Ruby 3.5.0dev (2025-04-03 revision 1dddc6c78b5f6dc6ae18ee04ebe44abfce3b0433)
time.c (1dddc6c78b5f6dc6ae18ee04ebe44abfce3b0433)
1/**********************************************************************
2
3 time.c -
4
5 $Author$
6 created at: Tue Dec 28 14:31:59 JST 1993
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9
10**********************************************************************/
11
12#define _DEFAULT_SOURCE
13#define _BSD_SOURCE
14#include "ruby/internal/config.h"
15
16#include <errno.h>
17#include <float.h>
18#include <math.h>
19#include <time.h>
20#include <sys/types.h>
21
22#ifdef HAVE_UNISTD_H
23# include <unistd.h>
24#endif
25
26#ifdef HAVE_STRINGS_H
27# include <strings.h>
28#endif
29
30#if defined(HAVE_SYS_TIME_H)
31# include <sys/time.h>
32#endif
33
34#include "id.h"
35#include "internal.h"
36#include "internal/array.h"
37#include "internal/hash.h"
38#include "internal/compar.h"
39#include "internal/numeric.h"
40#include "internal/rational.h"
41#include "internal/string.h"
42#include "internal/time.h"
43#include "internal/variable.h"
44#include "ruby/encoding.h"
45#include "ruby/util.h"
46#include "timev.h"
47
48#if defined(_WIN32)
49# include "timezoneapi.h" /* DYNAMIC_TIME_ZONE_INFORMATION */
50#endif
51
52#include "builtin.h"
53
54static ID id_submicro, id_nano_num, id_nano_den, id_offset, id_zone;
55static ID id_nanosecond, id_microsecond, id_millisecond, id_nsec, id_usec;
56static ID id_local_to_utc, id_utc_to_local, id_find_timezone;
57static ID id_year, id_mon, id_mday, id_hour, id_min, id_sec, id_isdst;
58static VALUE str_utc, str_empty;
59
60// used by deconstruct_keys
61static VALUE sym_year, sym_month, sym_day, sym_yday, sym_wday;
62static VALUE sym_hour, sym_min, sym_sec, sym_subsec, sym_dst, sym_zone;
63
64#define id_quo idQuo
65#define id_div idDiv
66#define id_divmod idDivmod
67#define id_name idName
68#define UTC_ZONE Qundef
69
70#define NDIV(x,y) (-(-((x)+1)/(y))-1)
71#define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
72#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
73#define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
74#define VTM_WDAY_INITVAL (7)
75#define VTM_ISDST_INITVAL (3)
76
77static int
78eq(VALUE x, VALUE y)
79{
80 if (FIXNUM_P(x) && FIXNUM_P(y)) {
81 return x == y;
82 }
83 return RTEST(rb_funcall(x, idEq, 1, y));
84}
85
86static int
87cmp(VALUE x, VALUE y)
88{
89 if (FIXNUM_P(x) && FIXNUM_P(y)) {
90 if ((long)x < (long)y)
91 return -1;
92 if ((long)x > (long)y)
93 return 1;
94 return 0;
95 }
96 if (RB_BIGNUM_TYPE_P(x)) return FIX2INT(rb_big_cmp(x, y));
97 return rb_cmpint(rb_funcall(x, idCmp, 1, y), x, y);
98}
99
100#define ne(x,y) (!eq((x),(y)))
101#define lt(x,y) (cmp((x),(y)) < 0)
102#define gt(x,y) (cmp((x),(y)) > 0)
103#define le(x,y) (cmp((x),(y)) <= 0)
104#define ge(x,y) (cmp((x),(y)) >= 0)
105
106static VALUE
107addv(VALUE x, VALUE y)
108{
109 if (FIXNUM_P(x) && FIXNUM_P(y)) {
110 return LONG2NUM(FIX2LONG(x) + FIX2LONG(y));
111 }
112 if (RB_BIGNUM_TYPE_P(x)) return rb_big_plus(x, y);
113 return rb_funcall(x, '+', 1, y);
114}
115
116static VALUE
117subv(VALUE x, VALUE y)
118{
119 if (FIXNUM_P(x) && FIXNUM_P(y)) {
120 return LONG2NUM(FIX2LONG(x) - FIX2LONG(y));
121 }
122 if (RB_BIGNUM_TYPE_P(x)) return rb_big_minus(x, y);
123 return rb_funcall(x, '-', 1, y);
124}
125
126static VALUE
127mulv(VALUE x, VALUE y)
128{
129 if (FIXNUM_P(x) && FIXNUM_P(y)) {
130 return rb_fix_mul_fix(x, y);
131 }
132 if (RB_BIGNUM_TYPE_P(x))
133 return rb_big_mul(x, y);
134 return rb_funcall(x, '*', 1, y);
135}
136
137static VALUE
138divv(VALUE x, VALUE y)
139{
140 if (FIXNUM_P(x) && FIXNUM_P(y)) {
141 return rb_fix_div_fix(x, y);
142 }
143 if (RB_BIGNUM_TYPE_P(x))
144 return rb_big_div(x, y);
145 return rb_funcall(x, id_div, 1, y);
146}
147
148static VALUE
149modv(VALUE x, VALUE y)
150{
151 if (FIXNUM_P(y)) {
152 if (FIX2LONG(y) == 0) rb_num_zerodiv();
153 if (FIXNUM_P(x)) return rb_fix_mod_fix(x, y);
154 }
155 if (RB_BIGNUM_TYPE_P(x)) return rb_big_modulo(x, y);
156 return rb_funcall(x, '%', 1, y);
157}
158
159#define neg(x) (subv(INT2FIX(0), (x)))
160
161static VALUE
162quor(VALUE x, VALUE y)
163{
164 if (FIXNUM_P(x) && FIXNUM_P(y)) {
165 long a, b, c;
166 a = FIX2LONG(x);
167 b = FIX2LONG(y);
168 if (b == 0) rb_num_zerodiv();
169 if (a == FIXNUM_MIN && b == -1) return LONG2NUM(-a);
170 c = a / b;
171 if (c * b == a) {
172 return LONG2FIX(c);
173 }
174 }
175 return rb_numeric_quo(x, y);
176}
177
178static VALUE
179quov(VALUE x, VALUE y)
180{
181 VALUE ret = quor(x, y);
182 if (RB_TYPE_P(ret, T_RATIONAL) &&
183 RRATIONAL(ret)->den == INT2FIX(1)) {
184 ret = RRATIONAL(ret)->num;
185 }
186 return ret;
187}
188
189#define mulquov(x,y,z) (((y) == (z)) ? (x) : quov(mulv((x),(y)),(z)))
190
191static void
192divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
193{
194 VALUE tmp, ary;
195 if (FIXNUM_P(d)) {
196 if (FIX2LONG(d) == 0) rb_num_zerodiv();
197 if (FIXNUM_P(n)) {
198 rb_fix_divmod_fix(n, d, q, r);
199 return;
200 }
201 }
202 tmp = rb_funcall(n, id_divmod, 1, d);
203 ary = rb_check_array_type(tmp);
204 if (NIL_P(ary)) {
205 rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
206 rb_obj_class(tmp));
207 }
208 *q = rb_ary_entry(ary, 0);
209 *r = rb_ary_entry(ary, 1);
210}
211
212#if SIZEOF_LONG == 8
213# define INT64toNUM(x) LONG2NUM(x)
214#elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
215# define INT64toNUM(x) LL2NUM(x)
216#endif
217
218#if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
219 typedef uint64_t uwideint_t;
220 typedef int64_t wideint_t;
221 typedef uint64_t WIDEVALUE;
222 typedef int64_t SIGNED_WIDEVALUE;
223# define WIDEVALUE_IS_WIDER 1
224# define UWIDEINT_MAX UINT64_MAX
225# define WIDEINT_MAX INT64_MAX
226# define WIDEINT_MIN INT64_MIN
227# define FIXWINT_P(tv) ((tv) & 1)
228# define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
229# define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
230# define FIXWV_MAX (((int64_t)1 << 62) - 1)
231# define FIXWV_MIN (-((int64_t)1 << 62))
232# define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
233# define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
234# define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
235#else
236 typedef unsigned long uwideint_t;
237 typedef long wideint_t;
238 typedef VALUE WIDEVALUE;
239 typedef SIGNED_VALUE SIGNED_WIDEVALUE;
240# define WIDEVALUE_IS_WIDER 0
241# define UWIDEINT_MAX ULONG_MAX
242# define WIDEINT_MAX LONG_MAX
243# define WIDEINT_MIN LONG_MIN
244# define FIXWINT_P(v) FIXNUM_P(v)
245# define FIXWV_MAX FIXNUM_MAX
246# define FIXWV_MIN FIXNUM_MIN
247# define FIXWVABLE(i) FIXABLE(i)
248# define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
249# define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
250#endif
251
252#define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
253#define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
254#define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
255#define MUL_OVERFLOW_FIXWV_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXWV_MIN, FIXWV_MAX)
256
257/* #define STRUCT_WIDEVAL */
258#ifdef STRUCT_WIDEVAL
259 /* for type checking */
260 typedef struct {
261 WIDEVALUE value;
262 } wideval_t;
263 static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
264# define WIDEVAL_GET(w) ((w).value)
265#else
266 typedef WIDEVALUE wideval_t;
267# define WIDEVAL_WRAP(v) (v)
268# define WIDEVAL_GET(w) (w)
269#endif
270
271#if WIDEVALUE_IS_WIDER
272 static inline wideval_t
273 wint2wv(wideint_t wi)
274 {
275 if (FIXWVABLE(wi))
276 return WINT2FIXWV(wi);
277 else
278 return WIDEVAL_WRAP(INT64toNUM(wi));
279 }
280# define WINT2WV(wi) wint2wv(wi)
281#else
282# define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
283#endif
284
285static inline VALUE
286w2v(wideval_t w)
287{
288#if WIDEVALUE_IS_WIDER
289 if (FIXWV_P(w))
290 return INT64toNUM(FIXWV2WINT(w));
291 return (VALUE)WIDEVAL_GET(w);
292#else
293 return WIDEVAL_GET(w);
294#endif
295}
296
297#if WIDEVALUE_IS_WIDER
298static wideval_t
299v2w_bignum(VALUE v)
300{
301 int sign;
302 uwideint_t u;
303 sign = rb_integer_pack(v, &u, 1, sizeof(u), 0,
305 if (sign == 0)
306 return WINT2FIXWV(0);
307 else if (sign == -1) {
308 if (u <= -FIXWV_MIN)
309 return WINT2FIXWV(-(wideint_t)u);
310 }
311 else if (sign == +1) {
312 if (u <= FIXWV_MAX)
313 return WINT2FIXWV((wideint_t)u);
314 }
315 return WIDEVAL_WRAP(v);
316}
317#endif
318
319static inline wideval_t
320v2w(VALUE v)
321{
322 if (RB_TYPE_P(v, T_RATIONAL)) {
323 if (RRATIONAL(v)->den != LONG2FIX(1))
324 return WIDEVAL_WRAP(v);
325 v = RRATIONAL(v)->num;
326 }
327#if WIDEVALUE_IS_WIDER
328 if (FIXNUM_P(v)) {
329 return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
330 }
331 else if (RB_BIGNUM_TYPE_P(v) &&
332 rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) {
333 return v2w_bignum(v);
334 }
335#endif
336 return WIDEVAL_WRAP(v);
337}
338
339#define NUM2WV(v) v2w(rb_Integer(v))
340
341static int
342weq(wideval_t wx, wideval_t wy)
343{
344#if WIDEVALUE_IS_WIDER
345 if (FIXWV_P(wx) && FIXWV_P(wy)) {
346 return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
347 }
348 return RTEST(rb_funcall(w2v(wx), idEq, 1, w2v(wy)));
349#else
350 return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
351#endif
352}
353
354static int
355wcmp(wideval_t wx, wideval_t wy)
356{
357 VALUE x, y;
358#if WIDEVALUE_IS_WIDER
359 if (FIXWV_P(wx) && FIXWV_P(wy)) {
360 wideint_t a, b;
361 a = FIXWV2WINT(wx);
362 b = FIXWV2WINT(wy);
363 if (a < b)
364 return -1;
365 if (a > b)
366 return 1;
367 return 0;
368 }
369#endif
370 x = w2v(wx);
371 y = w2v(wy);
372 return cmp(x, y);
373}
374
375#define wne(x,y) (!weq((x),(y)))
376#define wlt(x,y) (wcmp((x),(y)) < 0)
377#define wgt(x,y) (wcmp((x),(y)) > 0)
378#define wle(x,y) (wcmp((x),(y)) <= 0)
379#define wge(x,y) (wcmp((x),(y)) >= 0)
380
381static wideval_t
382wadd(wideval_t wx, wideval_t wy)
383{
384#if WIDEVALUE_IS_WIDER
385 if (FIXWV_P(wx) && FIXWV_P(wy)) {
386 wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
387 return WINT2WV(r);
388 }
389#endif
390 return v2w(addv(w2v(wx), w2v(wy)));
391}
392
393static wideval_t
394wsub(wideval_t wx, wideval_t wy)
395{
396#if WIDEVALUE_IS_WIDER
397 if (FIXWV_P(wx) && FIXWV_P(wy)) {
398 wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
399 return WINT2WV(r);
400 }
401#endif
402 return v2w(subv(w2v(wx), w2v(wy)));
403}
404
405static wideval_t
406wmul(wideval_t wx, wideval_t wy)
407{
408#if WIDEVALUE_IS_WIDER
409 if (FIXWV_P(wx) && FIXWV_P(wy)) {
410 if (!MUL_OVERFLOW_FIXWV_P(FIXWV2WINT(wx), FIXWV2WINT(wy)))
411 return WINT2WV(FIXWV2WINT(wx) * FIXWV2WINT(wy));
412 }
413#endif
414 return v2w(mulv(w2v(wx), w2v(wy)));
415}
416
417static wideval_t
418wquo(wideval_t wx, wideval_t wy)
419{
420#if WIDEVALUE_IS_WIDER
421 if (FIXWV_P(wx) && FIXWV_P(wy)) {
422 wideint_t a, b, c;
423 a = FIXWV2WINT(wx);
424 b = FIXWV2WINT(wy);
425 if (b == 0) rb_num_zerodiv();
426 c = a / b;
427 if (c * b == a) {
428 return WINT2WV(c);
429 }
430 }
431#endif
432 return v2w(quov(w2v(wx), w2v(wy)));
433}
434
435#define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
436#define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
437
438#if WIDEVALUE_IS_WIDER
439static int
440wdivmod0(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
441{
442 if (FIXWV_P(wn) && FIXWV_P(wd)) {
443 wideint_t n, d, q, r;
444 d = FIXWV2WINT(wd);
445 if (d == 0) rb_num_zerodiv();
446 if (d == 1) {
447 *wq = wn;
448 *wr = WINT2FIXWV(0);
449 return 1;
450 }
451 if (d == -1) {
452 wideint_t xneg = -FIXWV2WINT(wn);
453 *wq = WINT2WV(xneg);
454 *wr = WINT2FIXWV(0);
455 return 1;
456 }
457 n = FIXWV2WINT(wn);
458 if (n == 0) {
459 *wq = WINT2FIXWV(0);
460 *wr = WINT2FIXWV(0);
461 return 1;
462 }
463 q = n / d;
464 r = n % d;
465 if (d > 0 ? r < 0 : r > 0) {
466 q -= 1;
467 r += d;
468 }
469 *wq = WINT2FIXWV(q);
470 *wr = WINT2FIXWV(r);
471 return 1;
472 }
473 return 0;
474}
475#endif
476
477static void
478wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
479{
480 VALUE vq, vr;
481#if WIDEVALUE_IS_WIDER
482 if (wdivmod0(wn, wd, wq, wr)) return;
483#endif
484 divmodv(w2v(wn), w2v(wd), &vq, &vr);
485 *wq = v2w(vq);
486 *wr = v2w(vr);
487}
488
489static void
490wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
491{
492 if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
493 *wq = wx;
494 *wr = WINT2FIXWV(0);
495 return;
496 }
497 wdivmod(wmul(wx,wy), wz, wq, wr);
498}
499
500static wideval_t
501wdiv(wideval_t wx, wideval_t wy)
502{
503#if WIDEVALUE_IS_WIDER
504 wideval_t q, dmy;
505 if (wdivmod0(wx, wy, &q, &dmy)) return q;
506#endif
507 return v2w(divv(w2v(wx), w2v(wy)));
508}
509
510static wideval_t
511wmod(wideval_t wx, wideval_t wy)
512{
513#if WIDEVALUE_IS_WIDER
514 wideval_t r, dmy;
515 if (wdivmod0(wx, wy, &dmy, &r)) return r;
516#endif
517 return v2w(modv(w2v(wx), w2v(wy)));
518}
519
520static VALUE
521num_exact_check(VALUE v)
522{
523 VALUE tmp;
524
525 switch (TYPE(v)) {
526 case T_FIXNUM:
527 case T_BIGNUM:
528 tmp = v;
529 break;
530
531 case T_RATIONAL:
532 tmp = rb_rational_canonicalize(v);
533 break;
534
535 default:
536 if (!UNDEF_P(tmp = rb_check_funcall(v, idTo_r, 0, NULL))) {
537 /* test to_int method availability to reject non-Numeric
538 * objects such as String, Time, etc which have to_r method. */
539 if (!rb_respond_to(v, idTo_int)) {
540 /* FALLTHROUGH */
541 }
542 else if (RB_INTEGER_TYPE_P(tmp)) {
543 break;
544 }
545 else if (RB_TYPE_P(tmp, T_RATIONAL)) {
546 tmp = rb_rational_canonicalize(tmp);
547 break;
548 }
549 }
550 else if (!NIL_P(tmp = rb_check_to_int(v))) {
551 return tmp;
552 }
553
554 case T_NIL:
555 case T_STRING:
556 return Qnil;
557 }
558 ASSUME(!NIL_P(tmp));
559 return tmp;
560}
561
562NORETURN(static void num_exact_fail(VALUE v));
563static void
564num_exact_fail(VALUE v)
565{
566 rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number",
567 rb_obj_class(v));
568}
569
570static VALUE
571num_exact(VALUE v)
572{
573 VALUE num = num_exact_check(v);
574 if (NIL_P(num)) num_exact_fail(v);
575 return num;
576}
577
578/* time_t */
579
580/* TIME_SCALE should be 10000... */
581static const int TIME_SCALE_NUMDIGITS = rb_strlen_lit(STRINGIZE(TIME_SCALE)) - 1;
582
583static wideval_t
584rb_time_magnify(wideval_t w)
585{
586 return wmul(w, WINT2FIXWV(TIME_SCALE));
587}
588
589static VALUE
590rb_time_unmagnify_to_rational(wideval_t w)
591{
592 return quor(w2v(w), INT2FIX(TIME_SCALE));
593}
594
595static wideval_t
596rb_time_unmagnify(wideval_t w)
597{
598 return v2w(rb_time_unmagnify_to_rational(w));
599}
600
601static VALUE
602rb_time_unmagnify_to_float(wideval_t w)
603{
604 VALUE v;
605#if WIDEVALUE_IS_WIDER
606 if (FIXWV_P(w)) {
607 wideint_t a, b, c;
608 a = FIXWV2WINT(w);
609 b = TIME_SCALE;
610 c = a / b;
611 if (c * b == a) {
612 return DBL2NUM((double)c);
613 }
614 v = DBL2NUM((double)FIXWV2WINT(w));
615 return quov(v, DBL2NUM(TIME_SCALE));
616 }
617#endif
618 v = w2v(w);
619 if (RB_TYPE_P(v, T_RATIONAL))
620 return rb_Float(quov(v, INT2FIX(TIME_SCALE)));
621 else
622 return quov(v, DBL2NUM(TIME_SCALE));
623}
624
625static void
626split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
627{
628 wideval_t q, r;
629 wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
630 *timew_p = q;
631 *subsecx_p = w2v(r);
632}
633
634static wideval_t
635timet2wv(time_t t)
636{
637#if WIDEVALUE_IS_WIDER
638 if (TIMET_MIN == 0) {
639 uwideint_t wi = (uwideint_t)t;
640 if (wi <= FIXWV_MAX) {
641 return WINT2FIXWV(wi);
642 }
643 }
644 else {
645 wideint_t wi = (wideint_t)t;
646 if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
647 return WINT2FIXWV(wi);
648 }
649 }
650#endif
651 return v2w(TIMET2NUM(t));
652}
653#define TIMET2WV(t) timet2wv(t)
654
655static time_t
656wv2timet(wideval_t w)
657{
658#if WIDEVALUE_IS_WIDER
659 if (FIXWV_P(w)) {
660 wideint_t wi = FIXWV2WINT(w);
661 if (TIMET_MIN == 0) {
662 if (wi < 0)
663 rb_raise(rb_eRangeError, "negative value to convert into 'time_t'");
664 if (TIMET_MAX < (uwideint_t)wi)
665 rb_raise(rb_eRangeError, "too big to convert into 'time_t'");
666 }
667 else {
668 if (wi < TIMET_MIN || TIMET_MAX < wi)
669 rb_raise(rb_eRangeError, "too big to convert into 'time_t'");
670 }
671 return (time_t)wi;
672 }
673#endif
674 return NUM2TIMET(w2v(w));
675}
676#define WV2TIMET(t) wv2timet(t)
677
679static VALUE rb_cTimeTM;
680
681static int obj2int(VALUE obj);
682static uint32_t obj2ubits(VALUE obj, unsigned int bits);
683static VALUE obj2vint(VALUE obj);
684static uint32_t month_arg(VALUE arg);
685static VALUE validate_utc_offset(VALUE utc_offset);
686static VALUE validate_zone_name(VALUE zone_name);
687static void validate_vtm(struct vtm *vtm);
688static void vtm_add_day(struct vtm *vtm, int day);
689static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx);
690
691static VALUE time_gmtime(VALUE);
692static VALUE time_localtime(VALUE);
693static VALUE time_fixoff(VALUE);
694static VALUE time_zonelocal(VALUE time, VALUE off);
695
696static time_t timegm_noleapsecond(struct tm *tm);
697static int tmcmp(struct tm *a, struct tm *b);
698static int vtmcmp(struct vtm *a, struct vtm *b);
699static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
700
701static struct vtm *localtimew(wideval_t timew, struct vtm *result);
702
703static int leap_year_p(long y);
704#define leap_year_v_p(y) leap_year_p(NUM2LONG(modv((y), INT2FIX(400))))
705
706static VALUE tm_from_time(VALUE klass, VALUE time);
707
708bool ruby_tz_uptodate_p;
709
710#ifdef _WIN32
711enum {tzkey_max = numberof(((DYNAMIC_TIME_ZONE_INFORMATION *)NULL)->TimeZoneKeyName)};
712static struct {
713 char use_tzkey;
714 char name[tzkey_max * 4 + 1];
715} w32_tz;
716
717static char *
718get_tzname(int dst)
719{
720 if (w32_tz.use_tzkey) {
721 if (w32_tz.name[0]) {
722 return w32_tz.name;
723 }
724 else {
725 /*
726 * Use GetDynamicTimeZoneInformation::TimeZoneKeyName, Windows
727 * time zone ID, which is not localized because it is the key
728 * for "Dynamic DST" keys under the "Time Zones" registry.
729 * Available since Windows Vista and Windows Server 2008.
730 */
731 DYNAMIC_TIME_ZONE_INFORMATION tzi;
732 WCHAR *const wtzkey = tzi.TimeZoneKeyName;
733 DWORD tzret = GetDynamicTimeZoneInformation(&tzi);
734 if (tzret != TIME_ZONE_ID_INVALID && *wtzkey) {
735 int wlen = (int)wcsnlen(wtzkey, tzkey_max);
736 int clen = WideCharToMultiByte(CP_UTF8, 0, wtzkey, wlen,
737 w32_tz.name, sizeof(w32_tz.name) - 1,
738 NULL, NULL);
739 w32_tz.name[clen] = '\0';
740 return w32_tz.name;
741 }
742 }
743 }
744 return _tzname[_daylight && dst];
745}
746#endif
747
748void
749ruby_reset_timezone(const char *val)
750{
751 ruby_tz_uptodate_p = false;
752#ifdef _WIN32
753 w32_tz.use_tzkey = !val || !*val;
754#endif
755 ruby_reset_leap_second_info();
756}
757
758static void
759update_tz(void)
760{
761 if (ruby_tz_uptodate_p) return;
762 ruby_tz_uptodate_p = true;
763 tzset();
764}
765
766static struct tm *
767rb_localtime_r(const time_t *t, struct tm *result)
768{
769#if defined __APPLE__ && defined __LP64__
770 if (*t != (time_t)(int)*t) return NULL;
771#endif
772 update_tz();
773#ifdef HAVE_GMTIME_R
774 result = localtime_r(t, result);
775#else
776 {
777 struct tm *tmp = localtime(t);
778 if (tmp) *result = *tmp;
779 }
780#endif
781#if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
782 if (result) {
783 long gmtoff1 = 0;
784 long gmtoff2 = 0;
785 struct tm tmp = *result;
786 time_t t2;
787 t2 = mktime(&tmp);
788# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
789 gmtoff1 = result->tm_gmtoff;
790 gmtoff2 = tmp.tm_gmtoff;
791# endif
792 if (*t + gmtoff1 != t2 + gmtoff2)
793 result = NULL;
794 }
795#endif
796 return result;
797}
798#define LOCALTIME(tm, result) rb_localtime_r((tm), &(result))
799
800#ifndef HAVE_STRUCT_TM_TM_GMTOFF
801static struct tm *
802rb_gmtime_r(const time_t *t, struct tm *result)
803{
804#ifdef HAVE_GMTIME_R
805 result = gmtime_r(t, result);
806#else
807 struct tm *tmp = gmtime(t);
808 if (tmp) *result = *tmp;
809#endif
810#if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
811 if (result && *t != timegm(result)) {
812 return NULL;
813 }
814#endif
815 return result;
816}
817# define GMTIME(tm, result) rb_gmtime_r((tm), &(result))
818#endif
819
820static const int16_t common_year_yday_offset[] = {
821 -1,
822 -1 + 31,
823 -1 + 31 + 28,
824 -1 + 31 + 28 + 31,
825 -1 + 31 + 28 + 31 + 30,
826 -1 + 31 + 28 + 31 + 30 + 31,
827 -1 + 31 + 28 + 31 + 30 + 31 + 30,
828 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
829 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
830 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
831 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
832 -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
833 /* 1 2 3 4 5 6 7 8 9 10 11 */
834};
835static const int16_t leap_year_yday_offset[] = {
836 -1,
837 -1 + 31,
838 -1 + 31 + 29,
839 -1 + 31 + 29 + 31,
840 -1 + 31 + 29 + 31 + 30,
841 -1 + 31 + 29 + 31 + 30 + 31,
842 -1 + 31 + 29 + 31 + 30 + 31 + 30,
843 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
844 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
845 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
846 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
847 -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
848 /* 1 2 3 4 5 6 7 8 9 10 11 */
849};
850
851static const int8_t common_year_days_in_month[] = {
852 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
853};
854static const int8_t leap_year_days_in_month[] = {
855 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
856};
857
858#define days_in_month_of(leap) ((leap) ? leap_year_days_in_month : common_year_days_in_month)
859#define days_in_month_in(y) days_in_month_of(leap_year_p(y))
860#define days_in_month_in_v(y) days_in_month_of(leap_year_v_p(y))
861
862#define M28(m) \
863 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
864 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
865 (m),(m),(m),(m),(m),(m),(m),(m)
866#define M29(m) \
867 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
868 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
869 (m),(m),(m),(m),(m),(m),(m),(m),(m)
870#define M30(m) \
871 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
872 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
873 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m)
874#define M31(m) \
875 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
876 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
877 (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), (m)
878
879static const uint8_t common_year_mon_of_yday[] = {
880 M31(1), M28(2), M31(3), M30(4), M31(5), M30(6),
881 M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
882};
883static const uint8_t leap_year_mon_of_yday[] = {
884 M31(1), M29(2), M31(3), M30(4), M31(5), M30(6),
885 M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
886};
887
888#undef M28
889#undef M29
890#undef M30
891#undef M31
892
893#define D28 \
894 1,2,3,4,5,6,7,8,9, \
895 10,11,12,13,14,15,16,17,18,19, \
896 20,21,22,23,24,25,26,27,28
897#define D29 \
898 1,2,3,4,5,6,7,8,9, \
899 10,11,12,13,14,15,16,17,18,19, \
900 20,21,22,23,24,25,26,27,28,29
901#define D30 \
902 1,2,3,4,5,6,7,8,9, \
903 10,11,12,13,14,15,16,17,18,19, \
904 20,21,22,23,24,25,26,27,28,29,30
905#define D31 \
906 1,2,3,4,5,6,7,8,9, \
907 10,11,12,13,14,15,16,17,18,19, \
908 20,21,22,23,24,25,26,27,28,29,30,31
909
910static const uint8_t common_year_mday_of_yday[] = {
911 /* 1 2 3 4 5 6 7 8 9 10 11 12 */
912 D31, D28, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
913};
914static const uint8_t leap_year_mday_of_yday[] = {
915 D31, D29, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
916};
917
918#undef D28
919#undef D29
920#undef D30
921#undef D31
922
923static int
924calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
925{
926 int tm_year_mod400 = (int)MOD(tm_year, 400);
927 int tm_yday = tm_mday;
928
929 if (leap_year_p(tm_year_mod400 + 1900))
930 tm_yday += leap_year_yday_offset[tm_mon];
931 else
932 tm_yday += common_year_yday_offset[tm_mon];
933
934 return tm_yday;
935}
936
937static wideval_t
938timegmw_noleapsecond(struct vtm *vtm)
939{
940 VALUE year1900;
941 VALUE q400, r400;
942 int year_mod400;
943 int yday;
944 long days_in400;
945 VALUE vdays, ret;
946 wideval_t wret;
947
948 year1900 = subv(vtm->year, INT2FIX(1900));
949
950 divmodv(year1900, INT2FIX(400), &q400, &r400);
951 year_mod400 = NUM2INT(r400);
952
953 yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
954
955 /*
956 * `Seconds Since the Epoch' in SUSv3:
957 * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
958 * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
959 * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
960 */
961 ret = LONG2NUM(vtm->sec
962 + vtm->min*60
963 + vtm->hour*3600);
964 days_in400 = yday
965 - 70*365
966 + DIV(year_mod400 - 69, 4)
967 - DIV(year_mod400 - 1, 100)
968 + (year_mod400 + 299) / 400;
969 vdays = LONG2NUM(days_in400);
970 vdays = addv(vdays, mulv(q400, INT2FIX(97)));
971 vdays = addv(vdays, mulv(year1900, INT2FIX(365)));
972 wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
973 wret = wadd(wret, v2w(vtm->subsecx));
974
975 return wret;
976}
977
978static VALUE
979zone_str(const char *zone)
980{
981 const char *p;
982 int ascii_only = 1;
983 VALUE str;
984 size_t len;
985
986 if (zone == NULL) {
987 return rb_fstring_lit("(NO-TIMEZONE-ABBREVIATION)");
988 }
989
990 for (p = zone; *p; p++) {
991 if (!ISASCII(*p)) {
992 ascii_only = 0;
993 p += strlen(p);
994 break;
995 }
996 }
997 len = p - zone;
998 if (ascii_only) {
999 str = rb_usascii_str_new(zone, len);
1000 }
1001 else {
1002#ifdef _WIN32
1003 str = rb_utf8_str_new(zone, len);
1004 /* until we move to UTF-8 on Windows completely */
1005 str = rb_str_export_locale(str);
1006#else
1007 str = rb_enc_str_new(zone, len, rb_locale_encoding());
1008#endif
1009 }
1010 return rb_fstring(str);
1011}
1012
1013static void
1014gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
1015{
1016 VALUE v;
1017 int n, x, y;
1018 int wday;
1019 VALUE timev;
1020 wideval_t timew2, w, w2;
1021 VALUE subsecx;
1022
1023 vtm->isdst = 0;
1024
1025 split_second(timew, &timew2, &subsecx);
1026 vtm->subsecx = subsecx;
1027
1028 wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
1029 timev = w2v(w2);
1030 v = w2v(w);
1031
1032 wday = NUM2INT(modv(timev, INT2FIX(7)));
1033 vtm->wday = (wday + 4) % 7;
1034
1035 n = NUM2INT(v);
1036 vtm->sec = n % 60; n = n / 60;
1037 vtm->min = n % 60; n = n / 60;
1038 vtm->hour = n;
1039
1040 /* 97 leap days in the 400 year cycle */
1041 divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
1042 vtm->year = mulv(timev, INT2FIX(400));
1043
1044 /* n is the days in the 400 year cycle.
1045 * the start of the cycle is 1970-01-01. */
1046
1047 n = NUM2INT(v);
1048 y = 1970;
1049
1050 /* 30 years including 7 leap days (1972, 1976, ... 1996),
1051 * 31 days in January 2000 and
1052 * 29 days in February 2000
1053 * from 1970-01-01 to 2000-02-29 */
1054 if (30*365+7+31+29-1 <= n) {
1055 /* 2000-02-29 or after */
1056 if (n < 31*365+8) {
1057 /* 2000-02-29 to 2000-12-31 */
1058 y += 30;
1059 n -= 30*365+7;
1060 goto found;
1061 }
1062 else {
1063 /* 2001-01-01 or after */
1064 n -= 1;
1065 }
1066 }
1067
1068 x = n / (365*100 + 24);
1069 n = n % (365*100 + 24);
1070 y += x * 100;
1071 if (30*365+7+31+29-1 <= n) {
1072 if (n < 31*365+7) {
1073 y += 30;
1074 n -= 30*365+7;
1075 goto found;
1076 }
1077 else
1078 n += 1;
1079 }
1080
1081 x = n / (365*4 + 1);
1082 n = n % (365*4 + 1);
1083 y += x * 4;
1084 if (365*2+31+29-1 <= n) {
1085 if (n < 365*2+366) {
1086 y += 2;
1087 n -= 365*2;
1088 goto found;
1089 }
1090 else
1091 n -= 1;
1092 }
1093
1094 x = n / 365;
1095 n = n % 365;
1096 y += x;
1097
1098 found:
1099 vtm->yday = n+1;
1100 vtm->year = addv(vtm->year, INT2NUM(y));
1101
1102 if (leap_year_p(y)) {
1103 vtm->mon = leap_year_mon_of_yday[n];
1104 vtm->mday = leap_year_mday_of_yday[n];
1105 }
1106 else {
1107 vtm->mon = common_year_mon_of_yday[n];
1108 vtm->mday = common_year_mday_of_yday[n];
1109 }
1110
1111 vtm->utc_offset = INT2FIX(0);
1112 vtm->zone = str_utc;
1113}
1114
1115static struct tm *
1116gmtime_with_leapsecond(const time_t *timep, struct tm *result)
1117{
1118#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1119 /* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
1120 struct tm *t;
1121 int sign;
1122 int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
1123 long gmtoff;
1124 t = LOCALTIME(timep, *result);
1125 if (t == NULL)
1126 return NULL;
1127
1128 /* subtract gmtoff */
1129 if (t->tm_gmtoff < 0) {
1130 sign = 1;
1131 gmtoff = -t->tm_gmtoff;
1132 }
1133 else {
1134 sign = -1;
1135 gmtoff = t->tm_gmtoff;
1136 }
1137 gmtoff_sec = (int)(gmtoff % 60);
1138 gmtoff = gmtoff / 60;
1139 gmtoff_min = (int)(gmtoff % 60);
1140 gmtoff = gmtoff / 60;
1141 gmtoff_hour = (int)gmtoff; /* <= 12 */
1142
1143 gmtoff_sec *= sign;
1144 gmtoff_min *= sign;
1145 gmtoff_hour *= sign;
1146
1147 gmtoff_day = 0;
1148
1149 if (gmtoff_sec) {
1150 /* If gmtoff_sec == 0, don't change result->tm_sec.
1151 * It may be 60 which is a leap second. */
1152 result->tm_sec += gmtoff_sec;
1153 if (result->tm_sec < 0) {
1154 result->tm_sec += 60;
1155 gmtoff_min -= 1;
1156 }
1157 if (60 <= result->tm_sec) {
1158 result->tm_sec -= 60;
1159 gmtoff_min += 1;
1160 }
1161 }
1162 if (gmtoff_min) {
1163 result->tm_min += gmtoff_min;
1164 if (result->tm_min < 0) {
1165 result->tm_min += 60;
1166 gmtoff_hour -= 1;
1167 }
1168 if (60 <= result->tm_min) {
1169 result->tm_min -= 60;
1170 gmtoff_hour += 1;
1171 }
1172 }
1173 if (gmtoff_hour) {
1174 result->tm_hour += gmtoff_hour;
1175 if (result->tm_hour < 0) {
1176 result->tm_hour += 24;
1177 gmtoff_day = -1;
1178 }
1179 if (24 <= result->tm_hour) {
1180 result->tm_hour -= 24;
1181 gmtoff_day = 1;
1182 }
1183 }
1184
1185 if (gmtoff_day) {
1186 if (gmtoff_day < 0) {
1187 if (result->tm_yday == 0) {
1188 result->tm_mday = 31;
1189 result->tm_mon = 11; /* December */
1190 result->tm_year--;
1191 result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
1192 }
1193 else if (result->tm_mday == 1) {
1194 const int8_t *days_in_month = days_in_month_in(result->tm_year + 1900);
1195 result->tm_mon--;
1196 result->tm_mday = days_in_month[result->tm_mon];
1197 result->tm_yday--;
1198 }
1199 else {
1200 result->tm_mday--;
1201 result->tm_yday--;
1202 }
1203 result->tm_wday = (result->tm_wday + 6) % 7;
1204 }
1205 else {
1206 int leap = leap_year_p(result->tm_year + 1900);
1207 if (result->tm_yday == (leap ? 365 : 364)) {
1208 result->tm_year++;
1209 result->tm_mon = 0; /* January */
1210 result->tm_mday = 1;
1211 result->tm_yday = 0;
1212 }
1213 else if (result->tm_mday == days_in_month_of(leap)[result->tm_mon]) {
1214 result->tm_mon++;
1215 result->tm_mday = 1;
1216 result->tm_yday++;
1217 }
1218 else {
1219 result->tm_mday++;
1220 result->tm_yday++;
1221 }
1222 result->tm_wday = (result->tm_wday + 1) % 7;
1223 }
1224 }
1225 result->tm_isdst = 0;
1226 result->tm_gmtoff = 0;
1227#if defined(HAVE_TM_ZONE)
1228 result->tm_zone = (char *)"UTC";
1229#endif
1230 return result;
1231#else
1232 return GMTIME(timep, *result);
1233#endif
1234}
1235
1236static long this_year = 0;
1237static time_t known_leap_seconds_limit;
1238static int number_of_leap_seconds_known;
1239
1240static void
1241init_leap_second_info(void)
1242{
1243 /*
1244 * leap seconds are determined by IERS.
1245 * It is announced 6 months before the leap second.
1246 * So no one knows leap seconds in the future after the next year.
1247 */
1248 if (this_year == 0) {
1249 time_t now;
1250 struct tm *tm, result;
1251 struct vtm vtm;
1252 wideval_t timew;
1253 now = time(NULL);
1254#ifdef HAVE_GMTIME_R
1255 gmtime_r(&now, &result);
1256#else
1257 gmtime(&now);
1258#endif
1259 tm = gmtime_with_leapsecond(&now, &result);
1260 if (!tm) return;
1261 this_year = tm->tm_year;
1262
1263 if (TIMET_MAX - now < (time_t)(366*86400))
1264 known_leap_seconds_limit = TIMET_MAX;
1265 else
1266 known_leap_seconds_limit = now + (time_t)(366*86400);
1267
1268 if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
1269 return;
1270
1271 vtm.year = LONG2NUM(result.tm_year + 1900);
1272 vtm.mon = result.tm_mon + 1;
1273 vtm.mday = result.tm_mday;
1274 vtm.hour = result.tm_hour;
1275 vtm.min = result.tm_min;
1276 vtm.sec = result.tm_sec;
1277 vtm.subsecx = INT2FIX(0);
1278 vtm.utc_offset = INT2FIX(0);
1279
1280 timew = timegmw_noleapsecond(&vtm);
1281
1282 number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
1283 }
1284}
1285
1286/* Use this if you want to re-run init_leap_second_info() */
1287void
1288ruby_reset_leap_second_info(void)
1289{
1290 this_year = 0;
1291}
1292
1293static wideval_t
1294timegmw(struct vtm *vtm)
1295{
1296 wideval_t timew;
1297 struct tm tm;
1298 time_t t;
1299 const char *errmsg;
1300
1301 /* The first leap second is 1972-06-30 23:59:60 UTC.
1302 * No leap seconds before. */
1303 if (gt(INT2FIX(1972), vtm->year))
1304 return timegmw_noleapsecond(vtm);
1305
1306 init_leap_second_info();
1307
1308 timew = timegmw_noleapsecond(vtm);
1309
1310
1311 if (number_of_leap_seconds_known == 0) {
1312 /* When init_leap_second_info() is executed, the timezone doesn't have
1313 * leap second information. Disable leap second for calculating gmtime.
1314 */
1315 return timew;
1316 }
1317 else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1318 return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1319 }
1320
1321 tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
1322 tm.tm_mon = vtm->mon - 1;
1323 tm.tm_mday = vtm->mday;
1324 tm.tm_hour = vtm->hour;
1325 tm.tm_min = vtm->min;
1326 tm.tm_sec = vtm->sec;
1327 tm.tm_isdst = 0;
1328
1329 errmsg = find_time_t(&tm, 1, &t);
1330 if (errmsg)
1331 rb_raise(rb_eArgError, "%s", errmsg);
1332 return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1333}
1334
1335static struct vtm *
1336gmtimew(wideval_t timew, struct vtm *result)
1337{
1338 time_t t;
1339 struct tm tm;
1340 VALUE subsecx;
1341 wideval_t timew2;
1342
1343 if (wlt(timew, WINT2FIXWV(0))) {
1344 gmtimew_noleapsecond(timew, result);
1345 return result;
1346 }
1347
1348 init_leap_second_info();
1349
1350 if (number_of_leap_seconds_known == 0) {
1351 /* When init_leap_second_info() is executed, the timezone doesn't have
1352 * leap second information. Disable leap second for calculating gmtime.
1353 */
1354 gmtimew_noleapsecond(timew, result);
1355 return result;
1356 }
1357 else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
1358 timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
1359 gmtimew_noleapsecond(timew, result);
1360 return result;
1361 }
1362
1363 split_second(timew, &timew2, &subsecx);
1364
1365 t = WV2TIMET(timew2);
1366 if (!gmtime_with_leapsecond(&t, &tm))
1367 return NULL;
1368
1369 result->year = LONG2NUM((long)tm.tm_year + 1900);
1370 result->mon = tm.tm_mon + 1;
1371 result->mday = tm.tm_mday;
1372 result->hour = tm.tm_hour;
1373 result->min = tm.tm_min;
1374 result->sec = tm.tm_sec;
1375 result->subsecx = subsecx;
1376 result->utc_offset = INT2FIX(0);
1377 result->wday = tm.tm_wday;
1378 result->yday = tm.tm_yday+1;
1379 result->isdst = tm.tm_isdst;
1380
1381 return result;
1382}
1383
1384#define GMTIMEW(w, v) \
1385 (gmtimew(w, v) ? (void)0 : rb_raise(rb_eArgError, "gmtime error"))
1386
1387static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone);
1388
1389/*
1390 * The idea, extrapolate localtime() function, is borrowed from Perl:
1391 * http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml
1392 *
1393 * compat_common_month_table is generated by the following program.
1394 * This table finds the last month which starts at the same day of a week.
1395 * The year 2037 is not used because:
1396 * https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
1397 *
1398 * #!/usr/bin/ruby
1399 *
1400 * require 'date'
1401 *
1402 * h = {}
1403 * 2036.downto(2010) {|y|
1404 * 1.upto(12) {|m|
1405 * next if m == 2 && y % 4 == 0
1406 * d = Date.new(y,m,1)
1407 * h[m] ||= {}
1408 * h[m][d.wday] ||= y
1409 * }
1410 * }
1411 *
1412 * 1.upto(12) {|m|
1413 * print "{"
1414 * 0.upto(6) {|w|
1415 * y = h[m][w]
1416 * print " #{y},"
1417 * }
1418 * puts "},"
1419 * }
1420 *
1421 */
1422static const int compat_common_month_table[12][7] = {
1423 /* Sun Mon Tue Wed Thu Fri Sat */
1424 { 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
1425 { 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
1426 { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
1427 { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
1428 { 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
1429 { 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
1430 { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
1431 { 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
1432 { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
1433 { 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
1434 { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
1435 { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
1436};
1437
1438/*
1439 * compat_leap_month_table is generated by following program.
1440 *
1441 * #!/usr/bin/ruby
1442 *
1443 * require 'date'
1444 *
1445 * h = {}
1446 * 2037.downto(2010) {|y|
1447 * 1.upto(12) {|m|
1448 * next unless m == 2 && y % 4 == 0
1449 * d = Date.new(y,m,1)
1450 * h[m] ||= {}
1451 * h[m][d.wday] ||= y
1452 * }
1453 * }
1454 *
1455 * 2.upto(2) {|m|
1456 * 0.upto(6) {|w|
1457 * y = h[m][w]
1458 * print " #{y},"
1459 * }
1460 * puts
1461 * }
1462 */
1463static const int compat_leap_month_table[7] = {
1464/* Sun Mon Tue Wed Thu Fri Sat */
1465 2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
1466};
1467
1468static int
1469calc_wday(int year_mod400, int month, int day)
1470{
1471 int a, y, m;
1472 int wday;
1473
1474 a = (14 - month) / 12;
1475 y = year_mod400 + 4800 - a;
1476 m = month + 12 * a - 3;
1477 wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
1478 wday = wday % 7;
1479 return wday;
1480}
1481
1482static VALUE
1483guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, VALUE *zone_ret)
1484{
1485 struct tm tm;
1486 long gmtoff;
1487 VALUE zone;
1488 time_t t;
1489 struct vtm vtm2;
1490 VALUE timev;
1491 int year_mod400, wday;
1492
1493 /* Daylight Saving Time was introduced in 1916.
1494 * So we don't need to care about DST before that. */
1495 if (lt(vtm_utc->year, INT2FIX(1916))) {
1496 VALUE off = INT2FIX(0);
1497 int isdst = 0;
1498 zone = str_utc;
1499
1500# if defined(NEGATIVE_TIME_T)
1501# if SIZEOF_TIME_T <= 4
1502 /* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
1503# define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
1504# else
1505 /* Since the Royal Greenwich Observatory was commissioned in 1675,
1506 no timezone defined using GMT at 1600. */
1507# define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
1508# endif
1509 if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
1510 off = LONG2FIX(gmtoff);
1511 isdst = tm.tm_isdst;
1512 }
1513 else
1514# endif
1515 /* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
1516 if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
1517 off = LONG2FIX(gmtoff);
1518 isdst = tm.tm_isdst;
1519 }
1520
1521 if (isdst_ret)
1522 *isdst_ret = isdst;
1523 if (zone_ret)
1524 *zone_ret = zone;
1525 return off;
1526 }
1527
1528 /* It is difficult to guess the future. */
1529
1530 vtm2 = *vtm_utc;
1531
1532 /* guess using a year before 2038. */
1533 year_mod400 = NUM2INT(modv(vtm_utc->year, INT2FIX(400)));
1534 wday = calc_wday(year_mod400, vtm_utc->mon, 1);
1535 if (vtm_utc->mon == 2 && leap_year_p(year_mod400))
1536 vtm2.year = INT2FIX(compat_leap_month_table[wday]);
1537 else
1538 vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
1539
1540 timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
1541 t = NUM2TIMET(timev);
1542 zone = str_utc;
1543 if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1544 if (isdst_ret)
1545 *isdst_ret = tm.tm_isdst;
1546 if (zone_ret)
1547 *zone_ret = zone;
1548 return LONG2FIX(gmtoff);
1549 }
1550
1551 {
1552 /* Use the current time offset as a last resort. */
1553 static time_t now = 0;
1554 static long now_gmtoff = 0;
1555 static int now_isdst = 0;
1556 static VALUE now_zone;
1557 if (now == 0) {
1558 VALUE zone;
1559 now = time(NULL);
1560 localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &zone);
1561 now_isdst = tm.tm_isdst;
1562 zone = rb_fstring(zone);
1563 rb_vm_register_global_object(zone);
1564 now_zone = zone;
1565 }
1566 if (isdst_ret)
1567 *isdst_ret = now_isdst;
1568 if (zone_ret)
1569 *zone_ret = now_zone;
1570 return LONG2FIX(now_gmtoff);
1571 }
1572}
1573
1574static VALUE
1575small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
1576{
1577 int off;
1578
1579 off = vtm1->sec - vtm2->sec;
1580 off += (vtm1->min - vtm2->min) * 60;
1581 off += (vtm1->hour - vtm2->hour) * 3600;
1582 if (ne(vtm1->year, vtm2->year))
1583 off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
1584 else if (vtm1->mon != vtm2->mon)
1585 off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
1586 else if (vtm1->mday != vtm2->mday)
1587 off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
1588
1589 return INT2FIX(off);
1590}
1591
1592static wideval_t
1593timelocalw(struct vtm *vtm)
1594{
1595 time_t t;
1596 struct tm tm;
1597 VALUE v;
1598 wideval_t timew1, timew2;
1599 struct vtm vtm1, vtm2;
1600 int n;
1601
1602 if (FIXNUM_P(vtm->year)) {
1603 long l = FIX2LONG(vtm->year) - 1900;
1604 if (l < INT_MIN || INT_MAX < l)
1605 goto no_localtime;
1606 tm.tm_year = (int)l;
1607 }
1608 else {
1609 v = subv(vtm->year, INT2FIX(1900));
1610 if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
1611 goto no_localtime;
1612 tm.tm_year = NUM2INT(v);
1613 }
1614
1615 tm.tm_mon = vtm->mon-1;
1616 tm.tm_mday = vtm->mday;
1617 tm.tm_hour = vtm->hour;
1618 tm.tm_min = vtm->min;
1619 tm.tm_sec = vtm->sec;
1620 tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst;
1621
1622 if (find_time_t(&tm, 0, &t))
1623 goto no_localtime;
1624 return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
1625
1626 no_localtime:
1627 timew1 = timegmw(vtm);
1628
1629 if (!localtimew(timew1, &vtm1))
1630 rb_raise(rb_eArgError, "localtimew error");
1631
1632 n = vtmcmp(vtm, &vtm1);
1633 if (n == 0) {
1634 timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
1635 if (!localtimew(timew1, &vtm1))
1636 rb_raise(rb_eArgError, "localtimew error");
1637 n = 1;
1638 }
1639
1640 if (n < 0) {
1641 timew2 = timew1;
1642 vtm2 = vtm1;
1643 timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1644 if (!localtimew(timew1, &vtm1))
1645 rb_raise(rb_eArgError, "localtimew error");
1646 }
1647 else {
1648 timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
1649 if (!localtimew(timew2, &vtm2))
1650 rb_raise(rb_eArgError, "localtimew error");
1651 }
1652 timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
1653 timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
1654
1655 if (weq(timew1, timew2))
1656 return timew1;
1657
1658 if (!localtimew(timew1, &vtm1))
1659 rb_raise(rb_eArgError, "localtimew error");
1660 if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
1661 return timew2;
1662
1663 if (!localtimew(timew2, &vtm2))
1664 rb_raise(rb_eArgError, "localtimew error");
1665 if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
1666 return timew1;
1667
1668 if (vtm->isdst)
1669 return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
1670 else
1671 return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
1672}
1673
1674static struct tm *
1675localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone)
1676{
1677 struct tm tm;
1678
1679 if (LOCALTIME(t, tm)) {
1680#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
1681 *gmtoff = tm.tm_gmtoff;
1682#else
1683 struct tm *u, *l;
1684 long off;
1685 struct tm tmbuf;
1686 l = &tm;
1687 u = GMTIME(t, tmbuf);
1688 if (!u)
1689 return NULL;
1690 if (l->tm_year != u->tm_year)
1691 off = l->tm_year < u->tm_year ? -1 : 1;
1692 else if (l->tm_mon != u->tm_mon)
1693 off = l->tm_mon < u->tm_mon ? -1 : 1;
1694 else if (l->tm_mday != u->tm_mday)
1695 off = l->tm_mday < u->tm_mday ? -1 : 1;
1696 else
1697 off = 0;
1698 off = off * 24 + l->tm_hour - u->tm_hour;
1699 off = off * 60 + l->tm_min - u->tm_min;
1700 off = off * 60 + l->tm_sec - u->tm_sec;
1701 *gmtoff = off;
1702#endif
1703
1704 if (zone) {
1705#if defined(HAVE_TM_ZONE)
1706 *zone = zone_str(tm.tm_zone);
1707#elif defined(_WIN32)
1708 *zone = zone_str(get_tzname(tm.tm_isdst));
1709#elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
1710 /* this needs tzset or localtime, instead of localtime_r */
1711 *zone = zone_str(tzname[daylight && tm.tm_isdst]);
1712#else
1713 {
1714 char buf[64];
1715 strftime(buf, sizeof(buf), "%Z", &tm);
1716 *zone = zone_str(buf);
1717 }
1718#endif
1719 }
1720
1721 *result = tm;
1722 return result;
1723 }
1724 return NULL;
1725}
1726
1727static int
1728timew_out_of_timet_range(wideval_t timew)
1729{
1730 VALUE timexv;
1731#if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
1732 if (FIXWV_P(timew)) {
1733 wideint_t t = FIXWV2WINT(timew);
1734 if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
1735 TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
1736 return 1;
1737 return 0;
1738 }
1739#endif
1740#if SIZEOF_TIME_T == SIZEOF_INT64_T
1741 if (FIXWV_P(timew)) {
1742 wideint_t t = FIXWV2WINT(timew);
1743 if (~(time_t)0 <= 0) {
1744 return 0;
1745 }
1746 else {
1747 if (t < 0)
1748 return 1;
1749 return 0;
1750 }
1751 }
1752#endif
1753 timexv = w2v(timew);
1754 if (lt(timexv, mulv(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
1755 le(mulv(INT2FIX(TIME_SCALE), addv(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
1756 return 1;
1757 return 0;
1758}
1759
1760static struct vtm *
1761localtimew(wideval_t timew, struct vtm *result)
1762{
1763 VALUE subsecx, offset;
1764 VALUE zone;
1765 int isdst;
1766
1767 if (!timew_out_of_timet_range(timew)) {
1768 time_t t;
1769 struct tm tm;
1770 long gmtoff;
1771 wideval_t timew2;
1772
1773 split_second(timew, &timew2, &subsecx);
1774
1775 t = WV2TIMET(timew2);
1776
1777 if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
1778 result->year = LONG2NUM((long)tm.tm_year + 1900);
1779 result->mon = tm.tm_mon + 1;
1780 result->mday = tm.tm_mday;
1781 result->hour = tm.tm_hour;
1782 result->min = tm.tm_min;
1783 result->sec = tm.tm_sec;
1784 result->subsecx = subsecx;
1785 result->wday = tm.tm_wday;
1786 result->yday = tm.tm_yday+1;
1787 result->isdst = tm.tm_isdst;
1788 result->utc_offset = LONG2NUM(gmtoff);
1789 result->zone = zone;
1790 return result;
1791 }
1792 }
1793
1794 if (!gmtimew(timew, result))
1795 return NULL;
1796
1797 offset = guess_local_offset(result, &isdst, &zone);
1798
1799 if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
1800 return NULL;
1801
1802 result->utc_offset = offset;
1803 result->isdst = isdst;
1804 result->zone = zone;
1805
1806 return result;
1807}
1808
1809#define TIME_TZMODE_LOCALTIME 0
1810#define TIME_TZMODE_UTC 1
1811#define TIME_TZMODE_FIXOFF 2
1812#define TIME_TZMODE_UNINITIALIZED 3
1813
1815 wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */
1816 struct vtm vtm;
1817};
1818
1819#define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj))
1820#define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj))
1821
1822#define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
1823#define TIME_INIT_P(tobj) ((tobj)->vtm.tzmode != TIME_TZMODE_UNINITIALIZED)
1824
1825#define TZMODE_UTC_P(tobj) ((tobj)->vtm.tzmode == TIME_TZMODE_UTC)
1826#define TZMODE_SET_UTC(tobj) ((tobj)->vtm.tzmode = TIME_TZMODE_UTC)
1827
1828#define TZMODE_LOCALTIME_P(tobj) ((tobj)->vtm.tzmode == TIME_TZMODE_LOCALTIME)
1829#define TZMODE_SET_LOCALTIME(tobj) ((tobj)->vtm.tzmode = TIME_TZMODE_LOCALTIME)
1830
1831#define TZMODE_FIXOFF_P(tobj) ((tobj)->vtm.tzmode == TIME_TZMODE_FIXOFF)
1832#define TZMODE_SET_FIXOFF(time, tobj, off) do { \
1833 (tobj)->vtm.tzmode = TIME_TZMODE_FIXOFF; \
1834 RB_OBJ_WRITE_UNALIGNED(time, &(tobj)->vtm.utc_offset, off); \
1835} while (0)
1836
1837#define TZMODE_COPY(tobj1, tobj2) \
1838 ((tobj1)->vtm.tzmode = (tobj2)->vtm.tzmode, \
1839 (tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
1840 (tobj1)->vtm.zone = (tobj2)->vtm.zone)
1841
1842static int zone_localtime(VALUE zone, VALUE time);
1843static VALUE time_get_tm(VALUE, struct time_object *);
1844#define MAKE_TM(time, tobj) \
1845 do { \
1846 if ((tobj)->vtm.tm_got == 0) { \
1847 time_get_tm((time), (tobj)); \
1848 } \
1849 } while (0)
1850#define MAKE_TM_ENSURE(time, tobj, cond) \
1851 do { \
1852 MAKE_TM(time, tobj); \
1853 if (!(cond)) { \
1854 force_make_tm(time, tobj); \
1855 } \
1856 } while (0)
1857
1858static void
1859time_set_timew(VALUE time, struct time_object *tobj, wideval_t timew)
1860{
1861 tobj->timew = timew;
1862 if (!FIXWV_P(timew)) {
1863 RB_OBJ_WRITTEN(time, Qnil, w2v(timew));
1864 }
1865}
1866
1867static void
1868time_set_vtm(VALUE time, struct time_object *tobj, struct vtm vtm)
1869{
1870 tobj->vtm = vtm;
1871
1872 RB_OBJ_WRITTEN(time, Qnil, tobj->vtm.year);
1873 RB_OBJ_WRITTEN(time, Qnil, tobj->vtm.subsecx);
1874 RB_OBJ_WRITTEN(time, Qnil, tobj->vtm.utc_offset);
1875 RB_OBJ_WRITTEN(time, Qnil, tobj->vtm.zone);
1876}
1877
1878static inline void
1879force_make_tm(VALUE time, struct time_object *tobj)
1880{
1881 VALUE zone = tobj->vtm.zone;
1882 if (!NIL_P(zone) && zone != str_empty && zone != str_utc) {
1883 if (zone_localtime(zone, time)) return;
1884 }
1885 tobj->vtm.tm_got = 0;
1886 time_get_tm(time, tobj);
1887}
1888
1889static void
1890time_mark(void *ptr)
1891{
1892 struct time_object *tobj = ptr;
1893 if (!FIXWV_P(tobj->timew)) {
1894 rb_gc_mark_movable(WIDEVAL_GET(tobj->timew));
1895 }
1896 rb_gc_mark_movable(tobj->vtm.year);
1897 rb_gc_mark_movable(tobj->vtm.subsecx);
1898 rb_gc_mark_movable(tobj->vtm.utc_offset);
1899 rb_gc_mark_movable(tobj->vtm.zone);
1900}
1901
1902static void
1903time_compact(void *ptr)
1904{
1905 struct time_object *tobj = ptr;
1906 if (!FIXWV_P(tobj->timew)) {
1907 WIDEVAL_GET(tobj->timew) = rb_gc_location(WIDEVAL_GET(tobj->timew));
1908 }
1909
1910 tobj->vtm.year = rb_gc_location(tobj->vtm.year);
1911 tobj->vtm.subsecx = rb_gc_location(tobj->vtm.subsecx);
1912 tobj->vtm.utc_offset = rb_gc_location(tobj->vtm.utc_offset);
1913 tobj->vtm.zone = rb_gc_location(tobj->vtm.zone);
1914}
1915
1916static const rb_data_type_t time_data_type = {
1917 .wrap_struct_name = "time",
1918 .function = {
1919 .dmark = time_mark,
1920 .dfree = RUBY_TYPED_DEFAULT_FREE,
1921 .dsize = NULL,
1922 .dcompact = time_compact,
1923 },
1924 .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_FROZEN_SHAREABLE | RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_EMBEDDABLE,
1925};
1926
1927static VALUE
1928time_s_alloc(VALUE klass)
1929{
1930 VALUE obj;
1931 struct time_object *tobj;
1932
1933 obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
1934 tobj->vtm.tzmode = TIME_TZMODE_UNINITIALIZED;
1935 tobj->vtm.tm_got = 0;
1936 time_set_timew(obj, tobj, WINT2FIXWV(0));
1937 tobj->vtm.zone = Qnil;
1938
1939 return obj;
1940}
1941
1942static struct time_object *
1943get_timeval(VALUE obj)
1944{
1945 struct time_object *tobj;
1946 TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1947 if (!TIME_INIT_P(tobj)) {
1948 rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj));
1949 }
1950 return tobj;
1951}
1952
1953static struct time_object *
1954get_new_timeval(VALUE obj)
1955{
1956 struct time_object *tobj;
1957 TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
1958 if (TIME_INIT_P(tobj)) {
1959 rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj));
1960 }
1961 return tobj;
1962}
1963
1964static void
1965time_modify(VALUE time)
1966{
1967 rb_check_frozen(time);
1968}
1969
1970static wideval_t
1971timenano2timew(time_t sec, long nsec)
1972{
1973 wideval_t timew;
1974
1975 timew = rb_time_magnify(TIMET2WV(sec));
1976 if (nsec)
1977 timew = wadd(timew, wmulquoll(WINT2WV(nsec), TIME_SCALE, 1000000000));
1978 return timew;
1979}
1980
1981static struct timespec
1982timew2timespec(wideval_t timew)
1983{
1984 VALUE subsecx;
1985 struct timespec ts;
1986 wideval_t timew2;
1987
1988 if (timew_out_of_timet_range(timew))
1989 rb_raise(rb_eArgError, "time out of system range");
1990 split_second(timew, &timew2, &subsecx);
1991 ts.tv_sec = WV2TIMET(timew2);
1992 ts.tv_nsec = NUM2LONG(mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
1993 return ts;
1994}
1995
1996static struct timespec *
1997timew2timespec_exact(wideval_t timew, struct timespec *ts)
1998{
1999 VALUE subsecx;
2000 wideval_t timew2;
2001 VALUE nsecv;
2002
2003 if (timew_out_of_timet_range(timew))
2004 return NULL;
2005 split_second(timew, &timew2, &subsecx);
2006 ts->tv_sec = WV2TIMET(timew2);
2007 nsecv = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
2008 if (!FIXNUM_P(nsecv))
2009 return NULL;
2010 ts->tv_nsec = NUM2LONG(nsecv);
2011 return ts;
2012}
2013
2014void
2016{
2017#ifdef HAVE_CLOCK_GETTIME
2018 if (clock_gettime(CLOCK_REALTIME, ts) == -1) {
2019 rb_sys_fail("clock_gettime");
2020 }
2021#else
2022 {
2023 struct timeval tv;
2024 if (gettimeofday(&tv, 0) < 0) {
2025 rb_sys_fail("gettimeofday");
2026 }
2027 ts->tv_sec = tv.tv_sec;
2028 ts->tv_nsec = tv.tv_usec * 1000;
2029 }
2030#endif
2031}
2032
2033/*
2034 * Sets the current time information into _time_.
2035 * Returns _time_.
2036 */
2037static VALUE
2038time_init_now(rb_execution_context_t *ec, VALUE time, VALUE zone)
2039{
2040 struct time_object *tobj;
2041 struct timespec ts;
2042
2043 time_modify(time);
2044 GetNewTimeval(time, tobj);
2045 TZMODE_SET_LOCALTIME(tobj);
2046 tobj->vtm.tm_got=0;
2047 rb_timespec_now(&ts);
2048 time_set_timew(time, tobj, timenano2timew(ts.tv_sec, ts.tv_nsec));
2049
2050 if (!NIL_P(zone)) {
2051 time_zonelocal(time, zone);
2052 }
2053 return time;
2054}
2055
2056static VALUE
2057time_s_now(rb_execution_context_t *ec, VALUE klass, VALUE zone)
2058{
2059 VALUE t = time_s_alloc(klass);
2060 return time_init_now(ec, t, zone);
2061}
2062
2063static VALUE
2064time_set_utc_offset(VALUE time, VALUE off)
2065{
2066 struct time_object *tobj;
2067 off = num_exact(off);
2068
2069 time_modify(time);
2070 GetTimeval(time, tobj);
2071
2072 tobj->vtm.tm_got = 0;
2073 tobj->vtm.zone = Qnil;
2074 TZMODE_SET_FIXOFF(time, tobj, off);
2075
2076 return time;
2077}
2078
2079static void
2080vtm_add_offset(struct vtm *vtm, VALUE off, int sign)
2081{
2082 VALUE subsec, v;
2083 int sec, min, hour;
2084 int day;
2085
2086 if (lt(off, INT2FIX(0))) {
2087 sign = -sign;
2088 off = neg(off);
2089 }
2090 divmodv(off, INT2FIX(1), &off, &subsec);
2091 divmodv(off, INT2FIX(60), &off, &v);
2092 sec = NUM2INT(v);
2093 divmodv(off, INT2FIX(60), &off, &v);
2094 min = NUM2INT(v);
2095 divmodv(off, INT2FIX(24), &off, &v);
2096 hour = NUM2INT(v);
2097
2098 if (sign < 0) {
2099 subsec = neg(subsec);
2100 sec = -sec;
2101 min = -min;
2102 hour = -hour;
2103 }
2104
2105 day = 0;
2106
2107 if (!rb_equal(subsec, INT2FIX(0))) {
2108 vtm->subsecx = addv(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
2109 if (lt(vtm->subsecx, INT2FIX(0))) {
2110 vtm->subsecx = addv(vtm->subsecx, INT2FIX(TIME_SCALE));
2111 sec -= 1;
2112 }
2113 if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
2114 vtm->subsecx = subv(vtm->subsecx, INT2FIX(TIME_SCALE));
2115 sec += 1;
2116 }
2117 }
2118 if (sec) {
2119 /* If sec + subsec == 0, don't change vtm->sec.
2120 * It may be 60 which is a leap second. */
2121 sec += vtm->sec;
2122 if (sec < 0) {
2123 sec += 60;
2124 min -= 1;
2125 }
2126 if (60 <= sec) {
2127 sec -= 60;
2128 min += 1;
2129 }
2130 vtm->sec = sec;
2131 }
2132 if (min) {
2133 min += vtm->min;
2134 if (min < 0) {
2135 min += 60;
2136 hour -= 1;
2137 }
2138 if (60 <= min) {
2139 min -= 60;
2140 hour += 1;
2141 }
2142 vtm->min = min;
2143 }
2144 if (hour) {
2145 hour += vtm->hour;
2146 if (hour < 0) {
2147 hour += 24;
2148 day = -1;
2149 }
2150 if (24 <= hour) {
2151 hour -= 24;
2152 day = 1;
2153 }
2154 vtm->hour = hour;
2155 }
2156
2157 vtm_add_day(vtm, day);
2158}
2159
2160static void
2161vtm_add_day(struct vtm *vtm, int day)
2162{
2163 if (day) {
2164 if (day < 0) {
2165 if (vtm->mon == 1 && vtm->mday == 1) {
2166 vtm->mday = 31;
2167 vtm->mon = 12; /* December */
2168 vtm->year = subv(vtm->year, INT2FIX(1));
2169 if (vtm->yday != 0)
2170 vtm->yday = leap_year_v_p(vtm->year) ? 366 : 365;
2171 }
2172 else if (vtm->mday == 1) {
2173 const int8_t *days_in_month = days_in_month_in_v(vtm->year);
2174 vtm->mon--;
2175 vtm->mday = days_in_month[vtm->mon-1];
2176 if (vtm->yday != 0) vtm->yday--;
2177 }
2178 else {
2179 vtm->mday--;
2180 if (vtm->yday != 0) vtm->yday--;
2181 }
2182 if (vtm->wday != VTM_WDAY_INITVAL) vtm->wday = (vtm->wday + 6) % 7;
2183 }
2184 else {
2185 int leap = leap_year_v_p(vtm->year);
2186 if (vtm->mon == 12 && vtm->mday == 31) {
2187 vtm->year = addv(vtm->year, INT2FIX(1));
2188 vtm->mon = 1; /* January */
2189 vtm->mday = 1;
2190 vtm->yday = 1;
2191 }
2192 else if (vtm->mday == days_in_month_of(leap)[vtm->mon-1]) {
2193 vtm->mon++;
2194 vtm->mday = 1;
2195 if (vtm->yday != 0) vtm->yday++;
2196 }
2197 else {
2198 vtm->mday++;
2199 if (vtm->yday != 0) vtm->yday++;
2200 }
2201 if (vtm->wday != VTM_WDAY_INITVAL) vtm->wday = (vtm->wday + 1) % 7;
2202 }
2203 }
2204}
2205
2206static int
2207maybe_tzobj_p(VALUE obj)
2208{
2209 if (NIL_P(obj)) return FALSE;
2210 if (RB_INTEGER_TYPE_P(obj)) return FALSE;
2211 if (RB_TYPE_P(obj, T_STRING)) return FALSE;
2212 return TRUE;
2213}
2214
2215NORETURN(static void invalid_utc_offset(VALUE));
2216static void
2217invalid_utc_offset(VALUE zone)
2218{
2219 rb_raise(rb_eArgError, "\"+HH:MM\", \"-HH:MM\", \"UTC\" or "
2220 "\"A\"..\"I\",\"K\"..\"Z\" expected for utc_offset: %"PRIsVALUE,
2221 zone);
2222}
2223
2224#define have_2digits(ptr) (ISDIGIT((ptr)[0]) && ISDIGIT((ptr)[1]))
2225#define num_from_2digits(ptr) ((ptr)[0] * 10 + (ptr)[1] - '0' * 11)
2226
2227static VALUE
2228utc_offset_arg(VALUE arg)
2229{
2230 VALUE tmp;
2231 if (!NIL_P(tmp = rb_check_string_type(arg))) {
2232 int n = 0;
2233 const char *s = RSTRING_PTR(tmp), *min = NULL, *sec = NULL;
2234 if (!rb_enc_str_asciicompat_p(tmp)) {
2235 goto invalid_utc_offset;
2236 }
2237 switch (RSTRING_LEN(tmp)) {
2238 case 1:
2239 if (s[0] == 'Z') {
2240 return UTC_ZONE;
2241 }
2242 /* Military Time Zone Names */
2243 if (s[0] >= 'A' && s[0] <= 'I') {
2244 n = (int)s[0] - 'A' + 1;
2245 }
2246 /* No 'J' zone */
2247 else if (s[0] >= 'K' && s[0] <= 'M') {
2248 n = (int)s[0] - 'A';
2249 }
2250 else if (s[0] >= 'N' && s[0] <= 'Y') {
2251 n = 'M' - (int)s[0];
2252 }
2253 else {
2254 goto invalid_utc_offset;
2255 }
2256 n *= 3600;
2257 return INT2FIX(n);
2258 case 3:
2259 if (STRNCASECMP("UTC", s, 3) == 0) {
2260 return UTC_ZONE;
2261 }
2262 break; /* +HH */
2263 case 7: /* +HHMMSS */
2264 sec = s+5;
2265 /* fallthrough */
2266 case 5: /* +HHMM */
2267 min = s+3;
2268 break;
2269 case 9: /* +HH:MM:SS */
2270 if (s[6] != ':') goto invalid_utc_offset;
2271 sec = s+7;
2272 /* fallthrough */
2273 case 6: /* +HH:MM */
2274 if (s[3] != ':') goto invalid_utc_offset;
2275 min = s+4;
2276 break;
2277 default:
2278 goto invalid_utc_offset;
2279 }
2280 if (sec) {
2281 if (!have_2digits(sec)) goto invalid_utc_offset;
2282 if (sec[0] > '5') goto invalid_utc_offset;
2283 n += num_from_2digits(sec);
2284 ASSUME(min);
2285 }
2286 if (min) {
2287 if (!have_2digits(min)) goto invalid_utc_offset;
2288 if (min[0] > '5') goto invalid_utc_offset;
2289 n += num_from_2digits(min) * 60;
2290 }
2291 if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
2292 if (!have_2digits(s+1)) goto invalid_utc_offset;
2293 n += num_from_2digits(s+1) * 3600;
2294 if (s[0] == '-') {
2295 if (n == 0) return UTC_ZONE;
2296 n = -n;
2297 }
2298 return INT2FIX(n);
2299 }
2300 else {
2301 return num_exact(arg);
2302 }
2303 invalid_utc_offset:
2304 return Qnil;
2305}
2306
2307static void
2308zone_set_offset(VALUE zone, struct time_object *tobj,
2309 wideval_t tlocal, wideval_t tutc)
2310{
2311 /* tlocal and tutc must be unmagnified and in seconds */
2312 wideval_t w = wsub(tlocal, tutc);
2313 VALUE off = w2v(w);
2314 validate_utc_offset(off);
2315 tobj->vtm.utc_offset = off;
2316 tobj->vtm.zone = zone;
2317 TZMODE_SET_LOCALTIME(tobj);
2318}
2319
2320static wideval_t
2321extract_time(VALUE time)
2322{
2323 wideval_t t;
2324 const ID id_to_i = idTo_i;
2325
2326#define EXTRACT_TIME() do { \
2327 t = NUM2WV(AREF(to_i)); \
2328 } while (0)
2329
2330 if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2331 struct time_object *tobj = RTYPEDDATA_GET_DATA(time);
2332
2333 time_gmtime(time); /* ensure tm got */
2334 t = rb_time_unmagnify(tobj->timew);
2335
2336 RB_GC_GUARD(time);
2337 }
2338 else if (RB_TYPE_P(time, T_STRUCT)) {
2339#define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2340 EXTRACT_TIME();
2341#undef AREF
2342 }
2343 else {
2344#define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2345 EXTRACT_TIME();
2346#undef AREF
2347 }
2348#undef EXTRACT_TIME
2349
2350 return t;
2351}
2352
2353static wideval_t
2354extract_vtm(VALUE time, VALUE orig_time, struct time_object *orig_tobj, VALUE subsecx)
2355{
2356 wideval_t t;
2357 const ID id_to_i = idTo_i;
2358 struct vtm *vtm = &orig_tobj->vtm;
2359
2360#define EXTRACT_VTM() do { \
2361 VALUE subsecx; \
2362 vtm->year = obj2vint(AREF(year)); \
2363 vtm->mon = month_arg(AREF(mon)); \
2364 vtm->mday = obj2ubits(AREF(mday), 5); \
2365 vtm->hour = obj2ubits(AREF(hour), 5); \
2366 vtm->min = obj2ubits(AREF(min), 6); \
2367 vtm->sec = obj2subsecx(AREF(sec), &subsecx); \
2368 vtm->isdst = RTEST(AREF(isdst)); \
2369 vtm->utc_offset = Qnil; \
2370 t = NUM2WV(AREF(to_i)); \
2371 } while (0)
2372
2373 if (rb_typeddata_is_kind_of(time, &time_data_type)) {
2374 struct time_object *tobj = RTYPEDDATA_GET_DATA(time);
2375
2376 time_get_tm(time, tobj);
2377 time_set_vtm(orig_time, orig_tobj, tobj->vtm);
2378 t = rb_time_unmagnify(tobj->timew);
2379 if (TZMODE_FIXOFF_P(tobj) && vtm->utc_offset != INT2FIX(0))
2380 t = wadd(t, v2w(vtm->utc_offset));
2381
2382 RB_GC_GUARD(time);
2383 }
2384 else if (RB_TYPE_P(time, T_STRUCT)) {
2385#define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
2386 EXTRACT_VTM();
2387#undef AREF
2388 }
2389 else if (rb_integer_type_p(time)) {
2390 t = v2w(time);
2391 struct vtm temp_vtm = *vtm;
2392 GMTIMEW(rb_time_magnify(t), &temp_vtm);
2393 time_set_vtm(orig_time, orig_tobj, temp_vtm);
2394 }
2395 else {
2396#define AREF(x) rb_funcallv(time, id_##x, 0, 0)
2397 EXTRACT_VTM();
2398#undef AREF
2399 }
2400#undef EXTRACT_VTM
2401
2402 RB_OBJ_WRITE_UNALIGNED(orig_time, &vtm->subsecx, subsecx);
2403
2404 validate_vtm(vtm);
2405 return t;
2406}
2407
2408static void
2409zone_set_dst(VALUE zone, struct time_object *tobj, VALUE tm)
2410{
2411 ID id_dst_p;
2412 VALUE dst;
2413 CONST_ID(id_dst_p, "dst?");
2414 dst = rb_check_funcall(zone, id_dst_p, 1, &tm);
2415 tobj->vtm.isdst = (!UNDEF_P(dst) && RTEST(dst));
2416}
2417
2418static int
2419zone_timelocal(VALUE zone, VALUE time)
2420{
2421 VALUE utc, tm;
2422 struct time_object *tobj = RTYPEDDATA_GET_DATA(time);
2423 wideval_t t, s;
2424
2425 wdivmod(tobj->timew, WINT2FIXWV(TIME_SCALE), &t, &s);
2426 tm = tm_from_time(rb_cTimeTM, time);
2427 utc = rb_check_funcall(zone, id_local_to_utc, 1, &tm);
2428 if (UNDEF_P(utc)) return 0;
2429
2430 s = extract_time(utc);
2431 zone_set_offset(zone, tobj, t, s);
2432 s = rb_time_magnify(s);
2433 if (tobj->vtm.subsecx != INT2FIX(0)) {
2434 s = wadd(s, v2w(tobj->vtm.subsecx));
2435 }
2436 time_set_timew(time, tobj, s);
2437
2438 zone_set_dst(zone, tobj, tm);
2439
2440 RB_GC_GUARD(time);
2441
2442 return 1;
2443}
2444
2445static int
2446zone_localtime(VALUE zone, VALUE time)
2447{
2448 VALUE local, tm, subsecx;
2449 struct time_object *tobj = RTYPEDDATA_GET_DATA(time);
2450 wideval_t t, s;
2451
2452 split_second(tobj->timew, &t, &subsecx);
2453 tm = tm_from_time(rb_cTimeTM, time);
2454
2455 local = rb_check_funcall(zone, id_utc_to_local, 1, &tm);
2456 if (UNDEF_P(local)) return 0;
2457
2458 s = extract_vtm(local, time, tobj, subsecx);
2459 tobj->vtm.tm_got = 1;
2460 zone_set_offset(zone, tobj, s, t);
2461 zone_set_dst(zone, tobj, tm);
2462
2463 RB_GC_GUARD(time);
2464
2465 return 1;
2466}
2467
2468static VALUE
2469find_timezone(VALUE time, VALUE zone)
2470{
2471 VALUE klass = CLASS_OF(time);
2472
2473 return rb_check_funcall_default(klass, id_find_timezone, 1, &zone, Qnil);
2474}
2475
2476/* Turn the special case 24:00:00 of already validated vtm into
2477 * 00:00:00 the next day */
2478static void
2479vtm_day_wraparound(struct vtm *vtm)
2480{
2481 if (vtm->hour < 24) return;
2482
2483 /* Assuming UTC and no care of DST, just reset hour and advance
2484 * date, not to discard the validated vtm. */
2485 vtm->hour = 0;
2486 vtm_add_day(vtm, 1);
2487}
2488
2489static VALUE time_init_vtm(VALUE time, struct vtm vtm, VALUE zone);
2490
2491/*
2492 * Sets the broken-out time information into _time_.
2493 * Returns _time_.
2494 */
2495static VALUE
2496time_init_args(rb_execution_context_t *ec, VALUE time, VALUE year, VALUE mon, VALUE mday,
2497 VALUE hour, VALUE min, VALUE sec, VALUE zone)
2498{
2499 struct vtm vtm;
2500
2501 vtm.wday = VTM_WDAY_INITVAL;
2502 vtm.yday = 0;
2503 vtm.zone = str_empty;
2504
2505 vtm.year = obj2vint(year);
2506
2507 vtm.mon = NIL_P(mon) ? 1 : month_arg(mon);
2508
2509 vtm.mday = NIL_P(mday) ? 1 : obj2ubits(mday, 5);
2510
2511 vtm.hour = NIL_P(hour) ? 0 : obj2ubits(hour, 5);
2512
2513 vtm.min = NIL_P(min) ? 0 : obj2ubits(min, 6);
2514
2515 if (NIL_P(sec)) {
2516 vtm.sec = 0;
2517 vtm.subsecx = INT2FIX(0);
2518 }
2519 else {
2520 VALUE subsecx;
2521 vtm.sec = obj2subsecx(sec, &subsecx);
2522 vtm.subsecx = subsecx;
2523 }
2524
2525 return time_init_vtm(time, vtm, zone);
2526}
2527
2528static VALUE
2529time_init_vtm(VALUE time, struct vtm vtm, VALUE zone)
2530{
2531 VALUE utc = Qnil;
2532 struct time_object *tobj;
2533
2534 vtm.isdst = VTM_ISDST_INITVAL;
2535 vtm.utc_offset = Qnil;
2536 const VALUE arg = zone;
2537 if (!NIL_P(arg)) {
2538 zone = Qnil;
2539 if (arg == ID2SYM(rb_intern("dst")))
2540 vtm.isdst = 1;
2541 else if (arg == ID2SYM(rb_intern("std")))
2542 vtm.isdst = 0;
2543 else if (maybe_tzobj_p(arg))
2544 zone = arg;
2545 else if (!NIL_P(utc = utc_offset_arg(arg)))
2546 vtm.utc_offset = utc == UTC_ZONE ? INT2FIX(0) : utc;
2547 else if (NIL_P(zone = find_timezone(time, arg)))
2548 invalid_utc_offset(arg);
2549 }
2550
2551 validate_vtm(&vtm);
2552
2553 time_modify(time);
2554 GetNewTimeval(time, tobj);
2555
2556 if (!NIL_P(zone)) {
2557 time_set_timew(time, tobj, timegmw(&vtm));
2558 vtm_day_wraparound(&vtm);
2559 time_set_vtm(time, tobj, vtm);
2560 tobj->vtm.tm_got = 1;
2561 TZMODE_SET_LOCALTIME(tobj);
2562 if (zone_timelocal(zone, time)) {
2563 return time;
2564 }
2565 else if (NIL_P(vtm.utc_offset = utc_offset_arg(zone))) {
2566 if (NIL_P(zone = find_timezone(time, zone)) || !zone_timelocal(zone, time))
2567 invalid_utc_offset(arg);
2568 }
2569 }
2570
2571 if (utc == UTC_ZONE) {
2572 time_set_timew(time, tobj, timegmw(&vtm));
2573 vtm.isdst = 0; /* No DST in UTC */
2574 vtm_day_wraparound(&vtm);
2575 time_set_vtm(time, tobj, vtm);
2576 tobj->vtm.tm_got = 1;
2577 TZMODE_SET_UTC(tobj);
2578 return time;
2579 }
2580
2581 TZMODE_SET_LOCALTIME(tobj);
2582 tobj->vtm.tm_got=0;
2583
2584 if (!NIL_P(vtm.utc_offset)) {
2585 VALUE off = vtm.utc_offset;
2586 vtm_add_offset(&vtm, off, -1);
2587 vtm.utc_offset = Qnil;
2588 time_set_timew(time, tobj, timegmw(&vtm));
2589
2590 return time_set_utc_offset(time, off);
2591 }
2592 else {
2593 time_set_timew(time, tobj, timelocalw(&vtm));
2594
2595 return time_localtime(time);
2596 }
2597}
2598
2599static int
2600two_digits(const char *ptr, const char *end, const char **endp, const char *name)
2601{
2602 ssize_t len = end - ptr;
2603 if (len < 2 || !have_2digits(ptr) || ((len > 2) && ISDIGIT(ptr[2]))) {
2604 VALUE mesg = rb_sprintf("two digits %s is expected", name);
2605 if (ptr[-1] == '-' || ptr[-1] == ':') {
2606 rb_str_catf(mesg, " after '%c'", ptr[-1]);
2607 }
2608 rb_str_catf(mesg, ": %.*s", ((len > 10) ? 10 : (int)(end - ptr)) + 1, ptr - 1);
2609 rb_exc_raise(rb_exc_new_str(rb_eArgError, mesg));
2610 }
2611 *endp = ptr + 2;
2612 return num_from_2digits(ptr);
2613}
2614
2615static VALUE
2616parse_int(const char *ptr, const char *end, const char **endp, size_t *ndigits, bool sign)
2617{
2618 ssize_t len = (end - ptr);
2619 int flags = sign ? RB_INT_PARSE_SIGN : 0;
2620 return rb_int_parse_cstr(ptr, len, (char **)endp, ndigits, 10, flags);
2621}
2622
2623/*
2624 * Parses _str_ and sets the broken-out time information into _time_.
2625 * If _str_ is not a String, returns +nil+, otherwise returns _time_.
2626 */
2627static VALUE
2628time_init_parse(rb_execution_context_t *ec, VALUE time, VALUE str, VALUE zone, VALUE precision)
2629{
2630 if (NIL_P(str = rb_check_string_type(str))) return Qnil;
2631 if (!rb_enc_str_asciicompat_p(str)) {
2632 rb_raise(rb_eArgError, "time string should have ASCII compatible encoding");
2633 }
2634
2635 const char *const begin = RSTRING_PTR(str);
2636 const char *const end = RSTRING_END(str);
2637 const char *ptr = begin;
2638 VALUE year = Qnil, subsec = Qnil;
2639 int mon = -1, mday = -1, hour = -1, min = -1, sec = -1;
2640 size_t ndigits;
2641 size_t prec = NIL_P(precision) ? SIZE_MAX : NUM2SIZET(precision);
2642
2643 if ((ptr < end) && (ISSPACE(*ptr) || ISSPACE(*(end-1)))) {
2644 rb_raise(rb_eArgError, "can't parse: %+"PRIsVALUE, str);
2645 }
2646 year = parse_int(ptr, end, &ptr, &ndigits, true);
2647 if (NIL_P(year)) {
2648 rb_raise(rb_eArgError, "can't parse: %+"PRIsVALUE, str);
2649 }
2650 else if (ndigits < 4) {
2651 rb_raise(rb_eArgError, "year must be 4 or more digits: %.*s", (int)ndigits, ptr - ndigits);
2652 }
2653 else if (ptr == end) {
2654 goto only_year;
2655 }
2656 do {
2657#define peekable_p(n) ((ptrdiff_t)(n) < (end - ptr))
2658#define peek_n(c, n) (peekable_p(n) && ((unsigned char)ptr[n] == (c)))
2659#define peek(c) peek_n(c, 0)
2660#define peekc_n(n) (peekable_p(n) ? (int)(unsigned char)ptr[n] : -1)
2661#define peekc() peekc_n(0)
2662#define expect_two_digits(x, bits) \
2663 (((unsigned int)(x = two_digits(ptr + 1, end, &ptr, #x)) > (1U << bits) - 1) ? \
2664 rb_raise(rb_eArgError, #x" out of range") : (void)0)
2665 if (!peek('-')) break;
2666 expect_two_digits(mon, 4);
2667 if (!peek('-')) break;
2668 expect_two_digits(mday, 5);
2669 if (!peek(' ') && !peek('T')) break;
2670 const char *const time_part = ptr + 1;
2671 if (!ISDIGIT(peekc_n(1))) break;
2672#define nofraction(x) \
2673 if (peek('.')) { \
2674 rb_raise(rb_eArgError, "fraction " #x " is not supported: %.*s", \
2675 (int)(ptr + 1 - time_part), time_part); \
2676 }
2677#define need_colon(x) \
2678 if (!peek(':')) { \
2679 rb_raise(rb_eArgError, "missing " #x " part: %.*s", \
2680 (int)(ptr + 1 - time_part), time_part); \
2681 }
2682 expect_two_digits(hour, 5);
2683 nofraction(hour);
2684 need_colon(min);
2685 expect_two_digits(min, 6);
2686 nofraction(min);
2687 need_colon(sec);
2688 expect_two_digits(sec, 6);
2689 if (peek('.')) {
2690 ptr++;
2691 for (ndigits = 0; ndigits < prec && ISDIGIT(peekc_n(ndigits)); ++ndigits);
2692 if (!ndigits) {
2693 int clen = rb_enc_precise_mbclen(ptr, end, rb_enc_get(str));
2694 if (clen < 0) clen = 0;
2695 rb_raise(rb_eArgError, "subsecond expected after dot: %.*s",
2696 (int)(ptr - time_part) + clen, time_part);
2697 }
2698 subsec = parse_int(ptr, ptr + ndigits, &ptr, &ndigits, false);
2699 if (NIL_P(subsec)) break;
2700 while (ptr < end && ISDIGIT(*ptr)) ptr++;
2701 }
2702 } while (0);
2703 while (ptr < end && ISSPACE(*ptr)) ptr++;
2704 const char *const zstr = ptr;
2705 while (ptr < end && !ISSPACE(*ptr)) ptr++;
2706 const char *const zend = ptr;
2707 while (ptr < end && ISSPACE(*ptr)) ptr++;
2708 if (ptr < end) {
2709 VALUE mesg = rb_str_new_cstr("can't parse at: ");
2710 rb_str_cat(mesg, ptr, end - ptr);
2711 rb_exc_raise(rb_exc_new_str(rb_eArgError, mesg));
2712 }
2713 if (zend > zstr) {
2714 zone = rb_str_subseq(str, zstr - begin, zend - zstr);
2715 }
2716 else if (hour == -1) {
2717 rb_raise(rb_eArgError, "no time information");
2718 }
2719 if (!NIL_P(subsec)) {
2720 /* subseconds is the last using ndigits */
2721 if (ndigits < (size_t)TIME_SCALE_NUMDIGITS) {
2722 VALUE mul = rb_int_positive_pow(10, TIME_SCALE_NUMDIGITS - ndigits);
2723 subsec = rb_int_mul(subsec, mul);
2724 }
2725 else if (ndigits > (size_t)TIME_SCALE_NUMDIGITS) {
2726 VALUE num = rb_int_positive_pow(10, ndigits - TIME_SCALE_NUMDIGITS);
2727 subsec = rb_rational_new(subsec, num);
2728 }
2729 }
2730
2731only_year:
2732 ;
2733
2734 struct vtm vtm = {
2735 .wday = VTM_WDAY_INITVAL,
2736 .yday = 0,
2737 .zone = str_empty,
2738 .year = year,
2739 .mon = (mon < 0) ? 1 : mon,
2740 .mday = (mday < 0) ? 1 : mday,
2741 .hour = (hour < 0) ? 0 : hour,
2742 .min = (min < 0) ? 0 : min,
2743 .sec = (sec < 0) ? 0 : sec,
2744 .subsecx = NIL_P(subsec) ? INT2FIX(0) : subsec,
2745 };
2746 return time_init_vtm(time, vtm, zone);
2747}
2748
2749static void
2750subsec_normalize(time_t *secp, long *subsecp, const long maxsubsec)
2751{
2752 time_t sec = *secp;
2753 long subsec = *subsecp;
2754 long sec2;
2755
2756 if (UNLIKELY(subsec >= maxsubsec)) { /* subsec positive overflow */
2757 sec2 = subsec / maxsubsec;
2758 if (TIMET_MAX - sec2 < sec) {
2759 rb_raise(rb_eRangeError, "out of Time range");
2760 }
2761 subsec -= sec2 * maxsubsec;
2762 sec += sec2;
2763 }
2764 else if (UNLIKELY(subsec < 0)) { /* subsec negative overflow */
2765 sec2 = NDIV(subsec, maxsubsec); /* negative div */
2766 if (sec < TIMET_MIN - sec2) {
2767 rb_raise(rb_eRangeError, "out of Time range");
2768 }
2769 subsec -= sec2 * maxsubsec;
2770 sec += sec2;
2771 }
2772#ifndef NEGATIVE_TIME_T
2773 if (sec < 0)
2774 rb_raise(rb_eArgError, "time must be positive");
2775#endif
2776 *secp = sec;
2777 *subsecp = subsec;
2778}
2779
2780#define time_usec_normalize(secp, usecp) subsec_normalize(secp, usecp, 1000000)
2781#define time_nsec_normalize(secp, nsecp) subsec_normalize(secp, nsecp, 1000000000)
2782
2783static wideval_t
2784nsec2timew(time_t sec, long nsec)
2785{
2786 time_nsec_normalize(&sec, &nsec);
2787 return timenano2timew(sec, nsec);
2788}
2789
2790static VALUE
2791time_new_timew(VALUE klass, wideval_t timew)
2792{
2793 VALUE time = time_s_alloc(klass);
2794 struct time_object *tobj;
2795
2796 tobj = RTYPEDDATA_GET_DATA(time); /* skip type check */
2797 TZMODE_SET_LOCALTIME(tobj);
2798 time_set_timew(time, tobj, timew);
2799
2800 return time;
2801}
2802
2803VALUE
2804rb_time_new(time_t sec, long usec)
2805{
2806 time_usec_normalize(&sec, &usec);
2807 return time_new_timew(rb_cTime, timenano2timew(sec, usec * 1000));
2808}
2809
2810/* returns localtime time object */
2811VALUE
2812rb_time_nano_new(time_t sec, long nsec)
2813{
2814 return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
2815}
2816
2817VALUE
2818rb_time_timespec_new(const struct timespec *ts, int offset)
2819{
2820 struct time_object *tobj;
2821 VALUE time = time_new_timew(rb_cTime, nsec2timew(ts->tv_sec, ts->tv_nsec));
2822
2823 if (-86400 < offset && offset < 86400) { /* fixoff */
2824 GetTimeval(time, tobj);
2825 TZMODE_SET_FIXOFF(time, tobj, INT2FIX(offset));
2826 }
2827 else if (offset == INT_MAX) { /* localtime */
2828 }
2829 else if (offset == INT_MAX-1) { /* UTC */
2830 GetTimeval(time, tobj);
2831 TZMODE_SET_UTC(tobj);
2832 }
2833 else {
2834 rb_raise(rb_eArgError, "utc_offset out of range");
2835 }
2836
2837 return time;
2838}
2839
2840VALUE
2842{
2843 VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
2844
2845 if (!NIL_P(off)) {
2846 VALUE zone = off;
2847
2848 if (maybe_tzobj_p(zone)) {
2849 time_gmtime(time);
2850 if (zone_timelocal(zone, time)) return time;
2851 }
2852 if (NIL_P(off = utc_offset_arg(off))) {
2853 off = zone;
2854 if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
2855 time_gmtime(time);
2856 if (!zone_timelocal(zone, time)) invalid_utc_offset(off);
2857 return time;
2858 }
2859 else if (off == UTC_ZONE) {
2860 return time_gmtime(time);
2861 }
2862
2863 validate_utc_offset(off);
2864 time_set_utc_offset(time, off);
2865 return time;
2866 }
2867
2868 return time;
2869}
2870
2871static struct timespec
2872time_timespec(VALUE num, int interval)
2873{
2874 struct timespec t;
2875 const char *const tstr = interval ? "time interval" : "time";
2876 VALUE i, f, ary;
2877
2878#ifndef NEGATIVE_TIME_T
2879# define arg_range_check(v) \
2880 (((v) < 0) ? \
2881 rb_raise(rb_eArgError, "%s must not be negative", tstr) : \
2882 (void)0)
2883#else
2884# define arg_range_check(v) \
2885 ((interval && (v) < 0) ? \
2886 rb_raise(rb_eArgError, "time interval must not be negative") : \
2887 (void)0)
2888#endif
2889
2890 if (FIXNUM_P(num)) {
2891 t.tv_sec = NUM2TIMET(num);
2892 arg_range_check(t.tv_sec);
2893 t.tv_nsec = 0;
2894 }
2895 else if (RB_FLOAT_TYPE_P(num)) {
2896 double x = RFLOAT_VALUE(num);
2897 arg_range_check(x);
2898 {
2899 double f, d;
2900
2901 d = modf(x, &f);
2902 if (d >= 0) {
2903 t.tv_nsec = (int)(d*1e9+0.5);
2904 if (t.tv_nsec >= 1000000000) {
2905 t.tv_nsec -= 1000000000;
2906 f += 1;
2907 }
2908 }
2909 else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
2910 t.tv_nsec = 1000000000 - t.tv_nsec;
2911 f -= 1;
2912 }
2913 t.tv_sec = (time_t)f;
2914 if (f != t.tv_sec) {
2915 rb_raise(rb_eRangeError, "%f out of Time range", x);
2916 }
2917 }
2918 }
2919 else if (RB_BIGNUM_TYPE_P(num)) {
2920 t.tv_sec = NUM2TIMET(num);
2921 arg_range_check(t.tv_sec);
2922 t.tv_nsec = 0;
2923 }
2924 else {
2925 i = INT2FIX(1);
2926 ary = rb_check_funcall(num, id_divmod, 1, &i);
2927 if (!UNDEF_P(ary) && !NIL_P(ary = rb_check_array_type(ary))) {
2928 i = rb_ary_entry(ary, 0);
2929 f = rb_ary_entry(ary, 1);
2930 t.tv_sec = NUM2TIMET(i);
2931 arg_range_check(t.tv_sec);
2932 f = rb_funcall(f, '*', 1, INT2FIX(1000000000));
2933 t.tv_nsec = NUM2LONG(f);
2934 }
2935 else {
2936 rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s",
2937 rb_obj_class(num), tstr);
2938 }
2939 }
2940 return t;
2941#undef arg_range_check
2942}
2943
2944static struct timeval
2945time_timeval(VALUE num, int interval)
2946{
2947 struct timespec ts;
2948 struct timeval tv;
2949
2950 ts = time_timespec(num, interval);
2951 tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
2952 tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2953
2954 return tv;
2955}
2956
2957struct timeval
2959{
2960 return time_timeval(num, TRUE);
2961}
2962
2963struct timeval
2965{
2966 struct time_object *tobj;
2967 struct timeval t;
2968 struct timespec ts;
2969
2970 if (IsTimeval(time)) {
2971 GetTimeval(time, tobj);
2972 ts = timew2timespec(tobj->timew);
2973 t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
2974 t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
2975 return t;
2976 }
2977 return time_timeval(time, FALSE);
2978}
2979
2980struct timespec
2982{
2983 struct time_object *tobj;
2984 struct timespec t;
2985
2986 if (IsTimeval(time)) {
2987 GetTimeval(time, tobj);
2988 t = timew2timespec(tobj->timew);
2989 return t;
2990 }
2991 return time_timespec(time, FALSE);
2992}
2993
2994struct timespec
2996{
2997 return time_timespec(num, TRUE);
2998}
2999
3000static int
3001get_scale(VALUE unit)
3002{
3003 if (unit == ID2SYM(id_nanosecond) || unit == ID2SYM(id_nsec)) {
3004 return 1000000000;
3005 }
3006 else if (unit == ID2SYM(id_microsecond) || unit == ID2SYM(id_usec)) {
3007 return 1000000;
3008 }
3009 else if (unit == ID2SYM(id_millisecond)) {
3010 return 1000;
3011 }
3012 else {
3013 rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
3014 }
3015}
3016
3017static VALUE
3018time_s_at(rb_execution_context_t *ec, VALUE klass, VALUE time, VALUE subsec, VALUE unit, VALUE zone)
3019{
3020 VALUE t;
3021 wideval_t timew;
3022
3023 if (subsec) {
3024 int scale = get_scale(unit);
3025 time = num_exact(time);
3026 t = num_exact(subsec);
3027 timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, scale));
3028 t = time_new_timew(klass, timew);
3029 }
3030 else if (IsTimeval(time)) {
3031 struct time_object *tobj, *tobj2;
3032 GetTimeval(time, tobj);
3033 t = time_new_timew(klass, tobj->timew);
3034 GetTimeval(t, tobj2);
3035 TZMODE_COPY(tobj2, tobj);
3036 }
3037 else {
3038 timew = rb_time_magnify(v2w(num_exact(time)));
3039 t = time_new_timew(klass, timew);
3040 }
3041 if (!NIL_P(zone)) {
3042 time_zonelocal(t, zone);
3043 }
3044
3045 return t;
3046}
3047
3048static VALUE
3049time_s_at1(rb_execution_context_t *ec, VALUE klass, VALUE time)
3050{
3051 return time_s_at(ec, klass, time, Qfalse, ID2SYM(id_microsecond), Qnil);
3052}
3053
3054static const char months[][4] = {
3055 "jan", "feb", "mar", "apr", "may", "jun",
3056 "jul", "aug", "sep", "oct", "nov", "dec",
3057};
3058
3059static int
3060obj2int(VALUE obj)
3061{
3062 if (RB_TYPE_P(obj, T_STRING)) {
3063 obj = rb_str_to_inum(obj, 10, TRUE);
3064 }
3065
3066 return NUM2INT(obj);
3067}
3068
3069/* bits should be 0 <= x <= 31 */
3070static uint32_t
3071obj2ubits(VALUE obj, unsigned int bits)
3072{
3073 const unsigned int usable_mask = (1U << bits) - 1;
3074 unsigned int rv = (unsigned int)obj2int(obj);
3075
3076 if ((rv & usable_mask) != rv)
3077 rb_raise(rb_eArgError, "argument out of range");
3078 return (uint32_t)rv;
3079}
3080
3081static VALUE
3082obj2vint(VALUE obj)
3083{
3084 if (RB_TYPE_P(obj, T_STRING)) {
3085 obj = rb_str_to_inum(obj, 10, TRUE);
3086 }
3087 else {
3088 obj = rb_to_int(obj);
3089 }
3090
3091 return obj;
3092}
3093
3094static uint32_t
3095obj2subsecx(VALUE obj, VALUE *subsecx)
3096{
3097 VALUE subsec;
3098
3099 if (RB_TYPE_P(obj, T_STRING)) {
3100 obj = rb_str_to_inum(obj, 10, TRUE);
3101 *subsecx = INT2FIX(0);
3102 }
3103 else {
3104 divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
3105 *subsecx = w2v(rb_time_magnify(v2w(subsec)));
3106 }
3107 return obj2ubits(obj, 6); /* vtm->sec */
3108}
3109
3110static VALUE
3111usec2subsecx(VALUE obj)
3112{
3113 if (RB_TYPE_P(obj, T_STRING)) {
3114 obj = rb_str_to_inum(obj, 10, TRUE);
3115 }
3116
3117 return mulquov(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
3118}
3119
3120static uint32_t
3121month_arg(VALUE arg)
3122{
3123 int i, mon;
3124
3125 if (FIXNUM_P(arg)) {
3126 return obj2ubits(arg, 4);
3127 }
3128
3129 mon = 0;
3130 VALUE s = rb_check_string_type(arg);
3131 if (!NIL_P(s) && RSTRING_LEN(s) > 0) {
3132 arg = s;
3133 for (i=0; i<12; i++) {
3134 if (RSTRING_LEN(s) == 3 &&
3135 STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) {
3136 mon = i+1;
3137 break;
3138 }
3139 }
3140 }
3141 if (mon == 0) {
3142 mon = obj2ubits(arg, 4);
3143 }
3144 return mon;
3145}
3146
3147static VALUE
3148validate_utc_offset(VALUE utc_offset)
3149{
3150 if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
3151 rb_raise(rb_eArgError, "utc_offset out of range");
3152 return utc_offset;
3153}
3154
3155static VALUE
3156validate_zone_name(VALUE zone_name)
3157{
3158 StringValueCStr(zone_name);
3159 return zone_name;
3160}
3161
3162static void
3163validate_vtm(struct vtm *vtm)
3164{
3165#define validate_vtm_range(mem, b, e) \
3166 ((vtm->mem < b || vtm->mem > e) ? \
3167 rb_raise(rb_eArgError, #mem" out of range") : (void)0)
3168 validate_vtm_range(mon, 1, 12);
3169 validate_vtm_range(mday, 1, 31);
3170 validate_vtm_range(hour, 0, 24);
3171 validate_vtm_range(min, 0, (vtm->hour == 24 ? 0 : 59));
3172 validate_vtm_range(sec, 0, (vtm->hour == 24 ? 0 : 60));
3173 if (lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE)))
3174 rb_raise(rb_eArgError, "subsecx out of range");
3175 if (!NIL_P(vtm->utc_offset)) validate_utc_offset(vtm->utc_offset);
3176#undef validate_vtm_range
3177}
3178
3179static void
3180time_arg(int argc, const VALUE *argv, struct vtm *vtm)
3181{
3182 VALUE v[8];
3183 VALUE subsecx = INT2FIX(0);
3184
3185 vtm->year = INT2FIX(0);
3186 vtm->mon = 0;
3187 vtm->mday = 0;
3188 vtm->hour = 0;
3189 vtm->min = 0;
3190 vtm->sec = 0;
3191 vtm->subsecx = INT2FIX(0);
3192 vtm->utc_offset = Qnil;
3193 vtm->wday = 0;
3194 vtm->yday = 0;
3195 vtm->isdst = 0;
3196 vtm->zone = str_empty;
3197
3198 if (argc == 10) {
3199 v[0] = argv[5];
3200 v[1] = argv[4];
3201 v[2] = argv[3];
3202 v[3] = argv[2];
3203 v[4] = argv[1];
3204 v[5] = argv[0];
3205 v[6] = Qnil;
3206 vtm->isdst = RTEST(argv[8]) ? 1 : 0;
3207 }
3208 else {
3209 rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
3210 /* v[6] may be usec or zone (parsedate) */
3211 /* v[7] is wday (parsedate; ignored) */
3212 vtm->wday = VTM_WDAY_INITVAL;
3213 vtm->isdst = VTM_ISDST_INITVAL;
3214 }
3215
3216 vtm->year = obj2vint(v[0]);
3217
3218 if (NIL_P(v[1])) {
3219 vtm->mon = 1;
3220 }
3221 else {
3222 vtm->mon = month_arg(v[1]);
3223 }
3224
3225 if (NIL_P(v[2])) {
3226 vtm->mday = 1;
3227 }
3228 else {
3229 vtm->mday = obj2ubits(v[2], 5);
3230 }
3231
3232 /* normalize month-mday */
3233 switch (vtm->mon) {
3234 case 2:
3235 {
3236 /* this drops higher bits but it's not a problem to calc leap year */
3237 unsigned int mday2 = leap_year_v_p(vtm->year) ? 29 : 28;
3238 if (vtm->mday > mday2) {
3239 vtm->mday -= mday2;
3240 vtm->mon++;
3241 }
3242 }
3243 break;
3244 case 4:
3245 case 6:
3246 case 9:
3247 case 11:
3248 if (vtm->mday == 31) {
3249 vtm->mon++;
3250 vtm->mday = 1;
3251 }
3252 break;
3253 }
3254
3255 vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5);
3256
3257 vtm->min = NIL_P(v[4])?0:obj2ubits(v[4], 6);
3258
3259 if (!NIL_P(v[6]) && argc == 7) {
3260 vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6);
3261 subsecx = usec2subsecx(v[6]);
3262 }
3263 else {
3264 /* when argc == 8, v[6] is timezone, but ignored */
3265 if (NIL_P(v[5])) {
3266 vtm->sec = 0;
3267 }
3268 else {
3269 vtm->sec = obj2subsecx(v[5], &subsecx);
3270 }
3271 }
3272 vtm->subsecx = subsecx;
3273
3274 validate_vtm(vtm);
3275 RB_GC_GUARD(subsecx);
3276}
3277
3278static int
3279leap_year_p(long y)
3280{
3281 /* TODO:
3282 * ensure about negative years in proleptic Gregorian calendar.
3283 */
3284 unsigned long uy = (unsigned long)(LIKELY(y >= 0) ? y : -y);
3285
3286 if (LIKELY(uy % 4 != 0)) return 0;
3287
3288 unsigned long century = uy / 100;
3289 if (LIKELY(uy != century * 100)) return 1;
3290 return century % 4 == 0;
3291}
3292
3293static time_t
3294timegm_noleapsecond(struct tm *tm)
3295{
3296 long tm_year = tm->tm_year;
3297 int tm_yday = calc_tm_yday(tm->tm_year, tm->tm_mon, tm->tm_mday);
3298
3299 /*
3300 * `Seconds Since the Epoch' in SUSv3:
3301 * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
3302 * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
3303 * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
3304 */
3305 return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
3306 (time_t)(tm_yday +
3307 (tm_year-70)*365 +
3308 DIV(tm_year-69,4) -
3309 DIV(tm_year-1,100) +
3310 DIV(tm_year+299,400))*86400;
3311}
3312
3313#if 0
3314#define DEBUG_FIND_TIME_NUMGUESS
3315#define DEBUG_GUESSRANGE
3316#endif
3317
3318static const bool debug_guessrange =
3319#ifdef DEBUG_GUESSRANGE
3320 true;
3321#else
3322 false;
3323#endif
3324
3325#define DEBUG_REPORT_GUESSRANGE \
3326 (debug_guessrange ? debug_report_guessrange(guess_lo, guess_hi) : (void)0)
3327
3328static inline void
3329debug_report_guessrange(time_t guess_lo, time_t guess_hi)
3330{
3331 time_t guess_diff = guess_hi - guess_lo;
3332 fprintf(stderr, "find time guess range: %"PRI_TIMET_PREFIX"d - "
3333 "%"PRI_TIMET_PREFIX"d : %"PRI_TIMET_PREFIX"u\n",
3334 guess_lo, guess_hi, guess_diff);
3335}
3336
3337static const bool debug_find_time_numguess =
3338#ifdef DEBUG_FIND_TIME_NUMGUESS
3339 true;
3340#else
3341 false;
3342#endif
3343
3344#define DEBUG_FIND_TIME_NUMGUESS_INC \
3345 (void)(debug_find_time_numguess && find_time_numguess++),
3346static unsigned long long find_time_numguess;
3347
3348static VALUE
3349find_time_numguess_getter(ID name, VALUE *data)
3350{
3351 unsigned long long *numguess = (void *)data;
3352 return ULL2NUM(*numguess);
3353}
3354
3355static const char *
3356find_time_t(struct tm *tptr, int utc_p, time_t *tp)
3357{
3358 time_t guess, guess0, guess_lo, guess_hi;
3359 struct tm *tm, tm0, tm_lo, tm_hi;
3360 int d;
3361 int find_dst;
3362 struct tm result;
3363 int status;
3364 int tptr_tm_yday;
3365
3366#define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
3367
3368 guess_lo = TIMET_MIN;
3369 guess_hi = TIMET_MAX;
3370
3371 find_dst = 0 < tptr->tm_isdst;
3372
3373 /* /etc/localtime might be changed. reload it. */
3374 update_tz();
3375
3376 tm0 = *tptr;
3377 if (tm0.tm_mon < 0) {
3378 tm0.tm_mon = 0;
3379 tm0.tm_mday = 1;
3380 tm0.tm_hour = 0;
3381 tm0.tm_min = 0;
3382 tm0.tm_sec = 0;
3383 }
3384 else if (11 < tm0.tm_mon) {
3385 tm0.tm_mon = 11;
3386 tm0.tm_mday = 31;
3387 tm0.tm_hour = 23;
3388 tm0.tm_min = 59;
3389 tm0.tm_sec = 60;
3390 }
3391 else if (tm0.tm_mday < 1) {
3392 tm0.tm_mday = 1;
3393 tm0.tm_hour = 0;
3394 tm0.tm_min = 0;
3395 tm0.tm_sec = 0;
3396 }
3397 else if ((d = days_in_month_in(1900 + tm0.tm_year)[tm0.tm_mon]) < tm0.tm_mday) {
3398 tm0.tm_mday = d;
3399 tm0.tm_hour = 23;
3400 tm0.tm_min = 59;
3401 tm0.tm_sec = 60;
3402 }
3403 else if (tm0.tm_hour < 0) {
3404 tm0.tm_hour = 0;
3405 tm0.tm_min = 0;
3406 tm0.tm_sec = 0;
3407 }
3408 else if (23 < tm0.tm_hour) {
3409 tm0.tm_hour = 23;
3410 tm0.tm_min = 59;
3411 tm0.tm_sec = 60;
3412 }
3413 else if (tm0.tm_min < 0) {
3414 tm0.tm_min = 0;
3415 tm0.tm_sec = 0;
3416 }
3417 else if (59 < tm0.tm_min) {
3418 tm0.tm_min = 59;
3419 tm0.tm_sec = 60;
3420 }
3421 else if (tm0.tm_sec < 0) {
3422 tm0.tm_sec = 0;
3423 }
3424 else if (60 < tm0.tm_sec) {
3425 tm0.tm_sec = 60;
3426 }
3427
3428 DEBUG_REPORT_GUESSRANGE;
3429 guess0 = guess = timegm_noleapsecond(&tm0);
3430 tm = GUESS(&guess);
3431 if (tm) {
3432 d = tmcmp(tptr, tm);
3433 if (d == 0) { goto found; }
3434 if (d < 0) {
3435 guess_hi = guess;
3436 guess -= 24 * 60 * 60;
3437 }
3438 else {
3439 guess_lo = guess;
3440 guess += 24 * 60 * 60;
3441 }
3442 DEBUG_REPORT_GUESSRANGE;
3443 if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
3444 d = tmcmp(tptr, tm);
3445 if (d == 0) { goto found; }
3446 if (d < 0)
3447 guess_hi = guess;
3448 else
3449 guess_lo = guess;
3450 DEBUG_REPORT_GUESSRANGE;
3451 }
3452 }
3453
3454 tm = GUESS(&guess_lo);
3455 if (!tm) goto error;
3456 d = tmcmp(tptr, tm);
3457 if (d < 0) goto out_of_range;
3458 if (d == 0) { guess = guess_lo; goto found; }
3459 tm_lo = *tm;
3460
3461 tm = GUESS(&guess_hi);
3462 if (!tm) goto error;
3463 d = tmcmp(tptr, tm);
3464 if (d > 0) goto out_of_range;
3465 if (d == 0) { guess = guess_hi; goto found; }
3466 tm_hi = *tm;
3467
3468 DEBUG_REPORT_GUESSRANGE;
3469
3470 status = 1;
3471
3472 while (guess_lo + 1 < guess_hi) {
3473 binsearch:
3474 if (status == 0) {
3475 guess = guess_lo / 2 + guess_hi / 2;
3476 if (guess <= guess_lo)
3477 guess = guess_lo + 1;
3478 else if (guess >= guess_hi)
3479 guess = guess_hi - 1;
3480 status = 1;
3481 }
3482 else {
3483 if (status == 1) {
3484 time_t guess0_hi = timegm_noleapsecond(&tm_hi);
3485 guess = guess_hi - (guess0_hi - guess0);
3486 if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
3487 guess--;
3488 status = 2;
3489 }
3490 else if (status == 2) {
3491 time_t guess0_lo = timegm_noleapsecond(&tm_lo);
3492 guess = guess_lo + (guess0 - guess0_lo);
3493 if (guess == guess_lo)
3494 guess++;
3495 status = 0;
3496 }
3497 if (guess <= guess_lo || guess_hi <= guess) {
3498 /* Previous guess is invalid. try binary search. */
3499 if (debug_guessrange) {
3500 if (guess <= guess_lo) {
3501 fprintf(stderr, "too small guess: %"PRI_TIMET_PREFIX"d"\
3502 " <= %"PRI_TIMET_PREFIX"d\n", guess, guess_lo);
3503 }
3504 if (guess_hi <= guess) {
3505 fprintf(stderr, "too big guess: %"PRI_TIMET_PREFIX"d"\
3506 " <= %"PRI_TIMET_PREFIX"d\n", guess_hi, guess);
3507 }
3508 }
3509 status = 0;
3510 goto binsearch;
3511 }
3512 }
3513
3514 tm = GUESS(&guess);
3515 if (!tm) goto error;
3516
3517 d = tmcmp(tptr, tm);
3518
3519 if (d < 0) {
3520 guess_hi = guess;
3521 tm_hi = *tm;
3522 DEBUG_REPORT_GUESSRANGE;
3523 }
3524 else if (d > 0) {
3525 guess_lo = guess;
3526 tm_lo = *tm;
3527 DEBUG_REPORT_GUESSRANGE;
3528 }
3529 else {
3530 goto found;
3531 }
3532 }
3533
3534 /* Given argument has no corresponding time_t. Let's extrapolate. */
3535 /*
3536 * `Seconds Since the Epoch' in SUSv3:
3537 * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
3538 * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
3539 * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
3540 */
3541
3542 tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
3543
3544 *tp = guess_lo +
3545 ((tptr->tm_year - tm_lo.tm_year) * 365 +
3546 DIV((tptr->tm_year-69), 4) -
3547 DIV((tptr->tm_year-1), 100) +
3548 DIV((tptr->tm_year+299), 400) -
3549 DIV((tm_lo.tm_year-69), 4) +
3550 DIV((tm_lo.tm_year-1), 100) -
3551 DIV((tm_lo.tm_year+299), 400) +
3552 tptr_tm_yday -
3553 tm_lo.tm_yday) * 86400 +
3554 (tptr->tm_hour - tm_lo.tm_hour) * 3600 +
3555 (tptr->tm_min - tm_lo.tm_min) * 60 +
3556 (tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
3557
3558 return NULL;
3559
3560 found:
3561 if (!utc_p) {
3562 /* If localtime is nonmonotonic, another result may exist. */
3563 time_t guess2;
3564 if (find_dst) {
3565 guess2 = guess - 2 * 60 * 60;
3566 tm = LOCALTIME(&guess2, result);
3567 if (tm) {
3568 if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
3569 tptr->tm_min != tm->tm_min ||
3570 tptr->tm_sec != tm->tm_sec) {
3571 guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3572 (tm->tm_min - tptr->tm_min) * 60 +
3573 (tm->tm_sec - tptr->tm_sec);
3574 if (tptr->tm_mday != tm->tm_mday)
3575 guess2 += 24 * 60 * 60;
3576 if (guess != guess2) {
3577 tm = LOCALTIME(&guess2, result);
3578 if (tm && tmcmp(tptr, tm) == 0) {
3579 if (guess < guess2)
3580 *tp = guess;
3581 else
3582 *tp = guess2;
3583 return NULL;
3584 }
3585 }
3586 }
3587 }
3588 }
3589 else {
3590 guess2 = guess + 2 * 60 * 60;
3591 tm = LOCALTIME(&guess2, result);
3592 if (tm) {
3593 if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
3594 tptr->tm_min != tm->tm_min ||
3595 tptr->tm_sec != tm->tm_sec) {
3596 guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
3597 (tm->tm_min - tptr->tm_min) * 60 +
3598 (tm->tm_sec - tptr->tm_sec);
3599 if (tptr->tm_mday != tm->tm_mday)
3600 guess2 -= 24 * 60 * 60;
3601 if (guess != guess2) {
3602 tm = LOCALTIME(&guess2, result);
3603 if (tm && tmcmp(tptr, tm) == 0) {
3604 if (guess < guess2)
3605 *tp = guess2;
3606 else
3607 *tp = guess;
3608 return NULL;
3609 }
3610 }
3611 }
3612 }
3613 }
3614 }
3615 *tp = guess;
3616 return NULL;
3617
3618 out_of_range:
3619 return "time out of range";
3620
3621 error:
3622 return "gmtime/localtime error";
3623}
3624
3625static int
3626vtmcmp(struct vtm *a, struct vtm *b)
3627{
3628 if (ne(a->year, b->year))
3629 return lt(a->year, b->year) ? -1 : 1;
3630 else if (a->mon != b->mon)
3631 return a->mon < b->mon ? -1 : 1;
3632 else if (a->mday != b->mday)
3633 return a->mday < b->mday ? -1 : 1;
3634 else if (a->hour != b->hour)
3635 return a->hour < b->hour ? -1 : 1;
3636 else if (a->min != b->min)
3637 return a->min < b->min ? -1 : 1;
3638 else if (a->sec != b->sec)
3639 return a->sec < b->sec ? -1 : 1;
3640 else if (ne(a->subsecx, b->subsecx))
3641 return lt(a->subsecx, b->subsecx) ? -1 : 1;
3642 else
3643 return 0;
3644}
3645
3646static int
3647tmcmp(struct tm *a, struct tm *b)
3648{
3649 if (a->tm_year != b->tm_year)
3650 return a->tm_year < b->tm_year ? -1 : 1;
3651 else if (a->tm_mon != b->tm_mon)
3652 return a->tm_mon < b->tm_mon ? -1 : 1;
3653 else if (a->tm_mday != b->tm_mday)
3654 return a->tm_mday < b->tm_mday ? -1 : 1;
3655 else if (a->tm_hour != b->tm_hour)
3656 return a->tm_hour < b->tm_hour ? -1 : 1;
3657 else if (a->tm_min != b->tm_min)
3658 return a->tm_min < b->tm_min ? -1 : 1;
3659 else if (a->tm_sec != b->tm_sec)
3660 return a->tm_sec < b->tm_sec ? -1 : 1;
3661 else
3662 return 0;
3663}
3664
3665/*
3666 * call-seq:
3667 * Time.utc(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0) -> new_time
3668 * Time.utc(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy) -> new_time
3669 *
3670 * Returns a new +Time+ object based the on given arguments,
3671 * in the UTC timezone.
3672 *
3673 * With one to seven arguments given,
3674 * the arguments are interpreted as in the first calling sequence above:
3675 *
3676 * Time.utc(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0)
3677 *
3678 * Examples:
3679 *
3680 * Time.utc(2000) # => 2000-01-01 00:00:00 UTC
3681 * Time.utc(-2000) # => -2000-01-01 00:00:00 UTC
3682 *
3683 * There are no minimum and maximum values for the required argument +year+.
3684 *
3685 * For the optional arguments:
3686 *
3687 * - +month+: Month in range (1..12), or case-insensitive
3688 * 3-letter month name:
3689 *
3690 * Time.utc(2000, 1) # => 2000-01-01 00:00:00 UTC
3691 * Time.utc(2000, 12) # => 2000-12-01 00:00:00 UTC
3692 * Time.utc(2000, 'jan') # => 2000-01-01 00:00:00 UTC
3693 * Time.utc(2000, 'JAN') # => 2000-01-01 00:00:00 UTC
3694 *
3695 * - +mday+: Month day in range(1..31):
3696 *
3697 * Time.utc(2000, 1, 1) # => 2000-01-01 00:00:00 UTC
3698 * Time.utc(2000, 1, 31) # => 2000-01-31 00:00:00 UTC
3699 *
3700 * - +hour+: Hour in range (0..23), or 24 if +min+, +sec+, and +usec+
3701 * are zero:
3702 *
3703 * Time.utc(2000, 1, 1, 0) # => 2000-01-01 00:00:00 UTC
3704 * Time.utc(2000, 1, 1, 23) # => 2000-01-01 23:00:00 UTC
3705 * Time.utc(2000, 1, 1, 24) # => 2000-01-02 00:00:00 UTC
3706 *
3707 * - +min+: Minute in range (0..59):
3708 *
3709 * Time.utc(2000, 1, 1, 0, 0) # => 2000-01-01 00:00:00 UTC
3710 * Time.utc(2000, 1, 1, 0, 59) # => 2000-01-01 00:59:00 UTC
3711 *
3712 * - +sec+: Second in range (0..59), or 60 if +usec+ is zero:
3713 *
3714 * Time.utc(2000, 1, 1, 0, 0, 0) # => 2000-01-01 00:00:00 UTC
3715 * Time.utc(2000, 1, 1, 0, 0, 59) # => 2000-01-01 00:00:59 UTC
3716 * Time.utc(2000, 1, 1, 0, 0, 60) # => 2000-01-01 00:01:00 UTC
3717 *
3718 * - +usec+: Microsecond in range (0..999999):
3719 *
3720 * Time.utc(2000, 1, 1, 0, 0, 0, 0) # => 2000-01-01 00:00:00 UTC
3721 * Time.utc(2000, 1, 1, 0, 0, 0, 999999) # => 2000-01-01 00:00:00.999999 UTC
3722 *
3723 * The values may be:
3724 *
3725 * - Integers, as above.
3726 * - Numerics convertible to integers:
3727 *
3728 * Time.utc(Float(0.0), Rational(1, 1), 1.0, 0.0, 0.0, 0.0, 0.0)
3729 * # => 0000-01-01 00:00:00 UTC
3730 *
3731 * - String integers:
3732 *
3733 * a = %w[0 1 1 0 0 0 0 0]
3734 * # => ["0", "1", "1", "0", "0", "0", "0", "0"]
3735 * Time.utc(*a) # => 0000-01-01 00:00:00 UTC
3736 *
3737 * When exactly ten arguments are given,
3738 * the arguments are interpreted as in the second calling sequence above:
3739 *
3740 * Time.utc(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy)
3741 *
3742 * where the +dummy+ arguments are ignored:
3743 *
3744 * a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3745 * # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
3746 * Time.utc(*a) # => 0005-04-03 02:01:00 UTC
3747 *
3748 * This form is useful for creating a +Time+ object from a 10-element
3749 * array returned by Time.to_a:
3750 *
3751 * t = Time.new(2000, 1, 2, 3, 4, 5, 6) # => 2000-01-02 03:04:05 +000006
3752 * a = t.to_a # => [5, 4, 3, 2, 1, 2000, 0, 2, false, nil]
3753 * Time.utc(*a) # => 2000-01-02 03:04:05 UTC
3754 *
3755 * The two forms have their first six arguments in common,
3756 * though in different orders;
3757 * the ranges of these common arguments are the same for both forms; see above.
3758 *
3759 * Raises an exception if the number of arguments is eight, nine,
3760 * or greater than ten.
3761 *
3762 * Related: Time.local.
3763 *
3764 */
3765static VALUE
3766time_s_mkutc(int argc, VALUE *argv, VALUE klass)
3767{
3768 struct vtm vtm;
3769
3770 time_arg(argc, argv, &vtm);
3771 return time_gmtime(time_new_timew(klass, timegmw(&vtm)));
3772}
3773
3774/*
3775 * call-seq:
3776 * Time.local(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0) -> new_time
3777 * Time.local(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy) -> new_time
3778 *
3779 * Like Time.utc, except that the returned +Time+ object
3780 * has the local timezone, not the UTC timezone:
3781 *
3782 * # With seven arguments.
3783 * Time.local(0, 1, 2, 3, 4, 5, 6)
3784 * # => 0000-01-02 03:04:05.000006 -0600
3785 * # With exactly ten arguments.
3786 * Time.local(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
3787 * # => 0005-04-03 02:01:00 -0600
3788 *
3789 */
3790
3791static VALUE
3792time_s_mktime(int argc, VALUE *argv, VALUE klass)
3793{
3794 struct vtm vtm;
3795
3796 time_arg(argc, argv, &vtm);
3797 return time_localtime(time_new_timew(klass, timelocalw(&vtm)));
3798}
3799
3800/*
3801 * call-seq:
3802 * to_i -> integer
3803 *
3804 * Returns the value of +self+ as integer
3805 * {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
3806 * subseconds are truncated (not rounded):
3807 *
3808 * Time.utc(1970, 1, 1, 0, 0, 0).to_i # => 0
3809 * Time.utc(1970, 1, 1, 0, 0, 0, 999999).to_i # => 0
3810 * Time.utc(1950, 1, 1, 0, 0, 0).to_i # => -631152000
3811 * Time.utc(1990, 1, 1, 0, 0, 0).to_i # => 631152000
3812 *
3813 * Related: Time#to_f Time#to_r.
3814 */
3815
3816static VALUE
3817time_to_i(VALUE time)
3818{
3819 struct time_object *tobj;
3820
3821 GetTimeval(time, tobj);
3822 return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
3823}
3824
3825/*
3826 * call-seq:
3827 * to_f -> float
3828 *
3829 * Returns the value of +self+ as a Float number
3830 * {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
3831 * subseconds are included.
3832 *
3833 * The stored value of +self+ is a
3834 * {Rational}[rdoc-ref:Rational@#method-i-to_f],
3835 * which means that the returned value may be approximate:
3836 *
3837 * Time.utc(1970, 1, 1, 0, 0, 0).to_f # => 0.0
3838 * Time.utc(1970, 1, 1, 0, 0, 0, 999999).to_f # => 0.999999
3839 * Time.utc(1950, 1, 1, 0, 0, 0).to_f # => -631152000.0
3840 * Time.utc(1990, 1, 1, 0, 0, 0).to_f # => 631152000.0
3841 *
3842 * Related: Time#to_i, Time#to_r.
3843 */
3844
3845static VALUE
3846time_to_f(VALUE time)
3847{
3848 struct time_object *tobj;
3849
3850 GetTimeval(time, tobj);
3851 return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
3852}
3853
3854/*
3855 * call-seq:
3856 * to_r -> rational
3857 *
3858 * Returns the value of +self+ as a Rational exact number of
3859 * {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
3860 *
3861 * Time.now.to_r # => (16571402750320203/10000000)
3862 *
3863 * Related: Time#to_f, Time#to_i.
3864 */
3865
3866static VALUE
3867time_to_r(VALUE time)
3868{
3869 struct time_object *tobj;
3870 VALUE v;
3871
3872 GetTimeval(time, tobj);
3873 v = rb_time_unmagnify_to_rational(tobj->timew);
3874 if (!RB_TYPE_P(v, T_RATIONAL)) {
3875 v = rb_Rational1(v);
3876 }
3877 return v;
3878}
3879
3880/*
3881 * call-seq:
3882 * usec -> integer
3883 *
3884 * Returns the number of microseconds in the subseconds part of +self+
3885 * in the range (0..999_999);
3886 * lower-order digits are truncated, not rounded:
3887 *
3888 * t = Time.now # => 2022-07-11 14:59:47.5484697 -0500
3889 * t.usec # => 548469
3890 *
3891 * Related: Time#subsec (returns exact subseconds).
3892 */
3893
3894static VALUE
3895time_usec(VALUE time)
3896{
3897 struct time_object *tobj;
3898 wideval_t w, q, r;
3899
3900 GetTimeval(time, tobj);
3901
3902 w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
3903 wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
3904 return rb_to_int(w2v(q));
3905}
3906
3907/*
3908 * call-seq:
3909 * nsec -> integer
3910 *
3911 * Returns the number of nanoseconds in the subseconds part of +self+
3912 * in the range (0..999_999_999);
3913 * lower-order digits are truncated, not rounded:
3914 *
3915 * t = Time.now # => 2022-07-11 15:04:53.3219637 -0500
3916 * t.nsec # => 321963700
3917 *
3918 * Related: Time#subsec (returns exact subseconds).
3919 */
3920
3921static VALUE
3922time_nsec(VALUE time)
3923{
3924 struct time_object *tobj;
3925
3926 GetTimeval(time, tobj);
3927 return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
3928}
3929
3930/*
3931 * call-seq:
3932 * subsec -> numeric
3933 *
3934 * Returns the exact subseconds for +self+ as a Numeric
3935 * (Integer or Rational):
3936 *
3937 * t = Time.now # => 2022-07-11 15:11:36.8490302 -0500
3938 * t.subsec # => (4245151/5000000)
3939 *
3940 * If the subseconds is zero, returns integer zero:
3941 *
3942 * t = Time.new(2000, 1, 1, 2, 3, 4) # => 2000-01-01 02:03:04 -0600
3943 * t.subsec # => 0
3944 *
3945 */
3946
3947static VALUE
3948time_subsec(VALUE time)
3949{
3950 struct time_object *tobj;
3951
3952 GetTimeval(time, tobj);
3953 return quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
3954}
3955
3956/*
3957 * call-seq:
3958 * self <=> other_time -> -1, 0, +1, or nil
3959 *
3960 * Compares +self+ with +other_time+; returns:
3961 *
3962 * - +-1+, if +self+ is less than +other_time+.
3963 * - +0+, if +self+ is equal to +other_time+.
3964 * - +1+, if +self+ is greater then +other_time+.
3965 * - +nil+, if +self+ and +other_time+ are incomparable.
3966 *
3967 * Examples:
3968 *
3969 * t = Time.now # => 2007-11-19 08:12:12 -0600
3970 * t2 = t + 2592000 # => 2007-12-19 08:12:12 -0600
3971 * t <=> t2 # => -1
3972 * t2 <=> t # => 1
3973 *
3974 * t = Time.now # => 2007-11-19 08:13:38 -0600
3975 * t2 = t + 0.1 # => 2007-11-19 08:13:38 -0600
3976 * t.nsec # => 98222999
3977 * t2.nsec # => 198222999
3978 * t <=> t2 # => -1
3979 * t2 <=> t # => 1
3980 * t <=> t # => 0
3981 *
3982 */
3983
3984static VALUE
3985time_cmp(VALUE time1, VALUE time2)
3986{
3987 struct time_object *tobj1, *tobj2;
3988 int n;
3989
3990 GetTimeval(time1, tobj1);
3991 if (IsTimeval(time2)) {
3992 GetTimeval(time2, tobj2);
3993 n = wcmp(tobj1->timew, tobj2->timew);
3994 }
3995 else {
3996 return rb_invcmp(time1, time2);
3997 }
3998 if (n == 0) return INT2FIX(0);
3999 if (n > 0) return INT2FIX(1);
4000 return INT2FIX(-1);
4001}
4002
4003/*
4004 * call-seq:
4005 * eql?(other_time)
4006 *
4007 * Returns +true+ if +self+ and +other_time+ are
4008 * both +Time+ objects with the exact same time value.
4009 */
4010
4011static VALUE
4012time_eql(VALUE time1, VALUE time2)
4013{
4014 struct time_object *tobj1, *tobj2;
4015
4016 GetTimeval(time1, tobj1);
4017 if (IsTimeval(time2)) {
4018 GetTimeval(time2, tobj2);
4019 return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
4020 }
4021 return Qfalse;
4022}
4023
4024/*
4025 * call-seq:
4026 * utc? -> true or false
4027 *
4028 * Returns +true+ if +self+ represents a time in UTC (GMT):
4029 *
4030 * now = Time.now
4031 * # => 2022-08-18 10:24:13.5398485 -0500
4032 * now.utc? # => false
4033 * now.getutc.utc? # => true
4034 * utc = Time.utc(2000, 1, 1, 20, 15, 1)
4035 * # => 2000-01-01 20:15:01 UTC
4036 * utc.utc? # => true
4037 *
4038 * +Time+ objects created with these methods are considered to be in
4039 * UTC:
4040 *
4041 * * Time.utc
4042 * * Time#utc
4043 * * Time#getutc
4044 *
4045 * Objects created in other ways will not be treated as UTC even if
4046 * the environment variable "TZ" is "UTC".
4047 *
4048 * Related: Time.utc.
4049 */
4050
4051static VALUE
4052time_utc_p(VALUE time)
4053{
4054 struct time_object *tobj;
4055
4056 GetTimeval(time, tobj);
4057 return RBOOL(TZMODE_UTC_P(tobj));
4058}
4059
4060/*
4061 * call-seq:
4062 * hash -> integer
4063 *
4064 * Returns the integer hash code for +self+.
4065 *
4066 * Related: Object#hash.
4067 */
4068
4069static VALUE
4070time_hash(VALUE time)
4071{
4072 struct time_object *tobj;
4073
4074 GetTimeval(time, tobj);
4075 return rb_hash(w2v(tobj->timew));
4076}
4077
4078/* :nodoc: */
4079static VALUE
4080time_init_copy(VALUE copy, VALUE time)
4081{
4082 struct time_object *tobj, *tcopy;
4083
4084 if (!OBJ_INIT_COPY(copy, time)) return copy;
4085 GetTimeval(time, tobj);
4086 GetNewTimeval(copy, tcopy);
4087 MEMCPY(tcopy, tobj, struct time_object, 1);
4088
4089 return copy;
4090}
4091
4092static VALUE
4093time_dup(VALUE time)
4094{
4095 VALUE dup = time_s_alloc(rb_obj_class(time));
4096 time_init_copy(dup, time);
4097 return dup;
4098}
4099
4100static VALUE
4101time_localtime(VALUE time)
4102{
4103 struct time_object *tobj;
4104 struct vtm vtm;
4105 VALUE zone;
4106
4107 GetTimeval(time, tobj);
4108 if (TZMODE_LOCALTIME_P(tobj)) {
4109 if (tobj->vtm.tm_got)
4110 return time;
4111 }
4112 else {
4113 time_modify(time);
4114 }
4115
4116 zone = tobj->vtm.zone;
4117 if (maybe_tzobj_p(zone) && zone_localtime(zone, time)) {
4118 return time;
4119 }
4120
4121 if (!localtimew(tobj->timew, &vtm))
4122 rb_raise(rb_eArgError, "localtime error");
4123 time_set_vtm(time, tobj, vtm);
4124
4125 tobj->vtm.tm_got = 1;
4126 TZMODE_SET_LOCALTIME(tobj);
4127 return time;
4128}
4129
4130static VALUE
4131time_zonelocal(VALUE time, VALUE off)
4132{
4133 VALUE zone = off;
4134 if (zone_localtime(zone, time)) return time;
4135
4136 if (NIL_P(off = utc_offset_arg(off))) {
4137 off = zone;
4138 if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
4139 if (!zone_localtime(zone, time)) invalid_utc_offset(off);
4140 return time;
4141 }
4142 else if (off == UTC_ZONE) {
4143 return time_gmtime(time);
4144 }
4145 validate_utc_offset(off);
4146
4147 time_set_utc_offset(time, off);
4148 return time_fixoff(time);
4149}
4150
4151/*
4152 * call-seq:
4153 * localtime -> self or new_time
4154 * localtime(zone) -> new_time
4155 *
4156 * With no argument given:
4157 *
4158 * - Returns +self+ if +self+ is a local time.
4159 * - Otherwise returns a new +Time+ in the user's local timezone:
4160 *
4161 * t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
4162 * t.localtime # => 2000-01-01 14:15:01 -0600
4163 *
4164 * With argument +zone+ given,
4165 * returns the new +Time+ object created by converting
4166 * +self+ to the given time zone:
4167 *
4168 * t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
4169 * t.localtime("-09:00") # => 2000-01-01 11:15:01 -0900
4170 *
4171 * For forms of argument +zone+, see
4172 * {Timezone Specifiers}[rdoc-ref:Time@Timezone+Specifiers].
4173 *
4174 */
4175
4176static VALUE
4177time_localtime_m(int argc, VALUE *argv, VALUE time)
4178{
4179 VALUE off;
4180
4181 if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
4182 return time_zonelocal(time, off);
4183 }
4184
4185 return time_localtime(time);
4186}
4187
4188/*
4189 * call-seq:
4190 * utc -> self
4191 *
4192 * Returns +self+, converted to the UTC timezone:
4193 *
4194 * t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
4195 * t.utc? # => false
4196 * t.utc # => 2000-01-01 06:00:00 UTC
4197 * t.utc? # => true
4198 *
4199 * Related: Time#getutc (returns a new converted +Time+ object).
4200 */
4201
4202static VALUE
4203time_gmtime(VALUE time)
4204{
4205 struct time_object *tobj;
4206 struct vtm vtm;
4207
4208 GetTimeval(time, tobj);
4209 if (TZMODE_UTC_P(tobj)) {
4210 if (tobj->vtm.tm_got)
4211 return time;
4212 }
4213 else {
4214 time_modify(time);
4215 }
4216
4217 vtm.zone = str_utc;
4218 GMTIMEW(tobj->timew, &vtm);
4219 time_set_vtm(time, tobj, vtm);
4220
4221 tobj->vtm.tm_got = 1;
4222 TZMODE_SET_UTC(tobj);
4223 return time;
4224}
4225
4226static VALUE
4227time_fixoff(VALUE time)
4228{
4229 struct time_object *tobj;
4230 struct vtm vtm;
4231 VALUE off, zone;
4232
4233 GetTimeval(time, tobj);
4234 if (TZMODE_FIXOFF_P(tobj)) {
4235 if (tobj->vtm.tm_got)
4236 return time;
4237 }
4238 else {
4239 time_modify(time);
4240 }
4241
4242 if (TZMODE_FIXOFF_P(tobj))
4243 off = tobj->vtm.utc_offset;
4244 else
4245 off = INT2FIX(0);
4246
4247 GMTIMEW(tobj->timew, &vtm);
4248
4249 zone = tobj->vtm.zone;
4250 vtm_add_offset(&vtm, off, +1);
4251
4252 time_set_vtm(time, tobj, vtm);
4253 RB_OBJ_WRITE_UNALIGNED(time, &tobj->vtm.zone, zone);
4254
4255 tobj->vtm.tm_got = 1;
4256 TZMODE_SET_FIXOFF(time, tobj, off);
4257 return time;
4258}
4259
4260/*
4261 * call-seq:
4262 * getlocal(zone = nil) -> new_time
4263 *
4264 * Returns a new +Time+ object representing the value of +self+
4265 * converted to a given timezone;
4266 * if +zone+ is +nil+, the local timezone is used:
4267 *
4268 * t = Time.utc(2000) # => 2000-01-01 00:00:00 UTC
4269 * t.getlocal # => 1999-12-31 18:00:00 -0600
4270 * t.getlocal('+12:00') # => 2000-01-01 12:00:00 +1200
4271 *
4272 * For forms of argument +zone+, see
4273 * {Timezone Specifiers}[rdoc-ref:Time@Timezone+Specifiers].
4274 *
4275 */
4276
4277static VALUE
4278time_getlocaltime(int argc, VALUE *argv, VALUE time)
4279{
4280 VALUE off;
4281
4282 if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
4283 VALUE zone = off;
4284 if (maybe_tzobj_p(zone)) {
4285 VALUE t = time_dup(time);
4286 if (zone_localtime(off, t)) return t;
4287 }
4288
4289 if (NIL_P(off = utc_offset_arg(off))) {
4290 off = zone;
4291 if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
4292 time = time_dup(time);
4293 if (!zone_localtime(zone, time)) invalid_utc_offset(off);
4294 return time;
4295 }
4296 else if (off == UTC_ZONE) {
4297 return time_gmtime(time_dup(time));
4298 }
4299 validate_utc_offset(off);
4300
4301 time = time_dup(time);
4302 time_set_utc_offset(time, off);
4303 return time_fixoff(time);
4304 }
4305
4306 return time_localtime(time_dup(time));
4307}
4308
4309/*
4310 * call-seq:
4311 * getutc -> new_time
4312 *
4313 * Returns a new +Time+ object representing the value of +self+
4314 * converted to the UTC timezone:
4315 *
4316 * local = Time.local(2000) # => 2000-01-01 00:00:00 -0600
4317 * local.utc? # => false
4318 * utc = local.getutc # => 2000-01-01 06:00:00 UTC
4319 * utc.utc? # => true
4320 * utc == local # => true
4321 *
4322 */
4323
4324static VALUE
4325time_getgmtime(VALUE time)
4326{
4327 return time_gmtime(time_dup(time));
4328}
4329
4330static VALUE
4331time_get_tm(VALUE time, struct time_object *tobj)
4332{
4333 if (TZMODE_UTC_P(tobj)) return time_gmtime(time);
4334 if (TZMODE_FIXOFF_P(tobj)) return time_fixoff(time);
4335 return time_localtime(time);
4336}
4337
4338static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc);
4339#define strftimev(fmt, time, enc) strftime_cstr((fmt), rb_strlen_lit(fmt), (time), (enc))
4340
4341/*
4342 * call-seq:
4343 * ctime -> string
4344 *
4345 * Returns a string representation of +self+,
4346 * formatted by <tt>strftime('%a %b %e %T %Y')</tt>
4347 * or its shorthand version <tt>strftime('%c')</tt>;
4348 * see {Formats for Dates and Times}[rdoc-ref:strftime_formatting.rdoc]:
4349 *
4350 * t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
4351 * t.ctime # => "Sun Dec 31 23:59:59 2000"
4352 * t.strftime('%a %b %e %T %Y') # => "Sun Dec 31 23:59:59 2000"
4353 * t.strftime('%c') # => "Sun Dec 31 23:59:59 2000"
4354 *
4355 * Related: Time#to_s, Time#inspect:
4356 *
4357 * t.inspect # => "2000-12-31 23:59:59.5 +000001"
4358 * t.to_s # => "2000-12-31 23:59:59 +0000"
4359 *
4360 */
4361
4362static VALUE
4363time_asctime(VALUE time)
4364{
4365 return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
4366}
4367
4368/*
4369 * call-seq:
4370 * to_s -> string
4371 *
4372 * Returns a string representation of +self+, without subseconds:
4373 *
4374 * t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
4375 * t.to_s # => "2000-12-31 23:59:59 +0000"
4376 *
4377 * Related: Time#ctime, Time#inspect:
4378 *
4379 * t.ctime # => "Sun Dec 31 23:59:59 2000"
4380 * t.inspect # => "2000-12-31 23:59:59.5 +000001"
4381 *
4382 */
4383
4384static VALUE
4385time_to_s(VALUE time)
4386{
4387 struct time_object *tobj;
4388
4389 GetTimeval(time, tobj);
4390 if (TZMODE_UTC_P(tobj))
4391 return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
4392 else
4393 return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
4394}
4395
4396/*
4397 * call-seq:
4398 * inspect -> string
4399 *
4400 * Returns a string representation of +self+ with subseconds:
4401 *
4402 * t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
4403 * t.inspect # => "2000-12-31 23:59:59.5 +000001"
4404 *
4405 * Related: Time#ctime, Time#to_s:
4406 *
4407 * t.ctime # => "Sun Dec 31 23:59:59 2000"
4408 * t.to_s # => "2000-12-31 23:59:59 +0000"
4409 *
4410 */
4411
4412static VALUE
4413time_inspect(VALUE time)
4414{
4415 struct time_object *tobj;
4416 VALUE str, subsec;
4417
4418 GetTimeval(time, tobj);
4419 str = strftimev("%Y-%m-%d %H:%M:%S", time, rb_usascii_encoding());
4420 subsec = w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE)));
4421 if (subsec == INT2FIX(0)) {
4422 }
4423 else if (FIXNUM_P(subsec) && FIX2LONG(subsec) < TIME_SCALE) {
4424 long len;
4425 rb_str_catf(str, ".%09ld", FIX2LONG(subsec));
4426 for (len=RSTRING_LEN(str); RSTRING_PTR(str)[len-1] == '0' && len > 0; len--)
4427 ;
4428 rb_str_resize(str, len);
4429 }
4430 else {
4431 rb_str_cat_cstr(str, " ");
4432 subsec = quov(subsec, INT2FIX(TIME_SCALE));
4433 rb_str_concat(str, rb_obj_as_string(subsec));
4434 }
4435 if (TZMODE_UTC_P(tobj)) {
4436 rb_str_cat_cstr(str, " UTC");
4437 }
4438 else {
4439 /* ?TODO: subsecond offset */
4440 long off = NUM2LONG(rb_funcall(tobj->vtm.utc_offset, rb_intern("round"), 0));
4441 char sign = (off < 0) ? (off = -off, '-') : '+';
4442 int sec = off % 60;
4443 int min = (off /= 60) % 60;
4444 off /= 60;
4445 rb_str_catf(str, " %c%.2d%.2d", sign, (int)off, min);
4446 if (sec) rb_str_catf(str, "%.2d", sec);
4447 }
4448 return str;
4449}
4450
4451static VALUE
4452time_add0(VALUE klass, const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
4453{
4454 VALUE result;
4455 struct time_object *result_tobj;
4456
4457 offset = num_exact(offset);
4458 if (sign < 0)
4459 result = time_new_timew(klass, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
4460 else
4461 result = time_new_timew(klass, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
4462 GetTimeval(result, result_tobj);
4463 TZMODE_COPY(result_tobj, tobj);
4464
4465 return result;
4466}
4467
4468static VALUE
4469time_add(const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
4470{
4471 return time_add0(rb_cTime, tobj, torig, offset, sign);
4472}
4473
4474/*
4475 * call-seq:
4476 * self + numeric -> new_time
4477 *
4478 * Returns a new +Time+ object whose value is the sum of the numeric value
4479 * of +self+ and the given +numeric+:
4480 *
4481 * t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
4482 * t + (60 * 60 * 24) # => 2000-01-02 00:00:00 -0600
4483 * t + 0.5 # => 2000-01-01 00:00:00.5 -0600
4484 *
4485 * Related: Time#-.
4486 */
4487
4488static VALUE
4489time_plus(VALUE time1, VALUE time2)
4490{
4491 struct time_object *tobj;
4492 GetTimeval(time1, tobj);
4493
4494 if (IsTimeval(time2)) {
4495 rb_raise(rb_eTypeError, "time + time?");
4496 }
4497 return time_add(tobj, time1, time2, 1);
4498}
4499
4500/*
4501 * call-seq:
4502 * self - numeric -> new_time
4503 * self - other_time -> float
4504 *
4505 * When +numeric+ is given,
4506 * returns a new +Time+ object whose value is the difference
4507 * of the numeric value of +self+ and +numeric+:
4508 *
4509 * t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
4510 * t - (60 * 60 * 24) # => 1999-12-31 00:00:00 -0600
4511 * t - 0.5 # => 1999-12-31 23:59:59.5 -0600
4512 *
4513 * When +other_time+ is given,
4514 * returns a Float whose value is the difference
4515 * of the numeric values of +self+ and +other_time+ in seconds:
4516 *
4517 * t - t # => 0.0
4518 *
4519 * Related: Time#+.
4520 */
4521
4522static VALUE
4523time_minus(VALUE time1, VALUE time2)
4524{
4525 struct time_object *tobj;
4526
4527 GetTimeval(time1, tobj);
4528 if (IsTimeval(time2)) {
4529 struct time_object *tobj2;
4530
4531 GetTimeval(time2, tobj2);
4532 return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
4533 }
4534 return time_add(tobj, time1, time2, -1);
4535}
4536
4537static VALUE
4538ndigits_denominator(VALUE ndigits)
4539{
4540 long nd = NUM2LONG(ndigits);
4541
4542 if (nd < 0) {
4543 rb_raise(rb_eArgError, "negative ndigits given");
4544 }
4545 if (nd == 0) {
4546 return INT2FIX(1);
4547 }
4548 return rb_rational_new(INT2FIX(1),
4549 rb_int_positive_pow(10, (unsigned long)nd));
4550}
4551
4552/*
4553 * call-seq:
4554 * round(ndigits = 0) -> new_time
4555 *
4556 * Returns a new +Time+ object whose numeric value is that of +self+,
4557 * with its seconds value rounded to precision +ndigits+:
4558 *
4559 * t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
4560 * t # => 2010-03-30 05:43:25.123456789 UTC
4561 * t.round # => 2010-03-30 05:43:25 UTC
4562 * t.round(0) # => 2010-03-30 05:43:25 UTC
4563 * t.round(1) # => 2010-03-30 05:43:25.1 UTC
4564 * t.round(2) # => 2010-03-30 05:43:25.12 UTC
4565 * t.round(3) # => 2010-03-30 05:43:25.123 UTC
4566 * t.round(4) # => 2010-03-30 05:43:25.1235 UTC
4567 *
4568 * t = Time.utc(1999, 12,31, 23, 59, 59)
4569 * t # => 1999-12-31 23:59:59 UTC
4570 * (t + 0.4).round # => 1999-12-31 23:59:59 UTC
4571 * (t + 0.49).round # => 1999-12-31 23:59:59 UTC
4572 * (t + 0.5).round # => 2000-01-01 00:00:00 UTC
4573 * (t + 1.4).round # => 2000-01-01 00:00:00 UTC
4574 * (t + 1.49).round # => 2000-01-01 00:00:00 UTC
4575 * (t + 1.5).round # => 2000-01-01 00:00:01 UTC
4576 *
4577 * Related: Time#ceil, Time#floor.
4578 */
4579
4580static VALUE
4581time_round(int argc, VALUE *argv, VALUE time)
4582{
4583 VALUE ndigits, v, den;
4584 struct time_object *tobj;
4585
4586 if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4587 den = INT2FIX(1);
4588 else
4589 den = ndigits_denominator(ndigits);
4590
4591 GetTimeval(time, tobj);
4592 v = w2v(rb_time_unmagnify(tobj->timew));
4593
4594 v = modv(v, den);
4595 if (lt(v, quov(den, INT2FIX(2))))
4596 return time_add(tobj, time, v, -1);
4597 else
4598 return time_add(tobj, time, subv(den, v), 1);
4599}
4600
4601/*
4602 * call-seq:
4603 * floor(ndigits = 0) -> new_time
4604 *
4605 * Returns a new +Time+ object whose numerical value
4606 * is less than or equal to +self+ with its seconds
4607 * truncated to precision +ndigits+:
4608 *
4609 * t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
4610 * t # => 2010-03-30 05:43:25.123456789 UTC
4611 * t.floor # => 2010-03-30 05:43:25 UTC
4612 * t.floor(2) # => 2010-03-30 05:43:25.12 UTC
4613 * t.floor(4) # => 2010-03-30 05:43:25.1234 UTC
4614 * t.floor(6) # => 2010-03-30 05:43:25.123456 UTC
4615 * t.floor(8) # => 2010-03-30 05:43:25.12345678 UTC
4616 * t.floor(10) # => 2010-03-30 05:43:25.123456789 UTC
4617 *
4618 * t = Time.utc(1999, 12, 31, 23, 59, 59)
4619 * t # => 1999-12-31 23:59:59 UTC
4620 * (t + 0.4).floor # => 1999-12-31 23:59:59 UTC
4621 * (t + 0.9).floor # => 1999-12-31 23:59:59 UTC
4622 * (t + 1.4).floor # => 2000-01-01 00:00:00 UTC
4623 * (t + 1.9).floor # => 2000-01-01 00:00:00 UTC
4624 *
4625 * Related: Time#ceil, Time#round.
4626 */
4627
4628static VALUE
4629time_floor(int argc, VALUE *argv, VALUE time)
4630{
4631 VALUE ndigits, v, den;
4632 struct time_object *tobj;
4633
4634 if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4635 den = INT2FIX(1);
4636 else
4637 den = ndigits_denominator(ndigits);
4638
4639 GetTimeval(time, tobj);
4640 v = w2v(rb_time_unmagnify(tobj->timew));
4641
4642 v = modv(v, den);
4643 return time_add(tobj, time, v, -1);
4644}
4645
4646/*
4647 * call-seq:
4648 * ceil(ndigits = 0) -> new_time
4649 *
4650 * Returns a new +Time+ object whose numerical value
4651 * is greater than or equal to +self+ with its seconds
4652 * truncated to precision +ndigits+:
4653 *
4654 * t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
4655 * t # => 2010-03-30 05:43:25.123456789 UTC
4656 * t.ceil # => 2010-03-30 05:43:26 UTC
4657 * t.ceil(2) # => 2010-03-30 05:43:25.13 UTC
4658 * t.ceil(4) # => 2010-03-30 05:43:25.1235 UTC
4659 * t.ceil(6) # => 2010-03-30 05:43:25.123457 UTC
4660 * t.ceil(8) # => 2010-03-30 05:43:25.12345679 UTC
4661 * t.ceil(10) # => 2010-03-30 05:43:25.123456789 UTC
4662 *
4663 * t = Time.utc(1999, 12, 31, 23, 59, 59)
4664 * t # => 1999-12-31 23:59:59 UTC
4665 * (t + 0.4).ceil # => 2000-01-01 00:00:00 UTC
4666 * (t + 0.9).ceil # => 2000-01-01 00:00:00 UTC
4667 * (t + 1.4).ceil # => 2000-01-01 00:00:01 UTC
4668 * (t + 1.9).ceil # => 2000-01-01 00:00:01 UTC
4669 *
4670 * Related: Time#floor, Time#round.
4671 */
4672
4673static VALUE
4674time_ceil(int argc, VALUE *argv, VALUE time)
4675{
4676 VALUE ndigits, v, den;
4677 struct time_object *tobj;
4678
4679 if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
4680 den = INT2FIX(1);
4681 else
4682 den = ndigits_denominator(ndigits);
4683
4684 GetTimeval(time, tobj);
4685 v = w2v(rb_time_unmagnify(tobj->timew));
4686
4687 v = modv(v, den);
4688 if (!rb_equal(v, INT2FIX(0))) {
4689 v = subv(den, v);
4690 }
4691 return time_add(tobj, time, v, 1);
4692}
4693
4694/*
4695 * call-seq:
4696 * sec -> integer
4697 *
4698 * Returns the integer second of the minute for +self+,
4699 * in range (0..60):
4700 *
4701 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4702 * # => 2000-01-02 03:04:05 +000006
4703 * t.sec # => 5
4704 *
4705 * Note: the second value may be 60 when there is a
4706 * {leap second}[https://en.wikipedia.org/wiki/Leap_second].
4707 *
4708 * Related: Time#year, Time#mon, Time#min.
4709 */
4710
4711static VALUE
4712time_sec(VALUE time)
4713{
4714 struct time_object *tobj;
4715
4716 GetTimeval(time, tobj);
4717 MAKE_TM(time, tobj);
4718 return INT2FIX(tobj->vtm.sec);
4719}
4720
4721/*
4722 * call-seq:
4723 * min -> integer
4724 *
4725 * Returns the integer minute of the hour for +self+,
4726 * in range (0..59):
4727 *
4728 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4729 * # => 2000-01-02 03:04:05 +000006
4730 * t.min # => 4
4731 *
4732 * Related: Time#year, Time#mon, Time#sec.
4733 */
4734
4735static VALUE
4736time_min(VALUE time)
4737{
4738 struct time_object *tobj;
4739
4740 GetTimeval(time, tobj);
4741 MAKE_TM(time, tobj);
4742 return INT2FIX(tobj->vtm.min);
4743}
4744
4745/*
4746 * call-seq:
4747 * hour -> integer
4748 *
4749 * Returns the integer hour of the day for +self+,
4750 * in range (0..23):
4751 *
4752 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4753 * # => 2000-01-02 03:04:05 +000006
4754 * t.hour # => 3
4755 *
4756 * Related: Time#year, Time#mon, Time#min.
4757 */
4758
4759static VALUE
4760time_hour(VALUE time)
4761{
4762 struct time_object *tobj;
4763
4764 GetTimeval(time, tobj);
4765 MAKE_TM(time, tobj);
4766 return INT2FIX(tobj->vtm.hour);
4767}
4768
4769/*
4770 * call-seq:
4771 * mday -> integer
4772 *
4773 * Returns the integer day of the month for +self+,
4774 * in range (1..31):
4775 *
4776 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4777 * # => 2000-01-02 03:04:05 +000006
4778 * t.mday # => 2
4779 *
4780 * Related: Time#year, Time#hour, Time#min.
4781 */
4782
4783static VALUE
4784time_mday(VALUE time)
4785{
4786 struct time_object *tobj;
4787
4788 GetTimeval(time, tobj);
4789 MAKE_TM(time, tobj);
4790 return INT2FIX(tobj->vtm.mday);
4791}
4792
4793/*
4794 * call-seq:
4795 * mon -> integer
4796 *
4797 * Returns the integer month of the year for +self+,
4798 * in range (1..12):
4799 *
4800 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4801 * # => 2000-01-02 03:04:05 +000006
4802 * t.mon # => 1
4803 *
4804 * Related: Time#year, Time#hour, Time#min.
4805 */
4806
4807static VALUE
4808time_mon(VALUE time)
4809{
4810 struct time_object *tobj;
4811
4812 GetTimeval(time, tobj);
4813 MAKE_TM(time, tobj);
4814 return INT2FIX(tobj->vtm.mon);
4815}
4816
4817/*
4818 * call-seq:
4819 * year -> integer
4820 *
4821 * Returns the integer year for +self+:
4822 *
4823 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4824 * # => 2000-01-02 03:04:05 +000006
4825 * t.year # => 2000
4826 *
4827 * Related: Time#mon, Time#hour, Time#min.
4828 */
4829
4830static VALUE
4831time_year(VALUE time)
4832{
4833 struct time_object *tobj;
4834
4835 GetTimeval(time, tobj);
4836 MAKE_TM(time, tobj);
4837 return tobj->vtm.year;
4838}
4839
4840/*
4841 * call-seq:
4842 * wday -> integer
4843 *
4844 * Returns the integer day of the week for +self+,
4845 * in range (0..6), with Sunday as zero.
4846 *
4847 * t = Time.new(2000, 1, 2, 3, 4, 5, 6)
4848 * # => 2000-01-02 03:04:05 +000006
4849 * t.wday # => 0
4850 * t.sunday? # => true
4851 *
4852 * Related: Time#year, Time#hour, Time#min.
4853 */
4854
4855static VALUE
4856time_wday(VALUE time)
4857{
4858 struct time_object *tobj;
4859
4860 GetTimeval(time, tobj);
4861 MAKE_TM_ENSURE(time, tobj, tobj->vtm.wday != VTM_WDAY_INITVAL);
4862 return INT2FIX((int)tobj->vtm.wday);
4863}
4864
4865#define wday_p(n) {\
4866 return RBOOL(time_wday(time) == INT2FIX(n)); \
4867}
4868
4869/*
4870 * call-seq:
4871 * sunday? -> true or false
4872 *
4873 * Returns +true+ if +self+ represents a Sunday, +false+ otherwise:
4874 *
4875 * t = Time.utc(2000, 1, 2) # => 2000-01-02 00:00:00 UTC
4876 * t.sunday? # => true
4877 *
4878 * Related: Time#monday?, Time#tuesday?, Time#wednesday?.
4879 */
4880
4881static VALUE
4882time_sunday(VALUE time)
4883{
4884 wday_p(0);
4885}
4886
4887/*
4888 * call-seq:
4889 * monday? -> true or false
4890 *
4891 * Returns +true+ if +self+ represents a Monday, +false+ otherwise:
4892 *
4893 * t = Time.utc(2000, 1, 3) # => 2000-01-03 00:00:00 UTC
4894 * t.monday? # => true
4895 *
4896 * Related: Time#tuesday?, Time#wednesday?, Time#thursday?.
4897 */
4898
4899static VALUE
4900time_monday(VALUE time)
4901{
4902 wday_p(1);
4903}
4904
4905/*
4906 * call-seq:
4907 * tuesday? -> true or false
4908 *
4909 * Returns +true+ if +self+ represents a Tuesday, +false+ otherwise:
4910 *
4911 * t = Time.utc(2000, 1, 4) # => 2000-01-04 00:00:00 UTC
4912 * t.tuesday? # => true
4913 *
4914 * Related: Time#wednesday?, Time#thursday?, Time#friday?.
4915 */
4916
4917static VALUE
4918time_tuesday(VALUE time)
4919{
4920 wday_p(2);
4921}
4922
4923/*
4924 * call-seq:
4925 * wednesday? -> true or false
4926 *
4927 * Returns +true+ if +self+ represents a Wednesday, +false+ otherwise:
4928 *
4929 * t = Time.utc(2000, 1, 5) # => 2000-01-05 00:00:00 UTC
4930 * t.wednesday? # => true
4931 *
4932 * Related: Time#thursday?, Time#friday?, Time#saturday?.
4933 */
4934
4935static VALUE
4936time_wednesday(VALUE time)
4937{
4938 wday_p(3);
4939}
4940
4941/*
4942 * call-seq:
4943 * thursday? -> true or false
4944 *
4945 * Returns +true+ if +self+ represents a Thursday, +false+ otherwise:
4946 *
4947 * t = Time.utc(2000, 1, 6) # => 2000-01-06 00:00:00 UTC
4948 * t.thursday? # => true
4949 *
4950 * Related: Time#friday?, Time#saturday?, Time#sunday?.
4951 */
4952
4953static VALUE
4954time_thursday(VALUE time)
4955{
4956 wday_p(4);
4957}
4958
4959/*
4960 * call-seq:
4961 * friday? -> true or false
4962 *
4963 * Returns +true+ if +self+ represents a Friday, +false+ otherwise:
4964 *
4965 * t = Time.utc(2000, 1, 7) # => 2000-01-07 00:00:00 UTC
4966 * t.friday? # => true
4967 *
4968 * Related: Time#saturday?, Time#sunday?, Time#monday?.
4969 */
4970
4971static VALUE
4972time_friday(VALUE time)
4973{
4974 wday_p(5);
4975}
4976
4977/*
4978 * call-seq:
4979 * saturday? -> true or false
4980 *
4981 * Returns +true+ if +self+ represents a Saturday, +false+ otherwise:
4982 *
4983 * t = Time.utc(2000, 1, 1) # => 2000-01-01 00:00:00 UTC
4984 * t.saturday? # => true
4985 *
4986 * Related: Time#sunday?, Time#monday?, Time#tuesday?.
4987 */
4988
4989static VALUE
4990time_saturday(VALUE time)
4991{
4992 wday_p(6);
4993}
4994
4995/*
4996 * call-seq:
4997 * yday -> integer
4998 *
4999 * Returns the integer day of the year of +self+, in range (1..366).
5000 *
5001 * Time.new(2000, 1, 1).yday # => 1
5002 * Time.new(2000, 12, 31).yday # => 366
5003 */
5004
5005static VALUE
5006time_yday(VALUE time)
5007{
5008 struct time_object *tobj;
5009
5010 GetTimeval(time, tobj);
5011 MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
5012 return INT2FIX(tobj->vtm.yday);
5013}
5014
5015/*
5016 * call-seq:
5017 * dst? -> true or false
5018 *
5019 * Returns +true+ if +self+ is in daylight saving time, +false+ otherwise:
5020 *
5021 * t = Time.local(2000, 1, 1) # => 2000-01-01 00:00:00 -0600
5022 * t.zone # => "Central Standard Time"
5023 * t.dst? # => false
5024 * t = Time.local(2000, 7, 1) # => 2000-07-01 00:00:00 -0500
5025 * t.zone # => "Central Daylight Time"
5026 * t.dst? # => true
5027 *
5028 */
5029
5030static VALUE
5031time_isdst(VALUE time)
5032{
5033 struct time_object *tobj;
5034
5035 GetTimeval(time, tobj);
5036 MAKE_TM(time, tobj);
5037 if (tobj->vtm.isdst == VTM_ISDST_INITVAL) {
5038 rb_raise(rb_eRuntimeError, "isdst is not set yet");
5039 }
5040 return RBOOL(tobj->vtm.isdst);
5041}
5042
5043/*
5044 * call-seq:
5045 * time.zone -> string or timezone
5046 *
5047 * Returns the string name of the time zone for +self+:
5048 *
5049 * Time.utc(2000, 1, 1).zone # => "UTC"
5050 * Time.new(2000, 1, 1).zone # => "Central Standard Time"
5051 */
5052
5053static VALUE
5054time_zone(VALUE time)
5055{
5056 struct time_object *tobj;
5057 VALUE zone;
5058
5059 GetTimeval(time, tobj);
5060 MAKE_TM(time, tobj);
5061
5062 if (TZMODE_UTC_P(tobj)) {
5063 return rb_usascii_str_new_cstr("UTC");
5064 }
5065 zone = tobj->vtm.zone;
5066 if (NIL_P(zone))
5067 return Qnil;
5068
5069 if (RB_TYPE_P(zone, T_STRING))
5070 zone = rb_str_dup(zone);
5071 return zone;
5072}
5073
5074/*
5075 * call-seq:
5076 * utc_offset -> integer
5077 *
5078 * Returns the offset in seconds between the timezones of UTC and +self+:
5079 *
5080 * Time.utc(2000, 1, 1).utc_offset # => 0
5081 * Time.local(2000, 1, 1).utc_offset # => -21600 # -6*3600, or minus six hours.
5082 *
5083 */
5084
5085VALUE
5087{
5088 struct time_object *tobj;
5089
5090 GetTimeval(time, tobj);
5091
5092 if (TZMODE_UTC_P(tobj)) {
5093 return INT2FIX(0);
5094 }
5095 else {
5096 MAKE_TM(time, tobj);
5097 return tobj->vtm.utc_offset;
5098 }
5099}
5100
5101/*
5102 * call-seq:
5103 * to_a -> array
5104 *
5105 * Returns a 10-element array of values representing +self+:
5106 *
5107 * Time.utc(2000, 1, 1).to_a
5108 * # => [0, 0, 0, 1, 1, 2000, 6, 1, false, "UTC"]
5109 * # [sec, min, hour, day, mon, year, wday, yday, dst?, zone]
5110 *
5111 * The returned array is suitable for use as an argument to Time.utc or Time.local
5112 * to create a new +Time+ object.
5113 *
5114 */
5115
5116static VALUE
5117time_to_a(VALUE time)
5118{
5119 struct time_object *tobj;
5120
5121 GetTimeval(time, tobj);
5122 MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
5123 return rb_ary_new3(10,
5124 INT2FIX(tobj->vtm.sec),
5125 INT2FIX(tobj->vtm.min),
5126 INT2FIX(tobj->vtm.hour),
5127 INT2FIX(tobj->vtm.mday),
5128 INT2FIX(tobj->vtm.mon),
5129 tobj->vtm.year,
5130 INT2FIX(tobj->vtm.wday),
5131 INT2FIX(tobj->vtm.yday),
5132 RBOOL(tobj->vtm.isdst),
5133 time_zone(time));
5134}
5135
5136/*
5137 * call-seq:
5138 * deconstruct_keys(array_of_names_or_nil) -> hash
5139 *
5140 * Returns a hash of the name/value pairs, to use in pattern matching.
5141 * Possible keys are: <tt>:year</tt>, <tt>:month</tt>, <tt>:day</tt>,
5142 * <tt>:yday</tt>, <tt>:wday</tt>, <tt>:hour</tt>, <tt>:min</tt>, <tt>:sec</tt>,
5143 * <tt>:subsec</tt>, <tt>:dst</tt>, <tt>:zone</tt>.
5144 *
5145 * Possible usages:
5146 *
5147 * t = Time.utc(2022, 10, 5, 21, 25, 30)
5148 *
5149 * if t in wday: 3, day: ..7 # uses deconstruct_keys underneath
5150 * puts "first Wednesday of the month"
5151 * end
5152 * #=> prints "first Wednesday of the month"
5153 *
5154 * case t
5155 * in year: ...2022
5156 * puts "too old"
5157 * in month: ..9
5158 * puts "quarter 1-3"
5159 * in wday: 1..5, month:
5160 * puts "working day in month #{month}"
5161 * end
5162 * #=> prints "working day in month 10"
5163 *
5164 * Note that deconstruction by pattern can also be combined with class check:
5165 *
5166 * if t in Time(wday: 3, day: ..7)
5167 * puts "first Wednesday of the month"
5168 * end
5169 *
5170 */
5171static VALUE
5172time_deconstruct_keys(VALUE time, VALUE keys)
5173{
5174 struct time_object *tobj;
5175 VALUE h;
5176 long i;
5177
5178 GetTimeval(time, tobj);
5179 MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
5180
5181 if (NIL_P(keys)) {
5182 h = rb_hash_new_with_size(11);
5183
5184 rb_hash_aset(h, sym_year, tobj->vtm.year);
5185 rb_hash_aset(h, sym_month, INT2FIX(tobj->vtm.mon));
5186 rb_hash_aset(h, sym_day, INT2FIX(tobj->vtm.mday));
5187 rb_hash_aset(h, sym_yday, INT2FIX(tobj->vtm.yday));
5188 rb_hash_aset(h, sym_wday, INT2FIX(tobj->vtm.wday));
5189 rb_hash_aset(h, sym_hour, INT2FIX(tobj->vtm.hour));
5190 rb_hash_aset(h, sym_min, INT2FIX(tobj->vtm.min));
5191 rb_hash_aset(h, sym_sec, INT2FIX(tobj->vtm.sec));
5192 rb_hash_aset(h, sym_subsec,
5193 quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE)));
5194 rb_hash_aset(h, sym_dst, RBOOL(tobj->vtm.isdst));
5195 rb_hash_aset(h, sym_zone, time_zone(time));
5196
5197 return h;
5198 }
5199 if (UNLIKELY(!RB_TYPE_P(keys, T_ARRAY))) {
5200 rb_raise(rb_eTypeError,
5201 "wrong argument type %"PRIsVALUE" (expected Array or nil)",
5202 rb_obj_class(keys));
5203
5204 }
5205
5206 h = rb_hash_new_with_size(RARRAY_LEN(keys));
5207
5208 for (i=0; i<RARRAY_LEN(keys); i++) {
5209 VALUE key = RARRAY_AREF(keys, i);
5210
5211 if (sym_year == key) rb_hash_aset(h, key, tobj->vtm.year);
5212 if (sym_month == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.mon));
5213 if (sym_day == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.mday));
5214 if (sym_yday == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.yday));
5215 if (sym_wday == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.wday));
5216 if (sym_hour == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.hour));
5217 if (sym_min == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.min));
5218 if (sym_sec == key) rb_hash_aset(h, key, INT2FIX(tobj->vtm.sec));
5219 if (sym_subsec == key) {
5220 rb_hash_aset(h, key, quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE)));
5221 }
5222 if (sym_dst == key) rb_hash_aset(h, key, RBOOL(tobj->vtm.isdst));
5223 if (sym_zone == key) rb_hash_aset(h, key, time_zone(time));
5224 }
5225 return h;
5226}
5227
5228static VALUE
5229rb_strftime_alloc(const char *format, size_t format_len, rb_encoding *enc,
5230 VALUE time, struct vtm *vtm, wideval_t timew, int gmt)
5231{
5232 VALUE timev = Qnil;
5233 struct timespec ts;
5234
5235 if (!timew2timespec_exact(timew, &ts))
5236 timev = w2v(rb_time_unmagnify(timew));
5237
5238 if (NIL_P(timev)) {
5239 return rb_strftime_timespec(format, format_len, enc, time, vtm, &ts, gmt);
5240 }
5241 else {
5242 return rb_strftime(format, format_len, enc, time, vtm, timev, gmt);
5243 }
5244}
5245
5246static VALUE
5247strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc)
5248{
5249 struct time_object *tobj;
5250 VALUE str;
5251
5252 GetTimeval(time, tobj);
5253 MAKE_TM(time, tobj);
5254 str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj));
5255 if (!str) rb_raise(rb_eArgError, "invalid format: %s", fmt);
5256 return str;
5257}
5258
5259/*
5260 * call-seq:
5261 * strftime(format_string) -> string
5262 *
5263 * Returns a string representation of +self+,
5264 * formatted according to the given string +format+.
5265 * See {Formats for Dates and Times}[rdoc-ref:strftime_formatting.rdoc].
5266 */
5267
5268static VALUE
5269time_strftime(VALUE time, VALUE format)
5270{
5271 struct time_object *tobj;
5272 const char *fmt;
5273 long len;
5274 rb_encoding *enc;
5275 VALUE tmp;
5276
5277 GetTimeval(time, tobj);
5278 MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
5279 StringValue(format);
5280 if (!rb_enc_str_asciicompat_p(format)) {
5281 rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
5282 }
5283 tmp = rb_str_tmp_frozen_acquire(format);
5284 fmt = RSTRING_PTR(tmp);
5285 len = RSTRING_LEN(tmp);
5286 enc = rb_enc_get(format);
5287 if (len == 0) {
5288 rb_warning("strftime called with empty format string");
5289 return rb_enc_str_new(0, 0, enc);
5290 }
5291 else {
5292 VALUE str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew,
5293 TZMODE_UTC_P(tobj));
5294 rb_str_tmp_frozen_release(format, tmp);
5295 if (!str) rb_raise(rb_eArgError, "invalid format: %"PRIsVALUE, format);
5296 return str;
5297 }
5298}
5299
5300/*
5301 * call-seq:
5302 * xmlschema(fraction_digits=0) -> string
5303 *
5304 * Returns a string which represents the time as a dateTime defined by XML
5305 * Schema:
5306 *
5307 * CCYY-MM-DDThh:mm:ssTZD
5308 * CCYY-MM-DDThh:mm:ss.sssTZD
5309 *
5310 * where TZD is Z or [+-]hh:mm.
5311 *
5312 * If self is a UTC time, Z is used as TZD. [+-]hh:mm is used otherwise.
5313 *
5314 * +fraction_digits+ specifies a number of digits to use for fractional
5315 * seconds. Its default value is 0.
5316 *
5317 * t = Time.now
5318 * t.xmlschema # => "2011-10-05T22:26:12-04:00"
5319 */
5320
5321static VALUE
5322time_xmlschema(int argc, VALUE *argv, VALUE time)
5323{
5324 long fraction_digits = 0;
5325 rb_check_arity(argc, 0, 1);
5326 if (argc > 0) {
5327 fraction_digits = NUM2LONG(argv[0]);
5328 if (fraction_digits < 0) {
5329 fraction_digits = 0;
5330 }
5331 }
5332
5333 struct time_object *tobj;
5334
5335 GetTimeval(time, tobj);
5336 MAKE_TM(time, tobj);
5337
5338 const long size_after_year = sizeof("-MM-DDTHH:MM:SS+ZH:ZM") + fraction_digits
5339 + (fraction_digits > 0);
5340 VALUE str;
5341 char *ptr;
5342
5343# define fill_digits_long(len, prec, n) \
5344 for (int fill_it = 1, written = snprintf(ptr, len, "%0*ld", prec, n); \
5345 fill_it; ptr += written, fill_it = 0)
5346
5347 if (FIXNUM_P(tobj->vtm.year)) {
5348 long year = FIX2LONG(tobj->vtm.year);
5349 int year_width = (year < 0) + rb_strlen_lit("YYYY");
5350 int w = (year >= -9999 && year <= 9999 ? year_width : (year < 0) + (int)DECIMAL_SIZE_OF(year));
5351 str = rb_usascii_str_new(0, w + size_after_year);
5352 ptr = RSTRING_PTR(str);
5353 fill_digits_long(w + 1, year_width, year) {
5354 if (year >= -9999 && year <= 9999) {
5355 RUBY_ASSERT(written == year_width);
5356 }
5357 else {
5358 RUBY_ASSERT(written >= year_width);
5359 RUBY_ASSERT(written <= w);
5360 }
5361 }
5362 }
5363 else {
5364 str = rb_int2str(tobj->vtm.year, 10);
5365 rb_str_modify_expand(str, size_after_year);
5366 ptr = RSTRING_END(str);
5367 }
5368
5369# define fill_2(c, n) (*ptr++ = c, *ptr++ = '0' + (n) / 10, *ptr++ = '0' + (n) % 10)
5370 fill_2('-', tobj->vtm.mon);
5371 fill_2('-', tobj->vtm.mday);
5372 fill_2('T', tobj->vtm.hour);
5373 fill_2(':', tobj->vtm.min);
5374 fill_2(':', tobj->vtm.sec);
5375
5376 if (fraction_digits > 0) {
5377 VALUE subsecx = tobj->vtm.subsecx;
5378 long subsec;
5379 int digits = -1;
5380 *ptr++ = '.';
5381 if (fraction_digits <= TIME_SCALE_NUMDIGITS) {
5382 digits = TIME_SCALE_NUMDIGITS - (int)fraction_digits;
5383 }
5384 else {
5385 long w = fraction_digits - TIME_SCALE_NUMDIGITS; /* > 0 */
5386 subsecx = mulv(subsecx, rb_int_positive_pow(10, (unsigned long)w));
5387 if (!RB_INTEGER_TYPE_P(subsecx)) { /* maybe Rational */
5388 subsecx = rb_Integer(subsecx);
5389 }
5390 if (FIXNUM_P(subsecx)) digits = 0;
5391 }
5392 if (digits >= 0 && fraction_digits < INT_MAX) {
5393 subsec = NUM2LONG(subsecx);
5394 if (digits > 0) subsec /= (long)pow(10, digits);
5395 fill_digits_long(fraction_digits + 1, (int)fraction_digits, subsec) {
5396 RUBY_ASSERT(written == (int)fraction_digits);
5397 }
5398 }
5399 else {
5400 subsecx = rb_int2str(subsecx, 10);
5401 long len = RSTRING_LEN(subsecx);
5402 if (fraction_digits > len) {
5403 memset(ptr, '0', fraction_digits - len);
5404 }
5405 else {
5406 len = fraction_digits;
5407 }
5408 ptr += fraction_digits;
5409 memcpy(ptr - len, RSTRING_PTR(subsecx), len);
5410 }
5411 }
5412
5413 if (TZMODE_UTC_P(tobj)) {
5414 *ptr = 'Z';
5415 ptr++;
5416 }
5417 else {
5418 long offset = NUM2LONG(rb_time_utc_offset(time));
5419 char sign = offset < 0 ? '-' : '+';
5420 if (offset < 0) offset = -offset;
5421 offset /= 60;
5422 fill_2(sign, offset / 60);
5423 fill_2(':', offset % 60);
5424 }
5425 const char *const start = RSTRING_PTR(str);
5426 rb_str_set_len(str, ptr - start); // We could skip coderange scanning as we know it's full ASCII.
5427 return str;
5428}
5429
5430int ruby_marshal_write_long(long x, char *buf);
5431
5432enum {base_dump_size = 8};
5433
5434/* :nodoc: */
5435static VALUE
5436time_mdump(VALUE time)
5437{
5438 struct time_object *tobj;
5439 unsigned long p, s;
5440 char buf[base_dump_size + sizeof(long) + 1];
5441 int i;
5442 VALUE str;
5443
5444 struct vtm vtm;
5445 long year;
5446 long usec, nsec;
5447 VALUE subsecx, nano, subnano, v, zone;
5448
5449 VALUE year_extend = Qnil;
5450 const int max_year = 1900+0xffff;
5451
5452 GetTimeval(time, tobj);
5453
5454 gmtimew(tobj->timew, &vtm);
5455
5456 if (FIXNUM_P(vtm.year)) {
5457 year = FIX2LONG(vtm.year);
5458 if (year > max_year) {
5459 year_extend = INT2FIX(year - max_year);
5460 year = max_year;
5461 }
5462 else if (year < 1900) {
5463 year_extend = LONG2NUM(1900 - year);
5464 year = 1900;
5465 }
5466 }
5467 else {
5468 if (rb_int_positive_p(vtm.year)) {
5469 year_extend = rb_int_minus(vtm.year, INT2FIX(max_year));
5470 year = max_year;
5471 }
5472 else {
5473 year_extend = rb_int_minus(INT2FIX(1900), vtm.year);
5474 year = 1900;
5475 }
5476 }
5477
5478 subsecx = vtm.subsecx;
5479
5480 nano = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
5481 divmodv(nano, INT2FIX(1), &v, &subnano);
5482 nsec = FIX2LONG(v);
5483 usec = nsec / 1000;
5484 nsec = nsec % 1000;
5485
5486 nano = addv(LONG2FIX(nsec), subnano);
5487
5488 p = 0x1UL << 31 | /* 1 */
5489 TZMODE_UTC_P(tobj) << 30 | /* 1 */
5490 (year-1900) << 14 | /* 16 */
5491 (vtm.mon-1) << 10 | /* 4 */
5492 vtm.mday << 5 | /* 5 */
5493 vtm.hour; /* 5 */
5494 s = (unsigned long)vtm.min << 26 | /* 6 */
5495 vtm.sec << 20 | /* 6 */
5496 usec; /* 20 */
5497
5498 for (i=0; i<4; i++) {
5499 buf[i] = (unsigned char)p;
5500 p = RSHIFT(p, 8);
5501 }
5502 for (i=4; i<8; i++) {
5503 buf[i] = (unsigned char)s;
5504 s = RSHIFT(s, 8);
5505 }
5506
5507 if (!NIL_P(year_extend)) {
5508 /*
5509 * Append extended year distance from 1900..(1900+0xffff). In
5510 * each cases, there is no sign as the value is positive. The
5511 * format is length (marshaled long) + little endian packed
5512 * binary (like as Integer).
5513 */
5514 size_t ysize = rb_absint_size(year_extend, NULL);
5515 char *p, *const buf_year_extend = buf + base_dump_size;
5516 if (ysize > LONG_MAX ||
5517 (i = ruby_marshal_write_long((long)ysize, buf_year_extend)) < 0) {
5518 rb_raise(rb_eArgError, "year too %s to marshal: %"PRIsVALUE" UTC",
5519 (year == 1900 ? "small" : "big"), vtm.year);
5520 }
5521 i += base_dump_size;
5522 str = rb_str_new(NULL, i + ysize);
5523 p = RSTRING_PTR(str);
5524 memcpy(p, buf, i);
5525 p += i;
5526 rb_integer_pack(year_extend, p, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
5527 }
5528 else {
5529 str = rb_str_new(buf, base_dump_size);
5530 }
5531 rb_copy_generic_ivar(str, time);
5532 if (!rb_equal(nano, INT2FIX(0))) {
5533 if (RB_TYPE_P(nano, T_RATIONAL)) {
5534 rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
5535 rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
5536 }
5537 else {
5538 rb_ivar_set(str, id_nano_num, nano);
5539 rb_ivar_set(str, id_nano_den, INT2FIX(1));
5540 }
5541 }
5542 if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
5543 /*
5544 * submicro is formatted in fixed-point packed BCD (without sign).
5545 * It represent digits under microsecond.
5546 * For nanosecond resolution, 3 digits (2 bytes) are used.
5547 * However it can be longer.
5548 * Extra digits are ignored for loading.
5549 */
5550 char buf[2];
5551 int len = (int)sizeof(buf);
5552 buf[1] = (char)((nsec % 10) << 4);
5553 nsec /= 10;
5554 buf[0] = (char)(nsec % 10);
5555 nsec /= 10;
5556 buf[0] |= (char)((nsec % 10) << 4);
5557 if (buf[1] == 0)
5558 len = 1;
5559 rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
5560 }
5561 if (!TZMODE_UTC_P(tobj)) {
5562 VALUE off = rb_time_utc_offset(time), div, mod;
5563 divmodv(off, INT2FIX(1), &div, &mod);
5564 if (rb_equal(mod, INT2FIX(0)))
5565 off = rb_Integer(div);
5566 rb_ivar_set(str, id_offset, off);
5567 }
5568 zone = tobj->vtm.zone;
5569 if (maybe_tzobj_p(zone)) {
5570 zone = rb_funcallv(zone, id_name, 0, 0);
5571 }
5572 rb_ivar_set(str, id_zone, zone);
5573 return str;
5574}
5575
5576/* :nodoc: */
5577static VALUE
5578time_dump(int argc, VALUE *argv, VALUE time)
5579{
5580 VALUE str;
5581
5582 rb_check_arity(argc, 0, 1);
5583 str = time_mdump(time);
5584
5585 return str;
5586}
5587
5588static VALUE
5589mload_findzone(VALUE arg)
5590{
5591 VALUE *argp = (VALUE *)arg;
5592 VALUE time = argp[0], zone = argp[1];
5593 return find_timezone(time, zone);
5594}
5595
5596static VALUE
5597mload_zone(VALUE time, VALUE zone)
5598{
5599 VALUE z, args[2];
5600 args[0] = time;
5601 args[1] = zone;
5602 z = rb_rescue(mload_findzone, (VALUE)args, 0, Qnil);
5603 if (NIL_P(z)) return rb_fstring(zone);
5604 if (RB_TYPE_P(z, T_STRING)) return rb_fstring(z);
5605 return z;
5606}
5607
5608long ruby_marshal_read_long(const char **buf, long len);
5609
5610/* :nodoc: */
5611static VALUE
5612time_mload(VALUE time, VALUE str)
5613{
5614 struct time_object *tobj;
5615 unsigned long p, s;
5616 time_t sec;
5617 long usec;
5618 unsigned char *buf;
5619 struct vtm vtm;
5620 int i, gmt;
5621 long nsec;
5622 VALUE submicro, nano_num, nano_den, offset, zone, year;
5623 wideval_t timew;
5624
5625 time_modify(time);
5626
5627#define get_attr(attr, iffound) \
5628 attr = rb_attr_delete(str, id_##attr); \
5629 if (!NIL_P(attr)) { \
5630 iffound; \
5631 }
5632
5633 get_attr(nano_num, {});
5634 get_attr(nano_den, {});
5635 get_attr(submicro, {});
5636 get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, 0, Qnil)));
5637 get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, 0, Qnil)));
5638 get_attr(year, {});
5639
5640#undef get_attr
5641
5642 rb_copy_generic_ivar(time, str);
5643
5644 StringValue(str);
5645 buf = (unsigned char *)RSTRING_PTR(str);
5646 if (RSTRING_LEN(str) < base_dump_size) {
5647 goto invalid_format;
5648 }
5649
5650 p = s = 0;
5651 for (i=0; i<4; i++) {
5652 p |= (unsigned long)buf[i]<<(8*i);
5653 }
5654 for (i=4; i<8; i++) {
5655 s |= (unsigned long)buf[i]<<(8*(i-4));
5656 }
5657
5658 if ((p & (1UL<<31)) == 0) {
5659 gmt = 0;
5660 offset = Qnil;
5661 sec = p;
5662 usec = s;
5663 nsec = usec * 1000;
5664 timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
5665 }
5666 else {
5667 p &= ~(1UL<<31);
5668 gmt = (int)((p >> 30) & 0x1);
5669
5670 if (NIL_P(year)) {
5671 year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
5672 }
5673 if (RSTRING_LEN(str) > base_dump_size) {
5674 long len = RSTRING_LEN(str) - base_dump_size;
5675 long ysize = 0;
5676 VALUE year_extend;
5677 const char *ybuf = (const char *)(buf += base_dump_size);
5678 ysize = ruby_marshal_read_long(&ybuf, len);
5679 len -= ybuf - (const char *)buf;
5680 if (ysize < 0 || ysize > len) goto invalid_format;
5681 year_extend = rb_integer_unpack(ybuf, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
5682 if (year == INT2FIX(1900)) {
5683 year = rb_int_minus(year, year_extend);
5684 }
5685 else {
5686 year = rb_int_plus(year, year_extend);
5687 }
5688 }
5689 unsigned int mon = ((int)(p >> 10) & 0xf); /* 0...12 */
5690 if (mon >= 12) {
5691 mon -= 12;
5692 year = addv(year, LONG2FIX(1));
5693 }
5694 vtm.year = year;
5695 vtm.mon = mon + 1;
5696 vtm.mday = (int)(p >> 5) & 0x1f;
5697 vtm.hour = (int) p & 0x1f;
5698 vtm.min = (int)(s >> 26) & 0x3f;
5699 vtm.sec = (int)(s >> 20) & 0x3f;
5700 vtm.utc_offset = INT2FIX(0);
5701 vtm.yday = vtm.wday = 0;
5702 vtm.isdst = 0;
5703 vtm.zone = str_empty;
5704
5705 usec = (long)(s & 0xfffff);
5706 nsec = usec * 1000;
5707
5708
5709 vtm.subsecx = mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
5710 if (nano_num != Qnil) {
5711 VALUE nano = quov(num_exact(nano_num), num_exact(nano_den));
5712 vtm.subsecx = addv(vtm.subsecx, mulquov(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5713 }
5714 else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
5715 unsigned char *ptr;
5716 long len;
5717 int digit;
5718 ptr = (unsigned char*)StringValuePtr(submicro);
5719 len = RSTRING_LEN(submicro);
5720 nsec = 0;
5721 if (0 < len) {
5722 if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
5723 nsec += digit * 100;
5724 if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
5725 nsec += digit * 10;
5726 }
5727 if (1 < len) {
5728 if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
5729 nsec += digit;
5730 }
5731 vtm.subsecx = addv(vtm.subsecx, mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
5732end_submicro: ;
5733 }
5734 timew = timegmw(&vtm);
5735 }
5736
5737 GetNewTimeval(time, tobj);
5738 TZMODE_SET_LOCALTIME(tobj);
5739 tobj->vtm.tm_got = 0;
5740 time_set_timew(time, tobj, timew);
5741
5742 if (gmt) {
5743 TZMODE_SET_UTC(tobj);
5744 }
5745 else if (!NIL_P(offset)) {
5746 time_set_utc_offset(time, offset);
5747 time_fixoff(time);
5748 }
5749 if (!NIL_P(zone)) {
5750 zone = mload_zone(time, zone);
5751 tobj->vtm.zone = zone;
5752 zone_localtime(zone, time);
5753 }
5754
5755 return time;
5756
5757 invalid_format:
5758 rb_raise(rb_eTypeError, "marshaled time format differ");
5760}
5761
5762/* :nodoc: */
5763static VALUE
5764time_load(VALUE klass, VALUE str)
5765{
5766 VALUE time = time_s_alloc(klass);
5767
5768 time_mload(time, str);
5769 return time;
5770}
5771
5772/* :nodoc:*/
5773/* Document-class: Time::tm
5774 *
5775 * A container class for timezone conversion.
5776 */
5777
5778/*
5779 * call-seq:
5780 * Time::tm.from_time(t) -> tm
5781 *
5782 * Creates new Time::tm object from a Time object.
5783 */
5784
5785static VALUE
5786tm_from_time(VALUE klass, VALUE time)
5787{
5788 struct time_object *tobj;
5789 struct vtm vtm, *v;
5790 VALUE tm;
5791 struct time_object *ttm;
5792
5793 GetTimeval(time, tobj);
5794 tm = time_s_alloc(klass);
5795 ttm = RTYPEDDATA_GET_DATA(tm);
5796 v = &vtm;
5797 GMTIMEW(ttm->timew = tobj->timew, v);
5798 ttm->timew = wsub(ttm->timew, v->subsecx);
5799 v->subsecx = INT2FIX(0);
5800 v->zone = Qnil;
5801 time_set_vtm(tm, ttm, *v);
5802
5803 ttm->vtm.tm_got = 1;
5804 TZMODE_SET_UTC(ttm);
5805 return tm;
5806}
5807
5808/*
5809 * call-seq:
5810 * Time::tm.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, zone=nil) -> tm
5811 *
5812 * Creates new Time::tm object.
5813 */
5814
5815static VALUE
5816tm_initialize(int argc, VALUE *argv, VALUE time)
5817{
5818 struct vtm vtm;
5819 wideval_t t;
5820
5821 if (rb_check_arity(argc, 1, 7) > 6) argc = 6;
5822 time_arg(argc, argv, &vtm);
5823 t = timegmw(&vtm);
5824 struct time_object *tobj = RTYPEDDATA_GET_DATA(time);
5825 TZMODE_SET_UTC(tobj);
5826 time_set_timew(time, tobj, t);
5827 time_set_vtm(time, tobj, vtm);
5828
5829 return time;
5830}
5831
5832/* call-seq:
5833 * tm.to_time -> time
5834 *
5835 * Returns a new Time object.
5836 */
5837
5838static VALUE
5839tm_to_time(VALUE tm)
5840{
5841 struct time_object *torig = get_timeval(tm);
5842 VALUE dup = time_s_alloc(rb_cTime);
5843 struct time_object *tobj = RTYPEDDATA_GET_DATA(dup);
5844 *tobj = *torig;
5845 return dup;
5846}
5847
5848static VALUE
5849tm_plus(VALUE tm, VALUE offset)
5850{
5851 return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, +1);
5852}
5853
5854static VALUE
5855tm_minus(VALUE tm, VALUE offset)
5856{
5857 return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, -1);
5858}
5859
5860static VALUE
5861Init_tm(VALUE outer, const char *name)
5862{
5863 /* :stopdoc:*/
5864 VALUE tm;
5865 tm = rb_define_class_under(outer, name, rb_cObject);
5866 rb_define_alloc_func(tm, time_s_alloc);
5867 rb_define_method(tm, "sec", time_sec, 0);
5868 rb_define_method(tm, "min", time_min, 0);
5869 rb_define_method(tm, "hour", time_hour, 0);
5870 rb_define_method(tm, "mday", time_mday, 0);
5871 rb_define_method(tm, "day", time_mday, 0);
5872 rb_define_method(tm, "mon", time_mon, 0);
5873 rb_define_method(tm, "month", time_mon, 0);
5874 rb_define_method(tm, "year", time_year, 0);
5875 rb_define_method(tm, "isdst", time_isdst, 0);
5876 rb_define_method(tm, "dst?", time_isdst, 0);
5877 rb_define_method(tm, "zone", time_zone, 0);
5878 rb_define_method(tm, "gmtoff", rb_time_utc_offset, 0);
5879 rb_define_method(tm, "gmt_offset", rb_time_utc_offset, 0);
5880 rb_define_method(tm, "utc_offset", rb_time_utc_offset, 0);
5881 rb_define_method(tm, "utc?", time_utc_p, 0);
5882 rb_define_method(tm, "gmt?", time_utc_p, 0);
5883 rb_define_method(tm, "to_s", time_to_s, 0);
5884 rb_define_method(tm, "inspect", time_inspect, 0);
5885 rb_define_method(tm, "to_a", time_to_a, 0);
5886 rb_define_method(tm, "tv_sec", time_to_i, 0);
5887 rb_define_method(tm, "tv_usec", time_usec, 0);
5888 rb_define_method(tm, "usec", time_usec, 0);
5889 rb_define_method(tm, "tv_nsec", time_nsec, 0);
5890 rb_define_method(tm, "nsec", time_nsec, 0);
5891 rb_define_method(tm, "subsec", time_subsec, 0);
5892 rb_define_method(tm, "to_i", time_to_i, 0);
5893 rb_define_method(tm, "to_f", time_to_f, 0);
5894 rb_define_method(tm, "to_r", time_to_r, 0);
5895 rb_define_method(tm, "+", tm_plus, 1);
5896 rb_define_method(tm, "-", tm_minus, 1);
5897 rb_define_method(tm, "initialize", tm_initialize, -1);
5898 rb_define_method(tm, "utc", tm_to_time, 0);
5899 rb_alias(tm, rb_intern_const("to_time"), rb_intern_const("utc"));
5900 rb_define_singleton_method(tm, "from_time", tm_from_time, 1);
5901 /* :startdoc:*/
5902
5903 return tm;
5904}
5905
5906VALUE
5907rb_time_zone_abbreviation(VALUE zone, VALUE time)
5908{
5909 VALUE tm, abbr, strftime_args[2];
5910
5911 abbr = rb_check_string_type(zone);
5912 if (!NIL_P(abbr)) return abbr;
5913
5914 tm = tm_from_time(rb_cTimeTM, time);
5915 abbr = rb_check_funcall(zone, rb_intern("abbr"), 1, &tm);
5916 if (!UNDEF_P(abbr)) {
5917 goto found;
5918 }
5919#ifdef SUPPORT_TZINFO_ZONE_ABBREVIATION
5920 abbr = rb_check_funcall(zone, rb_intern("period_for_utc"), 1, &tm);
5921 if (!UNDEF_P(abbr)) {
5922 abbr = rb_funcallv(abbr, rb_intern("abbreviation"), 0, 0);
5923 goto found;
5924 }
5925#endif
5926 strftime_args[0] = rb_fstring_lit("%Z");
5927 strftime_args[1] = tm;
5928 abbr = rb_check_funcall(zone, rb_intern("strftime"), 2, strftime_args);
5929 if (!UNDEF_P(abbr)) {
5930 goto found;
5931 }
5932 abbr = rb_check_funcall_default(zone, idName, 0, 0, Qnil);
5933 found:
5934 return rb_obj_as_string(abbr);
5935}
5936
5937//
5938void
5939Init_Time(void)
5940{
5941#ifdef _WIN32
5942 ruby_reset_timezone(getenv("TZ"));
5943#endif
5944
5945 id_submicro = rb_intern_const("submicro");
5946 id_nano_num = rb_intern_const("nano_num");
5947 id_nano_den = rb_intern_const("nano_den");
5948 id_offset = rb_intern_const("offset");
5949 id_zone = rb_intern_const("zone");
5950 id_nanosecond = rb_intern_const("nanosecond");
5951 id_microsecond = rb_intern_const("microsecond");
5952 id_millisecond = rb_intern_const("millisecond");
5953 id_nsec = rb_intern_const("nsec");
5954 id_usec = rb_intern_const("usec");
5955 id_local_to_utc = rb_intern_const("local_to_utc");
5956 id_utc_to_local = rb_intern_const("utc_to_local");
5957 id_year = rb_intern_const("year");
5958 id_mon = rb_intern_const("mon");
5959 id_mday = rb_intern_const("mday");
5960 id_hour = rb_intern_const("hour");
5961 id_min = rb_intern_const("min");
5962 id_sec = rb_intern_const("sec");
5963 id_isdst = rb_intern_const("isdst");
5964 id_find_timezone = rb_intern_const("find_timezone");
5965
5966 sym_year = ID2SYM(rb_intern_const("year"));
5967 sym_month = ID2SYM(rb_intern_const("month"));
5968 sym_yday = ID2SYM(rb_intern_const("yday"));
5969 sym_wday = ID2SYM(rb_intern_const("wday"));
5970 sym_day = ID2SYM(rb_intern_const("day"));
5971 sym_hour = ID2SYM(rb_intern_const("hour"));
5972 sym_min = ID2SYM(rb_intern_const("min"));
5973 sym_sec = ID2SYM(rb_intern_const("sec"));
5974 sym_subsec = ID2SYM(rb_intern_const("subsec"));
5975 sym_dst = ID2SYM(rb_intern_const("dst"));
5976 sym_zone = ID2SYM(rb_intern_const("zone"));
5977
5978 str_utc = rb_fstring_lit("UTC");
5979 rb_vm_register_global_object(str_utc);
5980 str_empty = rb_fstring_lit("");
5981 rb_vm_register_global_object(str_empty);
5982
5983 rb_cTime = rb_define_class("Time", rb_cObject);
5986
5987 rb_define_alloc_func(rb_cTime, time_s_alloc);
5988 rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
5989 rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
5990 rb_define_alias(scTime, "gm", "utc");
5991 rb_define_alias(scTime, "mktime", "local");
5992
5993 rb_define_method(rb_cTime, "to_i", time_to_i, 0);
5994 rb_define_method(rb_cTime, "to_f", time_to_f, 0);
5995 rb_define_method(rb_cTime, "to_r", time_to_r, 0);
5996 rb_define_method(rb_cTime, "<=>", time_cmp, 1);
5997 rb_define_method(rb_cTime, "eql?", time_eql, 1);
5998 rb_define_method(rb_cTime, "hash", time_hash, 0);
5999 rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
6000
6001 rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
6002 rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
6003 rb_define_method(rb_cTime, "utc", time_gmtime, 0);
6004 rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
6005 rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
6006 rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
6007
6008 rb_define_method(rb_cTime, "ctime", time_asctime, 0);
6009 rb_define_method(rb_cTime, "asctime", time_asctime, 0);
6010 rb_define_method(rb_cTime, "to_s", time_to_s, 0);
6011 rb_define_method(rb_cTime, "inspect", time_inspect, 0);
6012 rb_define_method(rb_cTime, "to_a", time_to_a, 0);
6013 rb_define_method(rb_cTime, "deconstruct_keys", time_deconstruct_keys, 1);
6014
6015 rb_define_method(rb_cTime, "+", time_plus, 1);
6016 rb_define_method(rb_cTime, "-", time_minus, 1);
6017
6018 rb_define_method(rb_cTime, "round", time_round, -1);
6019 rb_define_method(rb_cTime, "floor", time_floor, -1);
6020 rb_define_method(rb_cTime, "ceil", time_ceil, -1);
6021
6022 rb_define_method(rb_cTime, "sec", time_sec, 0);
6023 rb_define_method(rb_cTime, "min", time_min, 0);
6024 rb_define_method(rb_cTime, "hour", time_hour, 0);
6025 rb_define_method(rb_cTime, "mday", time_mday, 0);
6026 rb_define_method(rb_cTime, "day", time_mday, 0);
6027 rb_define_method(rb_cTime, "mon", time_mon, 0);
6028 rb_define_method(rb_cTime, "month", time_mon, 0);
6029 rb_define_method(rb_cTime, "year", time_year, 0);
6030 rb_define_method(rb_cTime, "wday", time_wday, 0);
6031 rb_define_method(rb_cTime, "yday", time_yday, 0);
6032 rb_define_method(rb_cTime, "isdst", time_isdst, 0);
6033 rb_define_method(rb_cTime, "dst?", time_isdst, 0);
6034 rb_define_method(rb_cTime, "zone", time_zone, 0);
6035 rb_define_method(rb_cTime, "gmtoff", rb_time_utc_offset, 0);
6036 rb_define_method(rb_cTime, "gmt_offset", rb_time_utc_offset, 0);
6037 rb_define_method(rb_cTime, "utc_offset", rb_time_utc_offset, 0);
6038
6039 rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
6040 rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
6041
6042 rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
6043 rb_define_method(rb_cTime, "monday?", time_monday, 0);
6044 rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
6045 rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
6046 rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
6047 rb_define_method(rb_cTime, "friday?", time_friday, 0);
6048 rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
6049
6050 rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
6051 rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
6052 rb_define_method(rb_cTime, "usec", time_usec, 0);
6053 rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
6054 rb_define_method(rb_cTime, "nsec", time_nsec, 0);
6055 rb_define_method(rb_cTime, "subsec", time_subsec, 0);
6056
6057 rb_define_method(rb_cTime, "strftime", time_strftime, 1);
6058 rb_define_method(rb_cTime, "xmlschema", time_xmlschema, -1);
6059 rb_define_alias(rb_cTime, "iso8601", "xmlschema");
6060
6061 /* methods for marshaling */
6062 rb_define_private_method(rb_cTime, "_dump", time_dump, -1);
6063 rb_define_private_method(scTime, "_load", time_load, 1);
6064
6065 if (debug_find_time_numguess) {
6066 rb_define_hooked_variable("$find_time_numguess", (VALUE *)&find_time_numguess,
6067 find_time_numguess_getter, 0);
6068 }
6069
6070 rb_cTimeTM = Init_tm(rb_cTime, "tm");
6071}
6072
6073#include "timev.rbinc"
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
#define rb_define_private_method(klass, mid, func, arity)
Defines klass#mid and makes it private.
void rb_include_module(VALUE klass, VALUE module)
Includes a module to a class.
Definition class.c:1190
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition class.c:980
VALUE rb_singleton_class(VALUE obj)
Finds or creates the singleton class of the passed object.
Definition class.c:2300
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition class.c:1013
void rb_define_alias(VALUE klass, const char *name1, const char *name2)
Defines an alias of a method.
Definition class.c:2348
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:2638
#define TYPE(_)
Old name of rb_type.
Definition value_type.h:108
#define RB_INTEGER_TYPE_P
Old name of rb_integer_type_p.
Definition value_type.h:87
#define OBJ_INIT_COPY(obj, orig)
Old name of RB_OBJ_INIT_COPY.
Definition object.h:41
#define ISSPACE
Old name of rb_isspace.
Definition ctype.h:88
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition double.h:28
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define T_NIL
Old name of RUBY_T_NIL.
Definition value_type.h:72
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
Definition value_type.h:57
#define T_STRUCT
Old name of RUBY_T_STRUCT.
Definition value_type.h:79
#define T_FIXNUM
Old name of RUBY_T_FIXNUM.
Definition value_type.h:63
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition assume.h:29
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:203
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define ISDIGIT
Old name of rb_isdigit.
Definition ctype.h:93
#define ASSUME
Old name of RBIMPL_ASSUME.
Definition assume.h:27
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define LONG2NUM
Old name of RB_LONG2NUM.
Definition long.h:50
#define STRNCASECMP
Old name of st_locale_insensitive_strncasecmp.
Definition ctype.h:103
#define ISASCII
Old name of rb_isascii.
Definition ctype.h:85
#define ULL2NUM
Old name of RB_ULL2NUM.
Definition long_long.h:31
#define FIXNUM_MIN
Old name of RUBY_FIXNUM_MIN.
Definition fixnum.h:27
#define NUM2INT
Old name of RB_NUM2INT.
Definition int.h:44
#define INT2NUM
Old name of RB_INT2NUM.
Definition int.h:43
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition long.h:51
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define CONST_ID
Old name of RUBY_CONST_ID.
Definition symbol.h:47
#define NUM2SIZET
Old name of RB_NUM2SIZE.
Definition size_t.h:61
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition eval.c:675
int rb_typeddata_is_kind_of(VALUE obj, const rb_data_type_t *data_type)
Checks if the given object is of given kind.
Definition error.c:1380
VALUE rb_eRangeError
RangeError exception.
Definition error.c:1434
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
VALUE rb_eRuntimeError
RuntimeError exception.
Definition error.c:1428
VALUE rb_exc_new_str(VALUE etype, VALUE str)
Identical to rb_exc_new_cstr(), except it takes a Ruby's string instead of C's.
Definition error.c:1481
void rb_warning(const char *fmt,...)
Issues a warning.
Definition error.c:497
VALUE rb_cTime
Time class.
Definition time.c:678
VALUE rb_Float(VALUE val)
This is the logic behind Kernel#Float.
Definition object.c:3624
VALUE rb_check_to_int(VALUE val)
Identical to rb_check_to_integer(), except it uses #to_int for conversion.
Definition object.c:3198
VALUE rb_Integer(VALUE val)
This is the logic behind Kernel#Integer.
Definition object.c:3267
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:247
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition object.c:179
VALUE rb_mComparable
Comparable module.
Definition compar.c:19
VALUE rb_to_int(VALUE val)
Identical to rb_check_to_int(), except it raises in case of conversion mismatch.
Definition object.c:3192
#define RB_OBJ_WRITTEN(old, oldv, young)
Identical to RB_OBJ_WRITE(), except it doesn't write any values, but only a WB declaration.
Definition gc.h:615
Encoding relates APIs.
static bool rb_enc_str_asciicompat_p(VALUE str)
Queries if the passed string is in an ASCII-compatible encoding.
Definition encoding.h:789
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1099
Defines RBIMPL_HAS_BUILTIN.
#define INTEGER_PACK_NATIVE_BYTE_ORDER
Means either INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST, depending on the host processor'...
Definition bignum.h:546
#define INTEGER_PACK_LITTLE_ENDIAN
Little endian combination.
Definition bignum.h:567
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
void rb_num_zerodiv(void)
Just always raises an exception.
Definition numeric.c:206
VALUE rb_int_positive_pow(long x, unsigned long y)
Raises the passed x to the power of y.
Definition numeric.c:4559
VALUE rb_rational_new(VALUE num, VALUE den)
Constructs a Rational, with reduction.
Definition rational.c:1974
#define rb_Rational1(x)
Shorthand of (x/1)r.
Definition rational.h:116
VALUE rb_str_subseq(VALUE str, long beg, long len)
Identical to rb_str_substr(), except the numbers are interpreted as byte offsets instead of character...
Definition string.c:3070
#define rb_str_new(str, len)
Allocates an instance of rb_cString.
Definition string.h:1498
#define rb_usascii_str_new(str, len)
Identical to rb_str_new, except it generates a string of "US ASCII" encoding.
Definition string.h:1532
VALUE rb_str_dup(VALUE str)
Duplicates a string.
Definition string.c:1933
VALUE rb_str_cat(VALUE dst, const char *src, long srclen)
Destructively appends the passed contents to the string.
Definition string.c:3463
#define rb_usascii_str_new_cstr(str)
Identical to rb_str_new_cstr, except it generates a string of "US ASCII" encoding.
Definition string.h:1567
void rb_str_set_len(VALUE str, long len)
Overwrites the length of the string.
Definition string.c:3287
VALUE rb_str_concat(VALUE dst, VALUE src)
Identical to rb_str_append(), except it also accepts an integer as a codepoint.
Definition string.c:3937
#define rb_strlen_lit(str)
Length of a string literal.
Definition string.h:1692
VALUE rb_check_string_type(VALUE obj)
Try converting an object to its stringised representation using its to_str method,...
Definition string.c:2867
#define rb_str_cat_cstr(buf, str)
Identical to rb_str_cat(), except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1656
#define rb_utf8_str_new(str, len)
Identical to rb_str_new, except it generates a string of "UTF-8" encoding.
Definition string.h:1549
void rb_str_modify_expand(VALUE str, long capa)
Identical to rb_str_modify(), except it additionally expands the capacity of the receiver.
Definition string.c:2665
#define rb_str_new_cstr(str)
Identical to rb_str_new, except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1514
VALUE rb_obj_as_string(VALUE obj)
Try converting an object to its stringised representation using its to_s method, if any.
Definition string.c:1792
VALUE rb_time_nano_new(time_t sec, long nsec)
Identical to rb_time_new(), except it accepts the time in nanoseconds resolution.
Definition time.c:2812
void rb_timespec_now(struct timespec *ts)
Fills the current time into the given struct.
Definition time.c:2015
VALUE rb_time_timespec_new(const struct timespec *ts, int offset)
Creates an instance of rb_cTime, with given time and offset.
Definition time.c:2818
struct timespec rb_time_timespec(VALUE time)
Identical to rb_time_timeval(), except for return type.
Definition time.c:2981
VALUE rb_time_new(time_t sec, long usec)
Creates an instance of rb_cTime with the given time and the local timezone.
Definition time.c:2804
struct timeval rb_time_timeval(VALUE time)
Converts an instance of rb_cTime to a struct timeval that represents the identical point of time.
Definition time.c:2964
struct timeval rb_time_interval(VALUE num)
Creates a "time interval".
Definition time.c:2958
VALUE rb_time_num_new(VALUE timev, VALUE off)
Identical to rb_time_timespec_new(), except it takes Ruby values instead of C structs.
Definition time.c:2841
VALUE rb_time_utc_offset(VALUE time)
Queries the offset, in seconds between the time zone of the time and the UTC.
Definition time.c:5086
struct timespec rb_time_timespec_interval(VALUE num)
Identical to rb_time_interval(), except for return type.
Definition time.c:2995
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1924
int rb_respond_to(VALUE obj, ID mid)
Queries if the object responds to the method.
Definition vm_method.c:2956
void rb_alias(VALUE klass, ID dst, ID src)
Resembles alias.
Definition vm_method.c:2285
VALUE rb_check_funcall(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcallv(), except it returns RUBY_Qundef instead of raising rb_eNoMethodError.
Definition vm_eval.c:668
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
int off
Offset inside of ptr.
Definition io.h:5
int len
Length of the buffer.
Definition io.h:8
#define DECIMAL_SIZE_OF(expr)
An approximation of decimal representation size.
Definition util.h:48
#define rb_long2int
Just another name of rb_long2int_inline.
Definition long.h:62
#define MEMCPY(p1, p2, type, n)
Handy macro to call memcpy.
Definition memory.h:372
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
void rb_define_hooked_variable(const char *q, VALUE *w, type *e, void_type *r)
Define a function-backended global variable.
VALUE rb_rescue(type *q, VALUE w, type *e, VALUE r)
An equivalent of rescue clause.
void rb_copy_generic_ivar(VALUE clone, VALUE obj)
Copies the list of instance variables.
Definition variable.c:2100
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define StringValue(v)
Ensures that the parameter object is a String.
Definition rstring.h:66
#define StringValuePtr(v)
Identical to StringValue, except it returns a char*.
Definition rstring.h:76
VALUE rb_str_export_locale(VALUE obj)
Identical to rb_str_export(), except it converts into the locale encoding instead.
Definition string.c:1393
static char * RSTRING_END(VALUE str)
Queries the end of the contents pointer of the string.
Definition rstring.h:442
#define StringValueCStr(v)
Identical to StringValuePtr, except it additionally checks for the contents for viability as a C stri...
Definition rstring.h:89
#define RUBY_TYPED_DEFAULT_FREE
This is a value you can set to rb_data_type_struct::dfree.
Definition rtypeddata.h:79
#define TypedData_Get_Struct(obj, type, data_type, sval)
Obtains a C struct from inside of a wrapper Ruby object.
Definition rtypeddata.h:515
#define TypedData_Make_Struct(klass, type, data_type, sval)
Identical to TypedData_Wrap_Struct, except it allocates a new data region internally instead of takin...
Definition rtypeddata.h:497
#define RTEST
This is an old name of RB_TEST.
This is the struct that holds necessary info for a struct.
Definition rtypeddata.h:200
const char * wrap_struct_name
Name of structs of this kind.
Definition rtypeddata.h:207
Definition timev.h:5
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
Definition value.h:63
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
Definition value_type.h:264
static bool rb_integer_type_p(VALUE obj)
Queries if the object is an instance of rb_cInteger.
Definition value_type.h:204
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376