Ruby 3.5.0dev (2025-02-22 revision 412997300569c1853c09813e4924b6df3d7e8669)
gc.c (412997300569c1853c09813e4924b6df3d7e8669)
1/**********************************************************************
2
3 gc.c -
4
5 $Author$
6 created at: Tue Oct 5 09:44:46 JST 1993
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
11
12**********************************************************************/
13
14#define rb_data_object_alloc rb_data_object_alloc
15#define rb_data_typed_object_alloc rb_data_typed_object_alloc
16
17#include "ruby/internal/config.h"
18#ifdef _WIN32
19# include "ruby/ruby.h"
20#endif
21
22#if defined(__wasm__) && !defined(__EMSCRIPTEN__)
23# include "wasm/setjmp.h"
24# include "wasm/machine.h"
25#else
26# include <setjmp.h>
27#endif
28#include <stdarg.h>
29#include <stdio.h>
30
31/* MALLOC_HEADERS_BEGIN */
32#ifndef HAVE_MALLOC_USABLE_SIZE
33# ifdef _WIN32
34# define HAVE_MALLOC_USABLE_SIZE
35# define malloc_usable_size(a) _msize(a)
36# elif defined HAVE_MALLOC_SIZE
37# define HAVE_MALLOC_USABLE_SIZE
38# define malloc_usable_size(a) malloc_size(a)
39# endif
40#endif
41
42#ifdef HAVE_MALLOC_USABLE_SIZE
43# ifdef RUBY_ALTERNATIVE_MALLOC_HEADER
44/* Alternative malloc header is included in ruby/missing.h */
45# elif defined(HAVE_MALLOC_H)
46# include <malloc.h>
47# elif defined(HAVE_MALLOC_NP_H)
48# include <malloc_np.h>
49# elif defined(HAVE_MALLOC_MALLOC_H)
50# include <malloc/malloc.h>
51# endif
52#endif
53
54/* MALLOC_HEADERS_END */
55
56#ifdef HAVE_SYS_TIME_H
57# include <sys/time.h>
58#endif
59
60#ifdef HAVE_SYS_RESOURCE_H
61# include <sys/resource.h>
62#endif
63
64#if defined _WIN32 || defined __CYGWIN__
65# include <windows.h>
66#elif defined(HAVE_POSIX_MEMALIGN)
67#elif defined(HAVE_MEMALIGN)
68# include <malloc.h>
69#endif
70
71#include <sys/types.h>
72
73#ifdef __EMSCRIPTEN__
74#include <emscripten.h>
75#endif
76
77/* For ruby_annotate_mmap */
78#ifdef HAVE_SYS_PRCTL_H
79#include <sys/prctl.h>
80#endif
81
82#undef LIST_HEAD /* ccan/list conflicts with BSD-origin sys/queue.h. */
83
84#include "constant.h"
85#include "darray.h"
86#include "debug_counter.h"
87#include "eval_intern.h"
88#include "gc/gc.h"
89#include "id_table.h"
90#include "internal.h"
91#include "internal/class.h"
92#include "internal/compile.h"
93#include "internal/complex.h"
94#include "internal/cont.h"
95#include "internal/error.h"
96#include "internal/eval.h"
97#include "internal/gc.h"
98#include "internal/hash.h"
99#include "internal/imemo.h"
100#include "internal/io.h"
101#include "internal/numeric.h"
102#include "internal/object.h"
103#include "internal/proc.h"
104#include "internal/rational.h"
105#include "internal/sanitizers.h"
106#include "internal/struct.h"
107#include "internal/symbol.h"
108#include "internal/thread.h"
109#include "internal/variable.h"
110#include "internal/warnings.h"
111#include "probes.h"
112#include "regint.h"
113#include "ruby/debug.h"
114#include "ruby/io.h"
115#include "ruby/re.h"
116#include "ruby/st.h"
117#include "ruby/thread.h"
118#include "ruby/util.h"
119#include "ruby/vm.h"
120#include "ruby_assert.h"
121#include "ruby_atomic.h"
122#include "symbol.h"
123#include "variable.h"
124#include "vm_core.h"
125#include "vm_sync.h"
126#include "vm_callinfo.h"
127#include "ractor_core.h"
128#include "yjit.h"
129
130#include "builtin.h"
131#include "shape.h"
132
133unsigned int
134rb_gc_vm_lock(void)
135{
136 unsigned int lev;
137 RB_VM_LOCK_ENTER_LEV(&lev);
138 return lev;
139}
140
141void
142rb_gc_vm_unlock(unsigned int lev)
143{
144 RB_VM_LOCK_LEAVE_LEV(&lev);
145}
146
147unsigned int
148rb_gc_cr_lock(void)
149{
150 unsigned int lev;
151 RB_VM_LOCK_ENTER_CR_LEV(GET_RACTOR(), &lev);
152 return lev;
153}
154
155void
156rb_gc_cr_unlock(unsigned int lev)
157{
158 RB_VM_LOCK_LEAVE_CR_LEV(GET_RACTOR(), &lev);
159}
160
161unsigned int
162rb_gc_vm_lock_no_barrier(void)
163{
164 unsigned int lev = 0;
165 RB_VM_LOCK_ENTER_LEV_NB(&lev);
166 return lev;
167}
168
169void
170rb_gc_vm_unlock_no_barrier(unsigned int lev)
171{
172 RB_VM_LOCK_LEAVE_LEV(&lev);
173}
174
175void
176rb_gc_vm_barrier(void)
177{
178 rb_vm_barrier();
179}
180
181#if USE_MODULAR_GC
182void *
183rb_gc_get_ractor_newobj_cache(void)
184{
185 return GET_RACTOR()->newobj_cache;
186}
187
188void
189rb_gc_initialize_vm_context(struct rb_gc_vm_context *context)
190{
191 rb_native_mutex_initialize(&context->lock);
192 context->ec = GET_EC();
193}
194
195void
196rb_gc_worker_thread_set_vm_context(struct rb_gc_vm_context *context)
197{
198 rb_native_mutex_lock(&context->lock);
199
200 GC_ASSERT(rb_current_execution_context(false) == NULL);
201
202#ifdef RB_THREAD_LOCAL_SPECIFIER
203 rb_current_ec_set(context->ec);
204#else
205 native_tls_set(ruby_current_ec_key, context->ec);
206#endif
207}
208
209void
210rb_gc_worker_thread_unset_vm_context(struct rb_gc_vm_context *context)
211{
212 rb_native_mutex_unlock(&context->lock);
213
214 GC_ASSERT(rb_current_execution_context(true) == context->ec);
215
216#ifdef RB_THREAD_LOCAL_SPECIFIER
217 rb_current_ec_set(NULL);
218#else
219 native_tls_set(ruby_current_ec_key, NULL);
220#endif
221}
222#endif
223
224bool
225rb_gc_event_hook_required_p(rb_event_flag_t event)
226{
227 return ruby_vm_event_flags & event;
228}
229
230void
231rb_gc_event_hook(VALUE obj, rb_event_flag_t event)
232{
233 if (LIKELY(!rb_gc_event_hook_required_p(event))) return;
234
235 rb_execution_context_t *ec = GET_EC();
236 if (!ec->cfp) return;
237
238 EXEC_EVENT_HOOK(ec, event, ec->cfp->self, 0, 0, 0, obj);
239}
240
241void *
242rb_gc_get_objspace(void)
243{
244 return GET_VM()->gc.objspace;
245}
246
247
248void
249rb_gc_ractor_newobj_cache_foreach(void (*func)(void *cache, void *data), void *data)
250{
251 rb_ractor_t *r = NULL;
252 if (RB_LIKELY(ruby_single_main_ractor)) {
253 GC_ASSERT(
254 ccan_list_empty(&GET_VM()->ractor.set) ||
255 (ccan_list_top(&GET_VM()->ractor.set, rb_ractor_t, vmlr_node) == ruby_single_main_ractor &&
256 ccan_list_tail(&GET_VM()->ractor.set, rb_ractor_t, vmlr_node) == ruby_single_main_ractor)
257 );
258
259 func(ruby_single_main_ractor->newobj_cache, data);
260 }
261 else {
262 ccan_list_for_each(&GET_VM()->ractor.set, r, vmlr_node) {
263 func(r->newobj_cache, data);
264 }
265 }
266}
267
268void
269rb_gc_run_obj_finalizer(VALUE objid, long count, VALUE (*callback)(long i, void *data), void *data)
270{
271 volatile struct {
272 VALUE errinfo;
273 VALUE final;
275 VALUE *sp;
276 long finished;
277 } saved;
278
279 rb_execution_context_t * volatile ec = GET_EC();
280#define RESTORE_FINALIZER() (\
281 ec->cfp = saved.cfp, \
282 ec->cfp->sp = saved.sp, \
283 ec->errinfo = saved.errinfo)
284
285 saved.errinfo = ec->errinfo;
286 saved.cfp = ec->cfp;
287 saved.sp = ec->cfp->sp;
288 saved.finished = 0;
289 saved.final = Qundef;
290
291 EC_PUSH_TAG(ec);
292 enum ruby_tag_type state = EC_EXEC_TAG();
293 if (state != TAG_NONE) {
294 ++saved.finished; /* skip failed finalizer */
295
296 VALUE failed_final = saved.final;
297 saved.final = Qundef;
298 if (!UNDEF_P(failed_final) && !NIL_P(ruby_verbose)) {
299 rb_warn("Exception in finalizer %+"PRIsVALUE, failed_final);
300 rb_ec_error_print(ec, ec->errinfo);
301 }
302 }
303
304 for (long i = saved.finished; RESTORE_FINALIZER(), i < count; saved.finished = ++i) {
305 saved.final = callback(i, data);
306 rb_check_funcall(saved.final, idCall, 1, &objid);
307 }
308 EC_POP_TAG();
309#undef RESTORE_FINALIZER
310}
311
312void
313rb_gc_set_pending_interrupt(void)
314{
315 rb_execution_context_t *ec = GET_EC();
316 ec->interrupt_mask |= PENDING_INTERRUPT_MASK;
317}
318
319void
320rb_gc_unset_pending_interrupt(void)
321{
322 rb_execution_context_t *ec = GET_EC();
323 ec->interrupt_mask &= ~PENDING_INTERRUPT_MASK;
324}
325
326bool
327rb_gc_multi_ractor_p(void)
328{
329 return rb_multi_ractor_p();
330}
331
332bool rb_obj_is_main_ractor(VALUE gv);
333
334bool
335rb_gc_shutdown_call_finalizer_p(VALUE obj)
336{
337 switch (BUILTIN_TYPE(obj)) {
338 case T_DATA:
339 if (!ruby_free_at_exit_p() && (!DATA_PTR(obj) || !RDATA(obj)->dfree)) return false;
340 if (rb_obj_is_thread(obj)) return false;
341 if (rb_obj_is_mutex(obj)) return false;
342 if (rb_obj_is_fiber(obj)) return false;
343 if (rb_obj_is_main_ractor(obj)) return false;
344
345 return true;
346
347 case T_FILE:
348 return true;
349
350 case T_SYMBOL:
351 if (RSYMBOL(obj)->fstr &&
352 (BUILTIN_TYPE(RSYMBOL(obj)->fstr) == T_NONE ||
353 BUILTIN_TYPE(RSYMBOL(obj)->fstr) == T_ZOMBIE)) {
354 RSYMBOL(obj)->fstr = 0;
355 }
356 return true;
357
358 case T_NONE:
359 return false;
360
361 default:
362 return ruby_free_at_exit_p();
363 }
364}
365
366uint32_t
367rb_gc_get_shape(VALUE obj)
368{
369 return (uint32_t)rb_shape_get_shape_id(obj);
370}
371
372void
373rb_gc_set_shape(VALUE obj, uint32_t shape_id)
374{
375 rb_shape_set_shape_id(obj, (uint32_t)shape_id);
376}
377
378uint32_t
379rb_gc_rebuild_shape(VALUE obj, size_t heap_id)
380{
381 rb_shape_t *orig_shape = rb_shape_get_shape(obj);
382
383 if (rb_shape_obj_too_complex(obj)) return (uint32_t)OBJ_TOO_COMPLEX_SHAPE_ID;
384
385 rb_shape_t *initial_shape = rb_shape_get_shape_by_id((shape_id_t)(heap_id + FIRST_T_OBJECT_SHAPE_ID));
386 rb_shape_t *new_shape = rb_shape_traverse_from_new_root(initial_shape, orig_shape);
387
388 if (!new_shape) return 0;
389
390 return (uint32_t)rb_shape_id(new_shape);
391}
392
393void rb_vm_update_references(void *ptr);
394
395#define rb_setjmp(env) RUBY_SETJMP(env)
396#define rb_jmp_buf rb_jmpbuf_t
397#undef rb_data_object_wrap
398
399#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
400#define MAP_ANONYMOUS MAP_ANON
401#endif
402
403#define unless_objspace(objspace) \
404 void *objspace; \
405 rb_vm_t *unless_objspace_vm = GET_VM(); \
406 if (unless_objspace_vm) objspace = unless_objspace_vm->gc.objspace; \
407 else /* return; or objspace will be warned uninitialized */
408
409#define RMOVED(obj) ((struct RMoved *)(obj))
410
411#define TYPED_UPDATE_IF_MOVED(_objspace, _type, _thing) do { \
412 if (rb_gc_impl_object_moved_p((_objspace), (VALUE)(_thing))) { \
413 *(_type *)&(_thing) = (_type)gc_location_internal(_objspace, (VALUE)_thing); \
414 } \
415} while (0)
416
417#define UPDATE_IF_MOVED(_objspace, _thing) TYPED_UPDATE_IF_MOVED(_objspace, VALUE, _thing)
418
419#if RUBY_MARK_FREE_DEBUG
420int ruby_gc_debug_indent = 0;
421#endif
422
423#ifndef RGENGC_OBJ_INFO
424# define RGENGC_OBJ_INFO RGENGC_CHECK_MODE
425#endif
426
427#ifndef CALC_EXACT_MALLOC_SIZE
428# define CALC_EXACT_MALLOC_SIZE 0
429#endif
430
432
433static size_t malloc_offset = 0;
434#if defined(HAVE_MALLOC_USABLE_SIZE)
435static size_t
436gc_compute_malloc_offset(void)
437{
438 // Different allocators use different metadata storage strategies which result in different
439 // ideal sizes.
440 // For instance malloc(64) will waste 8B with glibc, but waste 0B with jemalloc.
441 // But malloc(56) will waste 0B with glibc, but waste 8B with jemalloc.
442 // So we try allocating 64, 56 and 48 bytes and select the first offset that doesn't
443 // waste memory.
444 // This was tested on Linux with glibc 2.35 and jemalloc 5, and for both it result in
445 // no wasted memory.
446 size_t offset = 0;
447 for (offset = 0; offset <= 16; offset += 8) {
448 size_t allocated = (64 - offset);
449 void *test_ptr = malloc(allocated);
450 size_t wasted = malloc_usable_size(test_ptr) - allocated;
451 free(test_ptr);
452
453 if (wasted == 0) {
454 return offset;
455 }
456 }
457 return 0;
458}
459#else
460static size_t
461gc_compute_malloc_offset(void)
462{
463 // If we don't have malloc_usable_size, we use powers of 2.
464 return 0;
465}
466#endif
467
468size_t
469rb_malloc_grow_capa(size_t current, size_t type_size)
470{
471 size_t current_capacity = current;
472 if (current_capacity < 4) {
473 current_capacity = 4;
474 }
475 current_capacity *= type_size;
476
477 // We double the current capacity.
478 size_t new_capacity = (current_capacity * 2);
479
480 // And round up to the next power of 2 if it's not already one.
481 if (rb_popcount64(new_capacity) != 1) {
482 new_capacity = (size_t)(1 << (64 - nlz_int64(new_capacity)));
483 }
484
485 new_capacity -= malloc_offset;
486 new_capacity /= type_size;
487 if (current > new_capacity) {
488 rb_bug("rb_malloc_grow_capa: current_capacity=%zu, new_capacity=%zu, malloc_offset=%zu", current, new_capacity, malloc_offset);
489 }
490 RUBY_ASSERT(new_capacity > current);
491 return new_capacity;
492}
493
494static inline struct rbimpl_size_mul_overflow_tag
495size_mul_add_overflow(size_t x, size_t y, size_t z) /* x * y + z */
496{
497 struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
498 struct rbimpl_size_mul_overflow_tag u = rbimpl_size_add_overflow(t.right, z);
499 return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left, u.right };
500}
501
502static inline struct rbimpl_size_mul_overflow_tag
503size_mul_add_mul_overflow(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
504{
505 struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
506 struct rbimpl_size_mul_overflow_tag u = rbimpl_size_mul_overflow(z, w);
507 struct rbimpl_size_mul_overflow_tag v = rbimpl_size_add_overflow(t.right, u.right);
508 return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left || v.left, v.right };
509}
510
511PRINTF_ARGS(NORETURN(static void gc_raise(VALUE, const char*, ...)), 2, 3);
512
513static inline size_t
514size_mul_or_raise(size_t x, size_t y, VALUE exc)
515{
516 struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y);
517 if (LIKELY(!t.left)) {
518 return t.right;
519 }
520 else if (rb_during_gc()) {
521 rb_memerror(); /* or...? */
522 }
523 else {
524 gc_raise(
525 exc,
526 "integer overflow: %"PRIuSIZE
527 " * %"PRIuSIZE
528 " > %"PRIuSIZE,
529 x, y, (size_t)SIZE_MAX);
530 }
531}
532
533size_t
534rb_size_mul_or_raise(size_t x, size_t y, VALUE exc)
535{
536 return size_mul_or_raise(x, y, exc);
537}
538
539static inline size_t
540size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
541{
542 struct rbimpl_size_mul_overflow_tag t = size_mul_add_overflow(x, y, z);
543 if (LIKELY(!t.left)) {
544 return t.right;
545 }
546 else if (rb_during_gc()) {
547 rb_memerror(); /* or...? */
548 }
549 else {
550 gc_raise(
551 exc,
552 "integer overflow: %"PRIuSIZE
553 " * %"PRIuSIZE
554 " + %"PRIuSIZE
555 " > %"PRIuSIZE,
556 x, y, z, (size_t)SIZE_MAX);
557 }
558}
559
560size_t
561rb_size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc)
562{
563 return size_mul_add_or_raise(x, y, z, exc);
564}
565
566static inline size_t
567size_mul_add_mul_or_raise(size_t x, size_t y, size_t z, size_t w, VALUE exc)
568{
569 struct rbimpl_size_mul_overflow_tag t = size_mul_add_mul_overflow(x, y, z, w);
570 if (LIKELY(!t.left)) {
571 return t.right;
572 }
573 else if (rb_during_gc()) {
574 rb_memerror(); /* or...? */
575 }
576 else {
577 gc_raise(
578 exc,
579 "integer overflow: %"PRIdSIZE
580 " * %"PRIdSIZE
581 " + %"PRIdSIZE
582 " * %"PRIdSIZE
583 " > %"PRIdSIZE,
584 x, y, z, w, (size_t)SIZE_MAX);
585 }
586}
587
588#if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL
589/* trick the compiler into thinking a external signal handler uses this */
590volatile VALUE rb_gc_guarded_val;
591volatile VALUE *
592rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val)
593{
594 rb_gc_guarded_val = val;
595
596 return ptr;
597}
598#endif
599
600static const char *obj_type_name(VALUE obj);
601#include "gc/default/default.c"
602
603#if USE_MODULAR_GC && !defined(HAVE_DLOPEN)
604# error "Modular GC requires dlopen"
605#elif USE_MODULAR_GC
606#include <dlfcn.h>
607
608typedef struct gc_function_map {
609 // Bootup
610 void *(*objspace_alloc)(void);
611 void (*objspace_init)(void *objspace_ptr);
612 void (*objspace_free)(void *objspace_ptr);
613 void *(*ractor_cache_alloc)(void *objspace_ptr, void *ractor);
614 void (*ractor_cache_free)(void *objspace_ptr, void *cache);
615 void (*set_params)(void *objspace_ptr);
616 void (*init)(void);
617 size_t *(*heap_sizes)(void *objspace_ptr);
618 // Shutdown
619 void (*shutdown_free_objects)(void *objspace_ptr);
620 // GC
621 void (*start)(void *objspace_ptr, bool full_mark, bool immediate_mark, bool immediate_sweep, bool compact);
622 bool (*during_gc_p)(void *objspace_ptr);
623 void (*prepare_heap)(void *objspace_ptr);
624 void (*gc_enable)(void *objspace_ptr);
625 void (*gc_disable)(void *objspace_ptr, bool finish_current_gc);
626 bool (*gc_enabled_p)(void *objspace_ptr);
627 VALUE (*config_get)(void *objpace_ptr);
628 void (*config_set)(void *objspace_ptr, VALUE hash);
629 void (*stress_set)(void *objspace_ptr, VALUE flag);
630 VALUE (*stress_get)(void *objspace_ptr);
631 // Object allocation
632 VALUE (*new_obj)(void *objspace_ptr, void *cache_ptr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, bool wb_protected, size_t alloc_size);
633 size_t (*obj_slot_size)(VALUE obj);
634 size_t (*heap_id_for_size)(void *objspace_ptr, size_t size);
635 bool (*size_allocatable_p)(size_t size);
636 // Malloc
637 void *(*malloc)(void *objspace_ptr, size_t size);
638 void *(*calloc)(void *objspace_ptr, size_t size);
639 void *(*realloc)(void *objspace_ptr, void *ptr, size_t new_size, size_t old_size);
640 void (*free)(void *objspace_ptr, void *ptr, size_t old_size);
641 void (*adjust_memory_usage)(void *objspace_ptr, ssize_t diff);
642 // Marking
643 void (*mark)(void *objspace_ptr, VALUE obj);
644 void (*mark_and_move)(void *objspace_ptr, VALUE *ptr);
645 void (*mark_and_pin)(void *objspace_ptr, VALUE obj);
646 void (*mark_maybe)(void *objspace_ptr, VALUE obj);
647 void (*mark_weak)(void *objspace_ptr, VALUE *ptr);
648 void (*remove_weak)(void *objspace_ptr, VALUE parent_obj, VALUE *ptr);
649 // Compaction
650 bool (*object_moved_p)(void *objspace_ptr, VALUE obj);
651 VALUE (*location)(void *objspace_ptr, VALUE value);
652 // Write barriers
653 void (*writebarrier)(void *objspace_ptr, VALUE a, VALUE b);
654 void (*writebarrier_unprotect)(void *objspace_ptr, VALUE obj);
655 void (*writebarrier_remember)(void *objspace_ptr, VALUE obj);
656 // Heap walking
657 void (*each_objects)(void *objspace_ptr, int (*callback)(void *, void *, size_t, void *), void *data);
658 void (*each_object)(void *objspace_ptr, void (*func)(VALUE obj, void *data), void *data);
659 // Finalizers
660 void (*make_zombie)(void *objspace_ptr, VALUE obj, void (*dfree)(void *), void *data);
661 VALUE (*define_finalizer)(void *objspace_ptr, VALUE obj, VALUE block);
662 void (*undefine_finalizer)(void *objspace_ptr, VALUE obj);
663 void (*copy_finalizer)(void *objspace_ptr, VALUE dest, VALUE obj);
664 void (*shutdown_call_finalizer)(void *objspace_ptr);
665 // Object ID
666 VALUE (*object_id)(void *objspace_ptr, VALUE obj);
667 VALUE (*object_id_to_ref)(void *objspace_ptr, VALUE object_id);
668 // Forking
669 void (*before_fork)(void *objspace_ptr);
670 void (*after_fork)(void *objspace_ptr, rb_pid_t pid);
671 // Statistics
672 void (*set_measure_total_time)(void *objspace_ptr, VALUE flag);
673 bool (*get_measure_total_time)(void *objspace_ptr);
674 unsigned long long (*get_total_time)(void *objspace_ptr);
675 size_t (*gc_count)(void *objspace_ptr);
676 VALUE (*latest_gc_info)(void *objspace_ptr, VALUE key);
677 VALUE (*stat)(void *objspace_ptr, VALUE hash_or_sym);
678 VALUE (*stat_heap)(void *objspace_ptr, VALUE heap_name, VALUE hash_or_sym);
679 const char *(*active_gc_name)(void);
680 // Miscellaneous
681 struct rb_gc_object_metadata_entry *(*object_metadata)(void *objspace_ptr, VALUE obj);
682 bool (*pointer_to_heap_p)(void *objspace_ptr, const void *ptr);
683 bool (*garbage_object_p)(void *objspace_ptr, VALUE obj);
684 void (*set_event_hook)(void *objspace_ptr, const rb_event_flag_t event);
685 void (*copy_attributes)(void *objspace_ptr, VALUE dest, VALUE obj);
686
687 bool modular_gc_loaded_p;
688} rb_gc_function_map_t;
689
690static rb_gc_function_map_t rb_gc_functions;
691
692# define RUBY_GC_LIBRARY "RUBY_GC_LIBRARY"
693# define MODULAR_GC_DIR STRINGIZE(modular_gc_dir)
694
695static void
696ruby_modular_gc_init(void)
697{
698 // Assert that the directory path ends with a /
699 RUBY_ASSERT_ALWAYS(MODULAR_GC_DIR[sizeof(MODULAR_GC_DIR) - 2] == '/');
700
701 const char *gc_so_file = getenv(RUBY_GC_LIBRARY);
702
703 rb_gc_function_map_t gc_functions = { 0 };
704
705 char *gc_so_path = NULL;
706 void *handle = NULL;
707 if (gc_so_file) {
708 /* Check to make sure that gc_so_file matches /[\w-_]+/ so that it does
709 * not load a shared object outside of the directory. */
710 for (size_t i = 0; i < strlen(gc_so_file); i++) {
711 char c = gc_so_file[i];
712 if (isalnum(c)) continue;
713 switch (c) {
714 case '-':
715 case '_':
716 break;
717 default:
718 fprintf(stderr, "Only alphanumeric, dash, and underscore is allowed in "RUBY_GC_LIBRARY"\n");
719 exit(1);
720 }
721 }
722
723 size_t gc_so_path_size = strlen(MODULAR_GC_DIR "librubygc." DLEXT) + strlen(gc_so_file) + 1;
724#ifdef LOAD_RELATIVE
725 Dl_info dli;
726 size_t prefix_len = 0;
727 if (dladdr((void *)(uintptr_t)ruby_modular_gc_init, &dli)) {
728 const char *base = strrchr(dli.dli_fname, '/');
729 if (base) {
730 size_t tail = 0;
731# define end_with_p(lit) \
732 (prefix_len >= (tail = rb_strlen_lit(lit)) && \
733 memcmp(base - tail, lit, tail) == 0)
734
735 prefix_len = base - dli.dli_fname;
736 if (end_with_p("/bin") || end_with_p("/lib")) {
737 prefix_len -= tail;
738 }
739 prefix_len += MODULAR_GC_DIR[0] != '/';
740 gc_so_path_size += prefix_len;
741 }
742 }
743#endif
744 gc_so_path = alloca(gc_so_path_size);
745 {
746 size_t gc_so_path_idx = 0;
747#define GC_SO_PATH_APPEND(str) do { \
748 gc_so_path_idx += strlcpy(gc_so_path + gc_so_path_idx, str, gc_so_path_size - gc_so_path_idx); \
749} while (0)
750#ifdef LOAD_RELATIVE
751 if (prefix_len > 0) {
752 memcpy(gc_so_path, dli.dli_fname, prefix_len);
753 gc_so_path_idx = prefix_len;
754 }
755#endif
756 GC_SO_PATH_APPEND(MODULAR_GC_DIR "librubygc.");
757 GC_SO_PATH_APPEND(gc_so_file);
758 GC_SO_PATH_APPEND(DLEXT);
759 GC_ASSERT(gc_so_path_idx == gc_so_path_size - 1);
760#undef GC_SO_PATH_APPEND
761 }
762
763 handle = dlopen(gc_so_path, RTLD_LAZY | RTLD_GLOBAL);
764 if (!handle) {
765 fprintf(stderr, "ruby_modular_gc_init: Shared library %s cannot be opened: %s\n", gc_so_path, dlerror());
766 exit(1);
767 }
768
769 gc_functions.modular_gc_loaded_p = true;
770 }
771
772# define load_modular_gc_func(name) do { \
773 if (handle) { \
774 const char *func_name = "rb_gc_impl_" #name; \
775 gc_functions.name = dlsym(handle, func_name); \
776 if (!gc_functions.name) { \
777 fprintf(stderr, "ruby_modular_gc_init: %s function not exported by library %s\n", func_name, gc_so_path); \
778 exit(1); \
779 } \
780 } \
781 else { \
782 gc_functions.name = rb_gc_impl_##name; \
783 } \
784} while (0)
785
786 // Bootup
787 load_modular_gc_func(objspace_alloc);
788 load_modular_gc_func(objspace_init);
789 load_modular_gc_func(objspace_free);
790 load_modular_gc_func(ractor_cache_alloc);
791 load_modular_gc_func(ractor_cache_free);
792 load_modular_gc_func(set_params);
793 load_modular_gc_func(init);
794 load_modular_gc_func(heap_sizes);
795 // Shutdown
796 load_modular_gc_func(shutdown_free_objects);
797 // GC
798 load_modular_gc_func(start);
799 load_modular_gc_func(during_gc_p);
800 load_modular_gc_func(prepare_heap);
801 load_modular_gc_func(gc_enable);
802 load_modular_gc_func(gc_disable);
803 load_modular_gc_func(gc_enabled_p);
804 load_modular_gc_func(config_set);
805 load_modular_gc_func(config_get);
806 load_modular_gc_func(stress_set);
807 load_modular_gc_func(stress_get);
808 // Object allocation
809 load_modular_gc_func(new_obj);
810 load_modular_gc_func(obj_slot_size);
811 load_modular_gc_func(heap_id_for_size);
812 load_modular_gc_func(size_allocatable_p);
813 // Malloc
814 load_modular_gc_func(malloc);
815 load_modular_gc_func(calloc);
816 load_modular_gc_func(realloc);
817 load_modular_gc_func(free);
818 load_modular_gc_func(adjust_memory_usage);
819 // Marking
820 load_modular_gc_func(mark);
821 load_modular_gc_func(mark_and_move);
822 load_modular_gc_func(mark_and_pin);
823 load_modular_gc_func(mark_maybe);
824 load_modular_gc_func(mark_weak);
825 load_modular_gc_func(remove_weak);
826 // Compaction
827 load_modular_gc_func(object_moved_p);
828 load_modular_gc_func(location);
829 // Write barriers
830 load_modular_gc_func(writebarrier);
831 load_modular_gc_func(writebarrier_unprotect);
832 load_modular_gc_func(writebarrier_remember);
833 // Heap walking
834 load_modular_gc_func(each_objects);
835 load_modular_gc_func(each_object);
836 // Finalizers
837 load_modular_gc_func(make_zombie);
838 load_modular_gc_func(define_finalizer);
839 load_modular_gc_func(undefine_finalizer);
840 load_modular_gc_func(copy_finalizer);
841 load_modular_gc_func(shutdown_call_finalizer);
842 // Object ID
843 load_modular_gc_func(object_id);
844 load_modular_gc_func(object_id_to_ref);
845 // Forking
846 load_modular_gc_func(before_fork);
847 load_modular_gc_func(after_fork);
848 // Statistics
849 load_modular_gc_func(set_measure_total_time);
850 load_modular_gc_func(get_measure_total_time);
851 load_modular_gc_func(get_total_time);
852 load_modular_gc_func(gc_count);
853 load_modular_gc_func(latest_gc_info);
854 load_modular_gc_func(stat);
855 load_modular_gc_func(stat_heap);
856 load_modular_gc_func(active_gc_name);
857 // Miscellaneous
858 load_modular_gc_func(object_metadata);
859 load_modular_gc_func(pointer_to_heap_p);
860 load_modular_gc_func(garbage_object_p);
861 load_modular_gc_func(set_event_hook);
862 load_modular_gc_func(copy_attributes);
863
864# undef load_modular_gc_func
865
866 rb_gc_functions = gc_functions;
867}
868
869// Bootup
870# define rb_gc_impl_objspace_alloc rb_gc_functions.objspace_alloc
871# define rb_gc_impl_objspace_init rb_gc_functions.objspace_init
872# define rb_gc_impl_objspace_free rb_gc_functions.objspace_free
873# define rb_gc_impl_ractor_cache_alloc rb_gc_functions.ractor_cache_alloc
874# define rb_gc_impl_ractor_cache_free rb_gc_functions.ractor_cache_free
875# define rb_gc_impl_set_params rb_gc_functions.set_params
876# define rb_gc_impl_init rb_gc_functions.init
877# define rb_gc_impl_heap_sizes rb_gc_functions.heap_sizes
878// Shutdown
879# define rb_gc_impl_shutdown_free_objects rb_gc_functions.shutdown_free_objects
880// GC
881# define rb_gc_impl_start rb_gc_functions.start
882# define rb_gc_impl_during_gc_p rb_gc_functions.during_gc_p
883# define rb_gc_impl_prepare_heap rb_gc_functions.prepare_heap
884# define rb_gc_impl_gc_enable rb_gc_functions.gc_enable
885# define rb_gc_impl_gc_disable rb_gc_functions.gc_disable
886# define rb_gc_impl_gc_enabled_p rb_gc_functions.gc_enabled_p
887# define rb_gc_impl_config_get rb_gc_functions.config_get
888# define rb_gc_impl_config_set rb_gc_functions.config_set
889# define rb_gc_impl_stress_set rb_gc_functions.stress_set
890# define rb_gc_impl_stress_get rb_gc_functions.stress_get
891// Object allocation
892# define rb_gc_impl_new_obj rb_gc_functions.new_obj
893# define rb_gc_impl_obj_slot_size rb_gc_functions.obj_slot_size
894# define rb_gc_impl_heap_id_for_size rb_gc_functions.heap_id_for_size
895# define rb_gc_impl_size_allocatable_p rb_gc_functions.size_allocatable_p
896// Malloc
897# define rb_gc_impl_malloc rb_gc_functions.malloc
898# define rb_gc_impl_calloc rb_gc_functions.calloc
899# define rb_gc_impl_realloc rb_gc_functions.realloc
900# define rb_gc_impl_free rb_gc_functions.free
901# define rb_gc_impl_adjust_memory_usage rb_gc_functions.adjust_memory_usage
902// Marking
903# define rb_gc_impl_mark rb_gc_functions.mark
904# define rb_gc_impl_mark_and_move rb_gc_functions.mark_and_move
905# define rb_gc_impl_mark_and_pin rb_gc_functions.mark_and_pin
906# define rb_gc_impl_mark_maybe rb_gc_functions.mark_maybe
907# define rb_gc_impl_mark_weak rb_gc_functions.mark_weak
908# define rb_gc_impl_remove_weak rb_gc_functions.remove_weak
909// Compaction
910# define rb_gc_impl_object_moved_p rb_gc_functions.object_moved_p
911# define rb_gc_impl_location rb_gc_functions.location
912// Write barriers
913# define rb_gc_impl_writebarrier rb_gc_functions.writebarrier
914# define rb_gc_impl_writebarrier_unprotect rb_gc_functions.writebarrier_unprotect
915# define rb_gc_impl_writebarrier_remember rb_gc_functions.writebarrier_remember
916// Heap walking
917# define rb_gc_impl_each_objects rb_gc_functions.each_objects
918# define rb_gc_impl_each_object rb_gc_functions.each_object
919// Finalizers
920# define rb_gc_impl_make_zombie rb_gc_functions.make_zombie
921# define rb_gc_impl_define_finalizer rb_gc_functions.define_finalizer
922# define rb_gc_impl_undefine_finalizer rb_gc_functions.undefine_finalizer
923# define rb_gc_impl_copy_finalizer rb_gc_functions.copy_finalizer
924# define rb_gc_impl_shutdown_call_finalizer rb_gc_functions.shutdown_call_finalizer
925// Object ID
926# define rb_gc_impl_object_id rb_gc_functions.object_id
927# define rb_gc_impl_object_id_to_ref rb_gc_functions.object_id_to_ref
928// Forking
929# define rb_gc_impl_before_fork rb_gc_functions.before_fork
930# define rb_gc_impl_after_fork rb_gc_functions.after_fork
931// Statistics
932# define rb_gc_impl_set_measure_total_time rb_gc_functions.set_measure_total_time
933# define rb_gc_impl_get_measure_total_time rb_gc_functions.get_measure_total_time
934# define rb_gc_impl_get_total_time rb_gc_functions.get_total_time
935# define rb_gc_impl_gc_count rb_gc_functions.gc_count
936# define rb_gc_impl_latest_gc_info rb_gc_functions.latest_gc_info
937# define rb_gc_impl_stat rb_gc_functions.stat
938# define rb_gc_impl_stat_heap rb_gc_functions.stat_heap
939# define rb_gc_impl_active_gc_name rb_gc_functions.active_gc_name
940// Miscellaneous
941# define rb_gc_impl_object_metadata rb_gc_functions.object_metadata
942# define rb_gc_impl_pointer_to_heap_p rb_gc_functions.pointer_to_heap_p
943# define rb_gc_impl_garbage_object_p rb_gc_functions.garbage_object_p
944# define rb_gc_impl_set_event_hook rb_gc_functions.set_event_hook
945# define rb_gc_impl_copy_attributes rb_gc_functions.copy_attributes
946#endif
947
948#ifdef RUBY_ASAN_ENABLED
949static void
950asan_death_callback(void)
951{
952 if (GET_VM()) {
953 rb_bug_without_die("ASAN error");
954 }
955}
956#endif
957
958static VALUE initial_stress = Qfalse;
959
960void *
961rb_objspace_alloc(void)
962{
963#if USE_MODULAR_GC
964 ruby_modular_gc_init();
965#endif
966
967 void *objspace = rb_gc_impl_objspace_alloc();
968 ruby_current_vm_ptr->gc.objspace = objspace;
969
970 rb_gc_impl_objspace_init(objspace);
971 rb_gc_impl_stress_set(objspace, initial_stress);
972
973#ifdef RUBY_ASAN_ENABLED
974 __sanitizer_set_death_callback(asan_death_callback);
975#endif
976
977 return objspace;
978}
979
980void
981rb_objspace_free(void *objspace)
982{
983 rb_gc_impl_objspace_free(objspace);
984}
985
986size_t
987rb_gc_obj_slot_size(VALUE obj)
988{
989 return rb_gc_impl_obj_slot_size(obj);
990}
991
992static inline void
993gc_validate_pc(void) {
994#if RUBY_DEBUG
995 rb_execution_context_t *ec = GET_EC();
996 const rb_control_frame_t *cfp = ec->cfp;
997 if (cfp && VM_FRAME_RUBYFRAME_P(cfp) && cfp->pc) {
998 RUBY_ASSERT(cfp->pc >= ISEQ_BODY(cfp->iseq)->iseq_encoded);
999 RUBY_ASSERT(cfp->pc <= ISEQ_BODY(cfp->iseq)->iseq_encoded + ISEQ_BODY(cfp->iseq)->iseq_size);
1000 }
1001#endif
1002}
1003
1004static inline VALUE
1005newobj_of(rb_ractor_t *cr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, bool wb_protected, size_t size)
1006{
1007 VALUE obj = rb_gc_impl_new_obj(rb_gc_get_objspace(), cr->newobj_cache, klass, flags, v1, v2, v3, wb_protected, size);
1008
1009 gc_validate_pc();
1010
1011 if (UNLIKELY(rb_gc_event_hook_required_p(RUBY_INTERNAL_EVENT_NEWOBJ))) {
1012 unsigned int lev;
1013 RB_VM_LOCK_ENTER_CR_LEV(cr, &lev);
1014 {
1015 memset((char *)obj + RVALUE_SIZE, 0, rb_gc_obj_slot_size(obj) - RVALUE_SIZE);
1016
1017 /* We must disable GC here because the callback could call xmalloc
1018 * which could potentially trigger a GC, and a lot of code is unsafe
1019 * to trigger a GC right after an object has been allocated because
1020 * they perform initialization for the object and assume that the
1021 * GC does not trigger before then. */
1022 bool gc_disabled = RTEST(rb_gc_disable_no_rest());
1023 {
1024 rb_gc_event_hook(obj, RUBY_INTERNAL_EVENT_NEWOBJ);
1025 }
1026 if (!gc_disabled) rb_gc_enable();
1027 }
1028 RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev);
1029 }
1030
1031 return obj;
1032}
1033
1034VALUE
1035rb_wb_unprotected_newobj_of(VALUE klass, VALUE flags, size_t size)
1036{
1037 GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
1038 return newobj_of(GET_RACTOR(), klass, flags, 0, 0, 0, FALSE, size);
1039}
1040
1041VALUE
1042rb_wb_protected_newobj_of(rb_execution_context_t *ec, VALUE klass, VALUE flags, size_t size)
1043{
1044 GC_ASSERT((flags & FL_WB_PROTECTED) == 0);
1045 return newobj_of(rb_ec_ractor_ptr(ec), klass, flags, 0, 0, 0, TRUE, size);
1046}
1047
1048#define UNEXPECTED_NODE(func) \
1049 rb_bug(#func"(): GC does not handle T_NODE 0x%x(%p) 0x%"PRIxVALUE, \
1050 BUILTIN_TYPE(obj), (void*)(obj), RBASIC(obj)->flags)
1051
1052static inline void
1053rb_data_object_check(VALUE klass)
1054{
1055 if (klass != rb_cObject && (rb_get_alloc_func(klass) == rb_class_allocate_instance)) {
1056 rb_undef_alloc_func(klass);
1057 rb_warn("undefining the allocator of T_DATA class %"PRIsVALUE, klass);
1058 }
1059}
1060
1061VALUE
1062rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
1063{
1065 if (klass) rb_data_object_check(klass);
1066 return newobj_of(GET_RACTOR(), klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap, !dmark, sizeof(struct RTypedData));
1067}
1068
1069VALUE
1070rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
1071{
1072 VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree);
1073 DATA_PTR(obj) = xcalloc(1, size);
1074 return obj;
1075}
1076
1077static VALUE
1078typed_data_alloc(VALUE klass, VALUE typed_flag, void *datap, const rb_data_type_t *type, size_t size)
1079{
1080 RBIMPL_NONNULL_ARG(type);
1081 if (klass) rb_data_object_check(klass);
1082 bool wb_protected = (type->flags & RUBY_FL_WB_PROTECTED) || !type->function.dmark;
1083 return newobj_of(GET_RACTOR(), klass, T_DATA, (VALUE)type, 1 | typed_flag, (VALUE)datap, wb_protected, size);
1084}
1085
1086VALUE
1087rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type)
1088{
1089 if (UNLIKELY(type->flags & RUBY_TYPED_EMBEDDABLE)) {
1090 rb_raise(rb_eTypeError, "Cannot wrap an embeddable TypedData");
1091 }
1092
1093 return typed_data_alloc(klass, 0, datap, type, sizeof(struct RTypedData));
1094}
1095
1096VALUE
1097rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type)
1098{
1099 if (type->flags & RUBY_TYPED_EMBEDDABLE) {
1100 if (!(type->flags & RUBY_TYPED_FREE_IMMEDIATELY)) {
1101 rb_raise(rb_eTypeError, "Embeddable TypedData must be freed immediately");
1102 }
1103
1104 size_t embed_size = offsetof(struct RTypedData, data) + size;
1105 if (rb_gc_size_allocatable_p(embed_size)) {
1106 VALUE obj = typed_data_alloc(klass, TYPED_DATA_EMBEDDED, 0, type, embed_size);
1107 memset((char *)obj + offsetof(struct RTypedData, data), 0, size);
1108 return obj;
1109 }
1110 }
1111
1112 VALUE obj = typed_data_alloc(klass, 0, NULL, type, sizeof(struct RTypedData));
1113 DATA_PTR(obj) = xcalloc(1, size);
1114 return obj;
1115}
1116
1117static size_t
1118rb_objspace_data_type_memsize(VALUE obj)
1119{
1120 size_t size = 0;
1121 if (RTYPEDDATA_P(obj)) {
1122 const rb_data_type_t *type = RTYPEDDATA_TYPE(obj);
1123 const void *ptr = RTYPEDDATA_GET_DATA(obj);
1124
1125 if (RTYPEDDATA_TYPE(obj)->flags & RUBY_TYPED_EMBEDDABLE && !RTYPEDDATA_EMBEDDED_P(obj)) {
1126#ifdef HAVE_MALLOC_USABLE_SIZE
1127 size += malloc_usable_size((void *)ptr);
1128#endif
1129 }
1130
1131 if (ptr && type->function.dsize) {
1132 size += type->function.dsize(ptr);
1133 }
1134 }
1135
1136 return size;
1137}
1138
1139const char *
1140rb_objspace_data_type_name(VALUE obj)
1141{
1142 if (RTYPEDDATA_P(obj)) {
1143 return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
1144 }
1145 else {
1146 return 0;
1147 }
1148}
1149
1150static enum rb_id_table_iterator_result
1151cvar_table_free_i(VALUE value, void *ctx)
1152{
1153 xfree((void *)value);
1154 return ID_TABLE_CONTINUE;
1155}
1156
1157static inline void
1158make_io_zombie(void *objspace, VALUE obj)
1159{
1160 rb_io_t *fptr = RFILE(obj)->fptr;
1161 rb_gc_impl_make_zombie(objspace, obj, rb_io_fptr_finalize_internal, fptr);
1162}
1163
1164static bool
1165rb_data_free(void *objspace, VALUE obj)
1166{
1167 void *data = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
1168 if (data) {
1169 int free_immediately = false;
1170 void (*dfree)(void *);
1171
1172 if (RTYPEDDATA_P(obj)) {
1173 free_immediately = (RTYPEDDATA(obj)->type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
1174 dfree = RTYPEDDATA(obj)->type->function.dfree;
1175 }
1176 else {
1177 dfree = RDATA(obj)->dfree;
1178 }
1179
1180 if (dfree) {
1181 if (dfree == RUBY_DEFAULT_FREE) {
1182 if (!RTYPEDDATA_P(obj) || !RTYPEDDATA_EMBEDDED_P(obj)) {
1183 xfree(data);
1184 RB_DEBUG_COUNTER_INC(obj_data_xfree);
1185 }
1186 }
1187 else if (free_immediately) {
1188 (*dfree)(data);
1189 if (RTYPEDDATA_TYPE(obj)->flags & RUBY_TYPED_EMBEDDABLE && !RTYPEDDATA_EMBEDDED_P(obj)) {
1190 xfree(data);
1191 }
1192
1193 RB_DEBUG_COUNTER_INC(obj_data_imm_free);
1194 }
1195 else {
1196 rb_gc_impl_make_zombie(rb_gc_get_objspace(), obj, dfree, data);
1197 RB_DEBUG_COUNTER_INC(obj_data_zombie);
1198 return FALSE;
1199 }
1200 }
1201 else {
1202 RB_DEBUG_COUNTER_INC(obj_data_empty);
1203 }
1204 }
1205
1206 return true;
1207}
1208
1209void
1210rb_gc_obj_free_vm_weak_references(VALUE obj)
1211{
1212 if (FL_TEST(obj, FL_EXIVAR)) {
1214 FL_UNSET(obj, FL_EXIVAR);
1215 }
1216
1217 switch (BUILTIN_TYPE(obj)) {
1218 case T_STRING:
1219 if (FL_TEST(obj, RSTRING_FSTR)) {
1220 st_data_t fstr = (st_data_t)obj;
1221 st_delete(rb_vm_fstring_table(), &fstr, NULL);
1222 RB_DEBUG_COUNTER_INC(obj_str_fstr);
1223
1224 FL_UNSET(obj, RSTRING_FSTR);
1225 }
1226 break;
1227 case T_SYMBOL:
1228 rb_gc_free_dsymbol(obj);
1229 break;
1230 case T_IMEMO:
1231 switch (imemo_type(obj)) {
1232 case imemo_callinfo:
1233 rb_vm_ci_free((const struct rb_callinfo *)obj);
1234 break;
1235 case imemo_ment:
1236 rb_free_method_entry_vm_weak_references((const rb_method_entry_t *)obj);
1237 break;
1238 default:
1239 break;
1240 }
1241 break;
1242 default:
1243 break;
1244 }
1245}
1246
1247bool
1248rb_gc_obj_free(void *objspace, VALUE obj)
1249{
1250 RB_DEBUG_COUNTER_INC(obj_free);
1251
1252 switch (BUILTIN_TYPE(obj)) {
1253 case T_NIL:
1254 case T_FIXNUM:
1255 case T_TRUE:
1256 case T_FALSE:
1257 rb_bug("obj_free() called for broken object");
1258 break;
1259 default:
1260 break;
1261 }
1262
1263 switch (BUILTIN_TYPE(obj)) {
1264 case T_OBJECT:
1265 if (rb_shape_obj_too_complex(obj)) {
1266 RB_DEBUG_COUNTER_INC(obj_obj_too_complex);
1267 st_free_table(ROBJECT_IV_HASH(obj));
1268 }
1269 else if (RBASIC(obj)->flags & ROBJECT_EMBED) {
1270 RB_DEBUG_COUNTER_INC(obj_obj_embed);
1271 }
1272 else {
1273 xfree(ROBJECT(obj)->as.heap.ivptr);
1274 RB_DEBUG_COUNTER_INC(obj_obj_ptr);
1275 }
1276 break;
1277 case T_MODULE:
1278 case T_CLASS:
1279 rb_id_table_free(RCLASS_M_TBL(obj));
1280 rb_cc_table_free(obj);
1281 if (rb_shape_obj_too_complex(obj)) {
1282 st_free_table((st_table *)RCLASS_IVPTR(obj));
1283 }
1284 else {
1285 xfree(RCLASS_IVPTR(obj));
1286 }
1287
1288 if (RCLASS_CONST_TBL(obj)) {
1289 rb_free_const_table(RCLASS_CONST_TBL(obj));
1290 }
1291 if (RCLASS_CVC_TBL(obj)) {
1292 rb_id_table_foreach_values(RCLASS_CVC_TBL(obj), cvar_table_free_i, NULL);
1293 rb_id_table_free(RCLASS_CVC_TBL(obj));
1294 }
1295 rb_class_remove_subclass_head(obj);
1296 rb_class_remove_from_module_subclasses(obj);
1297 rb_class_remove_from_super_subclasses(obj);
1298 if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
1299 xfree(RCLASS_SUPERCLASSES(obj));
1300 }
1301
1302 (void)RB_DEBUG_COUNTER_INC_IF(obj_module_ptr, BUILTIN_TYPE(obj) == T_MODULE);
1303 (void)RB_DEBUG_COUNTER_INC_IF(obj_class_ptr, BUILTIN_TYPE(obj) == T_CLASS);
1304 break;
1305 case T_STRING:
1306 rb_str_free(obj);
1307 break;
1308 case T_ARRAY:
1309 rb_ary_free(obj);
1310 break;
1311 case T_HASH:
1312#if USE_DEBUG_COUNTER
1313 switch (RHASH_SIZE(obj)) {
1314 case 0:
1315 RB_DEBUG_COUNTER_INC(obj_hash_empty);
1316 break;
1317 case 1:
1318 RB_DEBUG_COUNTER_INC(obj_hash_1);
1319 break;
1320 case 2:
1321 RB_DEBUG_COUNTER_INC(obj_hash_2);
1322 break;
1323 case 3:
1324 RB_DEBUG_COUNTER_INC(obj_hash_3);
1325 break;
1326 case 4:
1327 RB_DEBUG_COUNTER_INC(obj_hash_4);
1328 break;
1329 case 5:
1330 case 6:
1331 case 7:
1332 case 8:
1333 RB_DEBUG_COUNTER_INC(obj_hash_5_8);
1334 break;
1335 default:
1336 GC_ASSERT(RHASH_SIZE(obj) > 8);
1337 RB_DEBUG_COUNTER_INC(obj_hash_g8);
1338 }
1339
1340 if (RHASH_AR_TABLE_P(obj)) {
1341 if (RHASH_AR_TABLE(obj) == NULL) {
1342 RB_DEBUG_COUNTER_INC(obj_hash_null);
1343 }
1344 else {
1345 RB_DEBUG_COUNTER_INC(obj_hash_ar);
1346 }
1347 }
1348 else {
1349 RB_DEBUG_COUNTER_INC(obj_hash_st);
1350 }
1351#endif
1352
1353 rb_hash_free(obj);
1354 break;
1355 case T_REGEXP:
1356 if (RREGEXP(obj)->ptr) {
1357 onig_free(RREGEXP(obj)->ptr);
1358 RB_DEBUG_COUNTER_INC(obj_regexp_ptr);
1359 }
1360 break;
1361 case T_DATA:
1362 if (!rb_data_free(objspace, obj)) return false;
1363 break;
1364 case T_MATCH:
1365 {
1366 rb_matchext_t *rm = RMATCH_EXT(obj);
1367#if USE_DEBUG_COUNTER
1368 if (rm->regs.num_regs >= 8) {
1369 RB_DEBUG_COUNTER_INC(obj_match_ge8);
1370 }
1371 else if (rm->regs.num_regs >= 4) {
1372 RB_DEBUG_COUNTER_INC(obj_match_ge4);
1373 }
1374 else if (rm->regs.num_regs >= 1) {
1375 RB_DEBUG_COUNTER_INC(obj_match_under4);
1376 }
1377#endif
1378 onig_region_free(&rm->regs, 0);
1379 xfree(rm->char_offset);
1380
1381 RB_DEBUG_COUNTER_INC(obj_match_ptr);
1382 }
1383 break;
1384 case T_FILE:
1385 if (RFILE(obj)->fptr) {
1386 make_io_zombie(objspace, obj);
1387 RB_DEBUG_COUNTER_INC(obj_file_ptr);
1388 return FALSE;
1389 }
1390 break;
1391 case T_RATIONAL:
1392 RB_DEBUG_COUNTER_INC(obj_rational);
1393 break;
1394 case T_COMPLEX:
1395 RB_DEBUG_COUNTER_INC(obj_complex);
1396 break;
1397 case T_MOVED:
1398 break;
1399 case T_ICLASS:
1400 /* Basically , T_ICLASS shares table with the module */
1401 if (RICLASS_OWNS_M_TBL_P(obj)) {
1402 /* Method table is not shared for origin iclasses of classes */
1403 rb_id_table_free(RCLASS_M_TBL(obj));
1404 }
1405 if (RCLASS_CALLABLE_M_TBL(obj) != NULL) {
1406 rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj));
1407 }
1408 rb_class_remove_subclass_head(obj);
1409 rb_cc_table_free(obj);
1410 rb_class_remove_from_module_subclasses(obj);
1411 rb_class_remove_from_super_subclasses(obj);
1412
1413 RB_DEBUG_COUNTER_INC(obj_iclass_ptr);
1414 break;
1415
1416 case T_FLOAT:
1417 RB_DEBUG_COUNTER_INC(obj_float);
1418 break;
1419
1420 case T_BIGNUM:
1421 if (!BIGNUM_EMBED_P(obj) && BIGNUM_DIGITS(obj)) {
1422 xfree(BIGNUM_DIGITS(obj));
1423 RB_DEBUG_COUNTER_INC(obj_bignum_ptr);
1424 }
1425 else {
1426 RB_DEBUG_COUNTER_INC(obj_bignum_embed);
1427 }
1428 break;
1429
1430 case T_NODE:
1431 UNEXPECTED_NODE(obj_free);
1432 break;
1433
1434 case T_STRUCT:
1435 if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) ||
1436 RSTRUCT(obj)->as.heap.ptr == NULL) {
1437 RB_DEBUG_COUNTER_INC(obj_struct_embed);
1438 }
1439 else {
1440 xfree((void *)RSTRUCT(obj)->as.heap.ptr);
1441 RB_DEBUG_COUNTER_INC(obj_struct_ptr);
1442 }
1443 break;
1444
1445 case T_SYMBOL:
1446 RB_DEBUG_COUNTER_INC(obj_symbol);
1447 break;
1448
1449 case T_IMEMO:
1450 rb_imemo_free((VALUE)obj);
1451 break;
1452
1453 default:
1454 rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
1455 BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
1456 }
1457
1458 if (FL_TEST(obj, FL_FINALIZE)) {
1459 rb_gc_impl_make_zombie(rb_gc_get_objspace(), obj, 0, 0);
1460 return FALSE;
1461 }
1462 else {
1463 return TRUE;
1464 }
1465}
1466
1467void
1468rb_objspace_set_event_hook(const rb_event_flag_t event)
1469{
1470 rb_gc_impl_set_event_hook(rb_gc_get_objspace(), event);
1471}
1472
1473static int
1474internal_object_p(VALUE obj)
1475{
1476 void *ptr = asan_unpoison_object_temporary(obj);
1477
1478 if (RBASIC(obj)->flags) {
1479 switch (BUILTIN_TYPE(obj)) {
1480 case T_NODE:
1481 UNEXPECTED_NODE(internal_object_p);
1482 break;
1483 case T_NONE:
1484 case T_MOVED:
1485 case T_IMEMO:
1486 case T_ICLASS:
1487 case T_ZOMBIE:
1488 break;
1489 case T_CLASS:
1490 if (!RBASIC(obj)->klass) break;
1491 if (RCLASS_SINGLETON_P(obj)) {
1492 return rb_singleton_class_internal_p(obj);
1493 }
1494 return 0;
1495 default:
1496 if (!RBASIC(obj)->klass) break;
1497 return 0;
1498 }
1499 }
1500 if (ptr || !RBASIC(obj)->flags) {
1501 rb_asan_poison_object(obj);
1502 }
1503 return 1;
1504}
1505
1506int
1507rb_objspace_internal_object_p(VALUE obj)
1508{
1509 return internal_object_p(obj);
1510}
1511
1513 size_t num;
1514 VALUE of;
1515};
1516
1517static int
1518os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
1519{
1520 struct os_each_struct *oes = (struct os_each_struct *)data;
1521
1522 VALUE v = (VALUE)vstart;
1523 for (; v != (VALUE)vend; v += stride) {
1524 if (!internal_object_p(v)) {
1525 if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
1526 if (!rb_multi_ractor_p() || rb_ractor_shareable_p(v)) {
1527 rb_yield(v);
1528 oes->num++;
1529 }
1530 }
1531 }
1532 }
1533
1534 return 0;
1535}
1536
1537static VALUE
1538os_obj_of(VALUE of)
1539{
1540 struct os_each_struct oes;
1541
1542 oes.num = 0;
1543 oes.of = of;
1544 rb_objspace_each_objects(os_obj_of_i, &oes);
1545 return SIZET2NUM(oes.num);
1546}
1547
1548/*
1549 * call-seq:
1550 * ObjectSpace.each_object([module]) {|obj| ... } -> integer
1551 * ObjectSpace.each_object([module]) -> an_enumerator
1552 *
1553 * Calls the block once for each living, nonimmediate object in this
1554 * Ruby process. If <i>module</i> is specified, calls the block
1555 * for only those classes or modules that match (or are a subclass of)
1556 * <i>module</i>. Returns the number of objects found. Immediate
1557 * objects (<code>Fixnum</code>s, <code>Symbol</code>s
1558 * <code>true</code>, <code>false</code>, and <code>nil</code>) are
1559 * never returned. In the example below, #each_object returns both
1560 * the numbers we defined and several constants defined in the Math
1561 * module.
1562 *
1563 * If no block is given, an enumerator is returned instead.
1564 *
1565 * a = 102.7
1566 * b = 95 # Won't be returned
1567 * c = 12345678987654321
1568 * count = ObjectSpace.each_object(Numeric) {|x| p x }
1569 * puts "Total count: #{count}"
1570 *
1571 * <em>produces:</em>
1572 *
1573 * 12345678987654321
1574 * 102.7
1575 * 2.71828182845905
1576 * 3.14159265358979
1577 * 2.22044604925031e-16
1578 * 1.7976931348623157e+308
1579 * 2.2250738585072e-308
1580 * Total count: 7
1581 *
1582 */
1583
1584static VALUE
1585os_each_obj(int argc, VALUE *argv, VALUE os)
1586{
1587 VALUE of;
1588
1589 of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]);
1590 RETURN_ENUMERATOR(os, 1, &of);
1591 return os_obj_of(of);
1592}
1593
1594/*
1595 * call-seq:
1596 * ObjectSpace.undefine_finalizer(obj)
1597 *
1598 * Removes all finalizers for <i>obj</i>.
1599 *
1600 */
1601
1602static VALUE
1603undefine_final(VALUE os, VALUE obj)
1604{
1605 return rb_undefine_finalizer(obj);
1606}
1607
1608VALUE
1609rb_undefine_finalizer(VALUE obj)
1610{
1611 rb_check_frozen(obj);
1612
1613 rb_gc_impl_undefine_finalizer(rb_gc_get_objspace(), obj);
1614
1615 return obj;
1616}
1617
1618static void
1619should_be_callable(VALUE block)
1620{
1621 if (!rb_obj_respond_to(block, idCall, TRUE)) {
1622 rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)",
1623 rb_obj_class(block));
1624 }
1625}
1626
1627static void
1628should_be_finalizable(VALUE obj)
1629{
1630 if (!FL_ABLE(obj)) {
1631 rb_raise(rb_eArgError, "cannot define finalizer for %s",
1632 rb_obj_classname(obj));
1633 }
1634 rb_check_frozen(obj);
1635}
1636
1637void
1638rb_gc_copy_finalizer(VALUE dest, VALUE obj)
1639{
1640 rb_gc_impl_copy_finalizer(rb_gc_get_objspace(), dest, obj);
1641}
1642
1643/*
1644 * call-seq:
1645 * ObjectSpace.define_finalizer(obj, aProc=proc())
1646 *
1647 * Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
1648 * was destroyed. The object ID of the <i>obj</i> will be passed
1649 * as an argument to <i>aProc</i>. If <i>aProc</i> is a lambda or
1650 * method, make sure it can be called with a single argument.
1651 *
1652 * The return value is an array <code>[0, aProc]</code>.
1653 *
1654 * The two recommended patterns are to either create the finaliser proc
1655 * in a non-instance method where it can safely capture the needed state,
1656 * or to use a custom callable object that stores the needed state
1657 * explicitly as instance variables.
1658 *
1659 * class Foo
1660 * def initialize(data_needed_for_finalization)
1661 * ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization))
1662 * end
1663 *
1664 * def self.create_finalizer(data_needed_for_finalization)
1665 * proc {
1666 * puts "finalizing #{data_needed_for_finalization}"
1667 * }
1668 * end
1669 * end
1670 *
1671 * class Bar
1672 * class Remover
1673 * def initialize(data_needed_for_finalization)
1674 * @data_needed_for_finalization = data_needed_for_finalization
1675 * end
1676 *
1677 * def call(id)
1678 * puts "finalizing #{@data_needed_for_finalization}"
1679 * end
1680 * end
1681 *
1682 * def initialize(data_needed_for_finalization)
1683 * ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization))
1684 * end
1685 * end
1686 *
1687 * Note that if your finalizer references the object to be
1688 * finalized it will never be run on GC, although it will still be
1689 * run at exit. You will get a warning if you capture the object
1690 * to be finalized as the receiver of the finalizer.
1691 *
1692 * class CapturesSelf
1693 * def initialize(name)
1694 * ObjectSpace.define_finalizer(self, proc {
1695 * # this finalizer will only be run on exit
1696 * puts "finalizing #{name}"
1697 * })
1698 * end
1699 * end
1700 *
1701 * Also note that finalization can be unpredictable and is never guaranteed
1702 * to be run except on exit.
1703 */
1704
1705static VALUE
1706define_final(int argc, VALUE *argv, VALUE os)
1707{
1708 VALUE obj, block;
1709
1710 rb_scan_args(argc, argv, "11", &obj, &block);
1711 if (argc == 1) {
1712 block = rb_block_proc();
1713 }
1714
1715 if (rb_callable_receiver(block) == obj) {
1716 rb_warn("finalizer references object to be finalized");
1717 }
1718
1719 return rb_define_finalizer(obj, block);
1720}
1721
1722VALUE
1723rb_define_finalizer(VALUE obj, VALUE block)
1724{
1725 should_be_finalizable(obj);
1726 should_be_callable(block);
1727
1728 block = rb_gc_impl_define_finalizer(rb_gc_get_objspace(), obj, block);
1729
1730 block = rb_ary_new3(2, INT2FIX(0), block);
1731 OBJ_FREEZE(block);
1732 return block;
1733}
1734
1735void
1736rb_objspace_call_finalizer(void)
1737{
1738 rb_gc_impl_shutdown_call_finalizer(rb_gc_get_objspace());
1739}
1740
1741void
1742rb_objspace_free_objects(void *objspace)
1743{
1744 rb_gc_impl_shutdown_free_objects(objspace);
1745}
1746
1747int
1748rb_objspace_garbage_object_p(VALUE obj)
1749{
1750 return rb_gc_impl_garbage_object_p(rb_gc_get_objspace(), obj);
1751}
1752
1753bool
1754rb_gc_pointer_to_heap_p(VALUE obj)
1755{
1756 return rb_gc_impl_pointer_to_heap_p(rb_gc_get_objspace(), (void *)obj);
1757}
1758
1759/*
1760 * call-seq:
1761 * ObjectSpace._id2ref(object_id) -> an_object
1762 *
1763 * Converts an object id to a reference to the object. May not be
1764 * called on an object id passed as a parameter to a finalizer.
1765 *
1766 * s = "I am a string" #=> "I am a string"
1767 * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
1768 * r == s #=> true
1769 *
1770 * On multi-ractor mode, if the object is not shareable, it raises
1771 * RangeError.
1772 */
1773
1774static VALUE
1775id2ref(VALUE objid)
1776{
1777#if SIZEOF_LONG == SIZEOF_VOIDP
1778#define NUM2PTR(x) NUM2ULONG(x)
1779#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
1780#define NUM2PTR(x) NUM2ULL(x)
1781#endif
1782 objid = rb_to_int(objid);
1783 if (FIXNUM_P(objid) || rb_big_size(objid) <= SIZEOF_VOIDP) {
1784 VALUE ptr = NUM2PTR(objid);
1785 if (SPECIAL_CONST_P(ptr)) {
1786 if (ptr == Qtrue) return Qtrue;
1787 if (ptr == Qfalse) return Qfalse;
1788 if (NIL_P(ptr)) return Qnil;
1789 if (FIXNUM_P(ptr)) return ptr;
1790 if (FLONUM_P(ptr)) return ptr;
1791
1792 if (SYMBOL_P(ptr)) {
1793 // Check that the symbol is valid
1794 if (rb_static_id_valid_p(SYM2ID(ptr))) {
1795 return ptr;
1796 }
1797 else {
1798 rb_raise(rb_eRangeError, "%p is not symbol id value", (void *)ptr);
1799 }
1800 }
1801
1802 rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10));
1803 }
1804 }
1805
1806 VALUE obj = rb_gc_impl_object_id_to_ref(rb_gc_get_objspace(), objid);
1807 if (!rb_multi_ractor_p() || rb_ractor_shareable_p(obj)) {
1808 return obj;
1809 }
1810 else {
1811 rb_raise(rb_eRangeError, "%+"PRIsVALUE" is id of the unshareable object on multi-ractor", rb_int2str(objid, 10));
1812 }
1813}
1814
1815/* :nodoc: */
1816static VALUE
1817os_id2ref(VALUE os, VALUE objid)
1818{
1819 return id2ref(objid);
1820}
1821
1822static VALUE
1823rb_find_object_id(void *objspace, VALUE obj, VALUE (*get_heap_object_id)(void *, VALUE))
1824{
1825 if (SPECIAL_CONST_P(obj)) {
1826#if SIZEOF_LONG == SIZEOF_VOIDP
1827 return LONG2NUM((SIGNED_VALUE)obj);
1828#else
1829 return LL2NUM((SIGNED_VALUE)obj);
1830#endif
1831 }
1832
1833 return get_heap_object_id(objspace, obj);
1834}
1835
1836static VALUE
1837nonspecial_obj_id(void *_objspace, VALUE obj)
1838{
1839#if SIZEOF_LONG == SIZEOF_VOIDP
1840 return (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG);
1841#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
1842 return LL2NUM((SIGNED_VALUE)(obj) / 2);
1843#else
1844# error not supported
1845#endif
1846}
1847
1848VALUE
1849rb_memory_id(VALUE obj)
1850{
1851 return rb_find_object_id(NULL, obj, nonspecial_obj_id);
1852}
1853
1854/*
1855 * Document-method: __id__
1856 * Document-method: object_id
1857 *
1858 * call-seq:
1859 * obj.__id__ -> integer
1860 * obj.object_id -> integer
1861 *
1862 * Returns an integer identifier for +obj+.
1863 *
1864 * The same number will be returned on all calls to +object_id+ for a given
1865 * object, and no two active objects will share an id.
1866 *
1867 * Note: that some objects of builtin classes are reused for optimization.
1868 * This is the case for immediate values and frozen string literals.
1869 *
1870 * BasicObject implements +__id__+, Kernel implements +object_id+.
1871 *
1872 * Immediate values are not passed by reference but are passed by value:
1873 * +nil+, +true+, +false+, Fixnums, Symbols, and some Floats.
1874 *
1875 * Object.new.object_id == Object.new.object_id # => false
1876 * (21 * 2).object_id == (21 * 2).object_id # => true
1877 * "hello".object_id == "hello".object_id # => false
1878 * "hi".freeze.object_id == "hi".freeze.object_id # => true
1879 */
1880
1881VALUE
1882rb_obj_id(VALUE obj)
1883{
1884 /* If obj is an immediate, the object ID is obj directly converted to a Numeric.
1885 * Otherwise, the object ID is a Numeric that is a non-zero multiple of
1886 * (RUBY_IMMEDIATE_MASK + 1) which guarantees that it does not collide with
1887 * any immediates. */
1888 return rb_find_object_id(rb_gc_get_objspace(), obj, rb_gc_impl_object_id);
1889}
1890
1891static enum rb_id_table_iterator_result
1892cc_table_memsize_i(VALUE ccs_ptr, void *data_ptr)
1893{
1894 size_t *total_size = data_ptr;
1895 struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
1896 *total_size += sizeof(*ccs);
1897 *total_size += sizeof(ccs->entries[0]) * ccs->capa;
1898 return ID_TABLE_CONTINUE;
1899}
1900
1901static size_t
1902cc_table_memsize(struct rb_id_table *cc_table)
1903{
1904 size_t total = rb_id_table_memsize(cc_table);
1905 rb_id_table_foreach_values(cc_table, cc_table_memsize_i, &total);
1906 return total;
1907}
1908
1909size_t
1910rb_obj_memsize_of(VALUE obj)
1911{
1912 size_t size = 0;
1913
1914 if (SPECIAL_CONST_P(obj)) {
1915 return 0;
1916 }
1917
1918 if (FL_TEST(obj, FL_EXIVAR)) {
1919 size += rb_generic_ivar_memsize(obj);
1920 }
1921
1922 switch (BUILTIN_TYPE(obj)) {
1923 case T_OBJECT:
1924 if (rb_shape_obj_too_complex(obj)) {
1925 size += rb_st_memsize(ROBJECT_IV_HASH(obj));
1926 }
1927 else if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) {
1928 size += ROBJECT_IV_CAPACITY(obj) * sizeof(VALUE);
1929 }
1930 break;
1931 case T_MODULE:
1932 case T_CLASS:
1933 if (RCLASS_M_TBL(obj)) {
1934 size += rb_id_table_memsize(RCLASS_M_TBL(obj));
1935 }
1936 // class IV sizes are allocated as powers of two
1937 size += SIZEOF_VALUE << bit_length(RCLASS_IV_COUNT(obj));
1938 if (RCLASS_CVC_TBL(obj)) {
1939 size += rb_id_table_memsize(RCLASS_CVC_TBL(obj));
1940 }
1941 if (RCLASS_EXT(obj)->const_tbl) {
1942 size += rb_id_table_memsize(RCLASS_EXT(obj)->const_tbl);
1943 }
1944 if (RCLASS_CC_TBL(obj)) {
1945 size += cc_table_memsize(RCLASS_CC_TBL(obj));
1946 }
1947 if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
1948 size += (RCLASS_SUPERCLASS_DEPTH(obj) + 1) * sizeof(VALUE);
1949 }
1950 break;
1951 case T_ICLASS:
1952 if (RICLASS_OWNS_M_TBL_P(obj)) {
1953 if (RCLASS_M_TBL(obj)) {
1954 size += rb_id_table_memsize(RCLASS_M_TBL(obj));
1955 }
1956 }
1957 if (RCLASS_CC_TBL(obj)) {
1958 size += cc_table_memsize(RCLASS_CC_TBL(obj));
1959 }
1960 break;
1961 case T_STRING:
1962 size += rb_str_memsize(obj);
1963 break;
1964 case T_ARRAY:
1965 size += rb_ary_memsize(obj);
1966 break;
1967 case T_HASH:
1968 if (RHASH_ST_TABLE_P(obj)) {
1969 VM_ASSERT(RHASH_ST_TABLE(obj) != NULL);
1970 /* st_table is in the slot */
1971 size += st_memsize(RHASH_ST_TABLE(obj)) - sizeof(st_table);
1972 }
1973 break;
1974 case T_REGEXP:
1975 if (RREGEXP_PTR(obj)) {
1976 size += onig_memsize(RREGEXP_PTR(obj));
1977 }
1978 break;
1979 case T_DATA:
1980 size += rb_objspace_data_type_memsize(obj);
1981 break;
1982 case T_MATCH:
1983 {
1984 rb_matchext_t *rm = RMATCH_EXT(obj);
1985 size += onig_region_memsize(&rm->regs);
1986 size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
1987 }
1988 break;
1989 case T_FILE:
1990 if (RFILE(obj)->fptr) {
1991 size += rb_io_memsize(RFILE(obj)->fptr);
1992 }
1993 break;
1994 case T_RATIONAL:
1995 case T_COMPLEX:
1996 break;
1997 case T_IMEMO:
1998 size += rb_imemo_memsize(obj);
1999 break;
2000
2001 case T_FLOAT:
2002 case T_SYMBOL:
2003 break;
2004
2005 case T_BIGNUM:
2006 if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) {
2007 size += BIGNUM_LEN(obj) * sizeof(BDIGIT);
2008 }
2009 break;
2010
2011 case T_NODE:
2012 UNEXPECTED_NODE(obj_memsize_of);
2013 break;
2014
2015 case T_STRUCT:
2016 if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
2017 RSTRUCT(obj)->as.heap.ptr) {
2018 size += sizeof(VALUE) * RSTRUCT_LEN(obj);
2019 }
2020 break;
2021
2022 case T_ZOMBIE:
2023 case T_MOVED:
2024 break;
2025
2026 default:
2027 rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
2028 BUILTIN_TYPE(obj), (void*)obj);
2029 }
2030
2031 return size + rb_gc_obj_slot_size(obj);
2032}
2033
2034static int
2035set_zero(st_data_t key, st_data_t val, st_data_t arg)
2036{
2037 VALUE k = (VALUE)key;
2038 VALUE hash = (VALUE)arg;
2039 rb_hash_aset(hash, k, INT2FIX(0));
2040 return ST_CONTINUE;
2041}
2042
2044 size_t counts[T_MASK+1];
2045 size_t freed;
2046 size_t total;
2047};
2048
2049static void
2050count_objects_i(VALUE obj, void *d)
2051{
2052 struct count_objects_data *data = (struct count_objects_data *)d;
2053
2054 if (RBASIC(obj)->flags) {
2055 data->counts[BUILTIN_TYPE(obj)]++;
2056 }
2057 else {
2058 data->freed++;
2059 }
2060
2061 data->total++;
2062}
2063
2064/*
2065 * call-seq:
2066 * ObjectSpace.count_objects([result_hash]) -> hash
2067 *
2068 * Counts all objects grouped by type.
2069 *
2070 * It returns a hash, such as:
2071 * {
2072 * :TOTAL=>10000,
2073 * :FREE=>3011,
2074 * :T_OBJECT=>6,
2075 * :T_CLASS=>404,
2076 * # ...
2077 * }
2078 *
2079 * The contents of the returned hash are implementation specific.
2080 * It may be changed in future.
2081 *
2082 * The keys starting with +:T_+ means live objects.
2083 * For example, +:T_ARRAY+ is the number of arrays.
2084 * +:FREE+ means object slots which is not used now.
2085 * +:TOTAL+ means sum of above.
2086 *
2087 * If the optional argument +result_hash+ is given,
2088 * it is overwritten and returned. This is intended to avoid probe effect.
2089 *
2090 * h = {}
2091 * ObjectSpace.count_objects(h)
2092 * puts h
2093 * # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 }
2094 *
2095 * This method is only expected to work on C Ruby.
2096 *
2097 */
2098
2099static VALUE
2100count_objects(int argc, VALUE *argv, VALUE os)
2101{
2102 struct count_objects_data data = { 0 };
2103 VALUE hash = Qnil;
2104
2105 if (rb_check_arity(argc, 0, 1) == 1) {
2106 hash = argv[0];
2107 if (!RB_TYPE_P(hash, T_HASH))
2108 rb_raise(rb_eTypeError, "non-hash given");
2109 }
2110
2111 rb_gc_impl_each_object(rb_gc_get_objspace(), count_objects_i, &data);
2112
2113 if (NIL_P(hash)) {
2114 hash = rb_hash_new();
2115 }
2116 else if (!RHASH_EMPTY_P(hash)) {
2117 rb_hash_stlike_foreach(hash, set_zero, hash);
2118 }
2119 rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(data.total));
2120 rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(data.freed));
2121
2122 for (size_t i = 0; i <= T_MASK; i++) {
2123 VALUE type = type_sym(i);
2124 if (data.counts[i])
2125 rb_hash_aset(hash, type, SIZET2NUM(data.counts[i]));
2126 }
2127
2128 return hash;
2129}
2130
2131#define SET_STACK_END SET_MACHINE_STACK_END(&ec->machine.stack_end)
2132
2133#define STACK_START (ec->machine.stack_start)
2134#define STACK_END (ec->machine.stack_end)
2135#define STACK_LEVEL_MAX (ec->machine.stack_maxsize/sizeof(VALUE))
2136
2137#if STACK_GROW_DIRECTION < 0
2138# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
2139#elif STACK_GROW_DIRECTION > 0
2140# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
2141#else
2142# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
2143 : (size_t)(STACK_END - STACK_START + 1))
2144#endif
2145#if !STACK_GROW_DIRECTION
2146int ruby_stack_grow_direction;
2147int
2148ruby_get_stack_grow_direction(volatile VALUE *addr)
2149{
2150 VALUE *end;
2151 SET_MACHINE_STACK_END(&end);
2152
2153 if (end > addr) return ruby_stack_grow_direction = 1;
2154 return ruby_stack_grow_direction = -1;
2155}
2156#endif
2157
2158size_t
2160{
2161 rb_execution_context_t *ec = GET_EC();
2162 SET_STACK_END;
2163 if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
2164 return STACK_LENGTH;
2165}
2166
2167#define PREVENT_STACK_OVERFLOW 1
2168#ifndef PREVENT_STACK_OVERFLOW
2169#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
2170# define PREVENT_STACK_OVERFLOW 1
2171#else
2172# define PREVENT_STACK_OVERFLOW 0
2173#endif
2174#endif
2175#if PREVENT_STACK_OVERFLOW && !defined(__EMSCRIPTEN__)
2176static int
2177stack_check(rb_execution_context_t *ec, int water_mark)
2178{
2179 SET_STACK_END;
2180
2181 size_t length = STACK_LENGTH;
2182 size_t maximum_length = STACK_LEVEL_MAX - water_mark;
2183
2184 return length > maximum_length;
2185}
2186#else
2187#define stack_check(ec, water_mark) FALSE
2188#endif
2189
2190#define STACKFRAME_FOR_CALL_CFUNC 2048
2191
2192int
2193rb_ec_stack_check(rb_execution_context_t *ec)
2194{
2195 return stack_check(ec, STACKFRAME_FOR_CALL_CFUNC);
2196}
2197
2198int
2200{
2201 return stack_check(GET_EC(), STACKFRAME_FOR_CALL_CFUNC);
2202}
2203
2204/* ==================== Marking ==================== */
2205
2206#define RB_GC_MARK_OR_TRAVERSE(func, obj_or_ptr, obj, check_obj) do { \
2207 if (!RB_SPECIAL_CONST_P(obj)) { \
2208 rb_vm_t *vm = GET_VM(); \
2209 void *objspace = vm->gc.objspace; \
2210 if (LIKELY(vm->gc.mark_func_data == NULL)) { \
2211 GC_ASSERT(rb_gc_impl_during_gc_p(objspace)); \
2212 (func)(objspace, (obj_or_ptr)); \
2213 } \
2214 else if (check_obj ? \
2215 rb_gc_impl_pointer_to_heap_p(objspace, (const void *)obj) && \
2216 !rb_gc_impl_garbage_object_p(objspace, obj) : \
2217 true) { \
2218 GC_ASSERT(!rb_gc_impl_during_gc_p(objspace)); \
2219 struct gc_mark_func_data_struct *mark_func_data = vm->gc.mark_func_data; \
2220 vm->gc.mark_func_data = NULL; \
2221 mark_func_data->mark_func((obj), mark_func_data->data); \
2222 vm->gc.mark_func_data = mark_func_data; \
2223 } \
2224 } \
2225} while (0)
2226
2227static inline void
2228gc_mark_internal(VALUE obj)
2229{
2230 RB_GC_MARK_OR_TRAVERSE(rb_gc_impl_mark, obj, obj, false);
2231}
2232
2233void
2234rb_gc_mark_movable(VALUE obj)
2235{
2236 gc_mark_internal(obj);
2237}
2238
2239void
2240rb_gc_mark_and_move(VALUE *ptr)
2241{
2242 RB_GC_MARK_OR_TRAVERSE(rb_gc_impl_mark_and_move, ptr, *ptr, false);
2243}
2244
2245static inline void
2246gc_mark_and_pin_internal(VALUE obj)
2247{
2248 RB_GC_MARK_OR_TRAVERSE(rb_gc_impl_mark_and_pin, obj, obj, false);
2249}
2250
2251void
2252rb_gc_mark(VALUE obj)
2253{
2254 gc_mark_and_pin_internal(obj);
2255}
2256
2257static inline void
2258gc_mark_maybe_internal(VALUE obj)
2259{
2260 RB_GC_MARK_OR_TRAVERSE(rb_gc_impl_mark_maybe, obj, obj, true);
2261}
2262
2263void
2264rb_gc_mark_maybe(VALUE obj)
2265{
2266 gc_mark_maybe_internal(obj);
2267}
2268
2269void
2270rb_gc_mark_weak(VALUE *ptr)
2271{
2272 if (RB_SPECIAL_CONST_P(*ptr)) return;
2273
2274 rb_vm_t *vm = GET_VM();
2275 void *objspace = vm->gc.objspace;
2276 if (LIKELY(vm->gc.mark_func_data == NULL)) {
2277 GC_ASSERT(rb_gc_impl_during_gc_p(objspace));
2278
2279 rb_gc_impl_mark_weak(objspace, ptr);
2280 }
2281 else {
2282 GC_ASSERT(!rb_gc_impl_during_gc_p(objspace));
2283 }
2284}
2285
2286void
2287rb_gc_remove_weak(VALUE parent_obj, VALUE *ptr)
2288{
2289 rb_gc_impl_remove_weak(rb_gc_get_objspace(), parent_obj, ptr);
2290}
2291
2292ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(static void each_location(register const VALUE *x, register long n, void (*cb)(VALUE, void *), void *data));
2293static void
2294each_location(register const VALUE *x, register long n, void (*cb)(VALUE, void *), void *data)
2295{
2296 VALUE v;
2297 while (n--) {
2298 v = *x;
2299 cb(v, data);
2300 x++;
2301 }
2302}
2303
2304static void
2305each_location_ptr(const VALUE *start, const VALUE *end, void (*cb)(VALUE, void *), void *data)
2306{
2307 if (end <= start) return;
2308 each_location(start, end - start, cb, data);
2309}
2310
2311static void
2312gc_mark_maybe_each_location(VALUE obj, void *data)
2313{
2314 gc_mark_maybe_internal(obj);
2315}
2316
2317void
2318rb_gc_mark_locations(const VALUE *start, const VALUE *end)
2319{
2320 each_location_ptr(start, end, gc_mark_maybe_each_location, NULL);
2321}
2322
2323void
2324rb_gc_mark_values(long n, const VALUE *values)
2325{
2326 for (long i = 0; i < n; i++) {
2327 gc_mark_internal(values[i]);
2328 }
2329}
2330
2331void
2332rb_gc_mark_vm_stack_values(long n, const VALUE *values)
2333{
2334 for (long i = 0; i < n; i++) {
2335 gc_mark_and_pin_internal(values[i]);
2336 }
2337}
2338
2339static int
2340mark_key(st_data_t key, st_data_t value, st_data_t data)
2341{
2342 gc_mark_and_pin_internal((VALUE)key);
2343
2344 return ST_CONTINUE;
2345}
2346
2347void
2348rb_mark_set(st_table *tbl)
2349{
2350 if (!tbl) return;
2351
2352 st_foreach(tbl, mark_key, (st_data_t)rb_gc_get_objspace());
2353}
2354
2355static int
2356mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
2357{
2358 gc_mark_internal((VALUE)key);
2359 gc_mark_internal((VALUE)value);
2360
2361 return ST_CONTINUE;
2362}
2363
2364static int
2365pin_key_pin_value(st_data_t key, st_data_t value, st_data_t data)
2366{
2367 gc_mark_and_pin_internal((VALUE)key);
2368 gc_mark_and_pin_internal((VALUE)value);
2369
2370 return ST_CONTINUE;
2371}
2372
2373static int
2374pin_key_mark_value(st_data_t key, st_data_t value, st_data_t data)
2375{
2376 gc_mark_and_pin_internal((VALUE)key);
2377 gc_mark_internal((VALUE)value);
2378
2379 return ST_CONTINUE;
2380}
2381
2382static void
2383mark_hash(VALUE hash)
2384{
2385 if (rb_hash_compare_by_id_p(hash)) {
2386 rb_hash_stlike_foreach(hash, pin_key_mark_value, 0);
2387 }
2388 else {
2389 rb_hash_stlike_foreach(hash, mark_keyvalue, 0);
2390 }
2391
2392 gc_mark_internal(RHASH(hash)->ifnone);
2393}
2394
2395void
2396rb_mark_hash(st_table *tbl)
2397{
2398 if (!tbl) return;
2399
2400 st_foreach(tbl, pin_key_pin_value, 0);
2401}
2402
2403static enum rb_id_table_iterator_result
2404mark_method_entry_i(VALUE me, void *objspace)
2405{
2406 gc_mark_internal(me);
2407
2408 return ID_TABLE_CONTINUE;
2409}
2410
2411static void
2412mark_m_tbl(void *objspace, struct rb_id_table *tbl)
2413{
2414 if (tbl) {
2415 rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace);
2416 }
2417}
2418
2419#if STACK_GROW_DIRECTION < 0
2420#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
2421#elif STACK_GROW_DIRECTION > 0
2422#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
2423#else
2424#define GET_STACK_BOUNDS(start, end, appendix) \
2425 ((STACK_END < STACK_START) ? \
2426 ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
2427#endif
2428
2429static void
2430gc_mark_machine_stack_location_maybe(VALUE obj, void *data)
2431{
2432 gc_mark_maybe_internal(obj);
2433
2434#ifdef RUBY_ASAN_ENABLED
2435 const rb_execution_context_t *ec = (const rb_execution_context_t *)data;
2436 void *fake_frame_start;
2437 void *fake_frame_end;
2438 bool is_fake_frame = asan_get_fake_stack_extents(
2439 ec->machine.asan_fake_stack_handle, obj,
2440 ec->machine.stack_start, ec->machine.stack_end,
2441 &fake_frame_start, &fake_frame_end
2442 );
2443 if (is_fake_frame) {
2444 each_location_ptr(fake_frame_start, fake_frame_end, gc_mark_maybe_each_location, NULL);
2445 }
2446#endif
2447}
2448
2449static VALUE
2450gc_location_internal(void *objspace, VALUE value)
2451{
2452 if (SPECIAL_CONST_P(value)) {
2453 return value;
2454 }
2455
2456 GC_ASSERT(rb_gc_impl_pointer_to_heap_p(objspace, (void *)value));
2457
2458 return rb_gc_impl_location(objspace, value);
2459}
2460
2461VALUE
2462rb_gc_location(VALUE value)
2463{
2464 return gc_location_internal(rb_gc_get_objspace(), value);
2465}
2466
2467#if defined(__wasm__)
2468
2469
2470static VALUE *rb_stack_range_tmp[2];
2471
2472static void
2473rb_mark_locations(void *begin, void *end)
2474{
2475 rb_stack_range_tmp[0] = begin;
2476 rb_stack_range_tmp[1] = end;
2477}
2478
2479void
2480rb_gc_save_machine_context(void)
2481{
2482 // no-op
2483}
2484
2485# if defined(__EMSCRIPTEN__)
2486
2487static void
2488mark_current_machine_context(const rb_execution_context_t *ec)
2489{
2490 emscripten_scan_stack(rb_mark_locations);
2491 each_location_ptr(rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe_each_location, NULL);
2492
2493 emscripten_scan_registers(rb_mark_locations);
2494 each_location_ptr(rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe_each_location, NULL);
2495}
2496# else // use Asyncify version
2497
2498static void
2499mark_current_machine_context(rb_execution_context_t *ec)
2500{
2501 VALUE *stack_start, *stack_end;
2502 SET_STACK_END;
2503 GET_STACK_BOUNDS(stack_start, stack_end, 1);
2504 each_location_ptr(stack_start, stack_end, gc_mark_maybe_each_location, NULL);
2505
2506 rb_wasm_scan_locals(rb_mark_locations);
2507 each_location_ptr(rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe_each_location, NULL);
2508}
2509
2510# endif
2511
2512#else // !defined(__wasm__)
2513
2514void
2515rb_gc_save_machine_context(void)
2516{
2517 rb_thread_t *thread = GET_THREAD();
2518
2519 RB_VM_SAVE_MACHINE_CONTEXT(thread);
2520}
2521
2522
2523static void
2524mark_current_machine_context(const rb_execution_context_t *ec)
2525{
2526 rb_gc_mark_machine_context(ec);
2527}
2528#endif
2529
2530void
2531rb_gc_mark_machine_context(const rb_execution_context_t *ec)
2532{
2533 VALUE *stack_start, *stack_end;
2534
2535 GET_STACK_BOUNDS(stack_start, stack_end, 0);
2536 RUBY_DEBUG_LOG("ec->th:%u stack_start:%p stack_end:%p", rb_ec_thread_ptr(ec)->serial, stack_start, stack_end);
2537
2538 void *data =
2539#ifdef RUBY_ASAN_ENABLED
2540 /* gc_mark_machine_stack_location_maybe() uses data as const */
2542#else
2543 NULL;
2544#endif
2545
2546 each_location_ptr(stack_start, stack_end, gc_mark_machine_stack_location_maybe, data);
2547 int num_regs = sizeof(ec->machine.regs)/(sizeof(VALUE));
2548 each_location((VALUE*)&ec->machine.regs, num_regs, gc_mark_machine_stack_location_maybe, data);
2549}
2550
2551static int
2552rb_mark_tbl_i(st_data_t key, st_data_t value, st_data_t data)
2553{
2554 gc_mark_and_pin_internal((VALUE)value);
2555
2556 return ST_CONTINUE;
2557}
2558
2559void
2560rb_mark_tbl(st_table *tbl)
2561{
2562 if (!tbl || tbl->num_entries == 0) return;
2563
2564 st_foreach(tbl, rb_mark_tbl_i, 0);
2565}
2566
2567static void
2568gc_mark_tbl_no_pin(st_table *tbl)
2569{
2570 if (!tbl || tbl->num_entries == 0) return;
2571
2572 st_foreach(tbl, gc_mark_tbl_no_pin_i, 0);
2573}
2574
2575void
2576rb_mark_tbl_no_pin(st_table *tbl)
2577{
2578 gc_mark_tbl_no_pin(tbl);
2579}
2580
2581static enum rb_id_table_iterator_result
2582mark_cvc_tbl_i(VALUE cvc_entry, void *objspace)
2583{
2584 struct rb_cvar_class_tbl_entry *entry;
2585
2586 entry = (struct rb_cvar_class_tbl_entry *)cvc_entry;
2587
2588 RUBY_ASSERT(entry->cref == 0 || (BUILTIN_TYPE((VALUE)entry->cref) == T_IMEMO && IMEMO_TYPE_P(entry->cref, imemo_cref)));
2589 gc_mark_internal((VALUE)entry->cref);
2590
2591 return ID_TABLE_CONTINUE;
2592}
2593
2594static void
2595mark_cvc_tbl(void *objspace, VALUE klass)
2596{
2597 struct rb_id_table *tbl = RCLASS_CVC_TBL(klass);
2598 if (tbl) {
2599 rb_id_table_foreach_values(tbl, mark_cvc_tbl_i, objspace);
2600 }
2601}
2602
2603static bool
2604gc_declarative_marking_p(const rb_data_type_t *type)
2605{
2606 return (type->flags & RUBY_TYPED_DECL_MARKING) != 0;
2607}
2608
2609static enum rb_id_table_iterator_result
2610mark_const_table_i(VALUE value, void *objspace)
2611{
2612 const rb_const_entry_t *ce = (const rb_const_entry_t *)value;
2613
2614 gc_mark_internal(ce->value);
2615 gc_mark_internal(ce->file);
2616
2617 return ID_TABLE_CONTINUE;
2618}
2619
2620void
2621rb_gc_mark_roots(void *objspace, const char **categoryp)
2622{
2623 rb_execution_context_t *ec = GET_EC();
2624 rb_vm_t *vm = rb_ec_vm_ptr(ec);
2625
2626#define MARK_CHECKPOINT(category) do { \
2627 if (categoryp) *categoryp = category; \
2628} while (0)
2629
2630 MARK_CHECKPOINT("vm");
2631 rb_vm_mark(vm);
2632 if (vm->self) gc_mark_internal(vm->self);
2633
2634 MARK_CHECKPOINT("end_proc");
2635 rb_mark_end_proc();
2636
2637 MARK_CHECKPOINT("global_tbl");
2638 rb_gc_mark_global_tbl();
2639
2640#if USE_YJIT
2641 void rb_yjit_root_mark(void); // in Rust
2642
2643 if (rb_yjit_enabled_p) {
2644 MARK_CHECKPOINT("YJIT");
2645 rb_yjit_root_mark();
2646 }
2647#endif
2648
2649 MARK_CHECKPOINT("machine_context");
2650 mark_current_machine_context(ec);
2651
2652 MARK_CHECKPOINT("global_symbols");
2653 rb_sym_global_symbols_mark();
2654
2655 MARK_CHECKPOINT("finish");
2656
2657#undef MARK_CHECKPOINT
2658}
2659
2660#define TYPED_DATA_REFS_OFFSET_LIST(d) (size_t *)(uintptr_t)RTYPEDDATA(d)->type->function.dmark
2661
2662void
2663rb_gc_mark_children(void *objspace, VALUE obj)
2664{
2665 if (FL_TEST(obj, FL_EXIVAR)) {
2666 rb_mark_generic_ivar(obj);
2667 }
2668
2669 switch (BUILTIN_TYPE(obj)) {
2670 case T_FLOAT:
2671 case T_BIGNUM:
2672 case T_SYMBOL:
2673 /* Not immediates, but does not have references and singleton class.
2674 *
2675 * RSYMBOL(obj)->fstr intentionally not marked. See log for 96815f1e
2676 * ("symbol.c: remove rb_gc_mark_symbols()") */
2677 return;
2678
2679 case T_NIL:
2680 case T_FIXNUM:
2681 rb_bug("rb_gc_mark() called for broken object");
2682 break;
2683
2684 case T_NODE:
2685 UNEXPECTED_NODE(rb_gc_mark);
2686 break;
2687
2688 case T_IMEMO:
2689 rb_imemo_mark_and_move(obj, false);
2690 return;
2691
2692 default:
2693 break;
2694 }
2695
2696 gc_mark_internal(RBASIC(obj)->klass);
2697
2698 switch (BUILTIN_TYPE(obj)) {
2699 case T_CLASS:
2700 if (FL_TEST(obj, FL_SINGLETON)) {
2701 gc_mark_internal(RCLASS_ATTACHED_OBJECT(obj));
2702 }
2703 // Continue to the shared T_CLASS/T_MODULE
2704 case T_MODULE:
2705 if (RCLASS_SUPER(obj)) {
2706 gc_mark_internal(RCLASS_SUPER(obj));
2707 }
2708
2709 mark_m_tbl(objspace, RCLASS_M_TBL(obj));
2710 mark_cvc_tbl(objspace, obj);
2711 rb_cc_table_mark(obj);
2712 if (rb_shape_obj_too_complex(obj)) {
2713 gc_mark_tbl_no_pin((st_table *)RCLASS_IVPTR(obj));
2714 }
2715 else {
2716 for (attr_index_t i = 0; i < RCLASS_IV_COUNT(obj); i++) {
2717 gc_mark_internal(RCLASS_IVPTR(obj)[i]);
2718 }
2719 }
2720
2721 if (RCLASS_CONST_TBL(obj)) {
2722 rb_id_table_foreach_values(RCLASS_CONST_TBL(obj), mark_const_table_i, objspace);
2723 }
2724
2725 gc_mark_internal(RCLASS_EXT(obj)->classpath);
2726 break;
2727
2728 case T_ICLASS:
2729 if (RICLASS_OWNS_M_TBL_P(obj)) {
2730 mark_m_tbl(objspace, RCLASS_M_TBL(obj));
2731 }
2732 if (RCLASS_SUPER(obj)) {
2733 gc_mark_internal(RCLASS_SUPER(obj));
2734 }
2735
2736 if (RCLASS_INCLUDER(obj)) {
2737 gc_mark_internal(RCLASS_INCLUDER(obj));
2738 }
2739 mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
2740 rb_cc_table_mark(obj);
2741 break;
2742
2743 case T_ARRAY:
2744 if (ARY_SHARED_P(obj)) {
2745 VALUE root = ARY_SHARED_ROOT(obj);
2746 gc_mark_internal(root);
2747 }
2748 else {
2749 long len = RARRAY_LEN(obj);
2750 const VALUE *ptr = RARRAY_CONST_PTR(obj);
2751 for (long i = 0; i < len; i++) {
2752 gc_mark_internal(ptr[i]);
2753 }
2754 }
2755 break;
2756
2757 case T_HASH:
2758 mark_hash(obj);
2759 break;
2760
2761 case T_STRING:
2762 if (STR_SHARED_P(obj)) {
2763 if (STR_EMBED_P(RSTRING(obj)->as.heap.aux.shared)) {
2764 /* Embedded shared strings cannot be moved because this string
2765 * points into the slot of the shared string. There may be code
2766 * using the RSTRING_PTR on the stack, which would pin this
2767 * string but not pin the shared string, causing it to move. */
2768 gc_mark_and_pin_internal(RSTRING(obj)->as.heap.aux.shared);
2769 }
2770 else {
2771 gc_mark_internal(RSTRING(obj)->as.heap.aux.shared);
2772 }
2773 }
2774 break;
2775
2776 case T_DATA: {
2777 void *const ptr = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
2778
2779 if (ptr) {
2780 if (RTYPEDDATA_P(obj) && gc_declarative_marking_p(RTYPEDDATA(obj)->type)) {
2781 size_t *offset_list = TYPED_DATA_REFS_OFFSET_LIST(obj);
2782
2783 for (size_t offset = *offset_list; offset != RUBY_REF_END; offset = *offset_list++) {
2784 gc_mark_internal(*(VALUE *)((char *)ptr + offset));
2785 }
2786 }
2787 else {
2788 RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ?
2789 RTYPEDDATA(obj)->type->function.dmark :
2790 RDATA(obj)->dmark;
2791 if (mark_func) (*mark_func)(ptr);
2792 }
2793 }
2794
2795 break;
2796 }
2797
2798 case T_OBJECT: {
2799 rb_shape_t *shape = rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj));
2800
2801 if (rb_shape_obj_too_complex(obj)) {
2802 gc_mark_tbl_no_pin(ROBJECT_IV_HASH(obj));
2803 }
2804 else {
2805 const VALUE * const ptr = ROBJECT_IVPTR(obj);
2806
2807 uint32_t len = ROBJECT_IV_COUNT(obj);
2808 for (uint32_t i = 0; i < len; i++) {
2809 gc_mark_internal(ptr[i]);
2810 }
2811 }
2812
2813 if (shape) {
2814 VALUE klass = RBASIC_CLASS(obj);
2815
2816 // Increment max_iv_count if applicable, used to determine size pool allocation
2817 attr_index_t num_of_ivs = shape->next_iv_index;
2818 if (RCLASS_EXT(klass)->max_iv_count < num_of_ivs) {
2819 RCLASS_EXT(klass)->max_iv_count = num_of_ivs;
2820 }
2821 }
2822
2823 break;
2824 }
2825
2826 case T_FILE:
2827 if (RFILE(obj)->fptr) {
2828 gc_mark_internal(RFILE(obj)->fptr->self);
2829 gc_mark_internal(RFILE(obj)->fptr->pathv);
2830 gc_mark_internal(RFILE(obj)->fptr->tied_io_for_writing);
2831 gc_mark_internal(RFILE(obj)->fptr->writeconv_asciicompat);
2832 gc_mark_internal(RFILE(obj)->fptr->writeconv_pre_ecopts);
2833 gc_mark_internal(RFILE(obj)->fptr->encs.ecopts);
2834 gc_mark_internal(RFILE(obj)->fptr->write_lock);
2835 gc_mark_internal(RFILE(obj)->fptr->timeout);
2836 }
2837 break;
2838
2839 case T_REGEXP:
2840 gc_mark_internal(RREGEXP(obj)->src);
2841 break;
2842
2843 case T_MATCH:
2844 gc_mark_internal(RMATCH(obj)->regexp);
2845 if (RMATCH(obj)->str) {
2846 gc_mark_internal(RMATCH(obj)->str);
2847 }
2848 break;
2849
2850 case T_RATIONAL:
2851 gc_mark_internal(RRATIONAL(obj)->num);
2852 gc_mark_internal(RRATIONAL(obj)->den);
2853 break;
2854
2855 case T_COMPLEX:
2856 gc_mark_internal(RCOMPLEX(obj)->real);
2857 gc_mark_internal(RCOMPLEX(obj)->imag);
2858 break;
2859
2860 case T_STRUCT: {
2861 const long len = RSTRUCT_LEN(obj);
2862 const VALUE * const ptr = RSTRUCT_CONST_PTR(obj);
2863
2864 for (long i = 0; i < len; i++) {
2865 gc_mark_internal(ptr[i]);
2866 }
2867
2868 break;
2869 }
2870
2871 default:
2872 if (BUILTIN_TYPE(obj) == T_MOVED) rb_bug("rb_gc_mark(): %p is T_MOVED", (void *)obj);
2873 if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
2874 if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
2875 rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
2876 BUILTIN_TYPE(obj), (void *)obj,
2877 rb_gc_impl_pointer_to_heap_p(rb_gc_get_objspace(), (void *)obj) ? "corrupted object" : "non object");
2878 }
2879}
2880
2881size_t
2882rb_gc_obj_optimal_size(VALUE obj)
2883{
2884 switch (BUILTIN_TYPE(obj)) {
2885 case T_ARRAY:
2886 return rb_ary_size_as_embedded(obj);
2887
2888 case T_OBJECT:
2889 if (rb_shape_obj_too_complex(obj)) {
2890 return sizeof(struct RObject);
2891 }
2892 else {
2893 return rb_obj_embedded_size(ROBJECT_IV_CAPACITY(obj));
2894 }
2895
2896 case T_STRING:
2897 return rb_str_size_as_embedded(obj);
2898
2899 case T_HASH:
2900 return sizeof(struct RHash) + (RHASH_ST_TABLE_P(obj) ? sizeof(st_table) : sizeof(ar_table));
2901
2902 default:
2903 return 0;
2904 }
2905}
2906
2907void
2908rb_gc_writebarrier(VALUE a, VALUE b)
2909{
2910 rb_gc_impl_writebarrier(rb_gc_get_objspace(), a, b);
2911}
2912
2913void
2914rb_gc_writebarrier_unprotect(VALUE obj)
2915{
2916 rb_gc_impl_writebarrier_unprotect(rb_gc_get_objspace(), obj);
2917}
2918
2919/*
2920 * remember `obj' if needed.
2921 */
2922void
2923rb_gc_writebarrier_remember(VALUE obj)
2924{
2925 rb_gc_impl_writebarrier_remember(rb_gc_get_objspace(), obj);
2926}
2927
2928void
2929rb_gc_copy_attributes(VALUE dest, VALUE obj)
2930{
2931 rb_gc_impl_copy_attributes(rb_gc_get_objspace(), dest, obj);
2932}
2933
2934int
2935rb_gc_modular_gc_loaded_p(void)
2936{
2937#if USE_MODULAR_GC
2938 return rb_gc_functions.modular_gc_loaded_p;
2939#else
2940 return false;
2941#endif
2942}
2943
2944const char *
2945rb_gc_active_gc_name(void)
2946{
2947 const char *gc_name = rb_gc_impl_active_gc_name();
2948
2949 const size_t len = strlen(gc_name);
2950 if (len > RB_GC_MAX_NAME_LEN) {
2951 rb_bug("GC should have a name no more than %d chars long. Currently: %zu (%s)",
2952 RB_GC_MAX_NAME_LEN, len, gc_name);
2953 }
2954
2955 return gc_name;
2956}
2957
2959rb_gc_object_metadata(VALUE obj)
2960{
2961 return rb_gc_impl_object_metadata(rb_gc_get_objspace(), obj);
2962}
2963
2964/* GC */
2965
2966void *
2967rb_gc_ractor_cache_alloc(rb_ractor_t *ractor)
2968{
2969 return rb_gc_impl_ractor_cache_alloc(rb_gc_get_objspace(), ractor);
2970}
2971
2972void
2973rb_gc_ractor_cache_free(void *cache)
2974{
2975 rb_gc_impl_ractor_cache_free(rb_gc_get_objspace(), cache);
2976}
2977
2978void
2979rb_gc_register_mark_object(VALUE obj)
2980{
2981 if (!rb_gc_impl_pointer_to_heap_p(rb_gc_get_objspace(), (void *)obj))
2982 return;
2983
2984 rb_vm_register_global_object(obj);
2985}
2986
2987void
2988rb_gc_register_address(VALUE *addr)
2989{
2990 rb_vm_t *vm = GET_VM();
2991
2992 VALUE obj = *addr;
2993
2994 struct global_object_list *tmp = ALLOC(struct global_object_list);
2995 tmp->next = vm->global_object_list;
2996 tmp->varptr = addr;
2997 vm->global_object_list = tmp;
2998
2999 /*
3000 * Because some C extensions have assignment-then-register bugs,
3001 * we guard `obj` here so that it would not get swept defensively.
3002 */
3003 RB_GC_GUARD(obj);
3004 if (0 && !SPECIAL_CONST_P(obj)) {
3005 rb_warn("Object is assigned to registering address already: %"PRIsVALUE,
3006 rb_obj_class(obj));
3007 rb_print_backtrace(stderr);
3008 }
3009}
3010
3011void
3012rb_gc_unregister_address(VALUE *addr)
3013{
3014 rb_vm_t *vm = GET_VM();
3015 struct global_object_list *tmp = vm->global_object_list;
3016
3017 if (tmp->varptr == addr) {
3018 vm->global_object_list = tmp->next;
3019 xfree(tmp);
3020 return;
3021 }
3022 while (tmp->next) {
3023 if (tmp->next->varptr == addr) {
3024 struct global_object_list *t = tmp->next;
3025
3026 tmp->next = tmp->next->next;
3027 xfree(t);
3028 break;
3029 }
3030 tmp = tmp->next;
3031 }
3032}
3033
3034void
3036{
3037 rb_gc_register_address(var);
3038}
3039
3040static VALUE
3041gc_start_internal(rb_execution_context_t *ec, VALUE self, VALUE full_mark, VALUE immediate_mark, VALUE immediate_sweep, VALUE compact)
3042{
3043 rb_gc_impl_start(rb_gc_get_objspace(), RTEST(full_mark), RTEST(immediate_mark), RTEST(immediate_sweep), RTEST(compact));
3044
3045 return Qnil;
3046}
3047
3048/*
3049 * rb_objspace_each_objects() is special C API to walk through
3050 * Ruby object space. This C API is too difficult to use it.
3051 * To be frank, you should not use it. Or you need to read the
3052 * source code of this function and understand what this function does.
3053 *
3054 * 'callback' will be called several times (the number of heap page,
3055 * at current implementation) with:
3056 * vstart: a pointer to the first living object of the heap_page.
3057 * vend: a pointer to next to the valid heap_page area.
3058 * stride: a distance to next VALUE.
3059 *
3060 * If callback() returns non-zero, the iteration will be stopped.
3061 *
3062 * This is a sample callback code to iterate liveness objects:
3063 *
3064 * static int
3065 * sample_callback(void *vstart, void *vend, int stride, void *data)
3066 * {
3067 * VALUE v = (VALUE)vstart;
3068 * for (; v != (VALUE)vend; v += stride) {
3069 * if (!rb_objspace_internal_object_p(v)) { // liveness check
3070 * // do something with live object 'v'
3071 * }
3072 * }
3073 * return 0; // continue to iteration
3074 * }
3075 *
3076 * Note: 'vstart' is not a top of heap_page. This point the first
3077 * living object to grasp at least one object to avoid GC issue.
3078 * This means that you can not walk through all Ruby object page
3079 * including freed object page.
3080 *
3081 * Note: On this implementation, 'stride' is the same as sizeof(RVALUE).
3082 * However, there are possibilities to pass variable values with
3083 * 'stride' with some reasons. You must use stride instead of
3084 * use some constant value in the iteration.
3085 */
3086void
3087rb_objspace_each_objects(int (*callback)(void *, void *, size_t, void *), void *data)
3088{
3089 rb_gc_impl_each_objects(rb_gc_get_objspace(), callback, data);
3090}
3091
3092static void
3093gc_ref_update_array(void *objspace, VALUE v)
3094{
3095 if (ARY_SHARED_P(v)) {
3096 VALUE old_root = RARRAY(v)->as.heap.aux.shared_root;
3097
3098 UPDATE_IF_MOVED(objspace, RARRAY(v)->as.heap.aux.shared_root);
3099
3100 VALUE new_root = RARRAY(v)->as.heap.aux.shared_root;
3101 // If the root is embedded and its location has changed
3102 if (ARY_EMBED_P(new_root) && new_root != old_root) {
3103 size_t offset = (size_t)(RARRAY(v)->as.heap.ptr - RARRAY(old_root)->as.ary);
3104 GC_ASSERT(RARRAY(v)->as.heap.ptr >= RARRAY(old_root)->as.ary);
3105 RARRAY(v)->as.heap.ptr = RARRAY(new_root)->as.ary + offset;
3106 }
3107 }
3108 else {
3109 long len = RARRAY_LEN(v);
3110
3111 if (len > 0) {
3112 VALUE *ptr = (VALUE *)RARRAY_CONST_PTR(v);
3113 for (long i = 0; i < len; i++) {
3114 UPDATE_IF_MOVED(objspace, ptr[i]);
3115 }
3116 }
3117
3118 if (rb_gc_obj_slot_size(v) >= rb_ary_size_as_embedded(v)) {
3119 if (rb_ary_embeddable_p(v)) {
3120 rb_ary_make_embedded(v);
3121 }
3122 }
3123 }
3124}
3125
3126static void
3127gc_ref_update_object(void *objspace, VALUE v)
3128{
3129 VALUE *ptr = ROBJECT_IVPTR(v);
3130
3131 if (rb_shape_obj_too_complex(v)) {
3132 gc_ref_update_table_values_only(ROBJECT_IV_HASH(v));
3133 return;
3134 }
3135
3136 size_t slot_size = rb_gc_obj_slot_size(v);
3137 size_t embed_size = rb_obj_embedded_size(ROBJECT_IV_CAPACITY(v));
3138 if (slot_size >= embed_size && !RB_FL_TEST_RAW(v, ROBJECT_EMBED)) {
3139 // Object can be re-embedded
3140 memcpy(ROBJECT(v)->as.ary, ptr, sizeof(VALUE) * ROBJECT_IV_COUNT(v));
3141 RB_FL_SET_RAW(v, ROBJECT_EMBED);
3142 xfree(ptr);
3143 ptr = ROBJECT(v)->as.ary;
3144 }
3145
3146 for (uint32_t i = 0; i < ROBJECT_IV_COUNT(v); i++) {
3147 UPDATE_IF_MOVED(objspace, ptr[i]);
3148 }
3149}
3150
3151void
3152rb_gc_ref_update_table_values_only(st_table *tbl)
3153{
3154 gc_ref_update_table_values_only(tbl);
3155}
3156
3157/* Update MOVED references in a VALUE=>VALUE st_table */
3158void
3159rb_gc_update_tbl_refs(st_table *ptr)
3160{
3161 gc_update_table_refs(ptr);
3162}
3163
3164static void
3165gc_ref_update_hash(void *objspace, VALUE v)
3166{
3167 rb_hash_stlike_foreach_with_replace(v, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace);
3168}
3169
3170static void
3171gc_update_values(void *objspace, long n, VALUE *values)
3172{
3173 for (long i = 0; i < n; i++) {
3174 UPDATE_IF_MOVED(objspace, values[i]);
3175 }
3176}
3177
3178void
3179rb_gc_update_values(long n, VALUE *values)
3180{
3181 gc_update_values(rb_gc_get_objspace(), n, values);
3182}
3183
3184static enum rb_id_table_iterator_result
3185check_id_table_move(VALUE value, void *data)
3186{
3187 void *objspace = (void *)data;
3188
3189 if (rb_gc_impl_object_moved_p(objspace, (VALUE)value)) {
3190 return ID_TABLE_REPLACE;
3191 }
3192
3193 return ID_TABLE_CONTINUE;
3194}
3195
3196void
3197rb_gc_prepare_heap_process_object(VALUE obj)
3198{
3199 switch (BUILTIN_TYPE(obj)) {
3200 case T_STRING:
3201 // Precompute the string coderange. This both save time for when it will be
3202 // eventually needed, and avoid mutating heap pages after a potential fork.
3204 break;
3205 default:
3206 break;
3207 }
3208}
3209
3210void
3211rb_gc_prepare_heap(void)
3212{
3213 rb_gc_impl_prepare_heap(rb_gc_get_objspace());
3214}
3215
3216size_t
3217rb_gc_heap_id_for_size(size_t size)
3218{
3219 return rb_gc_impl_heap_id_for_size(rb_gc_get_objspace(), size);
3220}
3221
3222bool
3223rb_gc_size_allocatable_p(size_t size)
3224{
3225 return rb_gc_impl_size_allocatable_p(size);
3226}
3227
3228static enum rb_id_table_iterator_result
3229update_id_table(VALUE *value, void *data, int existing)
3230{
3231 void *objspace = (void *)data;
3232
3233 if (rb_gc_impl_object_moved_p(objspace, (VALUE)*value)) {
3234 *value = gc_location_internal(objspace, (VALUE)*value);
3235 }
3236
3237 return ID_TABLE_CONTINUE;
3238}
3239
3240static void
3241update_m_tbl(void *objspace, struct rb_id_table *tbl)
3242{
3243 if (tbl) {
3244 rb_id_table_foreach_values_with_replace(tbl, check_id_table_move, update_id_table, objspace);
3245 }
3246}
3247
3248static enum rb_id_table_iterator_result
3249update_cc_tbl_i(VALUE ccs_ptr, void *objspace)
3250{
3251 struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr;
3252 VM_ASSERT(vm_ccs_p(ccs));
3253
3254 if (rb_gc_impl_object_moved_p(objspace, (VALUE)ccs->cme)) {
3255 ccs->cme = (const rb_callable_method_entry_t *)gc_location_internal(objspace, (VALUE)ccs->cme);
3256 }
3257
3258 for (int i=0; i<ccs->len; i++) {
3259 if (rb_gc_impl_object_moved_p(objspace, (VALUE)ccs->entries[i].cc)) {
3260 ccs->entries[i].cc = (struct rb_callcache *)gc_location_internal(objspace, (VALUE)ccs->entries[i].cc);
3261 }
3262 }
3263
3264 // do not replace
3265 return ID_TABLE_CONTINUE;
3266}
3267
3268static void
3269update_cc_tbl(void *objspace, VALUE klass)
3270{
3271 struct rb_id_table *tbl = RCLASS_CC_TBL(klass);
3272 if (tbl) {
3273 rb_id_table_foreach_values(tbl, update_cc_tbl_i, objspace);
3274 }
3275}
3276
3277static enum rb_id_table_iterator_result
3278update_cvc_tbl_i(VALUE cvc_entry, void *objspace)
3279{
3280 struct rb_cvar_class_tbl_entry *entry;
3281
3282 entry = (struct rb_cvar_class_tbl_entry *)cvc_entry;
3283
3284 if (entry->cref) {
3285 TYPED_UPDATE_IF_MOVED(objspace, rb_cref_t *, entry->cref);
3286 }
3287
3288 entry->class_value = gc_location_internal(objspace, entry->class_value);
3289
3290 return ID_TABLE_CONTINUE;
3291}
3292
3293static void
3294update_cvc_tbl(void *objspace, VALUE klass)
3295{
3296 struct rb_id_table *tbl = RCLASS_CVC_TBL(klass);
3297 if (tbl) {
3298 rb_id_table_foreach_values(tbl, update_cvc_tbl_i, objspace);
3299 }
3300}
3301
3302static enum rb_id_table_iterator_result
3303update_const_table(VALUE value, void *objspace)
3304{
3305 rb_const_entry_t *ce = (rb_const_entry_t *)value;
3306
3307 if (rb_gc_impl_object_moved_p(objspace, ce->value)) {
3308 ce->value = gc_location_internal(objspace, ce->value);
3309 }
3310
3311 if (rb_gc_impl_object_moved_p(objspace, ce->file)) {
3312 ce->file = gc_location_internal(objspace, ce->file);
3313 }
3314
3315 return ID_TABLE_CONTINUE;
3316}
3317
3318static void
3319update_const_tbl(void *objspace, struct rb_id_table *tbl)
3320{
3321 if (!tbl) return;
3322 rb_id_table_foreach_values(tbl, update_const_table, objspace);
3323}
3324
3325static void
3326update_subclass_entries(void *objspace, rb_subclass_entry_t *entry)
3327{
3328 while (entry) {
3329 UPDATE_IF_MOVED(objspace, entry->klass);
3330 entry = entry->next;
3331 }
3332}
3333
3334static void
3335update_class_ext(void *objspace, rb_classext_t *ext)
3336{
3337 UPDATE_IF_MOVED(objspace, ext->origin_);
3338 UPDATE_IF_MOVED(objspace, ext->includer);
3339 UPDATE_IF_MOVED(objspace, ext->refined_class);
3340 update_subclass_entries(objspace, ext->subclasses);
3341}
3342
3343static void
3344update_superclasses(void *objspace, VALUE obj)
3345{
3346 if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) {
3347 for (size_t i = 0; i < RCLASS_SUPERCLASS_DEPTH(obj) + 1; i++) {
3348 UPDATE_IF_MOVED(objspace, RCLASS_SUPERCLASSES(obj)[i]);
3349 }
3350 }
3351}
3352
3353extern rb_symbols_t ruby_global_symbols;
3354#define global_symbols ruby_global_symbols
3355
3357 vm_table_foreach_callback_func callback;
3358 vm_table_update_callback_func update_callback;
3359 void *data;
3360 bool weak_only;
3361};
3362
3363static int
3364vm_weak_table_foreach_weak_key(st_data_t key, st_data_t value, st_data_t data, int error)
3365{
3366 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3367
3368 int ret = iter_data->callback((VALUE)key, iter_data->data);
3369
3370 if (!iter_data->weak_only) {
3371 if (ret != ST_CONTINUE) return ret;
3372
3373 ret = iter_data->callback((VALUE)value, iter_data->data);
3374 }
3375
3376 return ret;
3377}
3378
3379static int
3380vm_weak_table_foreach_update_weak_key(st_data_t *key, st_data_t *value, st_data_t data, int existing)
3381{
3382 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3383
3384 int ret = iter_data->update_callback((VALUE *)key, iter_data->data);
3385
3386 if (!iter_data->weak_only) {
3387 if (ret != ST_CONTINUE) return ret;
3388
3389 ret = iter_data->update_callback((VALUE *)value, iter_data->data);
3390 }
3391
3392 return ret;
3393}
3394
3395static int
3396vm_weak_table_str_sym_foreach(st_data_t key, st_data_t value, st_data_t data, int error)
3397{
3398 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3399
3400 if (!iter_data->weak_only) {
3401 int ret = iter_data->callback((VALUE)key, iter_data->data);
3402 if (ret != ST_CONTINUE) return ret;
3403 }
3404
3405 if (STATIC_SYM_P(value)) {
3406 return ST_CONTINUE;
3407 }
3408 else {
3409 return iter_data->callback((VALUE)value, iter_data->data);
3410 }
3411}
3412
3413static int
3414vm_weak_table_foreach_update_weak_value(st_data_t *key, st_data_t *value, st_data_t data, int existing)
3415{
3416 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3417
3418 if (!iter_data->weak_only) {
3419 int ret = iter_data->update_callback((VALUE *)key, iter_data->data);
3420 if (ret != ST_CONTINUE) return ret;
3421 }
3422
3423 return iter_data->update_callback((VALUE *)value, iter_data->data);
3424}
3425
3426static void
3427free_gen_ivtbl(VALUE obj, struct gen_ivtbl *ivtbl)
3428{
3429 if (UNLIKELY(rb_shape_obj_too_complex(obj))) {
3430 st_free_table(ivtbl->as.complex.table);
3431 }
3432
3433 xfree(ivtbl);
3434}
3435
3436static int
3437vm_weak_table_gen_ivar_foreach_too_complex_i(st_data_t _key, st_data_t value, st_data_t data, int error)
3438{
3439 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3440
3441 GC_ASSERT(!iter_data->weak_only);
3442
3443 if (SPECIAL_CONST_P((VALUE)value)) return ST_CONTINUE;
3444
3445 return iter_data->callback((VALUE)value, iter_data->data);
3446}
3447
3448static int
3449vm_weak_table_gen_ivar_foreach_too_complex_replace_i(st_data_t *_key, st_data_t *value, st_data_t data, int existing)
3450{
3451 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3452
3453 GC_ASSERT(!iter_data->weak_only);
3454
3455 return iter_data->update_callback((VALUE *)value, iter_data->data);
3456}
3457
3458struct st_table *rb_generic_ivtbl_get(void);
3459
3460static int
3461vm_weak_table_gen_ivar_foreach(st_data_t key, st_data_t value, st_data_t data)
3462{
3463 struct global_vm_table_foreach_data *iter_data = (struct global_vm_table_foreach_data *)data;
3464
3465 int ret = iter_data->callback((VALUE)key, iter_data->data);
3466
3467 switch (ret) {
3468 case ST_CONTINUE:
3469 break;
3470
3471 case ST_DELETE:
3472 free_gen_ivtbl((VALUE)key, (struct gen_ivtbl *)value);
3473
3474 FL_UNSET((VALUE)key, FL_EXIVAR);
3475 return ST_DELETE;
3476
3477 case ST_REPLACE: {
3478 VALUE new_key = (VALUE)key;
3479 ret = iter_data->update_callback(&new_key, iter_data->data);
3480 if (key != new_key) ret = ST_DELETE;
3481 DURING_GC_COULD_MALLOC_REGION_START();
3482 {
3483 st_insert(rb_generic_ivtbl_get(), (st_data_t)new_key, value);
3484 }
3485 DURING_GC_COULD_MALLOC_REGION_END();
3486 key = (st_data_t)new_key;
3487 break;
3488 }
3489
3490 default:
3491 return ret;
3492 }
3493
3494 if (!iter_data->weak_only) {
3495 struct gen_ivtbl *ivtbl = (struct gen_ivtbl *)value;
3496
3497 if (rb_shape_obj_too_complex((VALUE)key)) {
3498 st_foreach_with_replace(
3499 ivtbl->as.complex.table,
3500 vm_weak_table_gen_ivar_foreach_too_complex_i,
3501 vm_weak_table_gen_ivar_foreach_too_complex_replace_i,
3502 data
3503 );
3504 }
3505 else {
3506 for (uint32_t i = 0; i < ivtbl->as.shape.numiv; i++) {
3507 if (SPECIAL_CONST_P(ivtbl->as.shape.ivptr[i])) continue;
3508
3509 int ivar_ret = iter_data->callback(ivtbl->as.shape.ivptr[i], iter_data->data);
3510 switch (ivar_ret) {
3511 case ST_CONTINUE:
3512 break;
3513 case ST_REPLACE:
3514 iter_data->update_callback(&ivtbl->as.shape.ivptr[i], iter_data->data);
3515 break;
3516 default:
3517 rb_bug("vm_weak_table_gen_ivar_foreach: return value %d not supported", ivar_ret);
3518 }
3519 }
3520 }
3521 }
3522
3523 return ret;
3524}
3525
3526static int
3527vm_weak_table_frozen_strings_foreach(st_data_t key, st_data_t value, st_data_t data, int error)
3528{
3529 int retval = vm_weak_table_foreach_weak_key(key, value, data, error);
3530 if (retval == ST_DELETE) {
3531 FL_UNSET((VALUE)key, RSTRING_FSTR);
3532 }
3533 return retval;
3534}
3535
3536void
3537rb_gc_vm_weak_table_foreach(vm_table_foreach_callback_func callback,
3538 vm_table_update_callback_func update_callback,
3539 void *data,
3540 bool weak_only,
3541 enum rb_gc_vm_weak_tables table)
3542{
3543 rb_vm_t *vm = GET_VM();
3544
3545 struct global_vm_table_foreach_data foreach_data = {
3546 .callback = callback,
3547 .update_callback = update_callback,
3548 .data = data,
3549 .weak_only = weak_only,
3550 };
3551
3552 switch (table) {
3553 case RB_GC_VM_CI_TABLE: {
3554 if (vm->ci_table) {
3555 st_foreach_with_replace(
3556 vm->ci_table,
3557 vm_weak_table_foreach_weak_key,
3558 vm_weak_table_foreach_update_weak_key,
3559 (st_data_t)&foreach_data
3560 );
3561 }
3562 break;
3563 }
3564 case RB_GC_VM_OVERLOADED_CME_TABLE: {
3565 if (vm->overloaded_cme_table) {
3566 st_foreach_with_replace(
3567 vm->overloaded_cme_table,
3568 vm_weak_table_foreach_weak_key,
3569 vm_weak_table_foreach_update_weak_key,
3570 (st_data_t)&foreach_data
3571 );
3572 }
3573 break;
3574 }
3575 case RB_GC_VM_GLOBAL_SYMBOLS_TABLE: {
3576 if (global_symbols.str_sym) {
3577 st_foreach_with_replace(
3578 global_symbols.str_sym,
3579 vm_weak_table_str_sym_foreach,
3580 vm_weak_table_foreach_update_weak_value,
3581 (st_data_t)&foreach_data
3582 );
3583 }
3584 break;
3585 }
3586 case RB_GC_VM_GENERIC_IV_TABLE: {
3587 st_table *generic_iv_tbl = rb_generic_ivtbl_get();
3588 if (generic_iv_tbl) {
3589 st_foreach(
3590 generic_iv_tbl,
3591 vm_weak_table_gen_ivar_foreach,
3592 (st_data_t)&foreach_data
3593 );
3594 }
3595 break;
3596 }
3597 case RB_GC_VM_FROZEN_STRINGS_TABLE: {
3598 if (vm->frozen_strings) {
3599 st_foreach_with_replace(
3600 vm->frozen_strings,
3601 vm_weak_table_frozen_strings_foreach,
3602 vm_weak_table_foreach_update_weak_key,
3603 (st_data_t)&foreach_data
3604 );
3605 }
3606 break;
3607 }
3608 default:
3609 rb_bug("rb_gc_vm_weak_table_foreach: unknown table %d", table);
3610 }
3611}
3612
3613void
3614rb_gc_update_vm_references(void *objspace)
3615{
3616 rb_execution_context_t *ec = GET_EC();
3617 rb_vm_t *vm = rb_ec_vm_ptr(ec);
3618
3619 rb_vm_update_references(vm);
3620 rb_gc_update_global_tbl();
3621 rb_sym_global_symbols_update_references();
3622
3623#if USE_YJIT
3624 void rb_yjit_root_update_references(void); // in Rust
3625
3626 if (rb_yjit_enabled_p) {
3627 rb_yjit_root_update_references();
3628 }
3629#endif
3630}
3631
3632void
3633rb_gc_update_object_references(void *objspace, VALUE obj)
3634{
3635 switch (BUILTIN_TYPE(obj)) {
3636 case T_CLASS:
3637 if (FL_TEST(obj, FL_SINGLETON)) {
3638 UPDATE_IF_MOVED(objspace, RCLASS_ATTACHED_OBJECT(obj));
3639 }
3640 // Continue to the shared T_CLASS/T_MODULE
3641 case T_MODULE:
3642 if (RCLASS_SUPER((VALUE)obj)) {
3643 UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
3644 }
3645 update_m_tbl(objspace, RCLASS_M_TBL(obj));
3646 update_cc_tbl(objspace, obj);
3647 update_cvc_tbl(objspace, obj);
3648 update_superclasses(objspace, obj);
3649
3650 if (rb_shape_obj_too_complex(obj)) {
3651 gc_ref_update_table_values_only(RCLASS_IV_HASH(obj));
3652 }
3653 else {
3654 for (attr_index_t i = 0; i < RCLASS_IV_COUNT(obj); i++) {
3655 UPDATE_IF_MOVED(objspace, RCLASS_IVPTR(obj)[i]);
3656 }
3657 }
3658
3659 update_class_ext(objspace, RCLASS_EXT(obj));
3660 update_const_tbl(objspace, RCLASS_CONST_TBL(obj));
3661
3662 UPDATE_IF_MOVED(objspace, RCLASS_EXT(obj)->classpath);
3663 break;
3664
3665 case T_ICLASS:
3666 if (RICLASS_OWNS_M_TBL_P(obj)) {
3667 update_m_tbl(objspace, RCLASS_M_TBL(obj));
3668 }
3669 if (RCLASS_SUPER((VALUE)obj)) {
3670 UPDATE_IF_MOVED(objspace, RCLASS(obj)->super);
3671 }
3672 update_class_ext(objspace, RCLASS_EXT(obj));
3673 update_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj));
3674 update_cc_tbl(objspace, obj);
3675 break;
3676
3677 case T_IMEMO:
3678 rb_imemo_mark_and_move(obj, true);
3679 return;
3680
3681 case T_NIL:
3682 case T_FIXNUM:
3683 case T_NODE:
3684 case T_MOVED:
3685 case T_NONE:
3686 /* These can't move */
3687 return;
3688
3689 case T_ARRAY:
3690 gc_ref_update_array(objspace, obj);
3691 break;
3692
3693 case T_HASH:
3694 gc_ref_update_hash(objspace, obj);
3695 UPDATE_IF_MOVED(objspace, RHASH(obj)->ifnone);
3696 break;
3697
3698 case T_STRING:
3699 {
3700 if (STR_SHARED_P(obj)) {
3701 UPDATE_IF_MOVED(objspace, RSTRING(obj)->as.heap.aux.shared);
3702 }
3703
3704 /* If, after move the string is not embedded, and can fit in the
3705 * slot it's been placed in, then re-embed it. */
3706 if (rb_gc_obj_slot_size(obj) >= rb_str_size_as_embedded(obj)) {
3707 if (!STR_EMBED_P(obj) && rb_str_reembeddable_p(obj)) {
3708 rb_str_make_embedded(obj);
3709 }
3710 }
3711
3712 break;
3713 }
3714 case T_DATA:
3715 /* Call the compaction callback, if it exists */
3716 {
3717 void *const ptr = RTYPEDDATA_P(obj) ? RTYPEDDATA_GET_DATA(obj) : DATA_PTR(obj);
3718 if (ptr) {
3719 if (RTYPEDDATA_P(obj) && gc_declarative_marking_p(RTYPEDDATA(obj)->type)) {
3720 size_t *offset_list = TYPED_DATA_REFS_OFFSET_LIST(obj);
3721
3722 for (size_t offset = *offset_list; offset != RUBY_REF_END; offset = *offset_list++) {
3723 VALUE *ref = (VALUE *)((char *)ptr + offset);
3724 *ref = gc_location_internal(objspace, *ref);
3725 }
3726 }
3727 else if (RTYPEDDATA_P(obj)) {
3728 RUBY_DATA_FUNC compact_func = RTYPEDDATA(obj)->type->function.dcompact;
3729 if (compact_func) (*compact_func)(ptr);
3730 }
3731 }
3732 }
3733 break;
3734
3735 case T_OBJECT:
3736 gc_ref_update_object(objspace, obj);
3737 break;
3738
3739 case T_FILE:
3740 if (RFILE(obj)->fptr) {
3741 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->self);
3742 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->pathv);
3743 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->tied_io_for_writing);
3744 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->writeconv_asciicompat);
3745 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->writeconv_pre_ecopts);
3746 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->encs.ecopts);
3747 UPDATE_IF_MOVED(objspace, RFILE(obj)->fptr->write_lock);
3748 }
3749 break;
3750 case T_REGEXP:
3751 UPDATE_IF_MOVED(objspace, RREGEXP(obj)->src);
3752 break;
3753
3754 case T_SYMBOL:
3755 UPDATE_IF_MOVED(objspace, RSYMBOL(obj)->fstr);
3756 break;
3757
3758 case T_FLOAT:
3759 case T_BIGNUM:
3760 break;
3761
3762 case T_MATCH:
3763 UPDATE_IF_MOVED(objspace, RMATCH(obj)->regexp);
3764
3765 if (RMATCH(obj)->str) {
3766 UPDATE_IF_MOVED(objspace, RMATCH(obj)->str);
3767 }
3768 break;
3769
3770 case T_RATIONAL:
3771 UPDATE_IF_MOVED(objspace, RRATIONAL(obj)->num);
3772 UPDATE_IF_MOVED(objspace, RRATIONAL(obj)->den);
3773 break;
3774
3775 case T_COMPLEX:
3776 UPDATE_IF_MOVED(objspace, RCOMPLEX(obj)->real);
3777 UPDATE_IF_MOVED(objspace, RCOMPLEX(obj)->imag);
3778
3779 break;
3780
3781 case T_STRUCT:
3782 {
3783 long i, len = RSTRUCT_LEN(obj);
3784 VALUE *ptr = (VALUE *)RSTRUCT_CONST_PTR(obj);
3785
3786 for (i = 0; i < len; i++) {
3787 UPDATE_IF_MOVED(objspace, ptr[i]);
3788 }
3789 }
3790 break;
3791 default:
3792 rb_bug("unreachable");
3793 break;
3794 }
3795
3796 UPDATE_IF_MOVED(objspace, RBASIC(obj)->klass);
3797}
3798
3799VALUE
3800rb_gc_start(void)
3801{
3802 rb_gc();
3803 return Qnil;
3804}
3805
3806void
3807rb_gc(void)
3808{
3809 unless_objspace(objspace) { return; }
3810
3811 rb_gc_impl_start(objspace, true, true, true, false);
3812}
3813
3814int
3815rb_during_gc(void)
3816{
3817 unless_objspace(objspace) { return FALSE; }
3818
3819 return rb_gc_impl_during_gc_p(objspace);
3820}
3821
3822size_t
3823rb_gc_count(void)
3824{
3825 return rb_gc_impl_gc_count(rb_gc_get_objspace());
3826}
3827
3828static VALUE
3829gc_count(rb_execution_context_t *ec, VALUE self)
3830{
3831 return SIZET2NUM(rb_gc_count());
3832}
3833
3834VALUE
3835rb_gc_latest_gc_info(VALUE key)
3836{
3837 if (!SYMBOL_P(key) && !RB_TYPE_P(key, T_HASH)) {
3838 rb_raise(rb_eTypeError, "non-hash or symbol given");
3839 }
3840
3841 VALUE val = rb_gc_impl_latest_gc_info(rb_gc_get_objspace(), key);
3842
3843 if (val == Qundef) {
3844 rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key));
3845 }
3846
3847 return val;
3848}
3849
3850static VALUE
3851gc_stat(rb_execution_context_t *ec, VALUE self, VALUE arg) // arg is (nil || hash || symbol)
3852{
3853 if (NIL_P(arg)) {
3854 arg = rb_hash_new();
3855 }
3856 else if (!RB_TYPE_P(arg, T_HASH) && !SYMBOL_P(arg)) {
3857 rb_raise(rb_eTypeError, "non-hash or symbol given");
3858 }
3859
3860 VALUE ret = rb_gc_impl_stat(rb_gc_get_objspace(), arg);
3861
3862 if (ret == Qundef) {
3863 GC_ASSERT(SYMBOL_P(arg));
3864
3865 rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(arg));
3866 }
3867
3868 return ret;
3869}
3870
3871size_t
3872rb_gc_stat(VALUE arg)
3873{
3874 if (!RB_TYPE_P(arg, T_HASH) && !SYMBOL_P(arg)) {
3875 rb_raise(rb_eTypeError, "non-hash or symbol given");
3876 }
3877
3878 VALUE ret = rb_gc_impl_stat(rb_gc_get_objspace(), arg);
3879
3880 if (ret == Qundef) {
3881 GC_ASSERT(SYMBOL_P(arg));
3882
3883 rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(arg));
3884 }
3885
3886 if (SYMBOL_P(arg)) {
3887 return NUM2SIZET(ret);
3888 }
3889 else {
3890 return 0;
3891 }
3892}
3893
3894static VALUE
3895gc_stat_heap(rb_execution_context_t *ec, VALUE self, VALUE heap_name, VALUE arg)
3896{
3897 if (NIL_P(arg)) {
3898 arg = rb_hash_new();
3899 }
3900
3901 if (NIL_P(heap_name)) {
3902 if (!RB_TYPE_P(arg, T_HASH)) {
3903 rb_raise(rb_eTypeError, "non-hash given");
3904 }
3905 }
3906 else if (FIXNUM_P(heap_name)) {
3907 if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) {
3908 rb_raise(rb_eTypeError, "non-hash or symbol given");
3909 }
3910 }
3911 else {
3912 rb_raise(rb_eTypeError, "heap_name must be nil or an Integer");
3913 }
3914
3915 VALUE ret = rb_gc_impl_stat_heap(rb_gc_get_objspace(), heap_name, arg);
3916
3917 if (ret == Qundef) {
3918 GC_ASSERT(SYMBOL_P(arg));
3919
3920 rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(arg));
3921 }
3922
3923 return ret;
3924}
3925
3926static VALUE
3927gc_config_get(rb_execution_context_t *ec, VALUE self)
3928{
3929 VALUE cfg_hash = rb_gc_impl_config_get(rb_gc_get_objspace());
3930 rb_hash_aset(cfg_hash, sym("implementation"), rb_fstring_cstr(rb_gc_impl_active_gc_name()));
3931
3932 return cfg_hash;
3933}
3934
3935static VALUE
3936gc_config_set(rb_execution_context_t *ec, VALUE self, VALUE hash)
3937{
3938 void *objspace = rb_gc_get_objspace();
3939
3940 rb_gc_impl_config_set(objspace, hash);
3941
3942 return rb_gc_impl_config_get(objspace);
3943}
3944
3945static VALUE
3946gc_stress_get(rb_execution_context_t *ec, VALUE self)
3947{
3948 return rb_gc_impl_stress_get(rb_gc_get_objspace());
3949}
3950
3951static VALUE
3952gc_stress_set_m(rb_execution_context_t *ec, VALUE self, VALUE flag)
3953{
3954 rb_gc_impl_stress_set(rb_gc_get_objspace(), flag);
3955
3956 return flag;
3957}
3958
3959void
3960rb_gc_initial_stress_set(VALUE flag)
3961{
3962 initial_stress = flag;
3963}
3964
3965size_t *
3966rb_gc_heap_sizes(void)
3967{
3968 return rb_gc_impl_heap_sizes(rb_gc_get_objspace());
3969}
3970
3971VALUE
3972rb_gc_enable(void)
3973{
3974 return rb_objspace_gc_enable(rb_gc_get_objspace());
3975}
3976
3977VALUE
3978rb_objspace_gc_enable(void *objspace)
3979{
3980 bool disabled = !rb_gc_impl_gc_enabled_p(objspace);
3981 rb_gc_impl_gc_enable(objspace);
3982 return RBOOL(disabled);
3983}
3984
3985static VALUE
3986gc_enable(rb_execution_context_t *ec, VALUE _)
3987{
3988 return rb_gc_enable();
3989}
3990
3991static VALUE
3992gc_disable_no_rest(void *objspace)
3993{
3994 bool disabled = !rb_gc_impl_gc_enabled_p(objspace);
3995 rb_gc_impl_gc_disable(objspace, false);
3996 return RBOOL(disabled);
3997}
3998
3999VALUE
4000rb_gc_disable_no_rest(void)
4001{
4002 return gc_disable_no_rest(rb_gc_get_objspace());
4003}
4004
4005VALUE
4006rb_gc_disable(void)
4007{
4008 return rb_objspace_gc_disable(rb_gc_get_objspace());
4009}
4010
4011VALUE
4012rb_objspace_gc_disable(void *objspace)
4013{
4014 bool disabled = !rb_gc_impl_gc_enabled_p(objspace);
4015 rb_gc_impl_gc_disable(objspace, true);
4016 return RBOOL(disabled);
4017}
4018
4019static VALUE
4020gc_disable(rb_execution_context_t *ec, VALUE _)
4021{
4022 return rb_gc_disable();
4023}
4024
4025// TODO: think about moving ruby_gc_set_params into Init_heap or Init_gc
4026void
4027ruby_gc_set_params(void)
4028{
4029 rb_gc_impl_set_params(rb_gc_get_objspace());
4030}
4031
4032void
4033rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
4034{
4035 RB_VM_LOCK_ENTER();
4036 {
4037 if (rb_gc_impl_during_gc_p(rb_gc_get_objspace())) rb_bug("rb_objspace_reachable_objects_from() is not supported while during GC");
4038
4039 if (!RB_SPECIAL_CONST_P(obj)) {
4040 rb_vm_t *vm = GET_VM();
4041 struct gc_mark_func_data_struct *prev_mfd = vm->gc.mark_func_data;
4042 struct gc_mark_func_data_struct mfd = {
4043 .mark_func = func,
4044 .data = data,
4045 };
4046
4047 vm->gc.mark_func_data = &mfd;
4048 rb_gc_mark_children(rb_gc_get_objspace(), obj);
4049 vm->gc.mark_func_data = prev_mfd;
4050 }
4051 }
4052 RB_VM_LOCK_LEAVE();
4053}
4054
4056 const char *category;
4057 void (*func)(const char *category, VALUE, void *);
4058 void *data;
4059};
4060
4061static void
4062root_objects_from(VALUE obj, void *ptr)
4063{
4064 const struct root_objects_data *data = (struct root_objects_data *)ptr;
4065 (*data->func)(data->category, obj, data->data);
4066}
4067
4068void
4069rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
4070{
4071 if (rb_gc_impl_during_gc_p(rb_gc_get_objspace())) rb_bug("rb_gc_impl_objspace_reachable_objects_from_root() is not supported while during GC");
4072
4073 rb_vm_t *vm = GET_VM();
4074
4075 struct root_objects_data data = {
4076 .func = func,
4077 .data = passing_data,
4078 };
4079
4080 struct gc_mark_func_data_struct *prev_mfd = vm->gc.mark_func_data;
4081 struct gc_mark_func_data_struct mfd = {
4082 .mark_func = root_objects_from,
4083 .data = &data,
4084 };
4085
4086 vm->gc.mark_func_data = &mfd;
4087 rb_gc_save_machine_context();
4088 rb_gc_mark_roots(vm->gc.objspace, &data.category);
4089 vm->gc.mark_func_data = prev_mfd;
4090}
4091
4092/*
4093 ------------------------------ DEBUG ------------------------------
4094*/
4095
4096static const char *
4097type_name(int type, VALUE obj)
4098{
4099 switch (type) {
4100#define TYPE_NAME(t) case (t): return #t;
4101 TYPE_NAME(T_NONE);
4102 TYPE_NAME(T_OBJECT);
4103 TYPE_NAME(T_CLASS);
4104 TYPE_NAME(T_MODULE);
4105 TYPE_NAME(T_FLOAT);
4106 TYPE_NAME(T_STRING);
4107 TYPE_NAME(T_REGEXP);
4108 TYPE_NAME(T_ARRAY);
4109 TYPE_NAME(T_HASH);
4110 TYPE_NAME(T_STRUCT);
4111 TYPE_NAME(T_BIGNUM);
4112 TYPE_NAME(T_FILE);
4113 TYPE_NAME(T_MATCH);
4114 TYPE_NAME(T_COMPLEX);
4115 TYPE_NAME(T_RATIONAL);
4116 TYPE_NAME(T_NIL);
4117 TYPE_NAME(T_TRUE);
4118 TYPE_NAME(T_FALSE);
4119 TYPE_NAME(T_SYMBOL);
4120 TYPE_NAME(T_FIXNUM);
4121 TYPE_NAME(T_UNDEF);
4122 TYPE_NAME(T_IMEMO);
4123 TYPE_NAME(T_ICLASS);
4124 TYPE_NAME(T_MOVED);
4125 TYPE_NAME(T_ZOMBIE);
4126 case T_DATA:
4127 if (obj && rb_objspace_data_type_name(obj)) {
4128 return rb_objspace_data_type_name(obj);
4129 }
4130 return "T_DATA";
4131#undef TYPE_NAME
4132 }
4133 return "unknown";
4134}
4135
4136static const char *
4137obj_type_name(VALUE obj)
4138{
4139 return type_name(TYPE(obj), obj);
4140}
4141
4142const char *
4143rb_method_type_name(rb_method_type_t type)
4144{
4145 switch (type) {
4146 case VM_METHOD_TYPE_ISEQ: return "iseq";
4147 case VM_METHOD_TYPE_ATTRSET: return "attrest";
4148 case VM_METHOD_TYPE_IVAR: return "ivar";
4149 case VM_METHOD_TYPE_BMETHOD: return "bmethod";
4150 case VM_METHOD_TYPE_ALIAS: return "alias";
4151 case VM_METHOD_TYPE_REFINED: return "refined";
4152 case VM_METHOD_TYPE_CFUNC: return "cfunc";
4153 case VM_METHOD_TYPE_ZSUPER: return "zsuper";
4154 case VM_METHOD_TYPE_MISSING: return "missing";
4155 case VM_METHOD_TYPE_OPTIMIZED: return "optimized";
4156 case VM_METHOD_TYPE_UNDEF: return "undef";
4157 case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented";
4158 }
4159 rb_bug("rb_method_type_name: unreachable (type: %d)", type);
4160}
4161
4162static void
4163rb_raw_iseq_info(char *const buff, const size_t buff_size, const rb_iseq_t *iseq)
4164{
4165 if (buff_size > 0 && ISEQ_BODY(iseq) && ISEQ_BODY(iseq)->location.label && !RB_TYPE_P(ISEQ_BODY(iseq)->location.pathobj, T_MOVED)) {
4166 VALUE path = rb_iseq_path(iseq);
4167 int n = ISEQ_BODY(iseq)->location.first_lineno;
4168 snprintf(buff, buff_size, " %s@%s:%d",
4169 RSTRING_PTR(ISEQ_BODY(iseq)->location.label),
4170 RSTRING_PTR(path), n);
4171 }
4172}
4173
4174static int
4175str_len_no_raise(VALUE str)
4176{
4177 long len = RSTRING_LEN(str);
4178 if (len < 0) return 0;
4179 if (len > INT_MAX) return INT_MAX;
4180 return (int)len;
4181}
4182
4183#define BUFF_ARGS buff + pos, buff_size - pos
4184#define APPEND_F(...) if ((pos += snprintf(BUFF_ARGS, "" __VA_ARGS__)) >= buff_size) goto end
4185#define APPEND_S(s) do { \
4186 if ((pos + (int)rb_strlen_lit(s)) >= buff_size) { \
4187 goto end; \
4188 } \
4189 else { \
4190 memcpy(buff + pos, (s), rb_strlen_lit(s) + 1); \
4191 } \
4192 } while (0)
4193#define C(c, s) ((c) != 0 ? (s) : " ")
4194
4195static size_t
4196rb_raw_obj_info_common(char *const buff, const size_t buff_size, const VALUE obj)
4197{
4198 size_t pos = 0;
4199
4200 if (SPECIAL_CONST_P(obj)) {
4201 APPEND_F("%s", obj_type_name(obj));
4202
4203 if (FIXNUM_P(obj)) {
4204 APPEND_F(" %ld", FIX2LONG(obj));
4205 }
4206 else if (SYMBOL_P(obj)) {
4207 APPEND_F(" %s", rb_id2name(SYM2ID(obj)));
4208 }
4209 }
4210 else {
4211 // const int age = RVALUE_AGE_GET(obj);
4212
4213 if (rb_gc_impl_pointer_to_heap_p(rb_gc_get_objspace(), (void *)obj)) {
4214 // TODO: fixme
4215 // APPEND_F("%p [%d%s%s%s%s%s%s] %s ",
4216 // (void *)obj, age,
4217 // C(RVALUE_UNCOLLECTIBLE_BITMAP(obj), "L"),
4218 // C(RVALUE_MARK_BITMAP(obj), "M"),
4219 // C(RVALUE_PIN_BITMAP(obj), "P"),
4220 // C(RVALUE_MARKING_BITMAP(obj), "R"),
4221 // C(RVALUE_WB_UNPROTECTED_BITMAP(obj), "U"),
4222 // C(rb_objspace_garbage_object_p(obj), "G"),
4223 // obj_type_name(obj));
4224 }
4225 else {
4226 /* fake */
4227 // APPEND_F("%p [%dXXXX] %s",
4228 // (void *)obj, age,
4229 // obj_type_name(obj));
4230 }
4231
4232 if (internal_object_p(obj)) {
4233 /* ignore */
4234 }
4235 else if (RBASIC(obj)->klass == 0) {
4236 APPEND_S("(temporary internal)");
4237 }
4238 else if (RTEST(RBASIC(obj)->klass)) {
4239 VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass);
4240 if (!NIL_P(class_path)) {
4241 APPEND_F("(%s)", RSTRING_PTR(class_path));
4242 }
4243 }
4244 }
4245 end:
4246
4247 return pos;
4248}
4249
4250const char *rb_raw_obj_info(char *const buff, const size_t buff_size, VALUE obj);
4251
4252static size_t
4253rb_raw_obj_info_buitin_type(char *const buff, const size_t buff_size, const VALUE obj, size_t pos)
4254{
4255 if (LIKELY(pos < buff_size) && !SPECIAL_CONST_P(obj)) {
4256 const enum ruby_value_type type = BUILTIN_TYPE(obj);
4257
4258 switch (type) {
4259 case T_NODE:
4260 UNEXPECTED_NODE(rb_raw_obj_info);
4261 break;
4262 case T_ARRAY:
4263 if (ARY_SHARED_P(obj)) {
4264 APPEND_S("shared -> ");
4265 rb_raw_obj_info(BUFF_ARGS, ARY_SHARED_ROOT(obj));
4266 }
4267 else if (ARY_EMBED_P(obj)) {
4268 APPEND_F("[%s%s] len: %ld (embed)",
4269 C(ARY_EMBED_P(obj), "E"),
4270 C(ARY_SHARED_P(obj), "S"),
4271 RARRAY_LEN(obj));
4272 }
4273 else {
4274 APPEND_F("[%s%s] len: %ld, capa:%ld ptr:%p",
4275 C(ARY_EMBED_P(obj), "E"),
4276 C(ARY_SHARED_P(obj), "S"),
4277 RARRAY_LEN(obj),
4278 ARY_EMBED_P(obj) ? -1L : RARRAY(obj)->as.heap.aux.capa,
4279 (void *)RARRAY_CONST_PTR(obj));
4280 }
4281 break;
4282 case T_STRING: {
4283 if (STR_SHARED_P(obj)) {
4284 APPEND_F(" [shared] len: %ld", RSTRING_LEN(obj));
4285 }
4286 else {
4287 if (STR_EMBED_P(obj)) APPEND_S(" [embed]");
4288
4289 APPEND_F(" len: %ld, capa: %" PRIdSIZE, RSTRING_LEN(obj), rb_str_capacity(obj));
4290 }
4291 APPEND_F(" \"%.*s\"", str_len_no_raise(obj), RSTRING_PTR(obj));
4292 break;
4293 }
4294 case T_SYMBOL: {
4295 VALUE fstr = RSYMBOL(obj)->fstr;
4296 ID id = RSYMBOL(obj)->id;
4297 if (RB_TYPE_P(fstr, T_STRING)) {
4298 APPEND_F(":%s id:%d", RSTRING_PTR(fstr), (unsigned int)id);
4299 }
4300 else {
4301 APPEND_F("(%p) id:%d", (void *)fstr, (unsigned int)id);
4302 }
4303 break;
4304 }
4305 case T_MOVED: {
4306 APPEND_F("-> %p", (void*)gc_location_internal(rb_gc_get_objspace(), obj));
4307 break;
4308 }
4309 case T_HASH: {
4310 APPEND_F("[%c] %"PRIdSIZE,
4311 RHASH_AR_TABLE_P(obj) ? 'A' : 'S',
4312 RHASH_SIZE(obj));
4313 break;
4314 }
4315 case T_CLASS:
4316 case T_MODULE:
4317 {
4318 VALUE class_path = rb_class_path_cached(obj);
4319 if (!NIL_P(class_path)) {
4320 APPEND_F("%s", RSTRING_PTR(class_path));
4321 }
4322 else {
4323 APPEND_S("(anon)");
4324 }
4325 break;
4326 }
4327 case T_ICLASS:
4328 {
4329 VALUE class_path = rb_class_path_cached(RBASIC_CLASS(obj));
4330 if (!NIL_P(class_path)) {
4331 APPEND_F("src:%s", RSTRING_PTR(class_path));
4332 }
4333 break;
4334 }
4335 case T_OBJECT:
4336 {
4337 if (rb_shape_obj_too_complex(obj)) {
4338 size_t hash_len = rb_st_table_size(ROBJECT_IV_HASH(obj));
4339 APPEND_F("(too_complex) len:%zu", hash_len);
4340 }
4341 else {
4342 uint32_t len = ROBJECT_IV_CAPACITY(obj);
4343
4344 if (RBASIC(obj)->flags & ROBJECT_EMBED) {
4345 APPEND_F("(embed) len:%d", len);
4346 }
4347 else {
4348 VALUE *ptr = ROBJECT_IVPTR(obj);
4349 APPEND_F("len:%d ptr:%p", len, (void *)ptr);
4350 }
4351 }
4352 }
4353 break;
4354 case T_DATA: {
4355 const struct rb_block *block;
4356 const rb_iseq_t *iseq;
4357 if (rb_obj_is_proc(obj) &&
4358 (block = vm_proc_block(obj)) != NULL &&
4359 (vm_block_type(block) == block_type_iseq) &&
4360 (iseq = vm_block_iseq(block)) != NULL) {
4361 rb_raw_iseq_info(BUFF_ARGS, iseq);
4362 }
4363 else if (rb_ractor_p(obj)) {
4364 rb_ractor_t *r = (void *)DATA_PTR(obj);
4365 if (r) {
4366 APPEND_F("r:%d", r->pub.id);
4367 }
4368 }
4369 else {
4370 const char * const type_name = rb_objspace_data_type_name(obj);
4371 if (type_name) {
4372 APPEND_F("%s", type_name);
4373 }
4374 }
4375 break;
4376 }
4377 case T_IMEMO: {
4378 APPEND_F("<%s> ", rb_imemo_name(imemo_type(obj)));
4379
4380 switch (imemo_type(obj)) {
4381 case imemo_ment:
4382 {
4383 const rb_method_entry_t *me = (const rb_method_entry_t *)obj;
4384
4385 APPEND_F(":%s (%s%s%s%s) type:%s aliased:%d owner:%p defined_class:%p",
4386 rb_id2name(me->called_id),
4387 METHOD_ENTRY_VISI(me) == METHOD_VISI_PUBLIC ? "pub" :
4388 METHOD_ENTRY_VISI(me) == METHOD_VISI_PRIVATE ? "pri" : "pro",
4389 METHOD_ENTRY_COMPLEMENTED(me) ? ",cmp" : "",
4390 METHOD_ENTRY_CACHED(me) ? ",cc" : "",
4391 METHOD_ENTRY_INVALIDATED(me) ? ",inv" : "",
4392 me->def ? rb_method_type_name(me->def->type) : "NULL",
4393 me->def ? me->def->aliased : -1,
4394 (void *)me->owner, // obj_info(me->owner),
4395 (void *)me->defined_class); //obj_info(me->defined_class)));
4396
4397 if (me->def) {
4398 switch (me->def->type) {
4399 case VM_METHOD_TYPE_ISEQ:
4400 APPEND_S(" (iseq:");
4401 rb_raw_obj_info(BUFF_ARGS, (VALUE)me->def->body.iseq.iseqptr);
4402 APPEND_S(")");
4403 break;
4404 default:
4405 break;
4406 }
4407 }
4408
4409 break;
4410 }
4411 case imemo_iseq: {
4412 const rb_iseq_t *iseq = (const rb_iseq_t *)obj;
4413 rb_raw_iseq_info(BUFF_ARGS, iseq);
4414 break;
4415 }
4416 case imemo_callinfo:
4417 {
4418 const struct rb_callinfo *ci = (const struct rb_callinfo *)obj;
4419 APPEND_F("(mid:%s, flag:%x argc:%d, kwarg:%s)",
4420 rb_id2name(vm_ci_mid(ci)),
4421 vm_ci_flag(ci),
4422 vm_ci_argc(ci),
4423 vm_ci_kwarg(ci) ? "available" : "NULL");
4424 break;
4425 }
4426 case imemo_callcache:
4427 {
4428 const struct rb_callcache *cc = (const struct rb_callcache *)obj;
4429 VALUE class_path = cc->klass ? rb_class_path_cached(cc->klass) : Qnil;
4430 const rb_callable_method_entry_t *cme = vm_cc_cme(cc);
4431
4432 APPEND_F("(klass:%s cme:%s%s (%p) call:%p",
4433 NIL_P(class_path) ? (cc->klass ? "??" : "<NULL>") : RSTRING_PTR(class_path),
4434 cme ? rb_id2name(cme->called_id) : "<NULL>",
4435 cme ? (METHOD_ENTRY_INVALIDATED(cme) ? " [inv]" : "") : "",
4436 (void *)cme,
4437 (void *)(uintptr_t)vm_cc_call(cc));
4438 break;
4439 }
4440 default:
4441 break;
4442 }
4443 }
4444 default:
4445 break;
4446 }
4447 }
4448 end:
4449
4450 return pos;
4451}
4452
4453#undef C
4454
4455void
4456rb_asan_poison_object(VALUE obj)
4457{
4458 MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
4459 asan_poison_memory_region(ptr, rb_gc_obj_slot_size(obj));
4460}
4461
4462void
4463rb_asan_unpoison_object(VALUE obj, bool newobj_p)
4464{
4465 MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
4466 asan_unpoison_memory_region(ptr, rb_gc_obj_slot_size(obj), newobj_p);
4467}
4468
4469void *
4470rb_asan_poisoned_object_p(VALUE obj)
4471{
4472 MAYBE_UNUSED(struct RVALUE *) ptr = (void *)obj;
4473 return __asan_region_is_poisoned(ptr, rb_gc_obj_slot_size(obj));
4474}
4475
4476#define asan_unpoisoning_object(obj) \
4477 for (void *poisoned = asan_unpoison_object_temporary(obj), \
4478 *unpoisoning = &poisoned; /* flag to loop just once */ \
4479 unpoisoning; \
4480 unpoisoning = asan_poison_object_restore(obj, poisoned))
4481
4482const char *
4483rb_raw_obj_info(char *const buff, const size_t buff_size, VALUE obj)
4484{
4485 asan_unpoisoning_object(obj) {
4486 size_t pos = rb_raw_obj_info_common(buff, buff_size, obj);
4487 pos = rb_raw_obj_info_buitin_type(buff, buff_size, obj, pos);
4488 if (pos >= buff_size) {} // truncated
4489 }
4490
4491 return buff;
4492}
4493
4494#undef APPEND_S
4495#undef APPEND_F
4496#undef BUFF_ARGS
4497
4498#if RGENGC_OBJ_INFO
4499#define OBJ_INFO_BUFFERS_NUM 10
4500#define OBJ_INFO_BUFFERS_SIZE 0x100
4501static rb_atomic_t obj_info_buffers_index = 0;
4502static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE];
4503
4504/* Increments *var atomically and resets *var to 0 when maxval is
4505 * reached. Returns the wraparound old *var value (0...maxval). */
4506static rb_atomic_t
4507atomic_inc_wraparound(rb_atomic_t *var, const rb_atomic_t maxval)
4508{
4509 rb_atomic_t oldval = RUBY_ATOMIC_FETCH_ADD(*var, 1);
4510 if (RB_UNLIKELY(oldval >= maxval - 1)) { // wraparound *var
4511 const rb_atomic_t newval = oldval + 1;
4512 RUBY_ATOMIC_CAS(*var, newval, newval % maxval);
4513 oldval %= maxval;
4514 }
4515 return oldval;
4516}
4517
4518static const char *
4519obj_info(VALUE obj)
4520{
4521 rb_atomic_t index = atomic_inc_wraparound(&obj_info_buffers_index, OBJ_INFO_BUFFERS_NUM);
4522 char *const buff = obj_info_buffers[index];
4523 return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj);
4524}
4525#else
4526static const char *
4527obj_info(VALUE obj)
4528{
4529 return obj_type_name(obj);
4530}
4531#endif
4532
4533/*
4534 ------------------------ Extended allocator ------------------------
4535*/
4536
4538 VALUE exc;
4539 const char *fmt;
4540 va_list *ap;
4541};
4542
4543static void *
4544gc_vraise(void *ptr)
4545{
4546 struct gc_raise_tag *argv = ptr;
4547 rb_vraise(argv->exc, argv->fmt, *argv->ap);
4548 UNREACHABLE_RETURN(NULL);
4549}
4550
4551static void
4552gc_raise(VALUE exc, const char *fmt, ...)
4553{
4554 va_list ap;
4555 va_start(ap, fmt);
4556 struct gc_raise_tag argv = {
4557 exc, fmt, &ap,
4558 };
4559
4560 if (ruby_thread_has_gvl_p()) {
4561 gc_vraise(&argv);
4563 }
4564 else if (ruby_native_thread_p()) {
4565 rb_thread_call_with_gvl(gc_vraise, &argv);
4567 }
4568 else {
4569 /* Not in a ruby thread */
4570 fprintf(stderr, "%s", "[FATAL] ");
4571 vfprintf(stderr, fmt, ap);
4572 }
4573
4574 va_end(ap);
4575 abort();
4576}
4577
4578NORETURN(static void negative_size_allocation_error(const char *));
4579static void
4580negative_size_allocation_error(const char *msg)
4581{
4582 gc_raise(rb_eNoMemError, "%s", msg);
4583}
4584
4585static void *
4586ruby_memerror_body(void *dummy)
4587{
4588 rb_memerror();
4589 return 0;
4590}
4591
4592NORETURN(static void ruby_memerror(void));
4594static void
4595ruby_memerror(void)
4596{
4597 if (ruby_thread_has_gvl_p()) {
4598 rb_memerror();
4599 }
4600 else {
4601 if (ruby_native_thread_p()) {
4602 rb_thread_call_with_gvl(ruby_memerror_body, 0);
4603 }
4604 else {
4605 /* no ruby thread */
4606 fprintf(stderr, "[FATAL] failed to allocate memory\n");
4607 }
4608 }
4609
4610 /* We have discussions whether we should die here; */
4611 /* We might rethink about it later. */
4612 exit(EXIT_FAILURE);
4613}
4614
4615void
4616rb_memerror(void)
4617{
4618 /* the `GET_VM()->special_exceptions` below assumes that
4619 * the VM is reachable from the current thread. We should
4620 * definitely make sure of that. */
4621 RUBY_ASSERT_ALWAYS(ruby_thread_has_gvl_p());
4622
4623 rb_execution_context_t *ec = GET_EC();
4624 VALUE exc = GET_VM()->special_exceptions[ruby_error_nomemory];
4625
4626 if (!exc ||
4627 rb_ec_raised_p(ec, RAISED_NOMEMORY) ||
4628 rb_ec_vm_lock_rec(ec) != ec->tag->lock_rec) {
4629 fprintf(stderr, "[FATAL] failed to allocate memory\n");
4630 exit(EXIT_FAILURE);
4631 }
4632 if (rb_ec_raised_p(ec, RAISED_NOMEMORY)) {
4633 rb_ec_raised_clear(ec);
4634 }
4635 else {
4636 rb_ec_raised_set(ec, RAISED_NOMEMORY);
4637 exc = ruby_vm_special_exception_copy(exc);
4638 }
4639 ec->errinfo = exc;
4640 EC_JUMP_TAG(ec, TAG_RAISE);
4641}
4642
4643bool
4644rb_memerror_reentered(void)
4645{
4646 rb_execution_context_t *ec = GET_EC();
4647 return (ec && rb_ec_raised_p(ec, RAISED_NOMEMORY));
4648}
4649
4650void
4651rb_malloc_info_show_results(void)
4652{
4653}
4654
4655static void *
4656handle_malloc_failure(void *ptr)
4657{
4658 if (LIKELY(ptr)) {
4659 return ptr;
4660 }
4661 else {
4662 ruby_memerror();
4663 UNREACHABLE_RETURN(ptr);
4664 }
4665}
4666
4667static void *ruby_xmalloc_body(size_t size);
4668
4669void *
4670ruby_xmalloc(size_t size)
4671{
4672 return handle_malloc_failure(ruby_xmalloc_body(size));
4673}
4674
4675static void *
4676ruby_xmalloc_body(size_t size)
4677{
4678 if ((ssize_t)size < 0) {
4679 negative_size_allocation_error("too large allocation size");
4680 }
4681
4682 return rb_gc_impl_malloc(rb_gc_get_objspace(), size);
4683}
4684
4685void
4686ruby_malloc_size_overflow(size_t count, size_t elsize)
4687{
4688 rb_raise(rb_eArgError,
4689 "malloc: possible integer overflow (%"PRIuSIZE"*%"PRIuSIZE")",
4690 count, elsize);
4691}
4692
4693void
4694ruby_malloc_add_size_overflow(size_t x, size_t y)
4695{
4696 rb_raise(rb_eArgError,
4697 "malloc: possible integer overflow (%"PRIuSIZE"+%"PRIuSIZE")",
4698 x, y);
4699}
4700
4701static void *ruby_xmalloc2_body(size_t n, size_t size);
4702
4703void *
4704ruby_xmalloc2(size_t n, size_t size)
4705{
4706 return handle_malloc_failure(ruby_xmalloc2_body(n, size));
4707}
4708
4709static void *
4710ruby_xmalloc2_body(size_t n, size_t size)
4711{
4712 return rb_gc_impl_malloc(rb_gc_get_objspace(), xmalloc2_size(n, size));
4713}
4714
4715static void *ruby_xcalloc_body(size_t n, size_t size);
4716
4717void *
4718ruby_xcalloc(size_t n, size_t size)
4719{
4720 return handle_malloc_failure(ruby_xcalloc_body(n, size));
4721}
4722
4723static void *
4724ruby_xcalloc_body(size_t n, size_t size)
4725{
4726 return rb_gc_impl_calloc(rb_gc_get_objspace(), xmalloc2_size(n, size));
4727}
4728
4729static void *ruby_sized_xrealloc_body(void *ptr, size_t new_size, size_t old_size);
4730
4731#ifdef ruby_sized_xrealloc
4732#undef ruby_sized_xrealloc
4733#endif
4734void *
4735ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
4736{
4737 return handle_malloc_failure(ruby_sized_xrealloc_body(ptr, new_size, old_size));
4738}
4739
4740static void *
4741ruby_sized_xrealloc_body(void *ptr, size_t new_size, size_t old_size)
4742{
4743 if ((ssize_t)new_size < 0) {
4744 negative_size_allocation_error("too large allocation size");
4745 }
4746
4747 return rb_gc_impl_realloc(rb_gc_get_objspace(), ptr, new_size, old_size);
4748}
4749
4750void *
4751ruby_xrealloc(void *ptr, size_t new_size)
4752{
4753 return ruby_sized_xrealloc(ptr, new_size, 0);
4754}
4755
4756static void *ruby_sized_xrealloc2_body(void *ptr, size_t n, size_t size, size_t old_n);
4757
4758#ifdef ruby_sized_xrealloc2
4759#undef ruby_sized_xrealloc2
4760#endif
4761void *
4762ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n)
4763{
4764 return handle_malloc_failure(ruby_sized_xrealloc2_body(ptr, n, size, old_n));
4765}
4766
4767static void *
4768ruby_sized_xrealloc2_body(void *ptr, size_t n, size_t size, size_t old_n)
4769{
4770 size_t len = xmalloc2_size(n, size);
4771 return rb_gc_impl_realloc(rb_gc_get_objspace(), ptr, len, old_n * size);
4772}
4773
4774void *
4775ruby_xrealloc2(void *ptr, size_t n, size_t size)
4776{
4777 return ruby_sized_xrealloc2(ptr, n, size, 0);
4778}
4779
4780#ifdef ruby_sized_xfree
4781#undef ruby_sized_xfree
4782#endif
4783void
4784ruby_sized_xfree(void *x, size_t size)
4785{
4786 if (LIKELY(x)) {
4787 /* It's possible for a C extension's pthread destructor function set by pthread_key_create
4788 * to be called after ruby_vm_destruct and attempt to free memory. Fall back to mimfree in
4789 * that case. */
4790 if (LIKELY(GET_VM())) {
4791 rb_gc_impl_free(rb_gc_get_objspace(), x, size);
4792 }
4793 else {
4794 ruby_mimfree(x);
4795 }
4796 }
4797}
4798
4799void
4800ruby_xfree(void *x)
4801{
4802 ruby_sized_xfree(x, 0);
4803}
4804
4805void *
4806rb_xmalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
4807{
4808 size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
4809 return ruby_xmalloc(w);
4810}
4811
4812void *
4813rb_xcalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */
4814{
4815 size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
4816 return ruby_xcalloc(w, 1);
4817}
4818
4819void *
4820rb_xrealloc_mul_add(const void *p, size_t x, size_t y, size_t z) /* x * y + z */
4821{
4822 size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError);
4823 return ruby_xrealloc((void *)p, w);
4824}
4825
4826void *
4827rb_xmalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
4828{
4829 size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
4830 return ruby_xmalloc(u);
4831}
4832
4833void *
4834rb_xcalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */
4835{
4836 size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError);
4837 return ruby_xcalloc(u, 1);
4838}
4839
4840/* Mimic ruby_xmalloc, but need not rb_objspace.
4841 * should return pointer suitable for ruby_xfree
4842 */
4843void *
4844ruby_mimmalloc(size_t size)
4845{
4846 void *mem;
4847#if CALC_EXACT_MALLOC_SIZE
4848 size += sizeof(struct malloc_obj_info);
4849#endif
4850 mem = malloc(size);
4851#if CALC_EXACT_MALLOC_SIZE
4852 if (!mem) {
4853 return NULL;
4854 }
4855 else
4856 /* set 0 for consistency of allocated_size/allocations */
4857 {
4858 struct malloc_obj_info *info = mem;
4859 info->size = 0;
4860 mem = info + 1;
4861 }
4862#endif
4863 return mem;
4864}
4865
4866void *
4867ruby_mimcalloc(size_t num, size_t size)
4868{
4869 void *mem;
4870#if CALC_EXACT_MALLOC_SIZE
4871 struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(num, size);
4872 if (UNLIKELY(t.left)) {
4873 return NULL;
4874 }
4875 size = t.right + sizeof(struct malloc_obj_info);
4876 mem = calloc1(size);
4877 if (!mem) {
4878 return NULL;
4879 }
4880 else
4881 /* set 0 for consistency of allocated_size/allocations */
4882 {
4883 struct malloc_obj_info *info = mem;
4884 info->size = 0;
4885 mem = info + 1;
4886 }
4887#else
4888 mem = calloc(num, size);
4889#endif
4890 return mem;
4891}
4892
4893void
4894ruby_mimfree(void *ptr)
4895{
4896#if CALC_EXACT_MALLOC_SIZE
4897 struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1;
4898 ptr = info;
4899#endif
4900 free(ptr);
4901}
4902
4903void
4904rb_gc_adjust_memory_usage(ssize_t diff)
4905{
4906 unless_objspace(objspace) { return; }
4907
4908 rb_gc_impl_adjust_memory_usage(objspace, diff);
4909}
4910
4911const char *
4912rb_obj_info(VALUE obj)
4913{
4914 return obj_info(obj);
4915}
4916
4917void
4918rb_obj_info_dump(VALUE obj)
4919{
4920 char buff[0x100];
4921 fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj));
4922}
4923
4924void
4925rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func)
4926{
4927 char buff[0x100];
4928 fprintf(stderr, "<OBJ_INFO:%s@%s:%d> %s\n", func, file, line, rb_raw_obj_info(buff, 0x100, obj));
4929}
4930
4931void
4932rb_gc_before_fork(void)
4933{
4934 rb_gc_impl_before_fork(rb_gc_get_objspace());
4935}
4936
4937void
4938rb_gc_after_fork(rb_pid_t pid)
4939{
4940 rb_gc_impl_after_fork(rb_gc_get_objspace(), pid);
4941}
4942
4943/*
4944 * Document-module: ObjectSpace
4945 *
4946 * The ObjectSpace module contains a number of routines
4947 * that interact with the garbage collection facility and allow you to
4948 * traverse all living objects with an iterator.
4949 *
4950 * ObjectSpace also provides support for object finalizers, procs that will be
4951 * called after a specific object was destroyed by garbage collection. See
4952 * the documentation for +ObjectSpace.define_finalizer+ for important
4953 * information on how to use this method correctly.
4954 *
4955 * a = "A"
4956 * b = "B"
4957 *
4958 * ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
4959 * ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
4960 *
4961 * a = nil
4962 * b = nil
4963 *
4964 * _produces:_
4965 *
4966 * Finalizer two on 537763470
4967 * Finalizer one on 537763480
4968 */
4969
4970/* Document-class: GC::Profiler
4971 *
4972 * The GC profiler provides access to information on GC runs including time,
4973 * length and object space size.
4974 *
4975 * Example:
4976 *
4977 * GC::Profiler.enable
4978 *
4979 * require 'rdoc/rdoc'
4980 *
4981 * GC::Profiler.report
4982 *
4983 * GC::Profiler.disable
4984 *
4985 * See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
4986 */
4987
4988#include "gc.rbinc"
4989
4990void
4991Init_GC(void)
4992{
4993#undef rb_intern
4994 malloc_offset = gc_compute_malloc_offset();
4995
4996 rb_mGC = rb_define_module("GC");
4997
4998 VALUE rb_mObjSpace = rb_define_module("ObjectSpace");
4999
5000 rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
5001
5002 rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
5003 rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
5004
5005 rb_define_module_function(rb_mObjSpace, "_id2ref", os_id2ref, 1);
5006
5007 rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory");
5008
5009 rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
5010 rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
5011
5012 rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
5013
5014 rb_gc_impl_init();
5015}
5016
5017// Set a name for the anonymous virtual memory area. `addr` is the starting
5018// address of the area and `size` is its length in bytes. `name` is a
5019// NUL-terminated human-readable string.
5020//
5021// This function is usually called after calling `mmap()`. The human-readable
5022// annotation helps developers identify the call site of `mmap()` that created
5023// the memory mapping.
5024//
5025// This function currently only works on Linux 5.17 or higher. After calling
5026// this function, we can see annotations in the form of "[anon:...]" in
5027// `/proc/self/maps`, where `...` is the content of `name`. This function has
5028// no effect when called on other platforms.
5029void
5030ruby_annotate_mmap(const void *addr, unsigned long size, const char *name)
5031{
5032#if defined(HAVE_SYS_PRCTL_H) && defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
5033 // The name length cannot exceed 80 (including the '\0').
5034 RUBY_ASSERT(strlen(name) < 80);
5035 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, (unsigned long)addr, size, name);
5036 // We ignore errors in prctl. prctl may set errno to EINVAL for several
5037 // reasons.
5038 // 1. The attr (PR_SET_VMA_ANON_NAME) is not a valid attribute.
5039 // 2. addr is an invalid address.
5040 // 3. The string pointed by name is too long.
5041 // The first error indicates PR_SET_VMA_ANON_NAME is not available, and may
5042 // happen if we run the compiled binary on an old kernel. In theory, all
5043 // other errors should result in a failure. But since EINVAL cannot tell
5044 // the first error from others, and this function is mainly used for
5045 // debugging, we silently ignore the error.
5046 errno = 0;
5047#endif
5048}
#define RUBY_ASSERT_ALWAYS(expr,...)
A variant of RUBY_ASSERT that does not interface with RUBY_DEBUG.
Definition assert.h:199
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
#define RUBY_ATOMIC_CAS(var, oldval, newval)
Atomic compare-and-swap.
Definition atomic.h:140
std::atomic< unsigned > rb_atomic_t
Type that is eligible for atomic operations.
Definition atomic.h:69
#define RUBY_ATOMIC_FETCH_ADD(var, val)
Atomically replaces the value pointed by var with the result of addition of val to the old value of v...
Definition atomic.h:93
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_module_function(klass, mid, func, arity)
Defines klass#mid and makes it a module function.
uint32_t rb_event_flag_t
Represents event(s).
Definition event.h:108
#define RUBY_INTERNAL_EVENT_NEWOBJ
Object allocated.
Definition event.h:93
static VALUE RB_FL_TEST_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_TEST().
Definition fl_type.h:469
static void RB_FL_SET_RAW(VALUE obj, VALUE flags)
This is an implementation detail of RB_FL_SET().
Definition fl_type.h:606
@ RUBY_FL_WB_PROTECTED
Definition fl_type.h:199
VALUE rb_define_module(const char *name)
Defines a top-level module.
Definition class.c:1095
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:2635
#define T_COMPLEX
Old name of RUBY_T_COMPLEX.
Definition value_type.h:59
#define TYPE(_)
Old name of rb_type.
Definition value_type.h:108
#define FL_SINGLETON
Old name of RUBY_FL_SINGLETON.
Definition fl_type.h:58
#define T_FILE
Old name of RUBY_T_FILE.
Definition value_type.h:62
#define FL_EXIVAR
Old name of RUBY_FL_EXIVAR.
Definition fl_type.h:66
#define ALLOC
Old name of RB_ALLOC.
Definition memory.h:400
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define T_MASK
Old name of RUBY_T_MASK.
Definition value_type.h:68
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define T_NIL
Old name of RUBY_T_NIL.
Definition value_type.h:72
#define UNREACHABLE
Old name of RBIMPL_UNREACHABLE.
Definition assume.h:28
#define T_FLOAT
Old name of RUBY_T_FLOAT.
Definition value_type.h:64
#define T_IMEMO
Old name of RUBY_T_IMEMO.
Definition value_type.h:67
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
Definition value_type.h:57
#define SPECIAL_CONST_P
Old name of RB_SPECIAL_CONST_P.
#define T_STRUCT
Old name of RUBY_T_STRUCT.
Definition value_type.h:79
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:135
#define T_FIXNUM
Old name of RUBY_T_FIXNUM.
Definition value_type.h:63
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition assume.h:29
#define SYM2ID
Old name of RB_SYM2ID.
Definition symbol.h:45
#define T_DATA
Old name of RUBY_T_DATA.
Definition value_type.h:60
#define FIXNUM_FLAG
Old name of RUBY_FIXNUM_FLAG.
#define LL2NUM
Old name of RB_LL2NUM.
Definition long_long.h:30
#define T_NONE
Old name of RUBY_T_NONE.
Definition value_type.h:74
#define T_NODE
Old name of RUBY_T_NODE.
Definition value_type.h:73
#define SIZET2NUM
Old name of RB_SIZE2NUM.
Definition size_t.h:62
#define FL_FINALIZE
Old name of RUBY_FL_FINALIZE.
Definition fl_type.h:61
#define T_MODULE
Old name of RUBY_T_MODULE.
Definition value_type.h:70
#define STATIC_SYM_P
Old name of RB_STATIC_SYM_P.
#define T_TRUE
Old name of RUBY_T_TRUE.
Definition value_type.h:81
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define T_ICLASS
Old name of RUBY_T_ICLASS.
Definition value_type.h:66
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define FL_ABLE
Old name of RB_FL_ABLE.
Definition fl_type.h:122
#define FL_TEST_RAW
Old name of RB_FL_TEST_RAW.
Definition fl_type.h:132
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define LONG2NUM
Old name of RB_LONG2NUM.
Definition long.h:50
#define T_FALSE
Old name of RUBY_T_FALSE.
Definition value_type.h:61
#define T_UNDEF
Old name of RUBY_T_UNDEF.
Definition value_type.h:82
#define FLONUM_P
Old name of RB_FLONUM_P.
#define Qtrue
Old name of RUBY_Qtrue.
#define T_ZOMBIE
Old name of RUBY_T_ZOMBIE.
Definition value_type.h:83
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define T_OBJECT
Old name of RUBY_T_OBJECT.
Definition value_type.h:75
#define NIL_P
Old name of RB_NIL_P.
#define FL_WB_PROTECTED
Old name of RUBY_FL_WB_PROTECTED.
Definition fl_type.h:59
#define T_SYMBOL
Old name of RUBY_T_SYMBOL.
Definition value_type.h:80
#define T_MATCH
Old name of RUBY_T_MATCH.
Definition value_type.h:69
#define T_CLASS
Old name of RUBY_T_CLASS.
Definition value_type.h:58
#define BUILTIN_TYPE
Old name of RB_BUILTIN_TYPE.
Definition value_type.h:85
#define T_MOVED
Old name of RUBY_T_MOVED.
Definition value_type.h:71
#define FL_TEST
Old name of RB_FL_TEST.
Definition fl_type.h:131
#define xcalloc
Old name of ruby_xcalloc.
Definition xmalloc.h:55
#define FL_UNSET
Old name of RB_FL_UNSET.
Definition fl_type.h:133
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define NUM2SIZET
Old name of RB_NUM2SIZE.
Definition size_t.h:61
#define SYMBOL_P
Old name of RB_SYMBOL_P.
Definition value_type.h:88
#define T_REGEXP
Old name of RUBY_T_REGEXP.
Definition value_type.h:77
size_t ruby_stack_length(VALUE **p)
Queries what Ruby thinks is the machine stack.
Definition gc.c:2159
int ruby_stack_check(void)
Checks for stack overflow.
Definition gc.c:2199
VALUE rb_eNoMemError
NoMemoryError exception.
Definition error.c:1441
VALUE rb_eRangeError
RangeError exception.
Definition error.c:1434
#define ruby_verbose
This variable controls whether the interpreter is in debug mode.
Definition error.h:475
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
size_t rb_obj_embedded_size(uint32_t numiv)
Internal header for Object.
Definition object.c:98
VALUE rb_mKernel
Kernel module.
Definition object.c:65
VALUE rb_mGC
GC module.
Definition gc.c:431
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:247
VALUE rb_cBasicObject
BasicObject class.
Definition object.c:64
VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)
Queries if the given object is an instance (of possibly descendants) of the given class.
Definition object.c:865
VALUE rb_to_int(VALUE val)
Identical to rb_check_to_int(), except it raises in case of conversion mismatch.
Definition object.c:3192
int rb_enc_str_coderange(VALUE str)
Scans the passed string to collect its code range.
Definition string.c:901
Defines RBIMPL_HAS_BUILTIN.
#define RETURN_ENUMERATOR(obj, argc, argv)
Identical to RETURN_SIZED_ENUMERATOR(), except its size is unknown.
Definition enumerator.h:239
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition proc.c:845
VALUE rb_obj_is_proc(VALUE recv)
Queries if the given object is a proc.
Definition proc.c:119
void rb_str_free(VALUE str)
Destroys the given string for no reason.
Definition string.c:1678
size_t rb_str_capacity(VALUE str)
Queries the capacity of the given string.
Definition string.c:955
VALUE rb_class_path_cached(VALUE mod)
Just another name of rb_mod_name.
Definition variable.c:302
void rb_free_generic_ivar(VALUE obj)
Frees the list of instance variables.
Definition variable.c:1140
void rb_undef_alloc_func(VALUE klass)
Deletes the allocator function of a class.
Definition vm_method.c:1284
VALUE rb_check_funcall(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcallv(), except it returns RUBY_Qundef instead of raising rb_eNoMethodError.
Definition vm_eval.c:668
rb_alloc_func_t rb_get_alloc_func(VALUE klass)
Queries the allocator function of a class.
Definition vm_method.c:1290
int rb_obj_respond_to(VALUE obj, ID mid, int private_p)
Identical to rb_respond_to(), except it additionally takes the visibility parameter.
Definition vm_method.c:2937
VALUE rb_sym2str(VALUE symbol)
Obtain a frozen string representation of a symbol (not including the leading colon).
Definition symbol.c:986
int capa
Designed capacity of the buffer.
Definition io.h:11
int len
Length of the buffer.
Definition io.h:8
static bool rb_ractor_shareable_p(VALUE obj)
Queries if multiple Ractors can share the passed object or not.
Definition ractor.h:249
void * rb_thread_call_with_gvl(void *(*func)(void *), void *data1)
(Re-)acquires the GVL.
Definition thread.c:1899
VALUE rb_yield(VALUE val)
Yields the block.
Definition vm_eval.c:1354
#define RBIMPL_ATTR_MAYBE_UNUSED()
Wraps (or simulates) [[maybe_unused]]
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
VALUE type(ANYARGS)
ANYARGS-ed function type.
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY(obj)
Convenient casting macro.
Definition rarray.h:44
#define RARRAY_CONST_PTR
Just another name of rb_array_const_ptr.
Definition rarray.h:52
static VALUE RBASIC_CLASS(VALUE obj)
Queries the class of an object.
Definition rbasic.h:150
#define RBASIC(obj)
Convenient casting macro.
Definition rbasic.h:40
#define RCLASS_SUPER
Just another name of rb_class_get_superclass.
Definition rclass.h:44
#define RCLASS(obj)
Convenient casting macro.
Definition rclass.h:38
#define DATA_PTR(obj)
Convenient getter macro.
Definition rdata.h:67
#define RDATA(obj)
Convenient casting macro.
Definition rdata.h:59
#define RUBY_DEFAULT_FREE
This is a value you can set to RData::dfree.
Definition rdata.h:78
void(* RUBY_DATA_FUNC)(void *)
This is the type of callbacks registered to RData.
Definition rdata.h:104
#define RFILE(obj)
Convenient casting macro.
Definition rfile.h:50
#define RHASH_SIZE(h)
Queries the size of the hash.
Definition rhash.h:69
#define RHASH_EMPTY_P(h)
Checks if the hash is empty.
Definition rhash.h:79
#define RMATCH(obj)
Convenient casting macro.
Definition rmatch.h:37
#define ROBJECT(obj)
Convenient casting macro.
Definition robject.h:43
static VALUE * ROBJECT_IVPTR(VALUE obj)
Queries the instance variables.
Definition robject.h:126
#define RREGEXP(obj)
Convenient casting macro.
Definition rregexp.h:37
#define RREGEXP_PTR(obj)
Convenient accessor macro.
Definition rregexp.h:45
#define RSTRING(obj)
Convenient casting macro.
Definition rstring.h:41
static bool RTYPEDDATA_P(VALUE obj)
Checks whether the passed object is RTypedData or RData.
Definition rtypeddata.h:579
#define RTYPEDDATA(obj)
Convenient casting macro.
Definition rtypeddata.h:94
static const struct rb_data_type_struct * RTYPEDDATA_TYPE(VALUE obj)
Queries for the type of given object.
Definition rtypeddata.h:602
const char * rb_obj_classname(VALUE obj)
Queries the name of the class of the passed object.
Definition variable.c:427
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
int ruby_native_thread_p(void)
Queries if the thread which calls this function is a ruby's thread.
Definition thread.c:5548
static bool RB_SPECIAL_CONST_P(VALUE obj)
Checks if the given object is of enum ruby_special_consts.
#define RTEST
This is an old name of RB_TEST.
Defines old _.
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
Definition hash.h:53
Ruby's ordinal objects.
Definition robject.h:83
"Typed" user data.
Definition rtypeddata.h:350
Definition method.h:62
Definition constant.h:33
CREF (Class REFerence)
Definition method.h:44
Definition class.h:36
This is the struct that holds necessary info for a struct.
Definition rtypeddata.h:200
const char * wrap_struct_name
Name of structs of this kind.
Definition rtypeddata.h:207
VALUE flags
Type-specific behavioural characteristics.
Definition rtypeddata.h:309
Definition gc_impl.h:15
Ruby's IO, metadata and buffers.
Definition io.h:143
Represents a match.
Definition rmatch.h:71
struct rmatch_offset * char_offset
Capture group offsets, in C array.
Definition rmatch.h:79
int char_offset_num_allocated
Number of rmatch_offset that ::rmatch::char_offset holds.
Definition rmatch.h:82
struct re_registers regs
"Registers" of a match.
Definition rmatch.h:76
Definition method.h:54
const rb_iseq_t * iseqptr
iseq pointer, should be separated from iseqval
Definition method.h:135
Internal header for Class.
Definition class.h:29
Represents the region of a capture group.
Definition rmatch.h:65
Definition st.h:79
void rb_native_mutex_lock(rb_nativethread_lock_t *lock)
Just another name of rb_nativethread_lock_lock.
void rb_native_mutex_initialize(rb_nativethread_lock_t *lock)
Just another name of rb_nativethread_lock_initialize.
void rb_native_mutex_unlock(rb_nativethread_lock_t *lock)
Just another name of rb_nativethread_lock_unlock.
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
Definition value.h:63
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
#define SIZEOF_VALUE
Identical to sizeof(VALUE), except it is a macro that can also be used inside of preprocessor directi...
Definition value.h:69
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376
ruby_value_type
C-level type of an object.
Definition value_type.h:113