
410 VALUE path = rb_str_dup(head);
411 rb_str_cat2(path, "::");
412 rb_str_append(path, tail);
413 return rb_fstring(path);
414}
415
416static VALUE
417build_const_path(VALUE head, ID tail)
418{
419 return build_const_pathname(head, rb_id2str(tail));
420}
421
422void
424{
425 bool permanent = true;
426
427 VALUE str;
428 if (under == rb_cObject) {
429 str = rb_str_new_frozen(name);
430 }
431 else {
432 str = rb_tmp_class_path(under, &permanent, make_temporary_path);
433 str = build_const_pathname(str, name);
434 }
435
436 RB_OBJ_SET_SHAREABLE(str);
437 RCLASS_SET_CLASSPATH(klass, str, permanent);
438}
439
440void
441rb_set_class_path(VALUE klass, VALUE under, const char *name)
442{
443 VALUE str = rb_str_new2(name);
444 OBJ_FREEZE(str);
445 rb_set_class_path_string(klass, under, str);
446}
447
448VALUE
450{
451 rb_encoding *enc = rb_enc_get(pathname);
452 const char *pbeg, *pend, *p, *path = RSTRING_PTR(pathname);
453 ID id;
454 VALUE c = rb_cObject;
455
456 if (!rb_enc_asciicompat(enc)) {
457 rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
458 }
459 pbeg = p = path;
460 pend = path + RSTRING_LEN(pathname);
461 if (path == pend || path[0] == '#') {
462 rb_raise(rb_eArgError, "can't retrieve anonymous class %"PRIsVALUE,
463 QUOTE(pathname));
464 }
465 while (p < pend) {
466 while (p < pend && *p != ':') p++;
467 id = rb_check_id_cstr(pbeg, p-pbeg, enc);
468 if (p < pend && p[0] == ':') {
469 if ((size_t)(pend - p) < 2 || p[1] != ':') goto undefined_class;
470 p += 2;
471 pbeg = p;
472 }
473 if (!id) {
474 goto undefined_class;
475 }
476 c = rb_const_search(c, id, TRUE, FALSE, FALSE);
477 if (UNDEF_P(c)) goto undefined_class;
478 if (!rb_namespace_p(c)) {
479 rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
480 pathname);
481 }
482 }
483 RB_GC_GUARD(pathname);
484
485 return c;
486
487 undefined_class:
488 rb_raise(rb_eArgError, "undefined class/module % "PRIsVALUE,
489 rb_str_subseq(pathname, 0, p-path));
491}
492
493VALUE
494rb_path2class(const char *path)
495{
496 return rb_path_to_class(rb_str_new_cstr(path));
497}
498
499VALUE
501{
502 return rb_class_path(rb_class_real(klass));
503}
504
505const char *
507{
508 bool permanent;
509 VALUE path = rb_tmp_class_path(rb_class_real(klass), &permanent, make_temporary_path);
510 if (NIL_P(path)) return NULL;
511 return RSTRING_PTR(path);
512}
513
514const char *
516{
517 return rb_class2name(CLASS_OF(obj));
518}
519
520struct trace_var {
521 int removed;
522 void (*func)(VALUE arg, VALUE val);
523 VALUE data;
524 struct trace_var *next;
525};
526
528 int counter;
529 int block_trace;
530 VALUE *data;
531 rb_gvar_getter_t *getter;
532 rb_gvar_setter_t *setter;
533 rb_gvar_marker_t *marker;
534 rb_gvar_compact_t *compactor;
535 struct trace_var *trace;
536 bool namespace_ready;
537};
538
540 struct rb_global_variable *var;
541 ID id;
542 bool ractor_local;
543};
544
545static void
546free_global_variable(struct rb_global_variable *var)
547{
548 RUBY_ASSERT(var->counter == 0);
549
550 struct trace_var *trace = var->trace;
551 while (trace) {
552 struct trace_var *next = trace->next;
553 xfree(trace);
554 trace = next;
555 }
556 xfree(var);
557}
558
559static enum rb_id_table_iterator_result
560free_global_entry_i(VALUE val, void *arg)
561{
562 struct rb_global_entry *entry = (struct rb_global_entry *)val;
563 entry->var->counter--;
564 if (entry->var->counter == 0) {
565 free_global_variable(entry->var);
566 }
567 ruby_xfree(entry);
568 return ID_TABLE_DELETE;
569}
570
571void
572rb_free_rb_global_tbl(void)
573{
574 rb_id_table_foreach_values(rb_global_tbl, free_global_entry_i, 0);
575 rb_id_table_free(rb_global_tbl);
576}
577
578void
579rb_free_generic_fields_tbl_(void)
580{
581 st_free_table(generic_fields_tbl_);
582}
583
584static struct rb_global_entry*
585rb_find_global_entry(ID id)
586{
587 struct rb_global_entry *entry;
588 VALUE data;
589
590 RB_VM_LOCKING() {
591 if (!rb_id_table_lookup(rb_global_tbl, id, &data)) {
592 entry = NULL;
593 }
594 else {
595 entry = (struct rb_global_entry *)data;
596 RUBY_ASSERT(entry != NULL);
597 }
598 }
599
600 if (UNLIKELY(!rb_ractor_main_p()) && (!entry || !entry->ractor_local)) {
601 rb_raise(rb_eRactorIsolationError, "can not access global variable %s from non-main Ractor", rb_id2name(id));
602 }
603
604 return entry;
605}
606
607void
608rb_gvar_ractor_local(const char *name)
609{
610 struct rb_global_entry *entry = rb_find_global_entry(rb_intern(name));
611 entry->ractor_local = true;
612}
613
614void
615rb_gvar_namespace_ready(const char *name)
616{
617 struct rb_global_entry *entry = rb_find_global_entry(rb_intern(name));
618 entry->var->namespace_ready = true;
619}
620
621static void
622rb_gvar_undef_compactor(void *var)
623{
624}
625
626static struct rb_global_entry*
628{
629 struct rb_global_entry *entry;
630 RB_VM_LOCKING() {
631 entry = rb_find_global_entry(id);
632 if (!entry) {
633 struct rb_global_variable *var;
634 entry = ALLOC(struct rb_global_entry);
635 var = ALLOC(struct rb_global_variable);
636 entry->id = id;
637 entry->var = var;
638 entry->ractor_local = false;
639 var->counter = 1;
640 var->data = 0;
641 var->getter = rb_gvar_undef_getter;
642 var->setter = rb_gvar_undef_setter;
643 var->marker = rb_gvar_undef_marker;
644 var->compactor = rb_gvar_undef_compactor;
645
646 var->block_trace = 0;
647 var->trace = 0;
648 var->namespace_ready = false;
649 rb_id_table_insert(rb_global_tbl, id, (VALUE)entry);
650 }
651 }
652 return entry;
653}
654
655VALUE
657{
658 rb_warning("global variable '%"PRIsVALUE"' not initialized", QUOTE_ID(id));
659
660 return Qnil;
661}
662
663static void
664rb_gvar_val_compactor(void *_var)
665{
666 struct rb_global_variable *var = (struct rb_global_variable *)_var;
667
668 VALUE obj = (VALUE)var->data;
669
670 if (obj) {
671 VALUE new = rb_gc_location(obj);
672 if (new != obj) {
673 var->data = (void*)new;
674 }
675 }
676}
677
678void
680{
681 struct rb_global_variable *var = rb_global_entry(id)->var;
682 var->getter = rb_gvar_val_getter;
683 var->setter = rb_gvar_val_setter;
684 var->marker = rb_gvar_val_marker;
685 var->compactor = rb_gvar_val_compactor;
686
687 var->data = (void*)val;
688}
689
690void
692{
693}
694
695VALUE
696rb_gvar_val_getter(ID id, VALUE *data)
697{
698 return (VALUE)data;
699}
700
701void
703{
704 struct rb_global_variable *var = rb_global_entry(id)->var;
705 var->data = (void*)val;
706}
707
708void
710{
711 VALUE data = (VALUE)var;
712 if (data) rb_gc_mark_movable(data);
713}
714
715VALUE
717{
718 if (!var) return Qnil;
719 return *var;
720}
721
722void
723rb_gvar_var_setter(VALUE val, ID id, VALUE *data)
724{
725 *data = val;
726}
727
728void
730{
731 if (var) rb_gc_mark_maybe(*var);
732}
733
734void
736{
737 rb_name_error(id, "%"PRIsVALUE" is a read-only variable", QUOTE_ID(id));
738}
739
740static enum rb_id_table_iterator_result
741mark_global_entry(VALUE v, void *ignored)
742{
743 struct rb_global_entry *entry = (struct rb_global_entry *)v;
744 struct trace_var *trace;
745 struct rb_global_variable *var = entry->var;
746
747 (*var->marker)(var->data);
748 trace = var->trace;
749 while (trace) {
750 if (trace->data) rb_gc_mark_maybe(trace->data);
751 trace = trace->next;
752 }
753 return ID_TABLE_CONTINUE;
754}
755
756#define gc_mark_table(task) \
757 if (rb_global_tbl) { rb_id_table_foreach_values(rb_global_tbl, task##_global_entry, 0); }
758
759void
760rb_gc_mark_global_tbl(void)
761{
762 gc_mark_table(mark);
763}
764
765static enum rb_id_table_iterator_result
766update_global_entry(VALUE v, void *ignored)
767{
768 struct rb_global_entry *entry = (struct rb_global_entry *)v;
769 struct rb_global_variable *var = entry->var;
770
771 (*var->compactor)(var);
772 return ID_TABLE_CONTINUE;
773}
774
775void
776rb_gc_update_global_tbl(void)
777{
778 gc_mark_table(update);
779}
780
781static ID
782global_id(const char *name)
783{
784 ID id;
785
786 if (name[0] == '$') id = rb_intern(name);
787 else {
788 size_t len = strlen(name);
789 VALUE vbuf = 0;
790 char *buf = ALLOCV_N(char, vbuf, len+1);
791 buf[0] = '$';
792 memcpy(buf+1, name, len);
793 id = rb_intern2(buf, len+1);
794 ALLOCV_END(vbuf);
795 }
796 return id;
797}
798
799static ID
800find_global_id(const char *name)
801{
802 ID id;
803 size_t len = strlen(name);
804
805 if (name[0] == '$') {
806 id = rb_check_id_cstr(name, len, NULL);
807 }
808 else {
809 VALUE vbuf = 0;
810 char *buf = ALLOCV_N(char, vbuf, len+1);
811 buf[0] = '$';
812 memcpy(buf+1, name, len);
813 id = rb_check_id_cstr(buf, len+1, NULL);
814 ALLOCV_END(vbuf);
815 }
816
817 return id;
818}
819
820void
822 const char *name,
823 VALUE *var,
824 rb_gvar_getter_t *getter,
825 rb_gvar_setter_t *setter)
826{
827 volatile VALUE tmp = var ? *var : Qnil;
828 ID id = global_id(name);
829 struct rb_global_variable *gvar = rb_global_entry(id)->var;
830
831 gvar->data = (void*)var;
832 gvar->getter = getter ? (rb_gvar_getter_t *)getter : rb_gvar_var_getter;
833 gvar->setter = setter ? (rb_gvar_setter_t *)setter : rb_gvar_var_setter;
834 gvar->marker = rb_gvar_var_marker;
835
836 RB_GC_GUARD(tmp);
837}
838
839void
840rb_define_variable(const char *name, VALUE *var)
841{
842 rb_define_hooked_variable(name, var, 0, 0);
843}
844
845void
846rb_define_readonly_variable(const char *name, const VALUE *var)
847{
849}
850
851void
853 const char *name,
854 rb_gvar_getter_t *getter,
855 rb_gvar_setter_t *setter)
856{
857 if (!getter) getter = rb_gvar_val_getter;
858 if (!setter) setter = rb_gvar_readonly_setter;
859 rb_define_hooked_variable(name, 0, getter, setter);
860}
861
862static void
863rb_trace_eval(VALUE cmd, VALUE val)
864{
866}
867
868VALUE
869rb_f_trace_var(int argc, const VALUE *argv)
870{
871 VALUE var, cmd;
872 struct rb_global_entry *entry;
873 struct trace_var *trace;
874
875 if (rb_scan_args(argc, argv, "11", &var, &cmd) == 1) {
876 cmd = rb_block_proc();
877 }
878 if (NIL_P(cmd)) {
879 return rb_f_untrace_var(argc, argv);
880 }
881 entry = rb_global_entry(rb_to_id(var));
882 trace = ALLOC(struct trace_var);
883 trace->next = entry->var->trace;
884 trace->func = rb_trace_eval;
885 trace->data = cmd;
886 trace->removed = 0;
887 entry->var->trace = trace;
888
889 return Qnil;
890}
891
892static void
893remove_trace(struct rb_global_variable *var)
894{
895 struct trace_var *trace = var->trace;
896 struct trace_var t;
897 struct trace_var *next;
898
899 t.next = trace;
900 trace = &t;
901 while (trace->next) {
902 next = trace->next;
903 if (next->removed) {
904 trace->next = next->next;
905 xfree(next);
906 }
907 else {
908 trace = next;
909 }
910 }
911 var->trace = t.next;
912}
913
914VALUE
915rb_f_untrace_var(int argc, const VALUE *argv)
916{
917 VALUE var, cmd;
918 ID id;
919 struct rb_global_entry *entry;
920 struct trace_var *trace;
921
922 rb_scan_args(argc, argv, "11", &var, &cmd);
923 id = rb_check_id(&var);
924 if (!id) {
925 rb_name_error_str(var, "undefined global variable %"PRIsVALUE"", QUOTE(var));
926 }
927 if ((entry = rb_find_global_entry(id)) == NULL) {
928 rb_name_error(id, "undefined global variable %"PRIsVALUE"", QUOTE_ID(id));
929 }
930
931 trace = entry->var->trace;
932 if (NIL_P(cmd)) {
933 VALUE ary = rb_ary_new();
934
935 while (trace) {
936 struct trace_var *next = trace->next;
937 rb_ary_push(ary, (VALUE)trace->data);
938 trace->removed = 1;
939 trace = next;
940 }
941
942 if (!entry->var->block_trace) remove_trace(entry->var);
943 return ary;
944 }
945 else {
946 while (trace) {
947 if (trace->data == cmd) {
948 trace->removed = 1;
949 if (!entry->var->block_trace) remove_trace(entry->var);
950 return rb_ary_new3(1, cmd);
951 }
952 trace = trace->next;
953 }
954 }
955 return Qnil;
956}
957
959 struct trace_var *trace;
960 VALUE val;
961};
962
963static VALUE
964trace_ev(VALUE v)
965{
966 struct trace_data *data = (void *)v;
967 struct trace_var *trace = data->trace;
968
969 while (trace) {
970 (*trace->func)(trace->data, data->val);
971 trace = trace->next;
972 }
973
974 return Qnil;
975}
976
977static VALUE
978trace_en(VALUE v)
979{
980 struct rb_global_variable *var = (void *)v;
981 var->block_trace = 0;
982 remove_trace(var);
983 return Qnil; /* not reached */
984}
985
986static VALUE
987rb_gvar_set_entry(struct rb_global_entry *entry, VALUE val)
988{
989 struct trace_data trace;
990 struct rb_global_variable *var = entry->var;
991
992 (*var->setter)(val, entry->id, var->data);
993
994 if (var->trace && !var->block_trace) {
995 var->block_trace = 1;
996 trace.trace = var->trace;
997 trace.val = val;
998 rb_ensure(trace_ev, (VALUE)&trace, trace_en, (VALUE)var);
999 }
1000 return val;
1001}
1002
1003#define USE_NAMESPACE_GVAR_TBL(ns,entry) \
1004 (NAMESPACE_USER_P(ns) && \
1005 (!entry || !entry->var->namespace_ready || entry->var->setter != rb_gvar_readonly_setter))
1006
1007VALUE
1008rb_gvar_set(ID id, VALUE val)
1009{
1010 VALUE retval;
1011 struct rb_global_entry *entry;
1012 const rb_namespace_t *ns = rb_current_namespace();
1013
1014 RB_VM_LOCKING() {
1015 entry = rb_global_entry(id);
1016
1017 if (USE_NAMESPACE_GVAR_TBL(ns, entry)) {
1018 rb_hash_aset(ns->gvar_tbl, rb_id2sym(entry->id), val);
1019 retval = val;
1020 // TODO: think about trace
1021 }
1022 else {
1023 retval = rb_gvar_set_entry(entry, val);
1024 }
1025 }
1026 return retval;
1027}
1028
1029VALUE
1030rb_gv_set(const char *name, VALUE val)
1031{
1032 return rb_gvar_set(global_id(name), val);
1033}
1034
1035VALUE
1036rb_gvar_get(ID id)
1037{
1038 VALUE retval, gvars, key;
1039 const rb_namespace_t *ns = rb_current_namespace();
1040 // TODO: use lock-free rb_id_table when it's available for use (doesn't yet exist)
1041 RB_VM_LOCKING() {
1042 struct rb_global_entry *entry = rb_global_entry(id);
1043 struct rb_global_variable *var = entry->var;
1044
1045 if (USE_NAMESPACE_GVAR_TBL(ns, entry)) {
1046 gvars = ns->gvar_tbl;
1047 key = rb_id2sym(entry->id);
1048 if (RTEST(rb_hash_has_key(gvars, key))) { // this gvar is already cached
1049 retval = rb_hash_aref(gvars, key);
1050 }
1051 else {
1052 retval = (*var->getter)(entry->id, var->data);
1053 if (rb_obj_respond_to(retval, rb_intern("clone"), 1)) {
1054 retval = rb_funcall(retval, rb_intern("clone"), 0);
1055 }
1056 rb_hash_aset(gvars, key, retval);
1057 }
1058 }
1059 else {
1060 retval = (*var->getter)(entry->id, var->data);
1061 }
1062 }
1063 return retval;
1064}
1065
1066VALUE
1067rb_gv_get(const char *name)
1068{
1069 ID id = find_global_id(name);
1070
1071 if (!id) {
1072 rb_warning("global variable '%s' not initialized", name);
1073 return Qnil;
1074 }
1075
1076 return rb_gvar_get(id);
1077}
1078
1079VALUE
1080rb_gvar_defined(ID id)
1081{
1082 struct rb_global_entry *entry = rb_global_entry(id);
1083 return RBOOL(entry->var->getter != rb_gvar_undef_getter);
1084}
1085
1087rb_gvar_getter_function_of(ID id)
1088{
1089 const struct rb_global_entry *entry = rb_global_entry(id);
1090 return entry->var->getter;
1091}
1092
1094rb_gvar_setter_function_of(ID id)
1095{
1096 const struct rb_global_entry *entry = rb_global_entry(id);
1097 return entry->var->setter;
1098}
1099
1100static enum rb_id_table_iterator_result
1101gvar_i(ID key, VALUE val, void *a)
1102{
1103 VALUE ary = (VALUE)a;
1104 rb_ary_push(ary, ID2SYM(key));
1105 return ID_TABLE_CONTINUE;
1106}
1107
1108VALUE
1110{
1111 VALUE ary = rb_ary_new();
1112 VALUE sym, backref = rb_backref_get();
1113
1114 if (!rb_ractor_main_p()) {
1115 rb_raise(rb_eRactorIsolationError, "can not access global variables from non-main Ractors");
1116 }
1117 /* gvar access (get/set) in namespaces creates gvar entries globally */
1118
1119 rb_id_table_foreach(rb_global_tbl, gvar_i, (void *)ary);
1120 if (!NIL_P(backref)) {
1121 char buf[2];
1122 int i, nmatch = rb_match_count(backref);
1123 buf[0] = '$';
1124 for (i = 1; i <= nmatch; ++i) {
1125 if (!RTEST(rb_reg_nth_defined(i, backref))) continue;
1126 if (i < 10) {
1127 /* probably reused, make static ID */
1128 buf[1] = (char)(i + '0');
1129 sym = ID2SYM(rb_intern2(buf, 2));
1130 }
1131 else {
1132 /* dynamic symbol */
1133 sym = rb_str_intern(rb_sprintf("$%d", i));
1134 }
1135 rb_ary_push(ary, sym);
1136 }
1137 }
1138 return ary;
1139}
1140
1141void
1143{
1144 struct rb_global_entry *entry1 = NULL, *entry2;
1145 VALUE data1;
1146 struct rb_id_table *gtbl = rb_global_tbl;
1147
1148 if (!rb_ractor_main_p()) {
1149 rb_raise(rb_eRactorIsolationError, "can not access global variables from non-main Ractors");
1150 }
1151
1152 RB_VM_LOCKING() {
1153 entry2 = rb_global_entry(name2);
1154 if (!rb_id_table_lookup(gtbl, name1, &data1)) {
1155 entry1 = ZALLOC(struct rb_global_entry);
1156 entry1->id = name1;
1157 rb_id_table_insert(gtbl, name1, (VALUE)entry1);
1158 }
1159 else if ((entry1 = (struct rb_global_entry *)data1)->var != entry2->var) {
1160 struct rb_global_variable *var = entry1->var;
1161 if (var->block_trace) {
1162 rb_raise(rb_eRuntimeError, "can't alias in tracer");
1163 }
1164 var->counter--;
1165 if (var->counter == 0) {
1166 free_global_variable(var);
1167 }
1168 }
1169 if (entry1->var != entry2->var) {
1170 entry2->var->counter++;
1171 entry1->var = entry2->var;
1172 }
1173 }
1174}
1175
1176static void
1177IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(ID id)
1178{
1179 if (UNLIKELY(!rb_ractor_main_p())) {
1180 if (rb_is_instance_id(id)) { // check only normal ivars
1181 rb_raise(rb_eRactorIsolationError, "can not set instance variables of classes/modules by non-main Ractors");
1182 }
1183 }
1184}
1185
1186#define CVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR() \
1187 if (UNLIKELY(!rb_ractor_main_p())) { \
1188 rb_raise(rb_eRactorIsolationError, "can not access class variables from non-main Ractors"); \
1189 }
1190
1191static inline void
1192ivar_ractor_check(VALUE obj, ID id)
1193{
1194 if (LIKELY(rb_is_instance_id(id)) /* not internal ID */ &&
1195 !RB_OBJ_FROZEN_RAW(obj) &&
1196 UNLIKELY(!rb_ractor_main_p()) &&
1197 UNLIKELY(rb_ractor_shareable_p(obj))) {
1198
1199 rb_raise(rb_eRactorIsolationError, "can not access instance variables of shareable objects from non-main Ractors");
1200 }
1201}
1202
1203static inline struct st_table *
1204generic_fields_tbl_no_ractor_check(void)
1205{
1206 ASSERT_vm_locking();
1207
1208 return generic_fields_tbl_;
1209}
1210
1211struct st_table *
1212rb_generic_fields_tbl_get(void)
1213{
1214 return generic_fields_tbl_;
1215}
1216
1217void
1218rb_mark_generic_ivar(VALUE obj)
1219{
1220 VALUE data;
1221 // Bypass ASSERT_vm_locking() check because marking may happen concurrently with mmtk
1222 if (st_lookup(generic_fields_tbl_, (st_data_t)obj, (st_data_t *)&data)) {
1223 rb_gc_mark_movable(data);
1224 }
1225}
1226
1227VALUE
1228rb_obj_fields(VALUE obj, ID field_name)
1229{
1231 ivar_ractor_check(obj, field_name);
1232
1233 VALUE fields_obj = 0;
1234 if (rb_shape_obj_has_fields(obj)) {
1235 switch (BUILTIN_TYPE(obj)) {
1236 case T_DATA:
1237 if (LIKELY(RTYPEDDATA_P(obj))) {
1238 fields_obj = RTYPEDDATA(obj)->fields_obj;
1239 break;
1240 }
1241 goto generic_fields;
1242 case T_STRUCT:
1243 if (LIKELY(!FL_TEST_RAW(obj, RSTRUCT_GEN_FIELDS))) {
1244 fields_obj = RSTRUCT_FIELDS_OBJ(obj);
1245 break;
1246 }
1247 goto generic_fields;
1248 default:
1249 generic_fields:
1250 {
1251 rb_execution_context_t *ec = GET_EC();
1252 if (ec->gen_fields_cache.obj == obj && rb_imemo_fields_owner(ec->gen_fields_cache.fields_obj) == obj) {
1253 fields_obj = ec->gen_fields_cache.fields_obj;
1254 }
1255 else {
1256 RB_VM_LOCKING() {
1257 if (!st_lookup(generic_fields_tbl_, (st_data_t)obj, (st_data_t *)&fields_obj)) {
1258 rb_bug("Object is missing entry in generic_fields_tbl");
1259 }
1260 }
1261 ec->gen_fields_cache.fields_obj = fields_obj;
1262 ec->gen_fields_cache.obj = obj;
1263 }
1264 }
1265 }
1266 }
1267 return fields_obj;
1268}
1269
1270void
1272{
1273 if (rb_obj_exivar_p(obj)) {
1274 st_data_t key = (st_data_t)obj, value;
1275 switch (BUILTIN_TYPE(obj)) {
1276 case T_DATA:
1277 if (LIKELY(RTYPEDDATA_P(obj))) {
1278 RB_OBJ_WRITE(obj, &RTYPEDDATA(obj)->fields_obj, 0);
1279 break;
1280 }
1281 goto generic_fields;
1282 case T_STRUCT:
1283 if (LIKELY(!FL_TEST_RAW(obj, RSTRUCT_GEN_FIELDS))) {
1284 RSTRUCT_SET_FIELDS_OBJ(obj, 0);
1285 break;
1286 }
1287 goto generic_fields;
1288 default:
1289 generic_fields:
1290 {
1291 rb_execution_context_t *ec = GET_EC();
1292 if (ec->gen_fields_cache.obj == obj) {
1293 ec->gen_fields_cache.obj = Qundef;
1294 ec->gen_fields_cache.fields_obj = Qundef;
1295 }
1296 RB_VM_LOCKING() {
1297 st_delete(generic_fields_tbl_no_ractor_check(), &key, &value);
1298 }
1299 }
1300 }
1301 RBASIC_SET_SHAPE_ID(obj, ROOT_SHAPE_ID);
1302 }
1303}
1304
1305static void
1306rb_obj_set_fields(VALUE obj, VALUE fields_obj, ID field_name, VALUE original_fields_obj)
1307{
1308 ivar_ractor_check(obj, field_name);
1309
1310 if (!fields_obj) {
1312 return;
1313 }
1314
1315 RUBY_ASSERT(IMEMO_TYPE_P(fields_obj, imemo_fields));
1316 RUBY_ASSERT(!original_fields_obj || IMEMO_TYPE_P(original_fields_obj, imemo_fields));
1317
1318 if (fields_obj != original_fields_obj) {
1319 switch (BUILTIN_TYPE(obj)) {
1320 case T_DATA:
1321 if (LIKELY(RTYPEDDATA_P(obj))) {
1322 RB_OBJ_WRITE(obj, &RTYPEDDATA(obj)->fields_obj, fields_obj);
1323 break;
1324 }
1325 goto generic_fields;
1326 case T_STRUCT:
1327 if (LIKELY(!FL_TEST_RAW(obj, RSTRUCT_GEN_FIELDS))) {
1328 RSTRUCT_SET_FIELDS_OBJ(obj, fields_obj);
1329 break;
1330 }
1331 goto generic_fields;
1332 default:
1333 generic_fields:
1334 {
1335 RB_VM_LOCKING() {
1336 st_insert(generic_fields_tbl_, (st_data_t)obj, (st_data_t)fields_obj);
1337 }
1338 RB_OBJ_WRITTEN(obj, original_fields_obj, fields_obj);
1339
1340 rb_execution_context_t *ec = GET_EC();
1341 if (ec->gen_fields_cache.fields_obj != fields_obj) {
1342 ec->gen_fields_cache.obj = obj;
1343 ec->gen_fields_cache.fields_obj = fields_obj;
1344 }
1345 }
1346 }
1347
1348 if (original_fields_obj) {
1349 // Clear root shape to avoid triggering cleanup such as free_object_id.
1350 rb_imemo_fields_clear(original_fields_obj);
1351 }
1352 }
1353
1354 RBASIC_SET_SHAPE_ID(obj, RBASIC_SHAPE_ID(fields_obj));
1355}
1356
1357void
1358rb_obj_replace_fields(VALUE obj, VALUE fields_obj)
1359{
1360 RB_VM_LOCKING() {
1361 VALUE original_fields_obj = rb_obj_fields_no_ractor_check(obj);
1362 rb_obj_set_fields(obj, fields_obj, 0, original_fields_obj);
1363 }
1364}
1365
1366VALUE
1367rb_obj_field_get(VALUE obj, shape_id_t target_shape_id)
1368{
1370 RUBY_ASSERT(RSHAPE_TYPE_P(target_shape_id, SHAPE_IVAR) || RSHAPE_TYPE_P(target_shape_id, SHAPE_OBJ_ID));
1371
1372 VALUE fields_obj;
1373
1374 switch (BUILTIN_TYPE(obj)) {
1375 case T_CLASS:
1376 case T_MODULE:
1377 fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
1378 break;
1379 case T_OBJECT:
1380 fields_obj = obj;
1381 break;
1382 case T_IMEMO:
1383 RUBY_ASSERT(IMEMO_TYPE_P(obj, imemo_fields));
1384 fields_obj = obj;
1385 break;
1386 default:
1387 fields_obj = rb_obj_fields(obj, RSHAPE_EDGE_NAME(target_shape_id));
1388 break;
1389 }
1390
1391 if (UNLIKELY(rb_shape_too_complex_p(target_shape_id))) {
1392 st_table *fields_hash = rb_imemo_fields_complex_tbl(fields_obj);
1393 VALUE value = Qundef;
1394 st_lookup(fields_hash, RSHAPE_EDGE_NAME(target_shape_id), &value);
1395 RUBY_ASSERT(!UNDEF_P(value));
1396 return value;
1397 }
1398
1399 attr_index_t index = RSHAPE_INDEX(target_shape_id);
1400 return rb_imemo_fields_ptr(fields_obj)[index];
1401}
1402
1403VALUE
1404rb_ivar_lookup(VALUE obj, ID id, VALUE undef)
1405{
1406 if (SPECIAL_CONST_P(obj)) return undef;
1407
1408 VALUE fields_obj;
1409
1410 switch (BUILTIN_TYPE(obj)) {
1411 case T_CLASS:
1412 case T_MODULE:
1413 {
1414 VALUE val = rb_ivar_lookup(RCLASS_WRITABLE_FIELDS_OBJ(obj), id, undef);
1415 if (val != undef &&
1416 rb_is_instance_id(id) &&
1417 UNLIKELY(!rb_ractor_main_p()) &&
1418 !rb_ractor_shareable_p(val)) {
1419 rb_raise(rb_eRactorIsolationError,
1420 "can not get unshareable values from instance variables of classes/modules from non-main Ractors");
1421 }
1422 return val;
1423 }
1424 case T_IMEMO:
1425 // Handled like T_OBJECT
1426 RUBY_ASSERT(IMEMO_TYPE_P(obj, imemo_fields));
1427 fields_obj = obj;
1428 break;
1429 case T_OBJECT:
1430 fields_obj = obj;
1431 break;
1432 default:
1433 fields_obj = rb_obj_fields(obj, id);
1434 break;
1435 }
1436
1437 if (!fields_obj) {
1438 return undef;
1439 }
1440
1441 shape_id_t shape_id = RBASIC_SHAPE_ID(fields_obj);
1442
1443 if (UNLIKELY(rb_shape_too_complex_p(shape_id))) {
1444 st_table *iv_table = rb_imemo_fields_complex_tbl(fields_obj);
1445 VALUE val;
1446 if (rb_st_lookup(iv_table, (st_data_t)id, (st_data_t *)&val)) {
1447 return val;
1448 }
1449 return undef;
1450 }
1451
1452 attr_index_t index = 0;
1453 if (rb_shape_get_iv_index(shape_id, id, &index)) {
1454 return rb_imemo_fields_ptr(fields_obj)[index];
1455 }
1456
1457 return undef;
1458}
1459
1460VALUE
1462{
1463 VALUE iv = rb_ivar_lookup(obj, id, Qnil);
1464 RB_DEBUG_COUNTER_INC(ivar_get_base);
1465 return iv;
1466}
1467
1468VALUE
1469rb_ivar_get_at(VALUE obj, attr_index_t index, ID id)
1470{
1472 // Used by JITs, but never for T_OBJECT.
1473
1474 switch (BUILTIN_TYPE(obj)) {
1475 case T_OBJECT:
1477 case T_CLASS:
1478 case T_MODULE:
1479 {
1480 VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
1481 VALUE val = rb_imemo_fields_ptr(fields_obj)[index];
1482
1483 if (UNLIKELY(!rb_ractor_main_p()) && !rb_ractor_shareable_p(val)) {
1484 rb_raise(rb_eRactorIsolationError,
1485 "can not get unshareable values from instance variables of classes/modules from non-main Ractors");
1486 }
1487
1488 return val;
1489 }
1490 default:
1491 {
1492 VALUE fields_obj = rb_obj_fields(obj, id);
1493 return rb_imemo_fields_ptr(fields_obj)[index];
1494 }
1495 }
1496}
1497
1498VALUE
1499rb_ivar_get_at_no_ractor_check(VALUE obj, attr_index_t index)
1500{
1501 // Used by JITs, but never for T_OBJECT.
1502
1503 VALUE fields_obj;
1504 switch (BUILTIN_TYPE(obj)) {
1505 case T_OBJECT:
1507 case T_CLASS:
1508 case T_MODULE:
1509 fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
1510 break;
1511 default:
1512 fields_obj = rb_obj_fields_no_ractor_check(obj);
1513 break;
1514 }
1515 return rb_imemo_fields_ptr(fields_obj)[index];
1516}
1517
1518VALUE
1519rb_attr_get(VALUE obj, ID id)
1520{
1521 return rb_ivar_lookup(obj, id, Qnil);
1522}
1523
1524void rb_obj_copy_fields_to_hash_table(VALUE obj, st_table *table);
1525static VALUE imemo_fields_complex_from_obj(VALUE owner, VALUE source_fields_obj, shape_id_t shape_id);
1526
1527static shape_id_t
1528obj_transition_too_complex(VALUE obj, st_table *table)
1529{
1530 RUBY_ASSERT(!rb_shape_obj_too_complex_p(obj));
1531 shape_id_t shape_id = rb_shape_transition_complex(obj);
1532
1533 switch (BUILTIN_TYPE(obj)) {
1534 case T_OBJECT:
1535 {
1536 VALUE *old_fields = NULL;
1537 if (FL_TEST_RAW(obj, ROBJECT_HEAP)) {
1538 old_fields = ROBJECT_FIELDS(obj);
1539 }
1540 else {
1541 FL_SET_RAW(obj, ROBJECT_HEAP);
1542 }
1543 RBASIC_SET_SHAPE_ID(obj, shape_id);
1544 ROBJECT_SET_FIELDS_HASH(obj, table);
1545 if (old_fields) {
1546 xfree(old_fields);
1547 }
1548 }
1549 break;
1550 case T_CLASS:
1551 case T_MODULE:
1552 case T_IMEMO:
1554 break;
1555 default:
1556 {
1557 VALUE fields_obj = rb_imemo_fields_new_complex_tbl(obj, table, RB_OBJ_SHAREABLE_P(obj));
1558 RBASIC_SET_SHAPE_ID(fields_obj, shape_id);
1559 rb_obj_replace_fields(obj, fields_obj);
1560 }
1561 }
1562
1563 return shape_id;
1564}
1565
1566// Copy all object fields, including ivars and internal object_id, etc
1567static shape_id_t
1568rb_evict_fields_to_hash(VALUE obj)
1569{
1570 RUBY_ASSERT(!rb_shape_obj_too_complex_p(obj));
1571
1572 st_table *table = st_init_numtable_with_size(RSHAPE_LEN(RBASIC_SHAPE_ID(obj)));
1573 rb_obj_copy_fields_to_hash_table(obj, table);
1574 shape_id_t new_shape_id = obj_transition_too_complex(obj, table);
1575
1576 RUBY_ASSERT(rb_shape_obj_too_complex_p(obj));
1577 return new_shape_id;
1578}
1579
1580void
1581rb_evict_ivars_to_hash(VALUE obj)
1582{
1583 RUBY_ASSERT(!rb_shape_obj_too_complex_p(obj));
1584
1585 st_table *table = st_init_numtable_with_size(rb_ivar_count(obj));
1586
1587 // Evacuate all previous values from shape into id_table
1588 rb_obj_copy_ivs_to_hash_table(obj, table);
1589 obj_transition_too_complex(obj, table);
1590
1591 RUBY_ASSERT(rb_shape_obj_too_complex_p(obj));
1592}
1593
1594static VALUE
1595rb_ivar_delete(VALUE obj, ID id, VALUE undef)
1596{
1597 rb_check_frozen(obj);
1598
1599 VALUE val = undef;
1600 VALUE fields_obj;
1601 bool concurrent = false;
1602 int type = BUILTIN_TYPE(obj);
1603
1604 switch(type) {
1605 case T_CLASS:
1606 case T_MODULE:
1607 IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(id);
1608
1609 fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
1610 if (rb_multi_ractor_p()) {
1611 concurrent = true;
1612 }
1613 break;
1614 case T_OBJECT:
1615 fields_obj = obj;
1616 break;
1617 default: {
1618 fields_obj = rb_obj_fields(obj, id);
1619 break;
1620 }
1621 }
1622
1623 if (!fields_obj) {
1624 return undef;
1625 }
1626
1627 const VALUE original_fields_obj = fields_obj;
1628 if (concurrent) {
1629 fields_obj = rb_imemo_fields_clone(fields_obj);
1630 }
1631
1632 shape_id_t old_shape_id = RBASIC_SHAPE_ID(fields_obj);
1633 shape_id_t removed_shape_id;
1634 shape_id_t next_shape_id = rb_shape_transition_remove_ivar(fields_obj, id, &removed_shape_id);
1635
1636 if (UNLIKELY(rb_shape_too_complex_p(next_shape_id))) {
1637 if (UNLIKELY(!rb_shape_too_complex_p(old_shape_id))) {
1638 if (type == T_OBJECT) {
1639 rb_evict_fields_to_hash(obj);
1640 }
1641 else {
1642 fields_obj = imemo_fields_complex_from_obj(obj, fields_obj, next_shape_id);
1643 }
1644 }
1645 st_data_t key = id;
1646 if (!st_delete(rb_imemo_fields_complex_tbl(fields_obj), &key, (st_data_t *)&val)) {
1647 val = undef;
1648 }
1649 }
1650 else {
1651 if (next_shape_id == old_shape_id) {
1652 return undef;
1653 }
1654
1655 RUBY_ASSERT(removed_shape_id != INVALID_SHAPE_ID);
1656 RUBY_ASSERT(RSHAPE_LEN(next_shape_id) == RSHAPE_LEN(old_shape_id) - 1);
1657
1658 VALUE *fields = rb_imemo_fields_ptr(fields_obj);
1659 attr_index_t removed_index = RSHAPE_INDEX(removed_shape_id);
1660 val = fields[removed_index];
1661
1662 attr_index_t new_fields_count = RSHAPE_LEN(next_shape_id);
1663 if (new_fields_count) {
1664 size_t trailing_fields = new_fields_count - removed_index;
1665
1666 MEMMOVE(&fields[removed_index], &fields[removed_index + 1], VALUE, trailing_fields);
1667 RBASIC_SET_SHAPE_ID(fields_obj, next_shape_id);
1668
1669 if (FL_TEST_RAW(fields_obj, OBJ_FIELD_HEAP) && rb_obj_embedded_size(new_fields_count) <= rb_gc_obj_slot_size(fields_obj)) {
1670 // Re-embed objects when instances become small enough
1671 // This is necessary because YJIT assumes that objects with the same shape
1672 // have the same embeddedness for efficiency (avoid extra checks)
1673 FL_UNSET_RAW(fields_obj, ROBJECT_HEAP);
1674 MEMCPY(rb_imemo_fields_ptr(fields_obj), fields, VALUE, new_fields_count);
1675 xfree(fields);
1676 }
1677 }
1678 else {
1679 fields_obj = 0;
1681 }
1682 }
1683
1684 RBASIC_SET_SHAPE_ID(obj, next_shape_id);
1685 if (fields_obj != original_fields_obj) {
1686 switch (type) {
1687 case T_OBJECT:
1688 break;
1689 case T_CLASS:
1690 case T_MODULE:
1691 RCLASS_WRITABLE_SET_FIELDS_OBJ(obj, fields_obj);
1692 break;
1693 default:
1694 rb_obj_set_fields(obj, fields_obj, id, original_fields_obj);
1695 break;
1696 }
1697 }
1698
1699 return val;
1700}
1701
1702VALUE
1703rb_attr_delete(VALUE obj, ID id)
1704{
1705 return rb_ivar_delete(obj, id, Qnil);
1706}
1707
1708void
1709rb_obj_init_too_complex(VALUE obj, st_table *table)
1710{
1711 // This method is meant to be called on newly allocated object.
1712 RUBY_ASSERT(!rb_shape_obj_too_complex_p(obj));
1713 RUBY_ASSERT(rb_shape_canonical_p(RBASIC_SHAPE_ID(obj)));
1714 RUBY_ASSERT(RSHAPE_LEN(RBASIC_SHAPE_ID(obj)) == 0);
1715
1716 obj_transition_too_complex(obj, table);
1717}
1718
1719static int
1720imemo_fields_complex_from_obj_i(ID key, VALUE val, st_data_t arg)
1721{
1722 VALUE fields = (VALUE)arg;
1723 st_table *table = rb_imemo_fields_complex_tbl(fields);
1724
1725 RUBY_ASSERT(!st_lookup(table, (st_data_t)key, NULL));
1726 st_add_direct(table, (st_data_t)key, (st_data_t)val);
1727 RB_OBJ_WRITTEN(fields, Qundef, val);
1728
1729 return ST_CONTINUE;
1730}
1731
1732static VALUE
1733imemo_fields_complex_from_obj(VALUE owner, VALUE source_fields_obj, shape_id_t shape_id)
1734{
1735 attr_index_t len = source_fields_obj ? RSHAPE_LEN(RBASIC_SHAPE_ID(source_fields_obj)) : 0;
1736 VALUE fields_obj = rb_imemo_fields_new_complex(owner, len + 1, RB_OBJ_SHAREABLE_P(owner));
1737
1738 rb_field_foreach(source_fields_obj, imemo_fields_complex_from_obj_i, (st_data_t)fields_obj, false);
1739 RBASIC_SET_SHAPE_ID(fields_obj, shape_id);
1740
1741 return fields_obj;
1742}
1743
1744static VALUE
1745imemo_fields_copy_capa(VALUE owner, VALUE source_fields_obj, attr_index_t new_size)
1746{
1747 VALUE fields_obj = rb_imemo_fields_new(owner, new_size, RB_OBJ_SHAREABLE_P(owner));
1748 if (source_fields_obj) {
1749 attr_index_t fields_count = RSHAPE_LEN(RBASIC_SHAPE_ID(source_fields_obj));
1750 VALUE *fields = rb_imemo_fields_ptr(fields_obj);
1751 MEMCPY(fields, rb_imemo_fields_ptr(source_fields_obj), VALUE, fields_count);
1752 RBASIC_SET_SHAPE_ID(fields_obj, RBASIC_SHAPE_ID(source_fields_obj));
1753 for (attr_index_t i = 0; i < fields_count; i++) {
1754 RB_OBJ_WRITTEN(fields_obj, Qundef, fields[i]);
1755 }
1756 }
1757 return fields_obj;
1758}
1759
1760static VALUE
1761imemo_fields_set(VALUE owner, VALUE fields_obj, shape_id_t target_shape_id, ID field_name, VALUE val, bool concurrent)
1762{
1763 const VALUE original_fields_obj = fields_obj;
1764 shape_id_t current_shape_id = fields_obj ? RBASIC_SHAPE_ID(fields_obj) : ROOT_SHAPE_ID;
1765
1766 if (UNLIKELY(rb_shape_too_complex_p(target_shape_id))) {
1767 if (rb_shape_too_complex_p(current_shape_id)) {
1768 if (concurrent) {
1769 // In multi-ractor case, we must always work on a copy because
1770 // even if the field already exist, inserting in a st_table may
1771 // cause a rebuild.
1772 fields_obj = rb_imemo_fields_clone(fields_obj);
1773 }
1774 }
1775 else {
1776 fields_obj = imemo_fields_complex_from_obj(owner, original_fields_obj, target_shape_id);
1777 current_shape_id = target_shape_id;
1778 }
1779
1780 st_table *table = rb_imemo_fields_complex_tbl(fields_obj);
1781
1782 RUBY_ASSERT(field_name);
1783 st_insert(table, (st_data_t)field_name, (st_data_t)val);
1784 RB_OBJ_WRITTEN(fields_obj, Qundef, val);
1785 RBASIC_SET_SHAPE_ID(fields_obj, target_shape_id);
1786 }
1787 else {
1788 attr_index_t index = RSHAPE_INDEX(target_shape_id);
1789 if (concurrent || index >= RSHAPE_CAPACITY(current_shape_id)) {
1790 fields_obj = imemo_fields_copy_capa(owner, original_fields_obj, RSHAPE_CAPACITY(target_shape_id));
1791 }
1792
1793 VALUE *table = rb_imemo_fields_ptr(fields_obj);
1794 RB_OBJ_WRITE(fields_obj, &table[index], val);
1795
1796 if (RSHAPE_LEN(target_shape_id) > RSHAPE_LEN(current_shape_id)) {
1797 RBASIC_SET_SHAPE_ID(fields_obj, target_shape_id);
1798 }
1799 }
1800
1801 return fields_obj;
1802}
1803
1804static attr_index_t
1805generic_field_set(VALUE obj, shape_id_t target_shape_id, ID field_name, VALUE val)
1806{
1807 if (!field_name) {
1808 field_name = RSHAPE_EDGE_NAME(target_shape_id);
1809 RUBY_ASSERT(field_name);
1810 }
1811
1812 const VALUE original_fields_obj = rb_obj_fields(obj, field_name);
1813 VALUE fields_obj = imemo_fields_set(obj, original_fields_obj, target_shape_id, field_name, val, false);
1814
1815 rb_obj_set_fields(obj, fields_obj, field_name, original_fields_obj);
1816 return rb_shape_too_complex_p(target_shape_id) ? ATTR_INDEX_NOT_SET : RSHAPE_INDEX(target_shape_id);
1817}
1818
1819static shape_id_t
1820generic_shape_ivar(VALUE obj, ID id, bool *new_ivar_out)
1821{
1822 bool new_ivar = false;
1823 shape_id_t current_shape_id = RBASIC_SHAPE_ID(obj);
1824 shape_id_t target_shape_id = current_shape_id;
1825
1826 if (!rb_shape_too_complex_p(current_shape_id)) {
1827 if (!rb_shape_find_ivar(current_shape_id, id, &target_shape_id)) {
1828 if (RSHAPE_LEN(current_shape_id) >= SHAPE_MAX_FIELDS) {
1829 rb_raise(rb_eArgError, "too many instance variables");
1830 }
1831
1832 new_ivar = true;
1833 target_shape_id = rb_shape_transition_add_ivar(obj, id);
1834 }
1835 }
1836
1837 *new_ivar_out = new_ivar;
1838 return target_shape_id;
1839}
1840
1841static attr_index_t
1842generic_ivar_set(VALUE obj, ID id, VALUE val)
1843{
1844 bool dontcare;
1845 shape_id_t target_shape_id = generic_shape_ivar(obj, id, &dontcare);
1846 return generic_field_set(obj, target_shape_id, id, val);
1847}
1848
1849void
1850rb_ensure_iv_list_size(VALUE obj, uint32_t current_len, uint32_t new_capacity)
1851{
1852 RUBY_ASSERT(!rb_shape_obj_too_complex_p(obj));
1853
1854 if (FL_TEST_RAW(obj, ROBJECT_HEAP)) {
1855 REALLOC_N(ROBJECT(obj)->as.heap.fields, VALUE, new_capacity);
1856 }
1857 else {
1858 VALUE *ptr = ROBJECT_FIELDS(obj);
1859 VALUE *newptr = ALLOC_N(VALUE, new_capacity);
1860 MEMCPY(newptr, ptr, VALUE, current_len);
1861 FL_SET_RAW(obj, ROBJECT_HEAP);
1862 ROBJECT(obj)->as.heap.fields = newptr;
1863 }
1864}
1865
1866static int
1867rb_obj_copy_ivs_to_hash_table_i(ID key, VALUE val, st_data_t arg)
1868{
1869 RUBY_ASSERT(!st_lookup((st_table *)arg, (st_data_t)key, NULL));
1870
1871 st_add_direct((st_table *)arg, (st_data_t)key, (st_data_t)val);
1872 return ST_CONTINUE;
1873}
1874
1875void
1876rb_obj_copy_ivs_to_hash_table(VALUE obj, st_table *table)
1877{
1878 rb_ivar_foreach(obj, rb_obj_copy_ivs_to_hash_table_i, (st_data_t)table);
1879}
1880
1881void
1882rb_obj_copy_fields_to_hash_table(VALUE obj, st_table *table)
1883{
1884 rb_field_foreach(obj, rb_obj_copy_ivs_to_hash_table_i, (st_data_t)table, false);
1885}
1886
1887static attr_index_t
1888obj_field_set(VALUE obj, shape_id_t target_shape_id, ID field_name, VALUE val)
1889{
1890 shape_id_t current_shape_id = RBASIC_SHAPE_ID(obj);
1891
1892 if (UNLIKELY(rb_shape_too_complex_p(target_shape_id))) {
1893 if (UNLIKELY(!rb_shape_too_complex_p(current_shape_id))) {
1894 current_shape_id = rb_evict_fields_to_hash(obj);
1895 }
1896
1897 if (RSHAPE_LEN(target_shape_id) > RSHAPE_LEN(current_shape_id)) {
1898 RBASIC_SET_SHAPE_ID(obj, target_shape_id);
1899 }
1900
1901 if (!field_name) {
1902 field_name = RSHAPE_EDGE_NAME(target_shape_id);
1903 RUBY_ASSERT(field_name);
1904 }
1905
1906 st_insert(ROBJECT_FIELDS_HASH(obj), (st_data_t)field_name, (st_data_t)val);
1907 RB_OBJ_WRITTEN(obj, Qundef, val);
1908
1909 return ATTR_INDEX_NOT_SET;
1910 }
1911 else {
1912 attr_index_t index = RSHAPE_INDEX(target_shape_id);
1913
1914 if (index >= RSHAPE_LEN(current_shape_id)) {
1915 if (UNLIKELY(index >= RSHAPE_CAPACITY(current_shape_id))) {
1916 rb_ensure_iv_list_size(obj, RSHAPE_CAPACITY(current_shape_id), RSHAPE_CAPACITY(target_shape_id));
1917 }
1918 RBASIC_SET_SHAPE_ID(obj, target_shape_id);
1919 }
1920
1921 RB_OBJ_WRITE(obj, &ROBJECT_FIELDS(obj)[index], val);
1922
1923 return index;
1924 }
1925}
1926
1927static attr_index_t
1928obj_ivar_set(VALUE obj, ID id, VALUE val)
1929{
1930 bool dontcare;
1931 shape_id_t target_shape_id = generic_shape_ivar(obj, id, &dontcare);
1932 return obj_field_set(obj, target_shape_id, id, val);
1933}
1934
1935/* Set the instance variable +val+ on object +obj+ at ivar name +id+.
1936 * This function only works with T_OBJECT objects, so make sure
1937 * +obj+ is of type T_OBJECT before using this function.
1938 */
1939VALUE
1940rb_vm_set_ivar_id(VALUE obj, ID id, VALUE val)
1941{
1942 rb_check_frozen(obj);
1943 obj_ivar_set(obj, id, val);
1944 return val;
1945}
1946
1948{
1949 if (RB_FL_ABLE(x)) {
1951 if (TYPE(x) == T_STRING) {
1952 RB_FL_UNSET_RAW(x, FL_USER2 | FL_USER3); // STR_CHILLED
1953 }
1954
1955 RB_SET_SHAPE_ID(x, rb_shape_transition_frozen(x));
1956
1957 if (RBASIC_CLASS(x)) {
1959 }
1960 }
1961}
1962
1963static attr_index_t class_ivar_set(VALUE obj, ID id, VALUE val, bool *new_ivar);
1964
1965static attr_index_t
1966ivar_set(VALUE obj, ID id, VALUE val)
1967{
1968 RB_DEBUG_COUNTER_INC(ivar_set_base);
1969
1970 switch (BUILTIN_TYPE(obj)) {
1971 case T_OBJECT:
1972 return obj_ivar_set(obj, id, val);
1973 case T_CLASS:
1974 case T_MODULE:
1975 {
1976 IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(id);
1977 bool dontcare;
1978 return class_ivar_set(obj, id, val, &dontcare);
1979 }
1980 default:
1981 return generic_ivar_set(obj, id, val);
1982 }
1983}
1984
1985VALUE
1987{
1988 rb_check_frozen(obj);
1989 ivar_set(obj, id, val);
1990 return val;
1991}
1992
1993attr_index_t
1994rb_ivar_set_index(VALUE obj, ID id, VALUE val)
1995{
1996 return ivar_set(obj, id, val);
1997}
1998
1999void
2000rb_ivar_set_internal(VALUE obj, ID id, VALUE val)
2001{
2002 // should be internal instance variable name (no @ prefix)
2003 VM_ASSERT(!rb_is_instance_id(id));
2004
2005 ivar_set(obj, id, val);
2006}
2007
2008attr_index_t
2009rb_obj_field_set(VALUE obj, shape_id_t target_shape_id, ID field_name, VALUE val)
2010{
2011 switch (BUILTIN_TYPE(obj)) {
2012 case T_OBJECT:
2013 return obj_field_set(obj, target_shape_id, field_name, val);
2014 case T_CLASS:
2015 case T_MODULE:
2016 // The only field is object_id and T_CLASS handle it differently.
2017 rb_bug("Unreachable");
2018 break;
2019 default:
2020 return generic_field_set(obj, target_shape_id, field_name, val);
2021 }
2022}
2023
2024static VALUE
2025ivar_defined0(VALUE obj, ID id)
2026{
2027 attr_index_t index;
2028
2029 if (rb_shape_obj_too_complex_p(obj)) {
2030 VALUE idx;
2031 st_table *table = NULL;
2032 switch (BUILTIN_TYPE(obj)) {
2033 case T_CLASS:
2034 case T_MODULE:
2035 rb_bug("Unreachable");
2036 break;
2037
2038 case T_IMEMO:
2039 RUBY_ASSERT(IMEMO_TYPE_P(obj, imemo_fields));
2040 table = rb_imemo_fields_complex_tbl(obj);
2041 break;
2042
2043 case T_OBJECT:
2044 table = ROBJECT_FIELDS_HASH(obj);
2045 break;
2046
2047 default: {
2048 VALUE fields_obj = rb_obj_fields_no_ractor_check(obj); // defined? doesn't require ractor checks
2049 table = rb_imemo_fields_complex_tbl(fields_obj);
2050 }
2051 }
2052
2053 if (!table || !rb_st_lookup(table, id, &idx)) {
2054 return Qfalse;
2055 }
2056
2057 return Qtrue;
2058 }
2059 else {
2060 return RBOOL(rb_shape_get_iv_index(RBASIC_SHAPE_ID(obj), id, &index));
2061 }
2062}
2063
2064VALUE
2066{
2067 if (SPECIAL_CONST_P(obj)) return Qfalse;
2068
2069 VALUE defined = Qfalse;
2070 switch (BUILTIN_TYPE(obj)) {
2071 case T_CLASS:
2072 case T_MODULE:
2073 {
2074 VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
2075 if (fields_obj) {
2076 defined = ivar_defined0(fields_obj, id);
2077 }
2078 }
2079 break;
2080 default:
2081 defined = ivar_defined0(obj, id);
2082 break;
2083 }
2084 return defined;
2085}
2086
2088 VALUE obj;
2089 struct gen_fields_tbl *fields_tbl;
2090 st_data_t arg;
2091 rb_ivar_foreach_callback_func *func;
2092 VALUE *fields;
2093 bool ivar_only;
2094};
2095
2096static int
2097iterate_over_shapes_callback(shape_id_t shape_id, void *data)
2098{
2099 struct iv_itr_data *itr_data = data;
2100
2101 if (itr_data->ivar_only && !RSHAPE_TYPE_P(shape_id, SHAPE_IVAR)) {
2102 return ST_CONTINUE;
2103 }
2104
2105 VALUE *fields;
2106 switch (BUILTIN_TYPE(itr_data->obj)) {
2107 case T_OBJECT:
2108 RUBY_ASSERT(!rb_shape_obj_too_complex_p(itr_data->obj));
2109 fields = ROBJECT_FIELDS(itr_data->obj);
2110 break;
2111 case T_IMEMO:
2112 RUBY_ASSERT(IMEMO_TYPE_P(itr_data->obj, imemo_fields));
2113 RUBY_ASSERT(!rb_shape_obj_too_complex_p(itr_data->obj));
2114
2115 fields = rb_imemo_fields_ptr(itr_data->obj);
2116 break;
2117 default:
2118 rb_bug("Unreachable");
2119 }
2120
2121 VALUE val = fields[RSHAPE_INDEX(shape_id)];
2122 return itr_data->func(RSHAPE_EDGE_NAME(shape_id), val, itr_data->arg);
2123}
2124
2125/*
2126 * Returns a flag to stop iterating depending on the result of +callback+.
2127 */
2128static void
2129iterate_over_shapes(shape_id_t shape_id, rb_ivar_foreach_callback_func *callback, struct iv_itr_data *itr_data)
2130{
2131 rb_shape_foreach_field(shape_id, iterate_over_shapes_callback, itr_data);
2132}
2133
2134static int
2135each_hash_iv(st_data_t id, st_data_t val, st_data_t data)
2136{
2137 struct iv_itr_data * itr_data = (struct iv_itr_data *)data;
2138 rb_ivar_foreach_callback_func *callback = itr_data->func;
2139 if (is_internal_id((ID)id)) {
2140 return ST_CONTINUE;
2141 }
2142 return callback((ID)id, (VALUE)val, itr_data->arg);
2143}
2144
2145static void
2146obj_fields_each(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg, bool ivar_only)
2147{
2148 struct iv_itr_data itr_data = {
2149 .obj = obj,
2150 .arg = arg,
2151 .func = func,
2152 .ivar_only = ivar_only,
2153 };
2154
2155 shape_id_t shape_id = RBASIC_SHAPE_ID(obj);
2156 if (rb_shape_too_complex_p(shape_id)) {
2157 rb_st_foreach(ROBJECT_FIELDS_HASH(obj), each_hash_iv, (st_data_t)&itr_data);
2158 }
2159 else {
2160 itr_data.fields = ROBJECT_FIELDS(obj);
2161 iterate_over_shapes(shape_id, func, &itr_data);
2162 }
2163}
2164
2165static void
2166imemo_fields_each(VALUE fields_obj, rb_ivar_foreach_callback_func *func, st_data_t arg, bool ivar_only)
2167{
2168 IMEMO_TYPE_P(fields_obj, imemo_fields);
2169
2170 struct iv_itr_data itr_data = {
2171 .obj = fields_obj,
2172 .arg = arg,
2173 .func = func,
2174 .ivar_only = ivar_only,
2175 };
2176
2177 shape_id_t shape_id = RBASIC_SHAPE_ID(fields_obj);
2178 if (rb_shape_too_complex_p(shape_id)) {
2179 rb_st_foreach(rb_imemo_fields_complex_tbl(fields_obj), each_hash_iv, (st_data_t)&itr_data);
2180 }
2181 else {
2182 itr_data.fields = rb_imemo_fields_ptr(fields_obj);
2183 iterate_over_shapes(shape_id, func, &itr_data);
2184 }
2185}
2186
2187void
2189{
2190 VALUE new_fields_obj;
2191
2192 rb_check_frozen(dest);
2193
2194 if (!rb_obj_exivar_p(obj)) {
2195 return;
2196 }
2197
2198 shape_id_t src_shape_id = rb_obj_shape_id(obj);
2199
2200 VALUE fields_obj = rb_obj_fields_no_ractor_check(obj);
2201 if (fields_obj) {
2202 unsigned long src_num_ivs = rb_ivar_count(fields_obj);
2203 if (!src_num_ivs) {
2204 goto clear;
2205 }
2206
2207 if (rb_shape_too_complex_p(src_shape_id)) {
2208 rb_shape_copy_complex_ivars(dest, obj, src_shape_id, rb_imemo_fields_complex_tbl(fields_obj));
2209 return;
2210 }
2211
2212 shape_id_t dest_shape_id = src_shape_id;
2213 shape_id_t initial_shape_id = rb_obj_shape_id(dest);
2214
2215 if (!rb_shape_canonical_p(src_shape_id)) {
2216 RUBY_ASSERT(RSHAPE_TYPE_P(initial_shape_id, SHAPE_ROOT));
2217
2218 dest_shape_id = rb_shape_rebuild(initial_shape_id, src_shape_id);
2219 if (UNLIKELY(rb_shape_too_complex_p(dest_shape_id))) {
2220 st_table *table = rb_st_init_numtable_with_size(src_num_ivs);
2221 rb_obj_copy_ivs_to_hash_table(obj, table);
2222 rb_obj_init_too_complex(dest, table);
2223 return;
2224 }
2225 }
2226
2227 if (!RSHAPE_LEN(dest_shape_id)) {
2228 RBASIC_SET_SHAPE_ID(dest, dest_shape_id);
2229 return;
2230 }
2231
2232 new_fields_obj = rb_imemo_fields_new(dest, RSHAPE_CAPACITY(dest_shape_id), RB_OBJ_SHAREABLE_P(dest));
2233 VALUE *src_buf = rb_imemo_fields_ptr(fields_obj);
2234 VALUE *dest_buf = rb_imemo_fields_ptr(new_fields_obj);
2235 rb_shape_copy_fields(new_fields_obj, dest_buf, dest_shape_id, src_buf, src_shape_id);
2236 RBASIC_SET_SHAPE_ID(new_fields_obj, dest_shape_id);
2237
2238 rb_obj_replace_fields(dest, new_fields_obj);
2239 }
2240 return;
2241
2242 clear:
2244}
2245
2246void
2247rb_replace_generic_ivar(VALUE clone, VALUE obj)
2248{
2249 RB_VM_LOCKING() {
2250 st_data_t fields_tbl, obj_data = (st_data_t)obj;
2251 if (st_delete(generic_fields_tbl_, &obj_data, &fields_tbl)) {
2252 st_insert(generic_fields_tbl_, (st_data_t)clone, fields_tbl);
2253 RB_OBJ_WRITTEN(clone, Qundef, fields_tbl);
2254 }
2255 else {
2256 rb_bug("unreachable");
2257 }
2258 }
2259}
2260
2261void
2262rb_field_foreach(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg, bool ivar_only)
2263{
2264 if (SPECIAL_CONST_P(obj)) return;
2265 switch (BUILTIN_TYPE(obj)) {
2266 case T_IMEMO:
2267 if (IMEMO_TYPE_P(obj, imemo_fields)) {
2268 imemo_fields_each(obj, func, arg, ivar_only);
2269 }
2270 break;
2271 case T_OBJECT:
2272 obj_fields_each(obj, func, arg, ivar_only);
2273 break;
2274 case T_CLASS:
2275 case T_MODULE:
2276 {
2277 IVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(0);
2278 VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
2279 if (fields_obj) {
2280 imemo_fields_each(fields_obj, func, arg, ivar_only);
2281 }
2282 }
2283 break;
2284 default:
2285 {
2286 VALUE fields_obj = rb_obj_fields_no_ractor_check(obj);
2287 if (fields_obj) {
2288 imemo_fields_each(fields_obj, func, arg, ivar_only);
2289 }
2290 }
2291 break;
2292 }
2293}
2294
2295void
2296rb_ivar_foreach(VALUE obj, rb_ivar_foreach_callback_func *func, st_data_t arg)
2297{
2298 rb_field_foreach(obj, func, arg, true);
2299}
2300
2301st_index_t
2303{
2304 if (SPECIAL_CONST_P(obj)) return 0;
2305
2306 st_index_t iv_count = 0;
2307 switch (BUILTIN_TYPE(obj)) {
2308 case T_OBJECT:
2309 iv_count = ROBJECT_FIELDS_COUNT(obj);
2310 break;
2311
2312 case T_CLASS:
2313 case T_MODULE:
2314 {
2315 VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
2316 if (!fields_obj) {
2317 return 0;
2318 }
2319 if (rb_shape_obj_too_complex_p(fields_obj)) {
2320 iv_count = rb_st_table_size(rb_imemo_fields_complex_tbl(fields_obj));
2321 }
2322 else {
2323 iv_count = RBASIC_FIELDS_COUNT(fields_obj);
2324 }
2325 }
2326 break;
2327
2328 case T_IMEMO:
2329 RUBY_ASSERT(IMEMO_TYPE_P(obj, imemo_fields));
2330
2331 if (rb_shape_obj_too_complex_p(obj)) {
2332 iv_count = rb_st_table_size(rb_imemo_fields_complex_tbl(obj));
2333 }
2334 else {
2335 iv_count = RBASIC_FIELDS_COUNT(obj);
2336 }
2337 break;
2338
2339 default:
2340 {
2341 VALUE fields_obj = rb_obj_fields_no_ractor_check(obj);
2342 if (fields_obj) {
2343 if (rb_shape_obj_too_complex_p(fields_obj)) {
2344 rb_st_table_size(rb_imemo_fields_complex_tbl(fields_obj));
2345 }
2346 else {
2347 iv_count = RBASIC_FIELDS_COUNT(obj);
2348 }
2349 }
2350 }
2351 break;
2352 }
2353
2354 if (rb_shape_obj_has_id(obj)) {
2355 iv_count--;
2356 }
2357
2358 return iv_count;
2359}
2360
2361static int
2362ivar_i(ID key, VALUE v, st_data_t a)
2363{
2364 VALUE ary = (VALUE)a;
2365
2366 if (rb_is_instance_id(key)) {
2367 rb_ary_push(ary, ID2SYM(key));
2368 }
2369 return ST_CONTINUE;
2370}
2371
2372/*
2373 * call-seq:
2374 * obj.instance_variables -> array
2375 *
2376 * Returns an array of instance variable names for the receiver. Note
2377 * that simply defining an accessor does not create the corresponding
2378 * instance variable.
2379 *
2380 * class Fred
2381 * attr_accessor :a1
2382 * def initialize
2383 * @iv = 3
2384 * end
2385 * end
2386 * Fred.new.instance_variables #=> [:@iv]
2387 */
2388
2389VALUE
2391{
2392 VALUE ary;
2393
2394 ary = rb_ary_new();
2395 rb_ivar_foreach(obj, ivar_i, ary);
2396 return ary;
2397}
2398
2399#define rb_is_constant_id rb_is_const_id
2400#define rb_is_constant_name rb_is_const_name
2401#define id_for_var(obj, name, part, type) \
2402 id_for_var_message(obj, name, type, "'%1$s' is not allowed as "#part" "#type" variable name")
2403#define id_for_var_message(obj, name, type, message) \
2404 check_id_type(obj, &(name), rb_is_##type##_id, rb_is_##type##_name, message, strlen(message))
2405static ID
2406check_id_type(VALUE obj, VALUE *pname,
2407 int (*valid_id_p)(ID), int (*valid_name_p)(VALUE),
2408 const char *message, size_t message_len)
2409{
2410 ID id = rb_check_id(pname);
2411 VALUE name = *pname;
2412
2413 if (id ? !valid_id_p(id) : !valid_name_p(name)) {
2414 rb_name_err_raise_str(rb_fstring_new(message, message_len),
2415 obj, name);
2416 }
2417 return id;
2418}
2419
2420/*
2421 * call-seq:
2422 * obj.remove_instance_variable(symbol) -> obj
2423 * obj.remove_instance_variable(string) -> obj
2424 *
2425 * Removes the named instance variable from <i>obj</i>, returning that
2426 * variable's value. The name can be passed as a symbol or as a string.
2427 *
2428 * class Dummy
2429 * attr_reader :var
2430 * def initialize
2431 * @var = 99
2432 * end
2433 * def remove
2434 * remove_instance_variable(:@var)
2435 * end
2436 * end
2437 * d = Dummy.new
2438 * d.var #=> 99
2439 * d.remove #=> 99
2440 * d.var #=> nil
2441 */
2442
2443VALUE
2445{
2446 const ID id = id_for_var(obj, name, an, instance);
2447
2448 // Frozen check comes here because it's expected that we raise a
2449 // NameError (from the id_for_var check) before we raise a FrozenError
2450 rb_check_frozen(obj);
2451
2452 if (id) {
2453 VALUE val = rb_ivar_delete(obj, id, Qundef);
2454
2455 if (!UNDEF_P(val)) return val;
2456 }
2457
2458 rb_name_err_raise("instance variable %1$s not defined",
2459 obj, name);
2461}
2462
2463NORETURN(static void uninitialized_constant(VALUE, VALUE));
2464static void
2465uninitialized_constant(VALUE klass, VALUE name)
2466{
2467 if (klass && rb_class_real(klass) != rb_cObject)
2468 rb_name_err_raise("uninitialized constant %2$s::%1$s",
2469 klass, name);
2470 else
2471 rb_name_err_raise("uninitialized constant %1$s",
2472 klass, name);
2473}
2474
2475VALUE
2476rb_const_missing(VALUE klass, VALUE name)
2477{
2478 VALUE value = rb_funcallv(klass, idConst_missing, 1, &name);
2479 rb_vm_inc_const_missing_count();
2480 return value;
2481}
2482
2483
2484/*
2485 * call-seq:
2486 * mod.const_missing(sym) -> obj
2487 *
2488 * Invoked when a reference is made to an undefined constant in
2489 * <i>mod</i>. It is passed a symbol for the undefined constant, and
2490 * returns a value to be used for that constant. For example, consider:
2491 *
2492 * def Foo.const_missing(name)
2493 * name # return the constant name as Symbol
2494 * end
2495 *
2496 * Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
2497 *
2498 * As the example above shows, +const_missing+ is not required to create the
2499 * missing constant in <i>mod</i>, though that is often a side-effect. The
2500 * caller gets its return value when triggered. If the constant is also defined,
2501 * further lookups won't hit +const_missing+ and will return the value stored in
2502 * the constant as usual. Otherwise, +const_missing+ will be invoked again.
2503 *
2504 * In the next example, when a reference is made to an undefined constant,
2505 * +const_missing+ attempts to load a file whose path is the lowercase version
2506 * of the constant name (thus class <code>Fred</code> is assumed to be in file
2507 * <code>fred.rb</code>). If defined as a side-effect of loading the file, the
2508 * method returns the value stored in the constant. This implements an autoload
2509 * feature similar to Kernel#autoload and Module#autoload, though it differs in
2510 * important ways.
2511 *
2512 * def Object.const_missing(name)
2513 * @looked_for ||= {}
2514 * str_name = name.to_s
2515 * raise "Constant not found: #{name}" if @looked_for[str_name]
2516 * @looked_for[str_name] = 1
2517 * file = str_name.downcase
2518 * require file
2519 * const_get(name, false)
2520 * end
2521 *
2522 */
2523
2524VALUE
2525rb_mod_const_missing(VALUE klass, VALUE name)
2526{
2527 rb_execution_context_t *ec = GET_EC();
2528 VALUE ref = ec->private_const_reference;
2529 rb_vm_pop_cfunc_frame();
2530 if (ref) {
2531 ec->private_const_reference = 0;
2532 rb_name_err_raise("private constant %2$s::%1$s referenced", ref, name);
2533 }
2534 uninitialized_constant(klass, name);
2535
2537}
2538
2539static void
2540autoload_table_mark(void *ptr)
2541{
2542 rb_mark_tbl_no_pin((st_table *)ptr);
2543}
2544
2545static void
2546autoload_table_free(void *ptr)
2547{
2548 st_free_table((st_table *)ptr);
2549}
2550
2551static size_t
2552autoload_table_memsize(const void *ptr)
2553{
2554 const st_table *tbl = ptr;
2555 return st_memsize(tbl);
2556}
2557
2558static void
2559autoload_table_compact(void *ptr)
2560{
2561 rb_gc_ref_update_table_values_only((st_table *)ptr);
2562}
2563
2564static const rb_data_type_t autoload_table_type = {
2565 "autoload_table",
2566 {autoload_table_mark, autoload_table_free, autoload_table_memsize, autoload_table_compact,},
2567 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
2568};
2569
2570#define check_autoload_table(av) \
2571 (struct st_table *)rb_check_typeddata((av), &autoload_table_type)
2572
2573static VALUE
2574autoload_data(VALUE mod, ID id)
2575{
2576 struct st_table *tbl;
2577 st_data_t val;
2578
2579 // If we are called with a non-origin ICLASS, fetch the autoload data from
2580 // the original module.
2581 if (RB_TYPE_P(mod, T_ICLASS)) {
2582 if (RICLASS_IS_ORIGIN_P(mod)) {
2583 return 0;
2584 }
2585 else {
2586 mod = RBASIC(mod)->klass;
2587 }
2588 }
2589
2591
2592 // Look up the instance variable table for `autoload`, then index into that table with the given constant name `id`.
2593
2594 VALUE tbl_value = rb_ivar_lookup(mod, autoload, Qfalse);
2595 if (!RTEST(tbl_value) || !(tbl = check_autoload_table(tbl_value)) || !st_lookup(tbl, (st_data_t)id, &val)) {
2596 return 0;
2597 }
2598
2599 return (VALUE)val;
2600}
2601
2602// Every autoload constant has exactly one instance of autoload_const, stored in `autoload_features`. Since multiple autoload constants can refer to the same file, every `autoload_const` refers to a de-duplicated `autoload_data`.
2604 // The linked list node of all constants which are loaded by the related autoload feature.
2605 struct ccan_list_node cnode; /* <=> autoload_data.constants */
2606
2607 // The shared "autoload_data" if multiple constants are defined from the same feature.
2608 VALUE autoload_data_value;
2609
2610 // The namespace object when the autoload is called in a user namespace
2611 // Otherwise, Qnil means the builtin namespace, Qfalse means unspecified.
2612 VALUE namespace;
2613
2614 // The module we are loading a constant into.
2615 VALUE module;
2616
2617 // The name of the constant we are loading.
2618 ID name;
2619
2620 // The value of the constant (after it's loaded).
2621 VALUE value;
2622
2623 // The constant entry flags which need to be re-applied after autoloading the feature.
2624 rb_const_flag_t flag;
2625
2626 // The source file and line number that defined this constant (different from feature path).
2627 VALUE file;
2628 int line;
2629};
2630
2631// Each `autoload_data` uniquely represents a specific feature which can be loaded, and a list of constants which it is able to define. We use a mutex to coordinate multiple threads trying to load the same feature.
2633 // The feature path to require to load this constant.
2634 VALUE feature;
2635
2636 // The mutex which is protecting autoloading this feature.
2637 VALUE mutex;
2638
2639 // The process fork serial number since the autoload mutex will become invalid on fork.
2640 rb_serial_t fork_gen;
2641
2642 // The linked list of all constants that are going to be loaded by this autoload.
2643 struct ccan_list_head constants; /* <=> autoload_const.cnode */
2644};
2645
2646static void
2647autoload_data_mark_and_move(void *ptr)
2648{
2649 struct autoload_data *p = ptr;
2650
2651 rb_gc_mark_and_move(&p->feature);
2652 rb_gc_mark_and_move(&p->mutex);
2653}
2654
2655static void
2656autoload_data_free(void *ptr)
2657{
2658 struct autoload_data *p = ptr;
2659
2660 struct autoload_const *autoload_const, *next;
2661 ccan_list_for_each_safe(&p->constants, autoload_const, next, cnode) {
2662 ccan_list_del_init(&autoload_const->cnode);
2663 }
2664
2665 ruby_xfree(p);
2666}
2667
2668static size_t
2669autoload_data_memsize(const void *ptr)
2670{
2671 return sizeof(struct autoload_data);
2672}
2673
2674static const rb_data_type_t autoload_data_type = {
2675 "autoload_data",
2676 {autoload_data_mark_and_move, autoload_data_free, autoload_data_memsize, autoload_data_mark_and_move},
2677 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED
2678};
2679
2680static void
2681autoload_const_mark_and_move(void *ptr)
2682{
2683 struct autoload_const *ac = ptr;
2684
2685 rb_gc_mark_and_move(&ac->module);
2686 rb_gc_mark_and_move(&ac->autoload_data_value);
2687 rb_gc_mark_and_move(&ac->value);
2688 rb_gc_mark_and_move(&ac->file);
2689 rb_gc_mark_and_move(&ac->namespace);
2690}
2691
2692static size_t
2693autoload_const_memsize(const void *ptr)
2694{
2695 return sizeof(struct autoload_const);
2696}
2697
2698static void
2699autoload_const_free(void *ptr)
2700{
2701 struct autoload_const *autoload_const = ptr;
2702
2703 ccan_list_del(&autoload_const->cnode);
2704 ruby_xfree(ptr);
2705}
2706
2707static const rb_data_type_t autoload_const_type = {
2708 "autoload_const",
2709 {autoload_const_mark_and_move, autoload_const_free, autoload_const_memsize, autoload_const_mark_and_move,},
2710 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
2711};
2712
2713static struct autoload_data *
2714get_autoload_data(VALUE autoload_const_value, struct autoload_const **autoload_const_pointer)
2715{
2716 struct autoload_const *autoload_const = rb_check_typeddata(autoload_const_value, &autoload_const_type);
2717
2718 VALUE autoload_data_value = autoload_const->autoload_data_value;
2719 struct autoload_data *autoload_data = rb_check_typeddata(autoload_data_value, &autoload_data_type);
2720
2721 /* do not reach across stack for ->state after forking: */
2722 if (autoload_data && autoload_data->fork_gen != GET_VM()->fork_gen) {
2723 RB_OBJ_WRITE(autoload_data_value, &autoload_data->mutex, Qnil);
2724 autoload_data->fork_gen = 0;
2725 }
2726
2727 if (autoload_const_pointer) *autoload_const_pointer = autoload_const;
2728
2729 return autoload_data;
2730}
2731
2733 VALUE dst_tbl_value;
2734 struct st_table *dst_tbl;
2735 const rb_namespace_t *ns;
2736};
2737
2738static int
2739autoload_copy_table_for_namespace_i(st_data_t key, st_data_t value, st_data_t arg)
2740{
2742 struct autoload_copy_table_data *data = (struct autoload_copy_table_data *)arg;
2743 struct st_table *tbl = data->dst_tbl;
2744 VALUE tbl_value = data->dst_tbl_value;
2745 const rb_namespace_t *ns = data->ns;
2746
2747 VALUE src_value = (VALUE)value;
2748 struct autoload_const *src_const = rb_check_typeddata(src_value, &autoload_const_type);
2749 // autoload_data can be shared between copies because the feature is equal between copies.
2750 VALUE autoload_data_value = src_const->autoload_data_value;
2751 struct autoload_data *autoload_data = rb_check_typeddata(autoload_data_value, &autoload_data_type);
2752
2753 VALUE new_value = TypedData_Make_Struct(0, struct autoload_const, &autoload_const_type, autoload_const);
2754 autoload_const->namespace = rb_get_namespace_object((rb_namespace_t *)ns);
2755 autoload_const->module = src_const->module;
2756 autoload_const->name = src_const->name;
2757 autoload_const->value = src_const->value;
2758 autoload_const->flag = src_const->flag;
2759 autoload_const->autoload_data_value = autoload_data_value;
2760 ccan_list_add_tail(&autoload_data->constants, &autoload_const->cnode);
2761
2762 st_insert(tbl, (st_data_t)autoload_const->name, (st_data_t)new_value);
2763 RB_OBJ_WRITTEN(tbl_value, Qundef, new_value);
2764
2765 return ST_CONTINUE;
2766}
2767
2768void
2769rb_autoload_copy_table_for_namespace(st_table *iv_ptr, const rb_namespace_t *ns)
2770{
2771 struct st_table *src_tbl, *dst_tbl;
2772 VALUE src_tbl_value, dst_tbl_value;
2773 if (!rb_st_lookup(iv_ptr, (st_data_t)autoload, (st_data_t *)&src_tbl_value)) {
2774 // the class has no autoload table yet.
2775 return;
2776 }
2777 if (!RTEST(src_tbl_value) || !(src_tbl = check_autoload_table(src_tbl_value))) {
2778 // the __autoload__ ivar value isn't autoload table value.
2779 return;
2780 }
2781 src_tbl = check_autoload_table(src_tbl_value);
2782
2783 dst_tbl_value = TypedData_Wrap_Struct(0, &autoload_table_type, NULL);
2784 RTYPEDDATA_DATA(dst_tbl_value) = dst_tbl = st_init_numtable();
2785
2786 struct autoload_copy_table_data data = {
2787 .dst_tbl_value = dst_tbl_value,
2788 .dst_tbl = dst_tbl,
2789 .ns = ns,
2790 };
2791
2792 st_foreach(src_tbl, autoload_copy_table_for_namespace_i, (st_data_t)&data);
2793 st_insert(iv_ptr, (st_data_t)autoload, (st_data_t)dst_tbl_value);
2794}
2795
2796void
2797rb_autoload(VALUE module, ID name, const char *feature)
2798{
2799 if (!feature || !*feature) {
2800 rb_raise(rb_eArgError, "empty feature name");
2801 }
2802
2803 rb_autoload_str(module, name, rb_fstring_cstr(feature));
2804}
2805
2806static void const_set(VALUE klass, ID id, VALUE val);
2807static void const_added(VALUE klass, ID const_name);
2808
2810 VALUE module;
2811 ID name;
2812 VALUE feature;
2813 VALUE namespace;
2814};
2815
2816static VALUE
2817autoload_feature_lookup_or_create(VALUE feature, struct autoload_data **autoload_data_pointer)
2818{
2819 RUBY_ASSERT_MUTEX_OWNED(autoload_mutex);
2820 RUBY_ASSERT_CRITICAL_SECTION_ENTER();
2821
2822 VALUE autoload_data_value = rb_hash_aref(autoload_features, feature);
2824
2825 if (NIL_P(autoload_data_value)) {
2826 autoload_data_value = TypedData_Make_Struct(0, struct autoload_data, &autoload_data_type, autoload_data);
2827 RB_OBJ_WRITE(autoload_data_value, &autoload_data->feature, feature);
2828 RB_OBJ_WRITE(autoload_data_value, &autoload_data->mutex, Qnil);
2829 ccan_list_head_init(&autoload_data->constants);
2830
2831 if (autoload_data_pointer) *autoload_data_pointer = autoload_data;
2832
2833 rb_hash_aset(autoload_features, feature, autoload_data_value);
2834 }
2835 else if (autoload_data_pointer) {
2836 *autoload_data_pointer = rb_check_typeddata(autoload_data_value, &autoload_data_type);
2837 }
2838
2839 RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
2840 return autoload_data_value;
2841}
2842
2843static VALUE
2844autoload_table_lookup_or_create(VALUE module)
2845{
2846 VALUE autoload_table_value = rb_ivar_lookup(module, autoload, Qfalse);
2847 if (RTEST(autoload_table_value)) {
2848 return autoload_table_value;
2849 }
2850 else {
2851 autoload_table_value = TypedData_Wrap_Struct(0, &autoload_table_type, NULL);
2852 rb_class_ivar_set(module, autoload, autoload_table_value);
2853 RTYPEDDATA_DATA(autoload_table_value) = st_init_numtable();
2854 return autoload_table_value;
2855 }
2856}
2857
2858static VALUE
2859autoload_synchronized(VALUE _arguments)
2860{
2861 struct autoload_arguments *arguments = (struct autoload_arguments *)_arguments;
2862
2863 rb_const_entry_t *constant_entry = rb_const_lookup(arguments->module, arguments->name);
2864 if (constant_entry && !UNDEF_P(constant_entry->value)) {
2865 return Qfalse;
2866 }
2867
2868 // Reset any state associated with any previous constant:
2869 const_set(arguments->module, arguments->name, Qundef);
2870
2871 VALUE autoload_table_value = autoload_table_lookup_or_create(arguments->module);
2872 struct st_table *autoload_table = check_autoload_table(autoload_table_value);
2873
2874 // Ensure the string is uniqued since we use an identity lookup:
2875 VALUE feature = rb_fstring(arguments->feature);
2876
2878 VALUE autoload_data_value = autoload_feature_lookup_or_create(feature, &autoload_data);
2879
2880 {
2882 VALUE autoload_const_value = TypedData_Make_Struct(0, struct autoload_const, &autoload_const_type, autoload_const);
2883 autoload_const->namespace = arguments->namespace;
2884 autoload_const->module = arguments->module;
2885 autoload_const->name = arguments->name;
2886 autoload_const->value = Qundef;
2887 autoload_const->flag = CONST_PUBLIC;
2888 autoload_const->autoload_data_value = autoload_data_value;
2889 ccan_list_add_tail(&autoload_data->constants, &autoload_const->cnode);
2890 st_insert(autoload_table, (st_data_t)arguments->name, (st_data_t)autoload_const_value);
2891 RB_OBJ_WRITTEN(autoload_table_value, Qundef, autoload_const_value);
2892 }
2893
2894 return Qtrue;
2895}
2896
2897void
2898rb_autoload_str(VALUE module, ID name, VALUE feature)
2899{
2900 const rb_namespace_t *ns = rb_current_namespace();
2901 VALUE current_namespace = rb_get_namespace_object((rb_namespace_t *)ns);
2902
2903 if (!rb_is_const_id(name)) {
2904 rb_raise(rb_eNameError, "autoload must be constant name: %"PRIsVALUE"", QUOTE_ID(name));
2905 }
2906
2907 Check_Type(feature, T_STRING);
2908 if (!RSTRING_LEN(feature)) {
2909 rb_raise(rb_eArgError, "empty feature name");
2910 }
2911
2912 struct autoload_arguments arguments = {
2913 .module = module,
2914 .name = name,
2915 .feature = feature,
2916 .namespace = current_namespace,
2917 };
2918
2919 VALUE result = rb_mutex_synchronize(autoload_mutex, autoload_synchronized, (VALUE)&arguments);
2920
2921 if (result == Qtrue) {
2922 const_added(module, name);
2923 }
2924}
2925
2926static void
2927autoload_delete(VALUE module, ID name)
2928{
2929 RUBY_ASSERT_CRITICAL_SECTION_ENTER();
2930
2931 st_data_t load = 0, key = name;
2932
2933 RUBY_ASSERT(RB_TYPE_P(module, T_CLASS) || RB_TYPE_P(module, T_MODULE));
2934
2935 VALUE table_value = rb_ivar_lookup(module, autoload, Qfalse);
2936 if (RTEST(table_value)) {
2937 struct st_table *table = check_autoload_table(table_value);
2938
2939 st_delete(table, &key, &load);
2940 RB_OBJ_WRITTEN(table_value, load, Qundef);
2941
2942 /* Qfalse can indicate already deleted */
2943 if (load != Qfalse) {
2945 struct autoload_data *autoload_data = get_autoload_data((VALUE)load, &autoload_const);
2946
2947 VM_ASSERT(autoload_data);
2948 VM_ASSERT(!ccan_list_empty(&autoload_data->constants));
2949
2950 /*
2951 * we must delete here to avoid "already initialized" warnings
2952 * with parallel autoload. Using list_del_init here so list_del
2953 * works in autoload_const_free
2954 */
2955 ccan_list_del_init(&autoload_const->cnode);
2956
2957 if (ccan_list_empty(&autoload_data->constants)) {
2958 rb_hash_delete(autoload_features, autoload_data->feature);
2959 }
2960
2961 // If the autoload table is empty, we can delete it.
2962 if (table->num_entries == 0) {
2963 rb_attr_delete(module, autoload);
2964 }
2965 }
2966 }
2967
2968 RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
2969}
2970
2971static int
2972autoload_by_someone_else(struct autoload_data *ele)
2973{
2974 return ele->mutex != Qnil && !rb_mutex_owned_p(ele->mutex);
2975}
2976
2977static VALUE
2978check_autoload_required(VALUE mod, ID id, const char **loadingpath)
2979{
2980 VALUE autoload_const_value = autoload_data(mod, id);
2982 const char *loading;
2983
2984 if (!autoload_const_value || !(autoload_data = get_autoload_data(autoload_const_value, 0))) {
2985 return 0;
2986 }
2987
2988 VALUE feature = autoload_data->feature;
2989
2990 /*
2991 * if somebody else is autoloading, we MUST wait for them, since
2992 * rb_provide_feature can provide a feature before autoload_const_set
2993 * completes. We must wait until autoload_const_set finishes in
2994 * the other thread.
2995 */
2996 if (autoload_by_someone_else(autoload_data)) {
2997 return autoload_const_value;
2998 }
2999
3000 loading = RSTRING_PTR(feature);
3001
3002 if (!rb_feature_provided(loading, &loading)) {
3003 return autoload_const_value;
3004 }
3005
3006 if (loadingpath && loading) {
3007 *loadingpath = loading;
3008 return autoload_const_value;
3009 }
3010
3011 return 0;
3012}
3013
3014static struct autoload_const *autoloading_const_entry(VALUE mod, ID id);
3015
3016int
3017rb_autoloading_value(VALUE mod, ID id, VALUE* value, rb_const_flag_t *flag)
3018{
3019 struct autoload_const *ac = autoloading_const_entry(mod, id);
3020 if (!ac) return FALSE;
3021
3022 if (value) {
3023 *value = ac->value;
3024 }
3025
3026 if (flag) {
3027 *flag = ac->flag;
3028 }
3029
3030 return TRUE;
3031}
3032
3033static int
3034autoload_by_current(struct autoload_data *ele)
3035{
3036 return ele->mutex != Qnil && rb_mutex_owned_p(ele->mutex);
3037}
3038
3039// If there is an autoloading constant and it has been set by the current
3040// execution context, return it. This allows threads which are loading code to
3041// refer to their own autoloaded constants.
3042struct autoload_const *
3043autoloading_const_entry(VALUE mod, ID id)
3044{
3045 VALUE load = autoload_data(mod, id);
3046 struct autoload_data *ele;
3047 struct autoload_const *ac;
3048
3049 // Find the autoloading state:
3050 if (!load || !(ele = get_autoload_data(load, &ac))) {
3051 // Couldn't be found:
3052 return 0;
3053 }
3054
3055 // Check if it's being loaded by the current thread/fiber:
3056 if (autoload_by_current(ele)) {
3057 if (!UNDEF_P(ac->value)) {
3058 return ac;
3059 }
3060 }
3061
3062 return 0;
3063}
3064
3065static int
3066autoload_defined_p(VALUE mod, ID id)
3067{
3068 rb_const_entry_t *ce = rb_const_lookup(mod, id);
3069
3070 // If there is no constant or the constant is not undefined (special marker for autoloading):
3071 if (!ce || !UNDEF_P(ce->value)) {
3072 // We are not autoloading:
3073 return 0;
3074 }
3075
3076 // Otherwise check if there is an autoload in flight right now:
3077 return !rb_autoloading_value(mod, id, NULL, NULL);
3078}
3079
3080static void const_tbl_update(struct autoload_const *, int);
3081
3083 VALUE module;
3084 ID name;
3085 int flag;
3086
3087 VALUE mutex;
3088
3089 // The specific constant which triggered the autoload code to fire:
3091
3092 // The parent autoload data which is shared between multiple constants:
3094};
3095
3096static VALUE
3097autoload_const_set(struct autoload_const *ac)
3098{
3099 check_before_mod_set(ac->module, ac->name, ac->value, "constant");
3100
3101 RB_VM_LOCKING() {
3102 const_tbl_update(ac, true);
3103 }
3104
3105 return 0; /* ignored */
3106}
3107
3108static VALUE
3109autoload_load_needed(VALUE _arguments)
3110{
3111 struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
3112
3113 const char *loading = 0, *src;
3114
3115 if (!autoload_defined_p(arguments->module, arguments->name)) {
3116 return Qfalse;
3117 }
3118
3119 VALUE autoload_const_value = check_autoload_required(arguments->module, arguments->name, &loading);
3120 if (!autoload_const_value) {
3121 return Qfalse;
3122 }
3123
3124 src = rb_sourcefile();
3125 if (src && loading && strcmp(src, loading) == 0) {
3126 return Qfalse;
3127 }
3128
3131 if (!(autoload_data = get_autoload_data(autoload_const_value, &autoload_const))) {
3132 return Qfalse;
3133 }
3134
3135 if (NIL_P(autoload_data->mutex)) {
3136 RB_OBJ_WRITE(autoload_const->autoload_data_value, &autoload_data->mutex, rb_mutex_new());
3137 autoload_data->fork_gen = GET_VM()->fork_gen;
3138 }
3139 else if (rb_mutex_owned_p(autoload_data->mutex)) {
3140 return Qfalse;
3141 }
3142
3143 arguments->mutex = autoload_data->mutex;
3144 arguments->autoload_const = autoload_const;
3145
3146 return autoload_const_value;
3147}
3148
3149static VALUE
3150autoload_apply_constants(VALUE _arguments)
3151{
3152 RUBY_ASSERT_CRITICAL_SECTION_ENTER();
3153
3154 struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
3155
3156 struct autoload_const *autoload_const = 0; // for ccan_container_off_var()
3157 struct autoload_const *next;
3158
3159 // We use safe iteration here because `autoload_const_set` will eventually invoke
3160 // `autoload_delete` which will remove the constant from the linked list. In theory, once
3161 // the `autoload_data->constants` linked list is empty, we can remove it.
3162
3163 // Iterate over all constants and assign them:
3164 ccan_list_for_each_safe(&arguments->autoload_data->constants, autoload_const, next, cnode) {
3165 if (!UNDEF_P(autoload_const->value)) {
3166 autoload_const_set(autoload_const);
3167 }
3168 }
3169
3170 RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
3171
3172 return Qtrue;
3173}
3174
3175static VALUE
3176autoload_feature_require(VALUE _arguments)
3177{
3178 VALUE receiver = rb_vm_top_self();
3179
3180 struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
3181
3182 struct autoload_const *autoload_const = arguments->autoload_const;
3183 VALUE autoload_namespace = autoload_const->namespace;
3184
3185 // We save this for later use in autoload_apply_constants:
3186 arguments->autoload_data = rb_check_typeddata(autoload_const->autoload_data_value, &autoload_data_type);
3187
3188 if (rb_namespace_available() && NAMESPACE_OBJ_P(autoload_namespace))
3189 receiver = autoload_namespace;
3190
3191 /*
3192 * Clear the global cc cache table because the require method can be different from the current
3193 * namespace's one and it may cause inconsistent cc-cme states.
3194 * For example, the assertion below may fail in gccct_method_search();
3195 * VM_ASSERT(vm_cc_check_cme(cc, rb_callable_method_entry(klass, mid)))
3196 */
3197 rb_gccct_clear_table(Qnil);
3198
3199 VALUE result = rb_funcall(receiver, rb_intern("require"), 1, arguments->autoload_data->feature);
3200
3201 if (RTEST(result)) {
3202 return rb_mutex_synchronize(autoload_mutex, autoload_apply_constants, _arguments);
3203 }
3204 return result;
3205}
3206
3207static VALUE
3208autoload_try_load(VALUE _arguments)
3209{
3210 struct autoload_load_arguments *arguments = (struct autoload_load_arguments*)_arguments;
3211
3212 VALUE result = autoload_feature_require(_arguments);
3213
3214 // After we loaded the feature, if the constant is not defined, we remove it completely:
3215 rb_const_entry_t *ce = rb_const_lookup(arguments->module, arguments->name);
3216
3217 if (!ce || UNDEF_P(ce->value)) {
3218 result = Qfalse;
3219
3220 rb_const_remove(arguments->module, arguments->name);
3221
3222 if (arguments->module == rb_cObject) {
3223 rb_warning(
3224 "Expected %"PRIsVALUE" to define %"PRIsVALUE" but it didn't",
3225 arguments->autoload_data->feature,
3226 ID2SYM(arguments->name)
3227 );
3228 }
3229 else {
3230 rb_warning(
3231 "Expected %"PRIsVALUE" to define %"PRIsVALUE"::%"PRIsVALUE" but it didn't",
3232 arguments->autoload_data->feature,
3233 arguments->module,
3234 ID2SYM(arguments->name)
3235 );
3236 }
3237 }
3238 else {
3239 // Otherwise, it was loaded, copy the flags from the autoload constant:
3240 ce->flag |= arguments->flag;
3241 }
3242
3243 return result;
3244}
3245
3246VALUE
3248{
3249 rb_const_entry_t *ce = rb_const_lookup(module, name);
3250
3251 // We bail out as early as possible without any synchronisation:
3252 if (!ce || !UNDEF_P(ce->value)) {
3253 return Qfalse;
3254 }
3255
3256 // At this point, we assume there might be autoloading, so fail if it's ractor:
3257 if (UNLIKELY(!rb_ractor_main_p())) {
3258 return rb_ractor_autoload_load(module, name);
3259 }
3260
3261 // This state is stored on the stack and is used during the autoload process.
3262 struct autoload_load_arguments arguments = {.module = module, .name = name, .mutex = Qnil};
3263
3264 // Figure out whether we can autoload the named constant:
3265 VALUE autoload_const_value = rb_mutex_synchronize(autoload_mutex, autoload_load_needed, (VALUE)&arguments);
3266
3267 // This confirms whether autoloading is required or not:
3268 if (autoload_const_value == Qfalse) return autoload_const_value;
3269
3270 arguments.flag = ce->flag & (CONST_DEPRECATED | CONST_VISIBILITY_MASK);
3271
3272 // Only one thread will enter here at a time:
3273 VALUE result = rb_mutex_synchronize(arguments.mutex, autoload_try_load, (VALUE)&arguments);
3274
3275 // If you don't guard this value, it's possible for the autoload constant to
3276 // be freed by another thread which loads multiple constants, one of which
3277 // resolves to the constant this thread is trying to load, so proteect this
3278 // so that it is not freed until we are done with it in `autoload_try_load`:
3279 RB_GC_GUARD(autoload_const_value);
3280
3281 return result;
3282}
3283
3284VALUE
3286{
3287 return rb_autoload_at_p(mod, id, TRUE);
3288}
3289
3290VALUE
3291rb_autoload_at_p(VALUE mod, ID id, int recur)
3292{
3293 VALUE load;
3294 struct autoload_data *ele;
3295
3296 while (!autoload_defined_p(mod, id)) {
3297 if (!recur) return Qnil;
3298 mod = RCLASS_SUPER(mod);
3299 if (!mod) return Qnil;
3300 }
3301 load = check_autoload_required(mod, id, 0);
3302 if (!load) return Qnil;
3303 return (ele = get_autoload_data(load, 0)) ? ele->feature : Qnil;
3304}
3305
3306void
3307rb_const_warn_if_deprecated(const rb_const_entry_t *ce, VALUE klass, ID id)
3308{
3309 if (RB_CONST_DEPRECATED_P(ce) &&
3310 rb_warning_category_enabled_p(RB_WARN_CATEGORY_DEPRECATED)) {
3311 if (klass == rb_cObject) {
3312 rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "constant ::%"PRIsVALUE" is deprecated", QUOTE_ID(id));
3313 }
3314 else {
3315 rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "constant %"PRIsVALUE"::%"PRIsVALUE" is deprecated",
3316 rb_class_name(klass), QUOTE_ID(id));
3317 }
3318 }
3319}
3320
3321static VALUE
3322rb_const_get_0(VALUE klass, ID id, int exclude, int recurse, int visibility)
3323{
3324 VALUE c = rb_const_search(klass, id, exclude, recurse, visibility);
3325 if (!UNDEF_P(c)) {
3326 if (UNLIKELY(!rb_ractor_main_p())) {
3327 if (!rb_ractor_shareable_p(c)) {
3328 rb_raise(rb_eRactorIsolationError, "can not access non-shareable objects in constant %"PRIsVALUE"::%s by non-main Ractor.", rb_class_path(klass), rb_id2name(id));
3329 }
3330 }
3331 return c;
3332 }
3333 return rb_const_missing(klass, ID2SYM(id));
3334}
3335
3336static VALUE
3337rb_const_search_from(VALUE klass, ID id, int exclude, int recurse, int visibility)
3338{
3339 VALUE value, current;
3340 bool first_iteration = true;
3341
3342 for (current = klass;
3343 RTEST(current);
3344 current = RCLASS_SUPER(current), first_iteration = false) {
3345 VALUE tmp;
3346 VALUE am = 0;
3347 rb_const_entry_t *ce;
3348
3349 if (!first_iteration && RCLASS_ORIGIN(current) != current) {
3350 // This item in the super chain has an origin iclass
3351 // that comes later in the chain. Skip this item so
3352 // prepended modules take precedence.
3353 continue;
3354 }
3355
3356 // Do lookup in original class or module in case we are at an origin
3357 // iclass in the chain.
3358 tmp = current;
3359 if (BUILTIN_TYPE(tmp) == T_ICLASS) tmp = RBASIC(tmp)->klass;
3360
3361 // Do the lookup. Loop in case of autoload.
3362 while ((ce = rb_const_lookup(tmp, id))) {
3363 if (visibility && RB_CONST_PRIVATE_P(ce)) {
3364 GET_EC()->private_const_reference = tmp;
3365 return Qundef;
3366 }
3367 rb_const_warn_if_deprecated(ce, tmp, id);
3368 value = ce->value;
3369 if (UNDEF_P(value)) {
3370 struct autoload_const *ac;
3371 if (am == tmp) break;
3372 am = tmp;
3373 ac = autoloading_const_entry(tmp, id);
3374 if (ac) return ac->value;
3375 rb_autoload_load(tmp, id);
3376 continue;
3377 }
3378 if (exclude && tmp == rb_cObject) {
3379 goto not_found;
3380 }
3381 return value;
3382 }
3383 if (!recurse) break;
3384 }
3385
3386 not_found:
3387 GET_EC()->private_const_reference = 0;
3388 return Qundef;
3389}
3390
3391static VALUE
3392rb_const_search(VALUE klass, ID id, int exclude, int recurse, int visibility)
3393{
3394 VALUE value;
3395
3396 if (klass == rb_cObject) exclude = FALSE;
3397 value = rb_const_search_from(klass, id, exclude, recurse, visibility);
3398 if (!UNDEF_P(value)) return value;
3399 if (exclude) return value;
3400 if (BUILTIN_TYPE(klass) != T_MODULE) return value;
3401 /* search global const too, if klass is a module */
3402 return rb_const_search_from(rb_cObject, id, FALSE, recurse, visibility);
3403}
3404
3405VALUE
3407{
3408 return rb_const_get_0(klass, id, TRUE, TRUE, FALSE);
3409}
3410
3411VALUE
3413{
3414 return rb_const_get_0(klass, id, FALSE, TRUE, FALSE);
3415}
3416
3417VALUE
3419{
3420 return rb_const_get_0(klass, id, TRUE, FALSE, FALSE);
3421}
3422
3423VALUE
3424rb_public_const_get_from(VALUE klass, ID id)
3425{
3426 return rb_const_get_0(klass, id, TRUE, TRUE, TRUE);
3427}
3428
3429VALUE
3430rb_public_const_get_at(VALUE klass, ID id)
3431{
3432 return rb_const_get_0(klass, id, TRUE, FALSE, TRUE);
3433}
3434
3435NORETURN(static void undefined_constant(VALUE mod, VALUE name));
3436static void
3437undefined_constant(VALUE mod, VALUE name)
3438{
3439 rb_name_err_raise("constant %2$s::%1$s not defined",
3440 mod, name);
3441}
3442
3443static VALUE
3444rb_const_location_from(VALUE klass, ID id, int exclude, int recurse, int visibility)
3445{
3446 while (RTEST(klass)) {
3447 rb_const_entry_t *ce;
3448
3449 while ((ce = rb_const_lookup(klass, id))) {
3450 if (visibility && RB_CONST_PRIVATE_P(ce)) {
3451 return Qnil;
3452 }
3453 if (exclude && klass == rb_cObject) {
3454 goto not_found;
3455 }
3456
3457 if (UNDEF_P(ce->value)) { // autoload
3458 VALUE autoload_const_value = autoload_data(klass, id);
3459 if (RTEST(autoload_const_value)) {
3461 struct autoload_data *autoload_data = get_autoload_data(autoload_const_value, &autoload_const);
3462
3463 if (!UNDEF_P(autoload_const->value) && RTEST(rb_mutex_owned_p(autoload_data->mutex))) {
3464 return rb_assoc_new(autoload_const->file, INT2NUM(autoload_const->line));
3465 }
3466 }
3467 }
3468
3469 if (NIL_P(ce->file)) return rb_ary_new();
3470 return rb_assoc_new(ce->file, INT2NUM(ce->line));
3471 }
3472 if (!recurse) break;
3473 klass = RCLASS_SUPER(klass);
3474 }
3475
3476 not_found:
3477 return Qnil;
3478}
3479
3480static VALUE
3481rb_const_location(VALUE klass, ID id, int exclude, int recurse, int visibility)
3482{
3483 VALUE loc;
3484
3485 if (klass == rb_cObject) exclude = FALSE;
3486 loc = rb_const_location_from(klass, id, exclude, recurse, visibility);
3487 if (!NIL_P(loc)) return loc;
3488 if (exclude) return loc;
3489 if (BUILTIN_TYPE(klass) != T_MODULE) return loc;
3490 /* search global const too, if klass is a module */
3491 return rb_const_location_from(rb_cObject, id, FALSE, recurse, visibility);
3492}
3493
3494VALUE
3495rb_const_source_location(VALUE klass, ID id)
3496{
3497 return rb_const_location(klass, id, FALSE, TRUE, FALSE);
3498}
3499
3500VALUE
3501rb_const_source_location_at(VALUE klass, ID id)
3502{
3503 return rb_const_location(klass, id, TRUE, FALSE, FALSE);
3504}
3505
3506/*
3507 * call-seq:
3508 * remove_const(sym) -> obj
3509 *
3510 * Removes the definition of the given constant, returning that
3511 * constant's previous value. If that constant referred to
3512 * a module, this will not change that module's name and can lead
3513 * to confusion.
3514 */
3515
3516VALUE
3518{
3519 const ID id = id_for_var(mod, name, a, constant);
3520
3521 if (!id) {
3522 undefined_constant(mod, name);
3523 }
3524 return rb_const_remove(mod, id);
3525}
3526
3527static rb_const_entry_t * const_lookup(struct rb_id_table *tbl, ID id);
3528
3529VALUE
3531{
3532 VALUE val;
3533 rb_const_entry_t *ce;
3534
3535 rb_check_frozen(mod);
3536
3537 ce = rb_const_lookup(mod, id);
3538
3539 if (!ce) {
3540 if (rb_const_defined_at(mod, id)) {
3541 rb_name_err_raise("cannot remove %2$s::%1$s", mod, ID2SYM(id));
3542 }
3543
3544 undefined_constant(mod, ID2SYM(id));
3545 }
3546
3547 VALUE writable_ce = 0;
3548 if (rb_id_table_lookup(RCLASS_WRITABLE_CONST_TBL(mod), id, &writable_ce)) {
3549 rb_id_table_delete(RCLASS_WRITABLE_CONST_TBL(mod), id);
3550 if ((rb_const_entry_t *)writable_ce != ce) {
3551 xfree((rb_const_entry_t *)writable_ce);
3552 }
3553 }
3554
3555 rb_const_warn_if_deprecated(ce, mod, id);
3557
3558 val = ce->value;
3559
3560 if (UNDEF_P(val)) {
3561 autoload_delete(mod, id);
3562 val = Qnil;
3563 }
3564
3565 if (ce != const_lookup(RCLASS_PRIME_CONST_TBL(mod), id)) {
3566 ruby_xfree(ce);
3567 }
3568 // else - skip free'ing the ce because it still exists in the prime classext
3569
3570 return val;
3571}
3572
3573static int
3574cv_i_update(st_data_t *k, st_data_t *v, st_data_t a, int existing)
3575{
3576 if (existing) return ST_STOP;
3577 *v = a;
3578 return ST_CONTINUE;
3579}
3580
3581static enum rb_id_table_iterator_result
3582sv_i(ID key, VALUE v, void *a)
3583{
3585 st_table *tbl = a;
3586
3587 if (rb_is_const_id(key)) {
3588 st_update(tbl, (st_data_t)key, cv_i_update, (st_data_t)ce);
3589 }
3590 return ID_TABLE_CONTINUE;
3591}
3592
3593static enum rb_id_table_iterator_result
3594rb_local_constants_i(ID const_name, VALUE const_value, void *ary)
3595{
3596 if (rb_is_const_id(const_name) && !RB_CONST_PRIVATE_P((rb_const_entry_t *)const_value)) {
3597 rb_ary_push((VALUE)ary, ID2SYM(const_name));
3598 }
3599 return ID_TABLE_CONTINUE;
3600}
3601
3602static VALUE
3603rb_local_constants(VALUE mod)
3604{
3605 struct rb_id_table *tbl = RCLASS_CONST_TBL(mod);
3606 VALUE ary;
3607
3608 if (!tbl) return rb_ary_new2(0);
3609
3610 RB_VM_LOCKING() {
3611 ary = rb_ary_new2(rb_id_table_size(tbl));
3612 rb_id_table_foreach(tbl, rb_local_constants_i, (void *)ary);
3613 }
3614
3615 return ary;
3616}
3617
3618void*
3619rb_mod_const_at(VALUE mod, void *data)
3620{
3621 st_table *tbl = data;
3622 if (!tbl) {
3623 tbl = st_init_numtable();
3624 }
3625 if (RCLASS_CONST_TBL(mod)) {
3626 RB_VM_LOCKING() {
3627 rb_id_table_foreach(RCLASS_CONST_TBL(mod), sv_i, tbl);
3628 }
3629 }
3630 return tbl;
3631}
3632
3633void*
3634rb_mod_const_of(VALUE mod, void *data)
3635{
3636 VALUE tmp = mod;
3637 for (;;) {
3638 data = rb_mod_const_at(tmp, data);
3639 tmp = RCLASS_SUPER(tmp);
3640 if (!tmp) break;
3641 if (tmp == rb_cObject && mod != rb_cObject) break;
3642 }
3643 return data;
3644}
3645
3646static int
3647list_i(st_data_t key, st_data_t value, VALUE ary)
3648{
3649 ID sym = (ID)key;
3650 rb_const_entry_t *ce = (rb_const_entry_t *)value;
3651 if (RB_CONST_PUBLIC_P(ce)) rb_ary_push(ary, ID2SYM(sym));
3652 return ST_CONTINUE;
3653}
3654
3655VALUE
3656rb_const_list(void *data)
3657{
3658 st_table *tbl = data;
3659 VALUE ary;
3660
3661 if (!tbl) return rb_ary_new2(0);
3662 ary = rb_ary_new2(tbl->num_entries);
3663 st_foreach_safe(tbl, list_i, ary);
3664 st_free_table(tbl);
3665
3666 return ary;
3667}
3668
3669/*
3670 * call-seq:
3671 * mod.constants(inherit=true) -> array
3672 *
3673 * Returns an array of the names of the constants accessible in
3674 * <i>mod</i>. This includes the names of constants in any included
3675 * modules (example at start of section), unless the <i>inherit</i>
3676 * parameter is set to <code>false</code>.
3677 *
3678 * The implementation makes no guarantees about the order in which the
3679 * constants are yielded.
3680 *
3681 * IO.constants.include?(:SYNC) #=> true
3682 * IO.constants(false).include?(:SYNC) #=> false
3683 *
3684 * Also see Module#const_defined?.
3685 */
3686
3687VALUE
3688rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
3689{
3690 bool inherit = true;
3691
3692 if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
3693
3694 if (inherit) {
3695 return rb_const_list(rb_mod_const_of(mod, 0));
3696 }
3697 else {
3698 return rb_local_constants(mod);
3699 }
3700}
3701
3702static int
3703rb_const_defined_0(VALUE klass, ID id, int exclude, int recurse, int visibility)
3704{
3705 VALUE tmp;
3706 int mod_retry = 0;
3707 rb_const_entry_t *ce;
3708
3709 tmp = klass;
3710 retry:
3711 while (tmp) {
3712 if ((ce = rb_const_lookup(tmp, id))) {
3713 if (visibility && RB_CONST_PRIVATE_P(ce)) {
3714 return (int)Qfalse;
3715 }
3716 if (UNDEF_P(ce->value) && !check_autoload_required(tmp, id, 0) &&
3717 !rb_autoloading_value(tmp, id, NULL, NULL))
3718 return (int)Qfalse;
3719
3720 if (exclude && tmp == rb_cObject && klass != rb_cObject) {
3721 return (int)Qfalse;
3722 }
3723
3724 return (int)Qtrue;
3725 }
3726 if (!recurse) break;
3727 tmp = RCLASS_SUPER(tmp);
3728 }
3729 if (!exclude && !mod_retry && BUILTIN_TYPE(klass) == T_MODULE) {
3730 mod_retry = 1;
3731 tmp = rb_cObject;
3732 goto retry;
3733 }
3734 return (int)Qfalse;
3735}
3736
3737int
3739{
3740 return rb_const_defined_0(klass, id, TRUE, TRUE, FALSE);
3741}
3742
3743int
3745{
3746 return rb_const_defined_0(klass, id, FALSE, TRUE, FALSE);
3747}
3748
3749int
3751{
3752 return rb_const_defined_0(klass, id, TRUE, FALSE, FALSE);
3753}
3754
3755int
3756rb_public_const_defined_from(VALUE klass, ID id)
3757{
3758 return rb_const_defined_0(klass, id, TRUE, TRUE, TRUE);
3759}
3760
3761static void
3762check_before_mod_set(VALUE klass, ID id, VALUE val, const char *dest)
3763{
3764 rb_check_frozen(klass);
3765}
3766
3767static void set_namespace_path(VALUE named_namespace, VALUE name);
3768
3769static enum rb_id_table_iterator_result
3770set_namespace_path_i(ID id, VALUE v, void *payload)
3771{
3773 VALUE value = ce->value;
3774 VALUE parental_path = *((VALUE *) payload);
3775 if (!rb_is_const_id(id) || !rb_namespace_p(value)) {
3776 return ID_TABLE_CONTINUE;
3777 }
3778
3779 bool has_permanent_classpath;
3780 classname(value, &has_permanent_classpath);
3781 if (has_permanent_classpath) {
3782 return ID_TABLE_CONTINUE;
3783 }
3784 set_namespace_path(value, build_const_path(parental_path, id));
3785
3786 if (!RCLASS_PERMANENT_CLASSPATH_P(value)) {
3787 RCLASS_WRITE_CLASSPATH(value, 0, false);
3788 }
3789
3790 return ID_TABLE_CONTINUE;
3791}
3792
3793/*
3794 * Assign permanent classpaths to all namespaces that are directly or indirectly
3795 * nested under +named_namespace+. +named_namespace+ must have a permanent
3796 * classpath.
3797 */
3798static void
3799set_namespace_path(VALUE named_namespace, VALUE namespace_path)
3800{
3801 struct rb_id_table *const_table = RCLASS_CONST_TBL(named_namespace);
3802 RB_OBJ_SET_SHAREABLE(namespace_path);
3803
3804 RB_VM_LOCKING() {
3805 RCLASS_WRITE_CLASSPATH(named_namespace, namespace_path, true);
3806
3807 if (const_table) {
3808 rb_id_table_foreach(const_table, set_namespace_path_i, &namespace_path);
3809 }
3810 }
3811}
3812
3813static void
3814const_added(VALUE klass, ID const_name)
3815{
3816 if (GET_VM()->running) {
3817 VALUE name = ID2SYM(const_name);
3818 rb_funcallv(klass, idConst_added, 1, &name);
3819 }
3820}
3821
3822static void
3823const_set(VALUE klass, ID id, VALUE val)
3824{
3825 rb_const_entry_t *ce;
3826
3827 if (NIL_P(klass)) {
3828 rb_raise(rb_eTypeError, "no class/module to define constant %"PRIsVALUE"",
3829 QUOTE_ID(id));
3830 }
3831
3832 if (!rb_ractor_main_p() && !rb_ractor_shareable_p(val)) {
3833 rb_raise(rb_eRactorIsolationError, "can not set constants with non-shareable objects by non-main Ractors");
3834 }
3835
3836 check_before_mod_set(klass, id, val, "constant");
3837
3838 RB_VM_LOCKING() {
3839 struct rb_id_table *tbl = RCLASS_WRITABLE_CONST_TBL(klass);
3840 if (!tbl) {
3841 tbl = rb_id_table_create(0);
3842 RCLASS_WRITE_CONST_TBL(klass, tbl, false);
3845 rb_id_table_insert(tbl, id, (VALUE)ce);
3846 setup_const_entry(ce, klass, val, CONST_PUBLIC);
3847 }
3848 else {
3849 struct autoload_const ac = {
3850 .module = klass, .name = id,
3851 .value = val, .flag = CONST_PUBLIC,
3852 /* fill the rest with 0 */
3853 };
3854 ac.file = rb_source_location(&ac.line);
3855 const_tbl_update(&ac, false);
3856 }
3857 }
3858
3859 /*
3860 * Resolve and cache class name immediately to resolve ambiguity
3861 * and avoid order-dependency on const_tbl
3862 */
3863 if (rb_cObject && rb_namespace_p(val)) {
3864 bool val_path_permanent;
3865 VALUE val_path = classname(val, &val_path_permanent);
3866 if (NIL_P(val_path) || !val_path_permanent) {
3867 if (klass == rb_cObject) {
3868 set_namespace_path(val, rb_id2str(id));
3869 }
3870 else {
3871 bool parental_path_permanent;
3872 VALUE parental_path = classname(klass, &parental_path_permanent);
3873 if (NIL_P(parental_path)) {
3874 bool throwaway;
3875 parental_path = rb_tmp_class_path(klass, &throwaway, make_temporary_path);
3876 }
3877 if (parental_path_permanent && !val_path_permanent) {
3878 set_namespace_path(val, build_const_path(parental_path, id));
3879 }
3880 else if (!parental_path_permanent && NIL_P(val_path)) {
3881 VALUE path = build_const_path(parental_path, id);
3882 RCLASS_SET_CLASSPATH(val, path, false);
3883 }
3884 }
3885 }
3886 }
3887}
3888
3889void
3891{
3892 const_set(klass, id, val);
3893 const_added(klass, id);
3894}
3895
3896static struct autoload_data *
3897autoload_data_for_named_constant(VALUE module, ID name, struct autoload_const **autoload_const_pointer)
3898{
3899 VALUE autoload_data_value = autoload_data(module, name);
3900 if (!autoload_data_value) return 0;
3901
3902 struct autoload_data *autoload_data = get_autoload_data(autoload_data_value, autoload_const_pointer);
3903 if (!autoload_data) return 0;
3904
3905 /* for autoloading thread, keep the defined value to autoloading storage */
3906 if (autoload_by_current(autoload_data)) {
3907 return autoload_data;
3908 }
3909
3910 return 0;
3911}
3912
3913static void
3914const_tbl_update(struct autoload_const *ac, int autoload_force)
3915{
3916 VALUE value;
3917 VALUE klass = ac->module;
3918 VALUE val = ac->value;
3919 ID id = ac->name;
3920 struct rb_id_table *tbl = RCLASS_CONST_TBL(klass);
3921 rb_const_flag_t visibility = ac->flag;
3922 rb_const_entry_t *ce;
3923
3924 if (rb_id_table_lookup(tbl, id, &value)) {
3925 ce = (rb_const_entry_t *)value;
3926 if (UNDEF_P(ce->value)) {
3927 RUBY_ASSERT_CRITICAL_SECTION_ENTER();
3928 VALUE file = ac->file;
3929 int line = ac->line;
3930 struct autoload_data *ele = autoload_data_for_named_constant(klass, id, &ac);
3931
3932 if (!autoload_force && ele) {
3934
3935 ac->value = val; /* autoload_data is non-WB-protected */
3936 ac->file = rb_source_location(&ac->line);
3937 }
3938 else {
3939 /* otherwise autoloaded constant, allow to override */
3940 autoload_delete(klass, id);
3941 ce->flag = visibility;
3942 RB_OBJ_WRITE(klass, &ce->value, val);
3943 RB_OBJ_WRITE(klass, &ce->file, file);
3944 ce->line = line;
3945 }
3946 RUBY_ASSERT_CRITICAL_SECTION_LEAVE();
3947 return;
3948 }
3949 else {
3950 VALUE name = QUOTE_ID(id);
3951 visibility = ce->flag;
3952 if (klass == rb_cObject)
3953 rb_warn("already initialized constant %"PRIsVALUE"", name);
3954 else
3955 rb_warn("already initialized constant %"PRIsVALUE"::%"PRIsVALUE"",
3956 rb_class_name(klass), name);
3957 if (!NIL_P(ce->file) && ce->line) {
3958 rb_compile_warn(RSTRING_PTR(ce->file), ce->line,
3959 "previous definition of %"PRIsVALUE" was here", name);
3960 }
3961 }
3963 setup_const_entry(ce, klass, val, visibility);
3964 }
3965 else {
3966 tbl = RCLASS_WRITABLE_CONST_TBL(klass);
3968
3970 rb_id_table_insert(tbl, id, (VALUE)ce);
3971 setup_const_entry(ce, klass, val, visibility);
3972 }
3973}
3974
3975static void
3976setup_const_entry(rb_const_entry_t *ce, VALUE klass, VALUE val,
3977 rb_const_flag_t visibility)
3978{
3979 ce->flag = visibility;
3980 RB_OBJ_WRITE(klass, &ce->value, val);
3981 RB_OBJ_WRITE(klass, &ce->file, rb_source_location(&ce->line));
3982}
3983
3984void
3985rb_define_const(VALUE klass, const char *name, VALUE val)
3986{
3987 ID id = rb_intern(name);
3988
3989 if (!rb_is_const_id(id)) {
3990 rb_warn("rb_define_const: invalid name '%s' for constant", name);
3991 }
3992 if (!RB_SPECIAL_CONST_P(val)) {
3993 rb_vm_register_global_object(val);
3994 }
3995 rb_const_set(klass, id, val);
3996}
3997
3998void
3999rb_define_global_const(const char *name, VALUE val)
4000{
4001 rb_define_const(rb_cObject, name, val);
4002}
4003
4004static void
4005set_const_visibility(VALUE mod, int argc, const VALUE *argv,
4006 rb_const_flag_t flag, rb_const_flag_t mask)
4007{
4008 int i;
4009 rb_const_entry_t *ce;
4010 ID id;
4011
4013 if (argc == 0) {
4014 rb_warning("%"PRIsVALUE" with no argument is just ignored",
4015 QUOTE_ID(rb_frame_callee()));
4016 return;
4017 }
4018
4019 for (i = 0; i < argc; i++) {
4020 struct autoload_const *ac;
4021 VALUE val = argv[i];
4022 id = rb_check_id(&val);
4023 if (!id) {
4024 undefined_constant(mod, val);
4025 }
4026 if ((ce = rb_const_lookup(mod, id))) {
4027 ce->flag &= ~mask;
4028 ce->flag |= flag;
4029 if (UNDEF_P(ce->value)) {
4030 struct autoload_data *ele;
4031
4032 ele = autoload_data_for_named_constant(mod, id, &ac);
4033 if (ele) {
4034 ac->flag &= ~mask;
4035 ac->flag |= flag;
4036 }
4037 }
4039 }
4040 else {
4041 undefined_constant(mod, ID2SYM(id));
4042 }
4043 }
4044}
4045
4046void
4047rb_deprecate_constant(VALUE mod, const char *name)
4048{
4049 rb_const_entry_t *ce;
4050 ID id;
4051 long len = strlen(name);
4052
4054 if (!(id = rb_check_id_cstr(name, len, NULL))) {
4055 undefined_constant(mod, rb_fstring_new(name, len));
4056 }
4057 if (!(ce = rb_const_lookup(mod, id))) {
4058 undefined_constant(mod, ID2SYM(id));
4059 }
4060 ce->flag |= CONST_DEPRECATED;
4061}
4062
4063/*
4064 * call-seq:
4065 * mod.private_constant(symbol, ...) => mod
4066 *
4067 * Makes a list of existing constants private.
4068 */
4069
4070VALUE
4071rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
4072{
4073 set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
4074 return obj;
4075}
4076
4077/*
4078 * call-seq:
4079 * mod.public_constant(symbol, ...) => mod
4080 *
4081 * Makes a list of existing constants public.
4082 */
4083
4084VALUE
4085rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
4086{
4087 set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
4088 return obj;
4089}
4090
4091/*
4092 * call-seq:
4093 * mod.deprecate_constant(symbol, ...) => mod
4094 *
4095 * Makes a list of existing constants deprecated. Attempt
4096 * to refer to them will produce a warning.
4097 *
4098 * module HTTP
4099 * NotFound = Exception.new
4100 * NOT_FOUND = NotFound # previous version of the library used this name
4101 *
4102 * deprecate_constant :NOT_FOUND
4103 * end
4104 *
4105 * HTTP::NOT_FOUND
4106 * # warning: constant HTTP::NOT_FOUND is deprecated
4107 *
4108 */
4109
4110VALUE
4111rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
4112{
4113 set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
4114 return obj;
4115}
4116
4117static VALUE
4118original_module(VALUE c)
4119{
4120 if (RB_TYPE_P(c, T_ICLASS))
4121 return RBASIC(c)->klass;
4122 return c;
4123}
4124
4125static int
4126cvar_lookup_at(VALUE klass, ID id, st_data_t *v)
4127{
4128 if (RB_TYPE_P(klass, T_ICLASS)) {
4129 if (RICLASS_IS_ORIGIN_P(klass)) {
4130 return 0;
4131 }
4132 else {
4133 // check the original module
4134 klass = RBASIC(klass)->klass;
4135 }
4136 }
4137
4138 VALUE n = rb_ivar_lookup(klass, id, Qundef);
4139 if (UNDEF_P(n)) return 0;
4140
4141 if (v) *v = n;
4142 return 1;
4143}
4144
4145static VALUE
4146cvar_front_klass(VALUE klass)
4147{
4148 if (RCLASS_SINGLETON_P(klass)) {
4149 VALUE obj = RCLASS_ATTACHED_OBJECT(klass);
4150 if (rb_namespace_p(obj)) {
4151 return obj;
4152 }
4153 }
4154 return RCLASS_SUPER(klass);
4155}
4156
4157static void
4158cvar_overtaken(VALUE front, VALUE target, ID id)
4159{
4160 if (front && target != front) {
4161 if (original_module(front) != original_module(target)) {
4162 rb_raise(rb_eRuntimeError,
4163 "class variable % "PRIsVALUE" of %"PRIsVALUE" is overtaken by %"PRIsVALUE"",
4164 ID2SYM(id), rb_class_name(original_module(front)),
4165 rb_class_name(original_module(target)));
4166 }
4167 if (BUILTIN_TYPE(front) == T_CLASS) {
4168 rb_ivar_delete(front, id, Qundef);
4169 }
4170 }
4171}
4172
4173#define CVAR_FOREACH_ANCESTORS(klass, v, r) \
4174 for (klass = cvar_front_klass(klass); klass; klass = RCLASS_SUPER(klass)) { \
4175 if (cvar_lookup_at(klass, id, (v))) { \
4176 r; \
4177 } \
4178 }
4179
4180#define CVAR_LOOKUP(v,r) do {\
4181 CVAR_ACCESSOR_SHOULD_BE_MAIN_RACTOR(); \
4182 if (cvar_lookup_at(klass, id, (v))) {r;}\
4183 CVAR_FOREACH_ANCESTORS(klass, v, r);\
4184} while(0)
4185
4186static VALUE
4187find_cvar(VALUE klass, VALUE * front, VALUE * target, ID id)
4188{
4189 VALUE v = Qundef;
4190 CVAR_LOOKUP(&v, {
4191 if (!*front) {
4192 *front = klass;
4193 }
4194 *target = klass;
4195 });
4196
4197 return v;
4198}
4199
4200static void
4201check_for_cvar_table(VALUE subclass, VALUE key)
4202{
4203 // Must not check ivar on ICLASS
4204 if (!RB_TYPE_P(subclass, T_ICLASS) && RTEST(rb_ivar_defined(subclass, key))) {
4205 RB_DEBUG_COUNTER_INC(cvar_class_invalidate);
4206 ruby_vm_global_cvar_state++;
4207 return;
4208 }
4209
4210 rb_class_foreach_subclass(subclass, check_for_cvar_table, key);
4211}
4212
4213void
4214rb_cvar_set(VALUE klass, ID id, VALUE val)
4215{
4216 VALUE tmp, front = 0, target = 0;
4217
4218 tmp = klass;
4219 CVAR_LOOKUP(0, {if (!front) front = klass; target = klass;});
4220 if (target) {
4221 cvar_overtaken(front, target, id);
4222 }
4223 else {
4224 target = tmp;
4225 }
4226
4227 if (RB_TYPE_P(target, T_ICLASS)) {
4228 target = RBASIC(target)->klass;
4229 }
4230 check_before_mod_set(target, id, val, "class variable");
4231
4232 bool new_cvar = rb_class_ivar_set(target, id, val);
4233
4234 struct rb_id_table *rb_cvc_tbl = RCLASS_WRITABLE_CVC_TBL(target);
4235
4236 if (!rb_cvc_tbl) {
4237 rb_cvc_tbl = rb_id_table_create(2);
4238 RCLASS_WRITE_CVC_TBL(target, rb_cvc_tbl);
4239 }
4240
4241 struct rb_cvar_class_tbl_entry *ent;
4242 VALUE ent_data;
4243
4244 if (!rb_id_table_lookup(rb_cvc_tbl, id, &ent_data)) {
4245 ent = ALLOC(struct rb_cvar_class_tbl_entry);
4246 ent->class_value = target;
4247 ent->global_cvar_state = GET_GLOBAL_CVAR_STATE();
4248 ent->cref = 0;
4249 rb_id_table_insert(rb_cvc_tbl, id, (VALUE)ent);
4250 RB_DEBUG_COUNTER_INC(cvar_inline_miss);
4251 }
4252 else {
4253 ent = (void *)ent_data;
4254 ent->global_cvar_state = GET_GLOBAL_CVAR_STATE();
4255 }
4256
4257 // Break the cvar cache if this is a new class variable
4258 // and target is a module or a subclass with the same
4259 // cvar in this lookup.
4260 if (new_cvar) {
4261 if (RB_TYPE_P(target, T_CLASS)) {
4262 if (RCLASS_SUBCLASSES_FIRST(target)) {
4263 rb_class_foreach_subclass(target, check_for_cvar_table, id);
4264 }
4265 }
4266 }
4267}
4268
4269VALUE
4270rb_cvar_find(VALUE klass, ID id, VALUE *front)
4271{
4272 VALUE target = 0;
4273 VALUE value;
4274
4275 value = find_cvar(klass, front, &target, id);
4276 if (!target) {
4277 rb_name_err_raise("uninitialized class variable %1$s in %2$s",
4278 klass, ID2SYM(id));
4279 }
4280 cvar_overtaken(*front, target, id);
4281 return (VALUE)value;
4282}
4283
4284VALUE
4286{
4287 VALUE front = 0;
4288 return rb_cvar_find(klass, id, &front);
4289}
4290
4291VALUE
4293{
4294 if (!klass) return Qfalse;
4295 CVAR_LOOKUP(0,return Qtrue);
4296 return Qfalse;
4297}
4298
4299static ID
4300cv_intern(VALUE klass, const char *name)
4301{
4302 ID id = rb_intern(name);
4303 if (!rb_is_class_id(id)) {
4304 rb_name_err_raise("wrong class variable name %1$s",
4305 klass, rb_str_new_cstr(name));
4306 }
4307 return id;
4308}
4309
4310void
4311rb_cv_set(VALUE klass, const char *name, VALUE val)
4312{
4313 ID id = cv_intern(klass, name);
4314 rb_cvar_set(klass, id, val);
4315}
4316
4317VALUE
4318rb_cv_get(VALUE klass, const char *name)
4319{
4320 ID id = cv_intern(klass, name);
4321 return rb_cvar_get(klass, id);
4322}
4323
4324void
4325rb_define_class_variable(VALUE klass, const char *name, VALUE val)
4326{
4327 rb_cv_set(klass, name, val);
4328}
4329
4330static int
4331cv_i(ID key, VALUE v, st_data_t a)
4332{
4333 st_table *tbl = (st_table *)a;
4334
4335 if (rb_is_class_id(key)) {
4336 st_update(tbl, (st_data_t)key, cv_i_update, 0);
4337 }
4338 return ST_CONTINUE;
4339}
4340
4341static void*
4342mod_cvar_at(VALUE mod, void *data)
4343{
4344 st_table *tbl = data;
4345 if (!tbl) {
4346 tbl = st_init_numtable();
4347 }
4348 mod = original_module(mod);
4349
4350 rb_ivar_foreach(mod, cv_i, (st_data_t)tbl);
4351 return tbl;
4352}
4353
4354static void*
4355mod_cvar_of(VALUE mod, void *data)
4356{
4357 VALUE tmp = mod;
4358 if (RCLASS_SINGLETON_P(mod)) {
4359 if (rb_namespace_p(RCLASS_ATTACHED_OBJECT(mod))) {
4360 data = mod_cvar_at(tmp, data);
4361 tmp = cvar_front_klass(tmp);
4362 }
4363 }
4364 for (;;) {
4365 data = mod_cvar_at(tmp, data);
4366 tmp = RCLASS_SUPER(tmp);
4367 if (!tmp) break;
4368 }
4369 return data;
4370}
4371
4372static int
4373cv_list_i(st_data_t key, st_data_t value, VALUE ary)
4374{
4375 ID sym = (ID)key;
4376 rb_ary_push(ary, ID2SYM(sym));
4377 return ST_CONTINUE;
4378}
4379
4380static VALUE
4381cvar_list(void *data)
4382{
4383 st_table *tbl = data;
4384 VALUE ary;
4385
4386 if (!tbl) return rb_ary_new2(0);
4387 ary = rb_ary_new2(tbl->num_entries);
4388 st_foreach_safe(tbl, cv_list_i, ary);
4389 st_free_table(tbl);
4390
4391 return ary;
4392}
4393
4394/*
4395 * call-seq:
4396 * mod.class_variables(inherit=true) -> array
4397 *
4398 * Returns an array of the names of class variables in <i>mod</i>.
4399 * This includes the names of class variables in any included
4400 * modules, unless the <i>inherit</i> parameter is set to
4401 * <code>false</code>.
4402 *
4403 * class One
4404 * @@var1 = 1
4405 * end
4406 * class Two < One
4407 * @@var2 = 2
4408 * end
4409 * One.class_variables #=> [:@@var1]
4410 * Two.class_variables #=> [:@@var2, :@@var1]
4411 * Two.class_variables(false) #=> [:@@var2]
4412 */
4413
4414VALUE
4415rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
4416{
4417 bool inherit = true;
4418 st_table *tbl;
4419
4420 if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
4421 if (inherit) {
4422 tbl = mod_cvar_of(mod, 0);
4423 }
4424 else {
4425 tbl = mod_cvar_at(mod, 0);
4426 }
4427 return cvar_list(tbl);
4428}
4429
4430/*
4431 * call-seq:
4432 * remove_class_variable(sym) -> obj
4433 *
4434 * Removes the named class variable from the receiver, returning that
4435 * variable's value.
4436 *
4437 * class Example
4438 * @@var = 99
4439 * puts remove_class_variable(:@@var)
4440 * p(defined? @@var)
4441 * end
4442 *
4443 * <em>produces:</em>
4444 *
4445 * 99
4446 * nil
4447 */
4448
4449VALUE
4451{
4452 const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
4453 st_data_t val;
4454
4455 if (!id) {
4456 goto not_defined;
4457 }
4458 rb_check_frozen(mod);
4459 val = rb_ivar_delete(mod, id, Qundef);
4460 if (!UNDEF_P(val)) {
4461 return (VALUE)val;
4462 }
4463 if (rb_cvar_defined(mod, id)) {
4464 rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
4465 }
4466 not_defined:
4467 rb_name_err_raise("class variable %1$s not defined for %2$s",
4468 mod, name);
4470}
4471
4472VALUE
4473rb_iv_get(VALUE obj, const char *name)
4474{
4475 ID id = rb_check_id_cstr(name, strlen(name), rb_usascii_encoding());
4476
4477 if (!id) {
4478 return Qnil;
4479 }
4480 return rb_ivar_get(obj, id);
4481}
4482
4483VALUE
4484rb_iv_set(VALUE obj, const char *name, VALUE val)
4485{
4486 ID id = rb_intern(name);
4487
4488 return rb_ivar_set(obj, id, val);
4489}
4490
4491static attr_index_t
4492class_fields_ivar_set(VALUE klass, VALUE fields_obj, ID id, VALUE val, bool concurrent, VALUE *new_fields_obj, bool *new_ivar_out)
4493{
4494 const VALUE original_fields_obj = fields_obj;
4495 fields_obj = original_fields_obj ? original_fields_obj : rb_imemo_fields_new(klass, 1, true);
4496
4497 shape_id_t current_shape_id = RBASIC_SHAPE_ID(fields_obj);
4498 shape_id_t next_shape_id = current_shape_id; // for too_complex
4499 if (UNLIKELY(rb_shape_too_complex_p(current_shape_id))) {
4500 goto too_complex;
4501 }
4502
4503 bool new_ivar;
4504 next_shape_id = generic_shape_ivar(fields_obj, id, &new_ivar);
4505
4506 if (UNLIKELY(rb_shape_too_complex_p(next_shape_id))) {
4507 fields_obj = imemo_fields_complex_from_obj(klass, fields_obj, next_shape_id);
4508 goto too_complex;
4509 }
4510
4511 attr_index_t index = RSHAPE_INDEX(next_shape_id);
4512 if (new_ivar) {
4513 if (index >= RSHAPE_CAPACITY(current_shape_id)) {
4514 // We allocate a new fields_obj even when concurrency isn't a concern
4515 // so that we're embedded as long as possible.
4516 fields_obj = imemo_fields_copy_capa(klass, fields_obj, RSHAPE_CAPACITY(next_shape_id));
4517 }
4518 }
4519
4520 VALUE *fields = rb_imemo_fields_ptr(fields_obj);
4521
4522 if (concurrent && original_fields_obj == fields_obj) {
4523 // In the concurrent case, if we're mutating the existing
4524 // fields_obj, we must use an atomic write, because if we're
4525 // adding a new field, the shape_id must be written after the field
4526 // and if we're updating an existing field, we at least need a relaxed
4527 // write to avoid reaping.
4528 RB_OBJ_ATOMIC_WRITE(fields_obj, &fields[index], val);
4529 }
4530 else {
4531 RB_OBJ_WRITE(fields_obj, &fields[index], val);
4532 }
4533
4534 if (new_ivar) {
4535 RBASIC_SET_SHAPE_ID(fields_obj, next_shape_id);
4536 }
4537
4538 *new_fields_obj = fields_obj;
4539 *new_ivar_out = new_ivar;
4540 return index;
4541
4542too_complex:
4543 {
4544 if (concurrent && fields_obj == original_fields_obj) {
4545 // In multi-ractor case, we must always work on a copy because
4546 // even if the field already exist, inserting in a st_table may
4547 // cause a rebuild.
4548 fields_obj = rb_imemo_fields_clone(fields_obj);
4549 }
4550
4551 st_table *table = rb_imemo_fields_complex_tbl(fields_obj);
4552 new_ivar = !st_insert(table, (st_data_t)id, (st_data_t)val);
4553 RB_OBJ_WRITTEN(fields_obj, Qundef, val);
4554
4555 if (fields_obj != original_fields_obj) {
4556 RBASIC_SET_SHAPE_ID(fields_obj, next_shape_id);
4557 }
4558 }
4559
4560 *new_fields_obj = fields_obj;
4561 *new_ivar_out = new_ivar;
4562 return ATTR_INDEX_NOT_SET;
4563}
4564
4565static attr_index_t
4566class_ivar_set(VALUE obj, ID id, VALUE val, bool *new_ivar)
4567{
4568 rb_class_ensure_writable(obj);
4569
4570 const VALUE original_fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(obj);
4571 VALUE new_fields_obj = 0;
4572
4573 attr_index_t index = class_fields_ivar_set(obj, original_fields_obj, id, val, rb_multi_ractor_p(), &new_fields_obj, new_ivar);
4574
4575 if (new_fields_obj != original_fields_obj) {
4576 RCLASS_WRITABLE_SET_FIELDS_OBJ(obj, new_fields_obj);
4577 }
4578
4579 // TODO: What should we set as the T_CLASS shape_id?
4580 // In most case we can replicate the single `fields_obj` shape
4581 // but in namespaced case? Perhaps INVALID_SHAPE_ID?
4582 RBASIC_SET_SHAPE_ID(obj, RBASIC_SHAPE_ID(new_fields_obj));
4583 return index;
4584}
4585
4586bool
4587rb_class_ivar_set(VALUE obj, ID id, VALUE val)
4588{
4590 rb_check_frozen(obj);
4591
4592 bool new_ivar;
4593 class_ivar_set(obj, id, val, &new_ivar);
4594 return new_ivar;
4595}
4596
4597void
4598rb_fields_tbl_copy(VALUE dst, VALUE src)
4599{
4600 RUBY_ASSERT(rb_type(dst) == rb_type(src));
4602 RUBY_ASSERT(RSHAPE_TYPE_P(RBASIC_SHAPE_ID(dst), SHAPE_ROOT));
4603
4604 VALUE fields_obj = RCLASS_WRITABLE_FIELDS_OBJ(src);
4605 if (fields_obj) {
4606 RCLASS_WRITABLE_SET_FIELDS_OBJ(dst, rb_imemo_fields_clone(fields_obj));
4607 RBASIC_SET_SHAPE_ID(dst, RBASIC_SHAPE_ID(src));
4608 }
4609}
4610
4611static rb_const_entry_t *
4612const_lookup(struct rb_id_table *tbl, ID id)
4613{
4614 if (tbl) {
4615 VALUE val;
4616 bool r;
4617 RB_VM_LOCKING() {
4618 r = rb_id_table_lookup(tbl, id, &val);
4619 }
4620
4621 if (r) return (rb_const_entry_t *)val;
4622 }
4623 return NULL;
4624}
4625
4627rb_const_lookup(VALUE klass, ID id)
4628{
4629 return const_lookup(RCLASS_CONST_TBL(klass), id);
4630}
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
#define RUBY_EXTERN
Declaration of externally visible global variables.
Definition dllexport.h:45
static VALUE RB_OBJ_FROZEN_RAW(VALUE obj)
This is an implementation detail of RB_OBJ_FROZEN().
Definition fl_type.h:877
static bool RB_FL_ABLE(VALUE obj)
Checks if the object is flaggable.
Definition fl_type.h:440
static void RB_FL_SET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_SET().
Definition fl_type.h:600
void rb_obj_freeze_inline(VALUE obj)
Prevents further modifications to the given object.
Definition variable.c:1947
static void RB_FL_UNSET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_UNSET().
Definition fl_type.h:660
@ RUBY_FL_FREEZE
This flag has something to do with data immutability.
Definition fl_type.h:320
void rb_class_modify_check(VALUE klass)
Asserts that klass is not a frozen class.
Definition eval.c:421
void rb_freeze_singleton_class(VALUE x)
This is an implementation detail of RB_OBJ_FREEZE().
Definition class.c:2879
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:3252
#define rb_str_new2
Old name of rb_str_new_cstr.
Definition string.h:1674
#define TYPE(_)
Old name of rb_type.
Definition value_type.h:108
#define FL_UNSET_RAW
Old name of RB_FL_UNSET_RAW.
Definition fl_type.h:133
#define FL_USER3
Old name of RUBY_FL_USER3.
Definition fl_type.h:73
#define REALLOC_N
Old name of RB_REALLOC_N.
Definition memory.h:403
#define ALLOC
Old name of RB_ALLOC.
Definition memory.h:400
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define Qundef
Old name of RUBY_Qundef.
#define rb_str_cat2
Old name of rb_str_cat_cstr.
Definition string.h:1682
#define UNREACHABLE
Old name of RBIMPL_UNREACHABLE.
Definition assume.h:28
#define T_IMEMO
Old name of RUBY_T_IMEMO.
Definition value_type.h:67
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define SPECIAL_CONST_P
Old name of RB_SPECIAL_CONST_P.
#define T_STRUCT
Old name of RUBY_T_STRUCT.
Definition value_type.h:79
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:134
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition assume.h:29
#define T_DATA
Old name of RUBY_T_DATA.
Definition value_type.h:60
#define ZALLOC
Old name of RB_ZALLOC.
Definition memory.h:402
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:206
#define T_MODULE
Old name of RUBY_T_MODULE.
Definition value_type.h:70
#define T_ICLASS
Old name of RUBY_T_ICLASS.
Definition value_type.h:66
#define ALLOC_N
Old name of RB_ALLOC_N.
Definition memory.h:399
#define FL_TEST_RAW
Old name of RB_FL_TEST_RAW.
Definition fl_type.h:131
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define FL_USER2
Old name of RUBY_FL_USER2.
Definition fl_type.h:72
#define Qtrue
Old name of RUBY_Qtrue.
#define INT2NUM
Old name of RB_INT2NUM.
Definition int.h:43
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define T_OBJECT
Old name of RUBY_T_OBJECT.
Definition value_type.h:75
#define NIL_P
Old name of RB_NIL_P.
#define ALLOCV_N
Old name of RB_ALLOCV_N.
Definition memory.h:405
#define T_CLASS
Old name of RUBY_T_CLASS.
Definition value_type.h:58
#define BUILTIN_TYPE
Old name of RB_BUILTIN_TYPE.
Definition value_type.h:85
#define rb_ary_new2
Old name of rb_ary_new_capa.
Definition array.h:657
#define FL_SET_RAW
Old name of RB_FL_SET_RAW.
Definition fl_type.h:129
#define ALLOCV_END
Old name of RB_ALLOCV_END.
Definition memory.h:406
void rb_category_warn(rb_warning_category_t category, const char *fmt,...)
Identical to rb_category_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:476
void rb_name_error(ID id, const char *fmt,...)
Raises an instance of rb_eNameError.
Definition error.c:2344
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
void rb_name_error_str(VALUE str, const char *fmt,...)
Identical to rb_name_error(), except it takes a VALUE instead of ID.
Definition error.c:2359
VALUE rb_eNameError
NameError exception.
Definition error.c:1435
VALUE rb_eRuntimeError
RuntimeError exception.
Definition error.c:1428
void * rb_check_typeddata(VALUE obj, const rb_data_type_t *data_type)
Identical to rb_typeddata_is_kind_of(), except it raises exceptions instead of returning false.
Definition error.c:1397
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
void rb_warning(const char *fmt,...)
Issues a warning.
Definition error.c:497
@ RB_WARN_CATEGORY_DEPRECATED
Warning is for deprecated features.
Definition error.h:48
VALUE rb_obj_hide(VALUE obj)
Make the object invisible from Ruby code.
Definition object.c:100
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:265
VALUE rb_cModule
Module class.
Definition object.c:62
VALUE rb_class_real(VALUE klass)
Finds a "real" class.
Definition object.c:256
size_t rb_obj_embedded_size(uint32_t fields_count)
Internal header for Object.
Definition object.c:94
#define RB_OBJ_WRITTEN(old, oldv, young)
Identical to RB_OBJ_WRITE(), except it doesn't write any values, but only a WB declaration.
Definition gc.h:615
#define RB_OBJ_WRITE(old, slot, young)
Declaration of a "back" pointer.
Definition gc.h:603
Encoding relates APIs.
ID rb_check_id_cstr(const char *ptr, long len, rb_encoding *enc)
Identical to rb_check_id(), except it takes a pointer to a memory region instead of Ruby's string.
Definition symbol.c:1223
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1117
VALUE rb_ary_new(void)
Allocates a new, empty array.
VALUE rb_ary_hidden_new(long capa)
Allocates a hidden (no class) empty array.
VALUE rb_ary_push(VALUE ary, VALUE elem)
Special case of rb_ary_cat() that it adds only one element.
VALUE rb_assoc_new(VALUE car, VALUE cdr)
Identical to rb_ary_new_from_values(), except it expects exactly two parameters.
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
#define st_foreach_safe
Just another name of rb_st_foreach_safe.
Definition hash.h:51
int rb_feature_provided(const char *feature, const char **loading)
Identical to rb_provided(), except it additionally returns the "canonical" name of the loaded feature...
Definition load.c:676
VALUE rb_backref_get(void)
Queries the last match, or Regexp.last_match, or the $~.
Definition vm.c:2005
int rb_is_instance_id(ID id)
Classifies the given ID, then sees if it is an instance variable.
Definition symbol.c:1097
int rb_is_const_id(ID id)
Classifies the given ID, then sees if it is a constant.
Definition symbol.c:1079
int rb_is_class_id(ID id)
Classifies the given ID, then sees if it is a class variable.
Definition symbol.c:1085
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition proc.c:848
VALUE rb_reg_nth_defined(int n, VALUE md)
Identical to rb_reg_nth_match(), except it just returns Boolean.
Definition re.c:1905
VALUE rb_str_append(VALUE dst, VALUE src)
Identical to rb_str_buf_append(), except it converts the right hand side before concatenating.
Definition string.c:3791
VALUE rb_str_subseq(VALUE str, long beg, long len)
Identical to rb_str_substr(), except the numbers are interpreted as byte offsets instead of character...
Definition string.c:3147
VALUE rb_str_new_frozen(VALUE str)
Creates a frozen copy of the string, if necessary.
Definition string.c:1512
VALUE rb_str_dup(VALUE str)
Duplicates a string.
Definition string.c:1990
#define rb_str_new_cstr(str)
Identical to rb_str_new, except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1513
VALUE rb_str_intern(VALUE str)
Identical to rb_to_symbol(), except it assumes the receiver being an instance of RString.
Definition symbol.c:937
VALUE rb_mutex_new(void)
Creates a mutex.
VALUE rb_mutex_synchronize(VALUE mutex, VALUE(*func)(VALUE arg), VALUE arg)
Obtains the lock, runs the passed function, and releases the lock when it completes.
VALUE rb_exec_recursive_paired(VALUE(*f)(VALUE g, VALUE h, int r), VALUE g, VALUE p, VALUE h)
Identical to rb_exec_recursive(), except it checks for the recursion on the ordered pair of { g,...
VALUE rb_mod_remove_cvar(VALUE mod, VALUE name)
Resembles Module#remove_class_variable.
Definition variable.c:4450
VALUE rb_obj_instance_variables(VALUE obj)
Resembles Object#instance_variables.
Definition variable.c:2390
VALUE rb_f_untrace_var(int argc, const VALUE *argv)
Deletes the passed tracer from the passed global variable, or if omitted, deletes everything.
Definition variable.c:915
VALUE rb_const_get(VALUE space, ID name)
Identical to rb_const_defined(), except it returns the actual defined value.
Definition variable.c:3412
VALUE rb_const_list(void *)
This is another mysterious API that comes with no documents at all.
Definition variable.c:3656
VALUE rb_path2class(const char *path)
Resolves a Q::W::E::R-style path string to the actual class it points.
Definition variable.c:494
VALUE rb_autoload_p(VALUE space, ID name)
Queries if an autoload is defined at a point.
Definition variable.c:3285
void rb_set_class_path(VALUE klass, VALUE space, const char *name)
Names a class.
Definition variable.c:441
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1986
VALUE rb_mod_remove_const(VALUE space, VALUE name)
Resembles Module#remove_const.
Definition variable.c:3517
VALUE rb_class_path_cached(VALUE mod)
Just another name of rb_mod_name.
Definition variable.c:389
VALUE rb_f_trace_var(int argc, const VALUE *argv)
Traces a global variable.
Definition variable.c:869
void rb_cvar_set(VALUE klass, ID name, VALUE val)
Assigns a value to a class variable.
Definition variable.c:4214
VALUE rb_cvar_get(VALUE klass, ID name)
Obtains a value from a class variable.
Definition variable.c:4285
VALUE rb_mod_constants(int argc, const VALUE *argv, VALUE recv)
Resembles Module#constants.
Definition variable.c:3688
VALUE rb_cvar_find(VALUE klass, ID name, VALUE *front)
Identical to rb_cvar_get(), except it takes additional "front" pointer.
Definition variable.c:4270
VALUE rb_path_to_class(VALUE path)
Identical to rb_path2class(), except it accepts the path as Ruby's string instead of C's.
Definition variable.c:449
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1461
void rb_const_set(VALUE space, ID name, VALUE val)
Names a constant.
Definition variable.c:3890
VALUE rb_autoload_load(VALUE space, ID name)
Kicks the autoload procedure as if it was "touched".
Definition variable.c:3247
VALUE rb_mod_name(VALUE mod)
Queries the name of a module.
Definition variable.c:136
VALUE rb_class_name(VALUE obj)
Queries the name of the given object's class.
Definition variable.c:500
VALUE rb_const_get_at(VALUE space, ID name)
Identical to rb_const_defined_at(), except it returns the actual defined value.
Definition variable.c:3418
void rb_set_class_path_string(VALUE klass, VALUE space, VALUE name)
Identical to rb_set_class_path(), except it accepts the name as Ruby's string instead of C's.
Definition variable.c:423
void rb_alias_variable(ID dst, ID src)
Aliases a global variable.
Definition variable.c:1142
void rb_define_class_variable(VALUE, const char *, VALUE)
Just another name of rb_cv_set.
Definition variable.c:4325
VALUE rb_obj_remove_instance_variable(VALUE obj, VALUE name)
Resembles Object#remove_instance_variable.
Definition variable.c:2444
void * rb_mod_const_of(VALUE, void *)
This is a variant of rb_mod_const_at().
Definition variable.c:3634
st_index_t rb_ivar_count(VALUE obj)
Number of instance variables defined on an object.
Definition variable.c:2302
void * rb_mod_const_at(VALUE, void *)
This API is mysterious.
Definition variable.c:3619
VALUE rb_const_remove(VALUE space, ID name)
Identical to rb_mod_remove_const(), except it takes the name as ID instead of VALUE.
Definition variable.c:3530
VALUE rb_const_get_from(VALUE space, ID name)
Identical to rb_const_defined_at(), except it returns the actual defined value.
Definition variable.c:3406
VALUE rb_ivar_defined(VALUE obj, ID name)
Queries if the instance variable is defined at the object.
Definition variable.c:2065
VALUE rb_cv_get(VALUE klass, const char *name)
Identical to rb_cvar_get(), except it accepts C's string instead of ID.
Definition variable.c:4318
int rb_const_defined_at(VALUE space, ID name)
Identical to rb_const_defined(), except it doesn't look for parent classes.
Definition variable.c:3750
void rb_cv_set(VALUE klass, const char *name, VALUE val)
Identical to rb_cvar_set(), except it accepts C's string instead of ID.
Definition variable.c:4311
VALUE rb_mod_class_variables(int argc, const VALUE *argv, VALUE recv)
Resembles Module#class_variables.
Definition variable.c:4415
VALUE rb_f_global_variables(void)
Queries the list of global variables.
Definition variable.c:1109
VALUE rb_cvar_defined(VALUE klass, ID name)
Queries if the given class has the given class variable.
Definition variable.c:4292
VALUE rb_class_path(VALUE mod)
Identical to rb_mod_name(), except it returns #<Class: ...> style inspection for anonymous modules.
Definition variable.c:380
int rb_const_defined_from(VALUE space, ID name)
Identical to rb_const_defined(), except it returns false for private constants.
Definition variable.c:3738
int rb_const_defined(VALUE space, ID name)
Queries if the constant is defined at the namespace.
Definition variable.c:3744
void rb_free_generic_ivar(VALUE obj)
Frees the list of instance variables.
Definition variable.c:1271
const char * rb_sourcefile(void)
Resembles __FILE__.
Definition vm.c:2042
void rb_clear_constant_cache_for_id(ID id)
Clears the inline constant caches associated with a particular ID.
Definition vm_method.c:320
VALUE rb_eval_cmd_kw(VALUE cmd, VALUE arg, int kw_splat)
This API is practically a variant of rb_proc_call_kw() now.
Definition vm_eval.c:2149
int rb_obj_respond_to(VALUE obj, ID mid, int private_p)
Identical to rb_respond_to(), except it additionally takes the visibility parameter.
Definition vm_method.c:3345
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
VALUE rb_id2sym(ID id)
Allocates an instance of rb_cSymbol that has the given id.
Definition symbol.c:974
ID rb_check_id(volatile VALUE *namep)
Detects if the given name is already interned or not.
Definition symbol.c:1133
ID rb_to_id(VALUE str)
Definition string.c:12559
rb_gvar_setter_t rb_gvar_var_setter
Definition variable.h:119
rb_gvar_marker_t rb_gvar_var_marker
Definition variable.h:128
void rb_define_global_const(const char *name, VALUE val)
Identical to rb_define_const(), except it defines that of "global", i.e.
Definition variable.c:3999
VALUE rb_gv_get(const char *name)
Obtains a global variable.
Definition variable.c:1067
void rb_define_variable(const char *name, VALUE *var)
"Shares" a global variable between Ruby and C.
Definition variable.c:840
void rb_gvar_marker_t(VALUE *var)
Type that represents a global variable marker function.
Definition variable.h:53
void rb_deprecate_constant(VALUE mod, const char *name)
Asserts that the given constant is deprecated.
Definition variable.c:4047
void rb_gvar_setter_t(VALUE val, ID id, VALUE *data)
Type that represents a global variable setter function.
Definition variable.h:46
rb_gvar_setter_t rb_gvar_val_setter
This is the setter function that backs global variables defined from a ruby script.
Definition variable.h:94
rb_gvar_marker_t rb_gvar_undef_marker
Definition variable.h:80
void rb_define_readonly_variable(const char *name, const VALUE *var)
Identical to rb_define_variable(), except it does not allow Ruby programs to assign values to such gl...
Definition variable.c:846
rb_gvar_setter_t rb_gvar_readonly_setter
This function just raises rb_eNameError.
Definition variable.h:135
rb_gvar_getter_t rb_gvar_undef_getter
Definition variable.h:62
VALUE rb_gv_set(const char *name, VALUE val)
Assigns to a global variable.
Definition variable.c:1030
rb_gvar_marker_t rb_gvar_val_marker
This is the setter function that backs global variables defined from a ruby script.
Definition variable.h:101
VALUE rb_gvar_getter_t(ID id, VALUE *data)
Type that represents a global variable getter function.
Definition variable.h:37
VALUE rb_iv_get(VALUE obj, const char *name)
Obtains an instance variable.
Definition variable.c:4473
rb_gvar_setter_t rb_gvar_undef_setter
Definition variable.h:71
rb_gvar_getter_t rb_gvar_val_getter
This is the getter function that backs global variables defined from a ruby script.
Definition variable.h:87
VALUE rb_iv_set(VALUE obj, const char *name, VALUE val)
Assigns to an instance variable.
Definition variable.c:4484
rb_gvar_getter_t rb_gvar_var_getter
Definition variable.h:110
int len
Length of the buffer.
Definition io.h:8
static bool rb_ractor_shareable_p(VALUE obj)
Queries if multiple Ractors can share the passed object or not.
Definition ractor.h:249
#define RB_OBJ_SHAREABLE_P(obj)
Queries if the passed object has previously classified as shareable or not.
Definition ractor.h:235
#define MEMCPY(p1, p2, type, n)
Handy macro to call memcpy.
Definition memory.h:372
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
#define MEMMOVE(p1, p2, type, n)
Handy macro to call memmove.
Definition memory.h:384
void rb_define_hooked_variable(const char *q, VALUE *w, type *e, void_type *r)
Define a function-backended global variable.
VALUE type(ANYARGS)
ANYARGS-ed function type.
void rb_define_virtual_variable(const char *q, type *w, void_type *e)
Define a function-backended global variable.
void rb_ivar_foreach(VALUE q, int_type *w, VALUE e)
Iteration over each instance variable of the object.
VALUE rb_ensure(type *q, VALUE w, type *e, VALUE r)
An equivalent of ensure clause.
void rb_copy_generic_ivar(VALUE clone, VALUE obj)
Copies the list of instance variables.
Definition variable.c:2188
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
static VALUE RBASIC_CLASS(VALUE obj)
Queries the class of an object.
Definition rbasic.h:166
#define RBASIC(obj)
Convenient casting macro.
Definition rbasic.h:40
#define RCLASS_SUPER
Just another name of rb_class_get_superclass.
Definition rclass.h:44
#define ROBJECT(obj)
Convenient casting macro.
Definition robject.h:43
static VALUE * ROBJECT_FIELDS(VALUE obj)
Queries the instance variables.
Definition robject.h:128
#define StringValue(v)
Ensures that the parameter object is a String.
Definition rstring.h:66
static char * RSTRING_END(VALUE str)
Queries the end of the contents pointer of the string.
Definition rstring.h:442
static bool RTYPEDDATA_P(VALUE obj)
Checks whether the passed object is RTypedData or RData.
Definition rtypeddata.h:582
#define RTYPEDDATA_DATA(v)
Convenient getter macro.
Definition rtypeddata.h:103
#define TypedData_Wrap_Struct(klass, data_type, sval)
Converts sval, a pointer to your struct, into a Ruby object.
Definition rtypeddata.h:455
#define RTYPEDDATA(obj)
Convenient casting macro.
Definition rtypeddata.h:95
#define TypedData_Make_Struct(klass, type, data_type, sval)
Identical to TypedData_Wrap_Struct, except it allocates a new data region internally instead of takin...
Definition rtypeddata.h:502
const char * rb_class2name(VALUE klass)
Queries the name of the passed class.
Definition variable.c:506
const char * rb_obj_classname(VALUE obj)
Queries the name of the class of the passed object.
Definition variable.c:515
#define RB_NO_KEYWORDS
Do not pass keywords.
Definition scan_args.h:69
static bool RB_SPECIAL_CONST_P(VALUE obj)
Checks if the given object is of enum ruby_special_consts.
#define RTEST
This is an old name of RB_TEST.
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
C99 shim for <stdbool.h>
Definition constant.h:33
Definition class.h:72
This is the struct that holds necessary info for a struct.
Definition rtypeddata.h:202
Definition variable.c:539
Internal header for Namespace.
Definition namespace.h:14
Definition st.h:79
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static enum ruby_value_type rb_type(VALUE obj)
Identical to RB_BUILTIN_TYPE(), except it can also accept special constants.
Definition value_type.h:225
static enum ruby_value_type RB_BUILTIN_TYPE(VALUE obj)
Queries the type of the object.
Definition value_type.h:182
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition value_type.h:433
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376