Ruby  3.4.0dev (2024-12-06 revision 892c46283a5ea4179500d951c9d4866c0051f27b)
random.c (892c46283a5ea4179500d951c9d4866c0051f27b)
1 /**********************************************************************
2 
3  random.c -
4 
5  $Author$
6  created at: Fri Dec 24 16:39:21 JST 1993
7 
8  Copyright (C) 1993-2007 Yukihiro Matsumoto
9 
10 **********************************************************************/
11 
12 #include "ruby/internal/config.h"
13 
14 #include <errno.h>
15 #include <limits.h>
16 #include <math.h>
17 #include <float.h>
18 #include <time.h>
19 
20 #ifdef HAVE_UNISTD_H
21 # include <unistd.h>
22 #endif
23 
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 
27 #ifdef HAVE_FCNTL_H
28 # include <fcntl.h>
29 #endif
30 
31 #if defined(HAVE_SYS_TIME_H)
32 # include <sys/time.h>
33 #endif
34 
35 #ifdef HAVE_SYSCALL_H
36 # include <syscall.h>
37 #elif defined HAVE_SYS_SYSCALL_H
38 # include <sys/syscall.h>
39 #endif
40 
41 #ifdef _WIN32
42 # include <winsock2.h>
43 # include <windows.h>
44 # include <wincrypt.h>
45 # include <bcrypt.h>
46 #endif
47 
48 #if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__NetBSD__)
49 /* to define OpenBSD and FreeBSD for version check */
50 # include <sys/param.h>
51 #endif
52 
53 #if defined HAVE_GETRANDOM || defined HAVE_GETENTROPY
54 # if defined(HAVE_SYS_RANDOM_H)
55 # include <sys/random.h>
56 # endif
57 #elif defined __linux__ && defined __NR_getrandom
58 # include <linux/random.h>
59 #endif
60 
61 #if defined __APPLE__
62 # include <AvailabilityMacros.h>
63 #endif
64 
65 #include "internal.h"
66 #include "internal/array.h"
67 #include "internal/compilers.h"
68 #include "internal/numeric.h"
69 #include "internal/random.h"
70 #include "internal/sanitizers.h"
71 #include "internal/variable.h"
72 #include "ruby_atomic.h"
73 #include "ruby/random.h"
74 #include "ruby/ractor.h"
75 
76 STATIC_ASSERT(int_must_be_32bit_at_least, sizeof(int) * CHAR_BIT >= 32);
77 
78 #include "missing/mt19937.c"
79 
80 /* generates a random number on [0,1) with 53-bit resolution*/
81 static double int_pair_to_real_exclusive(uint32_t a, uint32_t b);
82 static double
83 genrand_real(struct MT *mt)
84 {
85  /* mt must be initialized */
86  unsigned int a = genrand_int32(mt), b = genrand_int32(mt);
87  return int_pair_to_real_exclusive(a, b);
88 }
89 
90 static const double dbl_reduce_scale = /* 2**(-DBL_MANT_DIG) */
91  (1.0
92  / (double)(DBL_MANT_DIG > 2*31 ? (1ul<<31) : 1.0)
93  / (double)(DBL_MANT_DIG > 1*31 ? (1ul<<31) : 1.0)
94  / (double)(1ul<<(DBL_MANT_DIG%31)));
95 
96 static double
97 int_pair_to_real_exclusive(uint32_t a, uint32_t b)
98 {
99  static const int a_shift = DBL_MANT_DIG < 64 ?
100  (64-DBL_MANT_DIG)/2 : 0;
101  static const int b_shift = DBL_MANT_DIG < 64 ?
102  (65-DBL_MANT_DIG)/2 : 0;
103  a >>= a_shift;
104  b >>= b_shift;
105  return (a*(double)(1ul<<(32-b_shift))+b)*dbl_reduce_scale;
106 }
107 
108 /* generates a random number on [0,1] with 53-bit resolution*/
109 static double int_pair_to_real_inclusive(uint32_t a, uint32_t b);
110 #if 0
111 static double
112 genrand_real2(struct MT *mt)
113 {
114  /* mt must be initialized */
115  uint32_t a = genrand_int32(mt), b = genrand_int32(mt);
116  return int_pair_to_real_inclusive(a, b);
117 }
118 #endif
119 
120 /* These real versions are due to Isaku Wada, 2002/01/09 added */
121 
122 #undef N
123 #undef M
124 
125 typedef struct {
126  rb_random_t base;
127  struct MT mt;
129 
130 #define DEFAULT_SEED_CNT 4
131 
132 static VALUE rand_init(const rb_random_interface_t *, rb_random_t *, VALUE);
133 static VALUE random_seed(VALUE);
134 static void fill_random_seed(uint32_t *seed, size_t cnt, bool try_bytes);
135 static VALUE make_seed_value(uint32_t *ptr, size_t len);
136 #define fill_random_bytes ruby_fill_random_bytes
137 
139 static const rb_random_interface_t random_mt_if = {
140  DEFAULT_SEED_CNT * 32,
142 };
143 
144 static rb_random_mt_t *
145 rand_mt_start(rb_random_mt_t *r)
146 {
147  if (!genrand_initialized(&r->mt)) {
148  r->base.seed = rand_init(&random_mt_if, &r->base, random_seed(Qundef));
149  }
150  return r;
151 }
152 
153 static rb_random_t *
154 rand_start(rb_random_mt_t *r)
155 {
156  return &rand_mt_start(r)->base;
157 }
158 
159 static rb_ractor_local_key_t default_rand_key;
160 
161 void
162 rb_free_default_rand_key(void)
163 {
164  xfree(default_rand_key);
165 }
166 
167 static void
168 default_rand_mark(void *ptr)
169 {
171  rb_gc_mark(rnd->base.seed);
172 }
173 
174 static const struct rb_ractor_local_storage_type default_rand_key_storage_type = {
175  default_rand_mark,
176  ruby_xfree,
177 };
178 
179 static rb_random_mt_t *
180 default_rand(void)
181 {
182  rb_random_mt_t *rnd;
183 
184  if ((rnd = rb_ractor_local_storage_ptr(default_rand_key)) == NULL) {
185  rnd = ZALLOC(rb_random_mt_t);
186  rb_ractor_local_storage_ptr_set(default_rand_key, rnd);
187  }
188 
189  return rnd;
190 }
191 
192 static rb_random_mt_t *
193 default_mt(void)
194 {
195  return rand_mt_start(default_rand());
196 }
197 
198 unsigned int
200 {
201  struct MT *mt = &default_mt()->mt;
202  return genrand_int32(mt);
203 }
204 
205 double
207 {
208  struct MT *mt = &default_mt()->mt;
209  return genrand_real(mt);
210 }
211 
212 #define SIZEOF_INT32 (31/CHAR_BIT + 1)
213 
214 static double
215 int_pair_to_real_inclusive(uint32_t a, uint32_t b)
216 {
217  double r;
218  enum {dig = DBL_MANT_DIG};
219  enum {dig_u = dig-32, dig_r64 = 64-dig, bmask = ~(~0u<<(dig_r64))};
220 #if defined HAVE_UINT128_T
221  const uint128_t m = ((uint128_t)1 << dig) | 1;
222  uint128_t x = ((uint128_t)a << 32) | b;
223  r = (double)(uint64_t)((x * m) >> 64);
224 #elif defined HAVE_UINT64_T && !MSC_VERSION_BEFORE(1300)
225  uint64_t x = ((uint64_t)a << dig_u) +
226  (((uint64_t)b + (a >> dig_u)) >> dig_r64);
227  r = (double)x;
228 #else
229  /* shift then add to get rid of overflow */
230  b = (b >> dig_r64) + (((a >> dig_u) + (b & bmask)) >> dig_r64);
231  r = (double)a * (1 << dig_u) + b;
232 #endif
233  return r * dbl_reduce_scale;
234 }
235 
237 #define id_minus '-'
238 #define id_plus '+'
239 static ID id_rand, id_bytes;
240 NORETURN(static void domain_error(void));
241 
242 /* :nodoc: */
243 #define random_mark rb_random_mark
244 
245 void
246 random_mark(void *ptr)
247 {
248  rb_gc_mark(((rb_random_t *)ptr)->seed);
249 }
250 
251 #define random_free RUBY_TYPED_DEFAULT_FREE
252 
253 static size_t
254 random_memsize(const void *ptr)
255 {
256  return sizeof(rb_random_t);
257 }
258 
260  "random",
261  {
262  random_mark,
263  random_free,
264  random_memsize,
265  },
266  0, 0, RUBY_TYPED_FREE_IMMEDIATELY
267 };
268 
269 #define random_mt_mark rb_random_mark
270 #define random_mt_free RUBY_TYPED_DEFAULT_FREE
271 
272 static size_t
273 random_mt_memsize(const void *ptr)
274 {
275  return sizeof(rb_random_mt_t);
276 }
277 
278 static const rb_data_type_t random_mt_type = {
279  "random/MT",
280  {
281  random_mt_mark,
282  random_mt_free,
283  random_mt_memsize,
284  },
286  (void *)&random_mt_if,
287  RUBY_TYPED_FREE_IMMEDIATELY
288 };
289 
290 static rb_random_t *
291 get_rnd(VALUE obj)
292 {
293  rb_random_t *ptr;
295  if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
296  return rand_start((rb_random_mt_t *)ptr);
297  return ptr;
298 }
299 
300 static rb_random_mt_t *
301 get_rnd_mt(VALUE obj)
302 {
304  TypedData_Get_Struct(obj, rb_random_mt_t, &random_mt_type, ptr);
305  return ptr;
306 }
307 
308 static rb_random_t *
309 try_get_rnd(VALUE obj)
310 {
311  if (obj == rb_cRandom) {
312  return rand_start(default_rand());
313  }
314  if (!rb_typeddata_is_kind_of(obj, &rb_random_data_type)) return NULL;
315  if (RTYPEDDATA_TYPE(obj) == &random_mt_type)
316  return rand_start(DATA_PTR(obj));
317  rb_random_t *rnd = DATA_PTR(obj);
318  if (!rnd) {
319  rb_raise(rb_eArgError, "uninitialized random: %s",
320  RTYPEDDATA_TYPE(obj)->wrap_struct_name);
321  }
322  return rnd;
323 }
324 
325 static const rb_random_interface_t *
326 try_rand_if(VALUE obj, rb_random_t *rnd)
327 {
328  if (rnd == &default_rand()->base) {
329  return &random_mt_if;
330  }
331  return rb_rand_if(obj);
332 }
333 
334 /* :nodoc: */
335 void
337 {
338  rnd->seed = INT2FIX(0);
339 }
340 
341 /* :nodoc: */
342 static VALUE
343 random_alloc(VALUE klass)
344 {
345  rb_random_mt_t *rnd;
346  VALUE obj = TypedData_Make_Struct(klass, rb_random_mt_t, &random_mt_type, rnd);
347  rb_random_base_init(&rnd->base);
348  return obj;
349 }
350 
351 static VALUE
352 rand_init_default(const rb_random_interface_t *rng, rb_random_t *rnd)
353 {
354  VALUE seed, buf0 = 0;
355  size_t len = roomof(rng->default_seed_bits, 32);
356  uint32_t *buf = ALLOCV_N(uint32_t, buf0, len+1);
357 
358  fill_random_seed(buf, len, true);
359  rng->init(rnd, buf, len);
360  seed = make_seed_value(buf, len);
361  explicit_bzero(buf, len * sizeof(*buf));
362  ALLOCV_END(buf0);
363  return seed;
364 }
365 
366 static VALUE
367 rand_init(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE seed)
368 {
369  uint32_t *buf;
370  VALUE buf0 = 0;
371  size_t len;
372  int sign;
373 
374  len = rb_absint_numwords(seed, 32, NULL);
375  if (len == 0) len = 1;
376  buf = ALLOCV_N(uint32_t, buf0, len);
377  sign = rb_integer_pack(seed, buf, len, sizeof(uint32_t), 0,
379  if (sign < 0)
380  sign = -sign;
381  if (len == 1) {
382  rng->init_int32(rnd, buf[0]);
383  }
384  else {
385  if (sign != 2 && buf[len-1] == 1) /* remove leading-zero-guard */
386  len--;
387  rng->init(rnd, buf, len);
388  }
389  explicit_bzero(buf, len * sizeof(*buf));
390  ALLOCV_END(buf0);
391  return seed;
392 }
393 
394 /*
395  * call-seq:
396  * Random.new(seed = Random.new_seed) -> prng
397  *
398  * Creates a new PRNG using +seed+ to set the initial state. If +seed+ is
399  * omitted, the generator is initialized with Random.new_seed.
400  *
401  * See Random.srand for more information on the use of seed values.
402  */
403 static VALUE
404 random_init(int argc, VALUE *argv, VALUE obj)
405 {
406  rb_random_t *rnd = try_get_rnd(obj);
407  const rb_random_interface_t *rng = rb_rand_if(obj);
408 
409  if (!rng) {
410  rb_raise(rb_eTypeError, "undefined random interface: %s",
411  RTYPEDDATA_TYPE(obj)->wrap_struct_name);
412  }
413 
414  unsigned int major = rng->version.major;
415  unsigned int minor = rng->version.minor;
416  if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) {
417  rb_raise(rb_eTypeError, "Random interface version "
418  STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "."
419  STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " "
420  "expected: %d.%d", major, minor);
421  }
422  argc = rb_check_arity(argc, 0, 1);
423  rb_check_frozen(obj);
424  if (argc == 0) {
425  rnd->seed = rand_init_default(rng, rnd);
426  }
427  else {
428  rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0]));
429  }
430  return obj;
431 }
432 
433 #define DEFAULT_SEED_LEN (DEFAULT_SEED_CNT * (int)sizeof(int32_t))
434 
435 #if defined(S_ISCHR) && !defined(DOSISH)
436 # define USE_DEV_URANDOM 1
437 #else
438 # define USE_DEV_URANDOM 0
439 #endif
440 
441 #ifdef HAVE_GETENTROPY
442 # define MAX_SEED_LEN_PER_READ 256
443 static int
444 fill_random_bytes_urandom(void *seed, size_t size)
445 {
446  unsigned char *p = (unsigned char *)seed;
447  while (size) {
448  size_t len = size < MAX_SEED_LEN_PER_READ ? size : MAX_SEED_LEN_PER_READ;
449  if (getentropy(p, len) != 0) {
450  return -1;
451  }
452  p += len;
453  size -= len;
454  }
455  return 0;
456 }
457 #elif USE_DEV_URANDOM
458 static int
459 fill_random_bytes_urandom(void *seed, size_t size)
460 {
461  /*
462  O_NONBLOCK and O_NOCTTY is meaningless if /dev/urandom correctly points
463  to a urandom device. But it protects from several strange hazard if
464  /dev/urandom is not a urandom device.
465  */
466  int fd = rb_cloexec_open("/dev/urandom",
467 # ifdef O_NONBLOCK
468  O_NONBLOCK|
469 # endif
470 # ifdef O_NOCTTY
471  O_NOCTTY|
472 # endif
473  O_RDONLY, 0);
474  struct stat statbuf;
475  ssize_t ret = 0;
476  size_t offset = 0;
477 
478  if (fd < 0) return -1;
479  rb_update_max_fd(fd);
480  if (fstat(fd, &statbuf) == 0 && S_ISCHR(statbuf.st_mode)) {
481  do {
482  ret = read(fd, ((char*)seed) + offset, size - offset);
483  if (ret < 0) {
484  close(fd);
485  return -1;
486  }
487  offset += (size_t)ret;
488  } while (offset < size);
489  }
490  close(fd);
491  return 0;
492 }
493 #else
494 # define fill_random_bytes_urandom(seed, size) -1
495 #endif
496 
497 #if ! defined HAVE_GETRANDOM && defined __linux__ && defined __NR_getrandom
498 # ifndef GRND_NONBLOCK
499 # define GRND_NONBLOCK 0x0001 /* not defined in musl libc */
500 # endif
501 # define getrandom(ptr, size, flags) \
502  (ssize_t)syscall(__NR_getrandom, (ptr), (size), (flags))
503 # define HAVE_GETRANDOM 1
504 #endif
505 
506 #if 0
507 #elif defined MAC_OS_X_VERSION_10_7 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
508 
509 # if defined(USE_COMMON_RANDOM)
510 # elif defined MAC_OS_X_VERSION_10_10 && MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_10
511 # define USE_COMMON_RANDOM 1
512 # else
513 # define USE_COMMON_RANDOM 0
514 # endif
515 # if USE_COMMON_RANDOM
516 # include <CommonCrypto/CommonCryptoError.h> /* for old Xcode */
517 # include <CommonCrypto/CommonRandom.h>
518 # else
519 # include <Security/SecRandom.h>
520 # endif
521 
522 static int
523 fill_random_bytes_syscall(void *seed, size_t size, int unused)
524 {
525 #if USE_COMMON_RANDOM
526  CCRNGStatus status = CCRandomGenerateBytes(seed, size);
527  int failed = status != kCCSuccess;
528 #else
529  int status = SecRandomCopyBytes(kSecRandomDefault, size, seed);
530  int failed = status != errSecSuccess;
531 #endif
532 
533  if (failed) {
534 # if 0
535 # if USE_COMMON_RANDOM
536  /* How to get the error message? */
537  fprintf(stderr, "CCRandomGenerateBytes failed: %d\n", status);
538 # else
539  CFStringRef s = SecCopyErrorMessageString(status, NULL);
540  const char *m = s ? CFStringGetCStringPtr(s, kCFStringEncodingUTF8) : NULL;
541  fprintf(stderr, "SecRandomCopyBytes failed: %d: %s\n", status,
542  m ? m : "unknown");
543  if (s) CFRelease(s);
544 # endif
545 # endif
546  return -1;
547  }
548  return 0;
549 }
550 #elif defined(HAVE_ARC4RANDOM_BUF)
551 static int
552 fill_random_bytes_syscall(void *buf, size_t size, int unused)
553 {
554 #if (defined(__OpenBSD__) && OpenBSD >= 201411) || \
555  (defined(__NetBSD__) && __NetBSD_Version__ >= 700000000) || \
556  (defined(__FreeBSD__) && __FreeBSD_version >= 1200079)
557  arc4random_buf(buf, size);
558  return 0;
559 #else
560  return -1;
561 #endif
562 }
563 #elif defined(_WIN32)
564 
565 #ifndef DWORD_MAX
566 # define DWORD_MAX (~(DWORD)0UL)
567 #endif
568 
569 # if defined(CRYPT_VERIFYCONTEXT)
570 /* Although HCRYPTPROV is not a HANDLE, it looks like
571  * INVALID_HANDLE_VALUE is not a valid value */
572 static const HCRYPTPROV INVALID_HCRYPTPROV = (HCRYPTPROV)INVALID_HANDLE_VALUE;
573 
574 static void
575 release_crypt(void *p)
576 {
577  HCRYPTPROV *ptr = p;
578  HCRYPTPROV prov = (HCRYPTPROV)ATOMIC_PTR_EXCHANGE(*ptr, INVALID_HCRYPTPROV);
579  if (prov && prov != INVALID_HCRYPTPROV) {
580  CryptReleaseContext(prov, 0);
581  }
582 }
583 
584 static const rb_data_type_t crypt_prov_type = {
585  "HCRYPTPROV",
586  {0, release_crypt,},
587  0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_EMBEDDABLE
588 };
589 
590 static int
591 fill_random_bytes_crypt(void *seed, size_t size)
592 {
593  static HCRYPTPROV perm_prov;
594  HCRYPTPROV prov = perm_prov, old_prov;
595  if (!prov) {
596  VALUE wrapper = TypedData_Wrap_Struct(0, &crypt_prov_type, 0);
597  if (!CryptAcquireContext(&prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
598  prov = INVALID_HCRYPTPROV;
599  }
600  old_prov = (HCRYPTPROV)ATOMIC_PTR_CAS(perm_prov, 0, prov);
601  if (LIKELY(!old_prov)) { /* no other threads acquired */
602  if (prov != INVALID_HCRYPTPROV) {
603  DATA_PTR(wrapper) = (void *)prov;
604  rb_vm_register_global_object(wrapper);
605  }
606  }
607  else { /* another thread acquired */
608  if (prov != INVALID_HCRYPTPROV) {
609  CryptReleaseContext(prov, 0);
610  }
611  prov = old_prov;
612  }
613  }
614  if (prov == INVALID_HCRYPTPROV) return -1;
615  while (size > 0) {
616  DWORD n = (size > (size_t)DWORD_MAX) ? DWORD_MAX : (DWORD)size;
617  if (!CryptGenRandom(prov, n, seed)) return -1;
618  seed = (char *)seed + n;
619  size -= n;
620  }
621  return 0;
622 }
623 # else
624 # define fill_random_bytes_crypt(seed, size) -1
625 # endif
626 
627 static int
628 fill_random_bytes_bcrypt(void *seed, size_t size)
629 {
630  while (size > 0) {
631  ULONG n = (size > (size_t)ULONG_MAX) ? LONG_MAX : (ULONG)size;
632  if (BCryptGenRandom(NULL, seed, n, BCRYPT_USE_SYSTEM_PREFERRED_RNG))
633  return -1;
634  seed = (char *)seed + n;
635  size -= n;
636  }
637  return 0;
638 }
639 
640 static int
641 fill_random_bytes_syscall(void *seed, size_t size, int unused)
642 {
643  if (fill_random_bytes_bcrypt(seed, size) == 0) return 0;
644  return fill_random_bytes_crypt(seed, size);
645 }
646 #elif defined HAVE_GETRANDOM
647 static int
648 fill_random_bytes_syscall(void *seed, size_t size, int need_secure)
649 {
650  static rb_atomic_t try_syscall = 1;
651  if (try_syscall) {
652  size_t offset = 0;
653  int flags = 0;
654  if (!need_secure)
655  flags = GRND_NONBLOCK;
656  do {
657  errno = 0;
658  ssize_t ret = getrandom(((char*)seed) + offset, size - offset, flags);
659  if (ret == -1) {
660  ATOMIC_SET(try_syscall, 0);
661  return -1;
662  }
663  offset += (size_t)ret;
664  } while (offset < size);
665  return 0;
666  }
667  return -1;
668 }
669 #else
670 # define fill_random_bytes_syscall(seed, size, need_secure) -1
671 #endif
672 
673 int
674 ruby_fill_random_bytes(void *seed, size_t size, int need_secure)
675 {
676  int ret = fill_random_bytes_syscall(seed, size, need_secure);
677  if (ret == 0) return ret;
678  return fill_random_bytes_urandom(seed, size);
679 }
680 
681 /* cnt must be 4 or more */
682 static void
683 fill_random_seed(uint32_t *seed, size_t cnt, bool try_bytes)
684 {
685  static rb_atomic_t n = 0;
686 #if defined HAVE_CLOCK_GETTIME
687  struct timespec tv;
688 #elif defined HAVE_GETTIMEOFDAY
689  struct timeval tv;
690 #endif
691  size_t len = cnt * sizeof(*seed);
692 
693  if (try_bytes) {
694  fill_random_bytes(seed, len, FALSE);
695  return;
696  }
697 
698  memset(seed, 0, len);
699 #if defined HAVE_CLOCK_GETTIME
700  clock_gettime(CLOCK_REALTIME, &tv);
701  seed[0] ^= tv.tv_nsec;
702 #elif defined HAVE_GETTIMEOFDAY
703  gettimeofday(&tv, 0);
704  seed[0] ^= tv.tv_usec;
705 #endif
706  seed[1] ^= (uint32_t)tv.tv_sec;
707 #if SIZEOF_TIME_T > SIZEOF_INT
708  seed[0] ^= (uint32_t)((time_t)tv.tv_sec >> SIZEOF_INT * CHAR_BIT);
709 #endif
710  seed[2] ^= getpid() ^ (ATOMIC_FETCH_ADD(n, 1) << 16);
711  seed[3] ^= (uint32_t)(VALUE)&seed;
712 #if SIZEOF_VOIDP > SIZEOF_INT
713  seed[2] ^= (uint32_t)((VALUE)&seed >> SIZEOF_INT * CHAR_BIT);
714 #endif
715 }
716 
717 static VALUE
718 make_seed_value(uint32_t *ptr, size_t len)
719 {
720  VALUE seed;
721 
722  if (ptr[len-1] <= 1) {
723  /* set leading-zero-guard */
724  ptr[len++] = 1;
725  }
726 
727  seed = rb_integer_unpack(ptr, len, sizeof(uint32_t), 0,
729 
730  return seed;
731 }
732 
733 #define with_random_seed(size, add, try_bytes) \
734  for (uint32_t seedbuf[(size)+(add)], loop = (fill_random_seed(seedbuf, (size), try_bytes), 1); \
735  loop; explicit_bzero(seedbuf, (size)*sizeof(seedbuf[0])), loop = 0)
736 
737 /*
738  * call-seq: Random.new_seed -> integer
739  *
740  * Returns an arbitrary seed value. This is used by Random.new
741  * when no seed value is specified as an argument.
742  *
743  * Random.new_seed #=> 115032730400174366788466674494640623225
744  */
745 static VALUE
746 random_seed(VALUE _)
747 {
748  VALUE v;
749  with_random_seed(DEFAULT_SEED_CNT, 1, true) {
750  v = make_seed_value(seedbuf, DEFAULT_SEED_CNT);
751  }
752  return v;
753 }
754 
755 /*
756  * call-seq: Random.urandom(size) -> string
757  *
758  * Returns a string, using platform providing features.
759  * Returned value is expected to be a cryptographically secure
760  * pseudo-random number in binary form.
761  * This method raises a RuntimeError if the feature provided by platform
762  * failed to prepare the result.
763  *
764  * In 2017, Linux manpage random(7) writes that "no cryptographic
765  * primitive available today can hope to promise more than 256 bits of
766  * security". So it might be questionable to pass size > 32 to this
767  * method.
768  *
769  * Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
770  */
771 static VALUE
772 random_raw_seed(VALUE self, VALUE size)
773 {
774  long n = NUM2ULONG(size);
775  VALUE buf = rb_str_new(0, n);
776  if (n == 0) return buf;
777  if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE))
778  rb_raise(rb_eRuntimeError, "failed to get urandom");
779  return buf;
780 }
781 
782 /*
783  * call-seq: prng.seed -> integer
784  *
785  * Returns the seed value used to initialize the generator. This may be used to
786  * initialize another generator with the same state at a later time, causing it
787  * to produce the same sequence of numbers.
788  *
789  * prng1 = Random.new(1234)
790  * prng1.seed #=> 1234
791  * prng1.rand(100) #=> 47
792  *
793  * prng2 = Random.new(prng1.seed)
794  * prng2.rand(100) #=> 47
795  */
796 static VALUE
797 random_get_seed(VALUE obj)
798 {
799  return get_rnd(obj)->seed;
800 }
801 
802 /* :nodoc: */
803 static VALUE
804 rand_mt_copy(VALUE obj, VALUE orig)
805 {
806  rb_random_mt_t *rnd1, *rnd2;
807  struct MT *mt;
808 
809  if (!OBJ_INIT_COPY(obj, orig)) return obj;
810 
811  rnd1 = get_rnd_mt(obj);
812  rnd2 = get_rnd_mt(orig);
813  mt = &rnd1->mt;
814 
815  *rnd1 = *rnd2;
816  mt->next = mt->state + numberof(mt->state) - mt->left + 1;
817  return obj;
818 }
819 
820 static VALUE
821 mt_state(const struct MT *mt)
822 {
823  return rb_integer_unpack(mt->state, numberof(mt->state),
824  sizeof(*mt->state), 0,
826 }
827 
828 /* :nodoc: */
829 static VALUE
830 rand_mt_state(VALUE obj)
831 {
832  rb_random_mt_t *rnd = get_rnd_mt(obj);
833  return mt_state(&rnd->mt);
834 }
835 
836 /* :nodoc: */
837 static VALUE
838 random_s_state(VALUE klass)
839 {
840  return mt_state(&default_rand()->mt);
841 }
842 
843 /* :nodoc: */
844 static VALUE
845 rand_mt_left(VALUE obj)
846 {
847  rb_random_mt_t *rnd = get_rnd_mt(obj);
848  return INT2FIX(rnd->mt.left);
849 }
850 
851 /* :nodoc: */
852 static VALUE
853 random_s_left(VALUE klass)
854 {
855  return INT2FIX(default_rand()->mt.left);
856 }
857 
858 /* :nodoc: */
859 static VALUE
860 rand_mt_dump(VALUE obj)
861 {
862  rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
863  VALUE dump = rb_ary_new2(3);
864 
865  rb_ary_push(dump, mt_state(&rnd->mt));
866  rb_ary_push(dump, INT2FIX(rnd->mt.left));
867  rb_ary_push(dump, rnd->base.seed);
868 
869  return dump;
870 }
871 
872 /* :nodoc: */
873 static VALUE
874 rand_mt_load(VALUE obj, VALUE dump)
875 {
876  rb_random_mt_t *rnd = rb_check_typeddata(obj, &random_mt_type);
877  struct MT *mt = &rnd->mt;
878  VALUE state, left = INT2FIX(1), seed = INT2FIX(0);
879  unsigned long x;
880 
881  rb_check_copyable(obj, dump);
882  Check_Type(dump, T_ARRAY);
883  switch (RARRAY_LEN(dump)) {
884  case 3:
885  seed = RARRAY_AREF(dump, 2);
886  case 2:
887  left = RARRAY_AREF(dump, 1);
888  case 1:
889  state = RARRAY_AREF(dump, 0);
890  break;
891  default:
892  rb_raise(rb_eArgError, "wrong dump data");
893  }
894  rb_integer_pack(state, mt->state, numberof(mt->state),
895  sizeof(*mt->state), 0,
897  x = NUM2ULONG(left);
898  if (x > numberof(mt->state) || x == 0) {
899  rb_raise(rb_eArgError, "wrong value");
900  }
901  mt->left = (unsigned int)x;
902  mt->next = mt->state + numberof(mt->state) - x + 1;
903  rnd->base.seed = rb_to_int(seed);
904 
905  return obj;
906 }
907 
908 static void
909 rand_mt_init_int32(rb_random_t *rnd, uint32_t data)
910 {
911  struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
912  init_genrand(mt, data);
913 }
914 
915 static void
916 rand_mt_init(rb_random_t *rnd, const uint32_t *buf, size_t len)
917 {
918  struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
919  init_by_array(mt, buf, (int)len);
920 }
921 
922 static unsigned int
923 rand_mt_get_int32(rb_random_t *rnd)
924 {
925  struct MT *mt = &((rb_random_mt_t *)rnd)->mt;
926  return genrand_int32(mt);
927 }
928 
929 static void
930 rand_mt_get_bytes(rb_random_t *rnd, void *ptr, size_t n)
931 {
932  rb_rand_bytes_int32(rand_mt_get_int32, rnd, ptr, n);
933 }
934 
935 /*
936  * call-seq:
937  * srand(number = Random.new_seed) -> old_seed
938  *
939  * Seeds the system pseudo-random number generator, with +number+.
940  * The previous seed value is returned.
941  *
942  * If +number+ is omitted, seeds the generator using a source of entropy
943  * provided by the operating system, if available (/dev/urandom on Unix systems
944  * or the RSA cryptographic provider on Windows), which is then combined with
945  * the time, the process id, and a sequence number.
946  *
947  * srand may be used to ensure repeatable sequences of pseudo-random numbers
948  * between different runs of the program. By setting the seed to a known value,
949  * programs can be made deterministic during testing.
950  *
951  * srand 1234 # => 268519324636777531569100071560086917274
952  * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
953  * [ rand(10), rand(1000) ] # => [4, 664]
954  * srand 1234 # => 1234
955  * [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
956  */
957 
958 static VALUE
959 rb_f_srand(int argc, VALUE *argv, VALUE obj)
960 {
961  VALUE seed, old;
962  rb_random_mt_t *r = rand_mt_start(default_rand());
963 
964  if (rb_check_arity(argc, 0, 1) == 0) {
965  seed = random_seed(obj);
966  }
967  else {
968  seed = rb_to_int(argv[0]);
969  }
970  old = r->base.seed;
971  rand_init(&random_mt_if, &r->base, seed);
972  r->base.seed = seed;
973 
974  return old;
975 }
976 
977 static unsigned long
978 make_mask(unsigned long x)
979 {
980  x = x | x >> 1;
981  x = x | x >> 2;
982  x = x | x >> 4;
983  x = x | x >> 8;
984  x = x | x >> 16;
985 #if 4 < SIZEOF_LONG
986  x = x | x >> 32;
987 #endif
988  return x;
989 }
990 
991 static unsigned long
992 limited_rand(const rb_random_interface_t *rng, rb_random_t *rnd, unsigned long limit)
993 {
994  /* mt must be initialized */
995  unsigned long val, mask;
996 
997  if (!limit) return 0;
998  mask = make_mask(limit);
999 
1000 #if 4 < SIZEOF_LONG
1001  if (0xffffffff < limit) {
1002  int i;
1003  retry:
1004  val = 0;
1005  for (i = SIZEOF_LONG/SIZEOF_INT32-1; 0 <= i; i--) {
1006  if ((mask >> (i * 32)) & 0xffffffff) {
1007  val |= (unsigned long)rng->get_int32(rnd) << (i * 32);
1008  val &= mask;
1009  if (limit < val)
1010  goto retry;
1011  }
1012  }
1013  return val;
1014  }
1015 #endif
1016 
1017  do {
1018  val = rng->get_int32(rnd) & mask;
1019  } while (limit < val);
1020  return val;
1021 }
1022 
1023 static VALUE
1024 limited_big_rand(const rb_random_interface_t *rng, rb_random_t *rnd, VALUE limit)
1025 {
1026  /* mt must be initialized */
1027 
1028  uint32_t mask;
1029  long i;
1030  int boundary;
1031 
1032  size_t len;
1033  uint32_t *tmp, *lim_array, *rnd_array;
1034  VALUE vtmp;
1035  VALUE val;
1036 
1037  len = rb_absint_numwords(limit, 32, NULL);
1038  tmp = ALLOCV_N(uint32_t, vtmp, len*2);
1039  lim_array = tmp;
1040  rnd_array = tmp + len;
1041  rb_integer_pack(limit, lim_array, len, sizeof(uint32_t), 0,
1043 
1044  retry:
1045  mask = 0;
1046  boundary = 1;
1047  for (i = len-1; 0 <= i; i--) {
1048  uint32_t r = 0;
1049  uint32_t lim = lim_array[i];
1050  mask = mask ? 0xffffffff : (uint32_t)make_mask(lim);
1051  if (mask) {
1052  r = rng->get_int32(rnd) & mask;
1053  if (boundary) {
1054  if (lim < r)
1055  goto retry;
1056  if (r < lim)
1057  boundary = 0;
1058  }
1059  }
1060  rnd_array[i] = r;
1061  }
1062  val = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0,
1064  ALLOCV_END(vtmp);
1065 
1066  return val;
1067 }
1068 
1069 /*
1070  * Returns random unsigned long value in [0, +limit+].
1071  *
1072  * Note that +limit+ is included, and the range of the argument and the
1073  * return value depends on environments.
1074  */
1075 unsigned long
1076 rb_genrand_ulong_limited(unsigned long limit)
1077 {
1078  rb_random_mt_t *mt = default_mt();
1079  return limited_rand(&random_mt_if, &mt->base, limit);
1080 }
1081 
1082 static VALUE
1083 obj_random_bytes(VALUE obj, void *p, long n)
1084 {
1085  VALUE len = LONG2NUM(n);
1086  VALUE v = rb_funcallv_public(obj, id_bytes, 1, &len);
1087  long l;
1088  Check_Type(v, T_STRING);
1089  l = RSTRING_LEN(v);
1090  if (l < n)
1091  rb_raise(rb_eRangeError, "random data too short %ld", l);
1092  else if (l > n)
1093  rb_raise(rb_eRangeError, "random data too long %ld", l);
1094  if (p) memcpy(p, RSTRING_PTR(v), n);
1095  return v;
1096 }
1097 
1098 static unsigned int
1099 random_int32(const rb_random_interface_t *rng, rb_random_t *rnd)
1100 {
1101  return rng->get_int32(rnd);
1102 }
1103 
1104 unsigned int
1106 {
1107  rb_random_t *rnd = try_get_rnd(obj);
1108  if (!rnd) {
1109  uint32_t x;
1110  obj_random_bytes(obj, &x, sizeof(x));
1111  return (unsigned int)x;
1112  }
1113  return random_int32(try_rand_if(obj, rnd), rnd);
1114 }
1115 
1116 static double
1117 random_real(VALUE obj, rb_random_t *rnd, int excl)
1118 {
1119  uint32_t a, b;
1120 
1121  if (!rnd) {
1122  uint32_t x[2] = {0, 0};
1123  obj_random_bytes(obj, x, sizeof(x));
1124  a = x[0];
1125  b = x[1];
1126  }
1127  else {
1128  const rb_random_interface_t *rng = try_rand_if(obj, rnd);
1129  if (rng->get_real) return rng->get_real(rnd, excl);
1130  a = random_int32(rng, rnd);
1131  b = random_int32(rng, rnd);
1132  }
1133  return rb_int_pair_to_real(a, b, excl);
1134 }
1135 
1136 double
1137 rb_int_pair_to_real(uint32_t a, uint32_t b, int excl)
1138 {
1139  if (excl) {
1140  return int_pair_to_real_exclusive(a, b);
1141  }
1142  else {
1143  return int_pair_to_real_inclusive(a, b);
1144  }
1145 }
1146 
1147 double
1149 {
1150  rb_random_t *rnd = try_get_rnd(obj);
1151  if (!rnd) {
1152  VALUE v = rb_funcallv(obj, id_rand, 0, 0);
1153  double d = NUM2DBL(v);
1154  if (d < 0.0) {
1155  rb_raise(rb_eRangeError, "random number too small %g", d);
1156  }
1157  else if (d >= 1.0) {
1158  rb_raise(rb_eRangeError, "random number too big %g", d);
1159  }
1160  return d;
1161  }
1162  return random_real(obj, rnd, TRUE);
1163 }
1164 
1165 static inline VALUE
1166 ulong_to_num_plus_1(unsigned long n)
1167 {
1168 #if HAVE_LONG_LONG
1169  return ULL2NUM((LONG_LONG)n+1);
1170 #else
1171  if (n >= ULONG_MAX) {
1172  return rb_big_plus(ULONG2NUM(n), INT2FIX(1));
1173  }
1174  return ULONG2NUM(n+1);
1175 #endif
1176 }
1177 
1178 static unsigned long
1179 random_ulong_limited(VALUE obj, rb_random_t *rnd, unsigned long limit)
1180 {
1181  if (!limit) return 0;
1182  if (!rnd) {
1183  const int w = sizeof(limit) * CHAR_BIT - nlz_long(limit);
1184  const int n = w > 32 ? sizeof(unsigned long) : sizeof(uint32_t);
1185  const unsigned long mask = ~(~0UL << w);
1186  const unsigned long full =
1187  (size_t)n >= sizeof(unsigned long) ? ~0UL :
1188  ~(~0UL << n * CHAR_BIT);
1189  unsigned long val, bits = 0, rest = 0;
1190  do {
1191  if (mask & ~rest) {
1192  union {uint32_t u32; unsigned long ul;} buf;
1193  obj_random_bytes(obj, &buf, n);
1194  rest = full;
1195  bits = (n == sizeof(uint32_t)) ? buf.u32 : buf.ul;
1196  }
1197  val = bits;
1198  bits >>= w;
1199  rest >>= w;
1200  val &= mask;
1201  } while (limit < val);
1202  return val;
1203  }
1204  return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1205 }
1206 
1207 unsigned long
1208 rb_random_ulong_limited(VALUE obj, unsigned long limit)
1209 {
1210  rb_random_t *rnd = try_get_rnd(obj);
1211  if (!rnd) {
1212  VALUE lim = ulong_to_num_plus_1(limit);
1213  VALUE v = rb_to_int(rb_funcallv_public(obj, id_rand, 1, &lim));
1214  unsigned long r = NUM2ULONG(v);
1215  if (rb_num_negative_p(v)) {
1216  rb_raise(rb_eRangeError, "random number too small %ld", r);
1217  }
1218  if (r > limit) {
1219  rb_raise(rb_eRangeError, "random number too big %ld", r);
1220  }
1221  return r;
1222  }
1223  return limited_rand(try_rand_if(obj, rnd), rnd, limit);
1224 }
1225 
1226 static VALUE
1227 random_ulong_limited_big(VALUE obj, rb_random_t *rnd, VALUE vmax)
1228 {
1229  if (!rnd) {
1230  VALUE v, vtmp;
1231  size_t i, nlz, len = rb_absint_numwords(vmax, 32, &nlz);
1232  uint32_t *tmp = ALLOCV_N(uint32_t, vtmp, len * 2);
1233  uint32_t mask = (uint32_t)~0 >> nlz;
1234  uint32_t *lim_array = tmp;
1235  uint32_t *rnd_array = tmp + len;
1237  rb_integer_pack(vmax, lim_array, len, sizeof(uint32_t), 0, flag);
1238 
1239  retry:
1240  obj_random_bytes(obj, rnd_array, len * sizeof(uint32_t));
1241  rnd_array[0] &= mask;
1242  for (i = 0; i < len; ++i) {
1243  if (lim_array[i] < rnd_array[i])
1244  goto retry;
1245  if (rnd_array[i] < lim_array[i])
1246  break;
1247  }
1248  v = rb_integer_unpack(rnd_array, len, sizeof(uint32_t), 0, flag);
1249  ALLOCV_END(vtmp);
1250  return v;
1251  }
1252  return limited_big_rand(try_rand_if(obj, rnd), rnd, vmax);
1253 }
1254 
1255 static VALUE
1256 rand_bytes(const rb_random_interface_t *rng, rb_random_t *rnd, long n)
1257 {
1258  VALUE bytes;
1259  char *ptr;
1260 
1261  bytes = rb_str_new(0, n);
1262  ptr = RSTRING_PTR(bytes);
1263  rng->get_bytes(rnd, ptr, n);
1264  return bytes;
1265 }
1266 
1267 /*
1268  * call-seq: prng.bytes(size) -> string
1269  *
1270  * Returns a random binary string containing +size+ bytes.
1271  *
1272  * random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO"
1273  * random_string.size # => 10
1274  */
1275 static VALUE
1276 random_bytes(VALUE obj, VALUE len)
1277 {
1278  rb_random_t *rnd = try_get_rnd(obj);
1279  return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len)));
1280 }
1281 
1282 void
1284  rb_random_t *rnd, void *p, size_t n)
1285 {
1286  char *ptr = p;
1287  unsigned int r, i;
1288  for (; n >= SIZEOF_INT32; n -= SIZEOF_INT32) {
1289  r = get_int32(rnd);
1290  i = SIZEOF_INT32;
1291  do {
1292  *ptr++ = (char)r;
1293  r >>= CHAR_BIT;
1294  } while (--i);
1295  }
1296  if (n > 0) {
1297  r = get_int32(rnd);
1298  do {
1299  *ptr++ = (char)r;
1300  r >>= CHAR_BIT;
1301  } while (--n);
1302  }
1303 }
1304 
1305 VALUE
1307 {
1308  rb_random_t *rnd = try_get_rnd(obj);
1309  if (!rnd) {
1310  return obj_random_bytes(obj, NULL, n);
1311  }
1312  return rand_bytes(try_rand_if(obj, rnd), rnd, n);
1313 }
1314 
1315 /*
1316  * call-seq: Random.bytes(size) -> string
1317  *
1318  * Returns a random binary string.
1319  * The argument +size+ specifies the length of the returned string.
1320  */
1321 static VALUE
1322 random_s_bytes(VALUE obj, VALUE len)
1323 {
1324  rb_random_t *rnd = rand_start(default_rand());
1325  return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len)));
1326 }
1327 
1328 /*
1329  * call-seq: Random.seed -> integer
1330  *
1331  * Returns the seed value used to initialize the Ruby system PRNG.
1332  * This may be used to initialize another generator with the same
1333  * state at a later time, causing it to produce the same sequence of
1334  * numbers.
1335  *
1336  * Random.seed #=> 1234
1337  * prng1 = Random.new(Random.seed)
1338  * prng1.seed #=> 1234
1339  * prng1.rand(100) #=> 47
1340  * Random.seed #=> 1234
1341  * Random.rand(100) #=> 47
1342  */
1343 static VALUE
1344 random_s_seed(VALUE obj)
1345 {
1346  rb_random_mt_t *rnd = rand_mt_start(default_rand());
1347  return rnd->base.seed;
1348 }
1349 
1350 static VALUE
1351 range_values(VALUE vmax, VALUE *begp, VALUE *endp, int *exclp)
1352 {
1353  VALUE beg, end;
1354 
1355  if (!rb_range_values(vmax, &beg, &end, exclp)) return Qfalse;
1356  if (begp) *begp = beg;
1357  if (NIL_P(beg)) return Qnil;
1358  if (endp) *endp = end;
1359  if (NIL_P(end)) return Qnil;
1360  return rb_check_funcall_default(end, id_minus, 1, begp, Qfalse);
1361 }
1362 
1363 static VALUE
1364 rand_int(VALUE obj, rb_random_t *rnd, VALUE vmax, int restrictive)
1365 {
1366  /* mt must be initialized */
1367  unsigned long r;
1368 
1369  if (FIXNUM_P(vmax)) {
1370  long max = FIX2LONG(vmax);
1371  if (!max) return Qnil;
1372  if (max < 0) {
1373  if (restrictive) return Qnil;
1374  max = -max;
1375  }
1376  r = random_ulong_limited(obj, rnd, (unsigned long)max - 1);
1377  return ULONG2NUM(r);
1378  }
1379  else {
1380  VALUE ret;
1381  if (rb_bigzero_p(vmax)) return Qnil;
1382  if (!BIGNUM_SIGN(vmax)) {
1383  if (restrictive) return Qnil;
1384  vmax = rb_big_uminus(vmax);
1385  }
1386  vmax = rb_big_minus(vmax, INT2FIX(1));
1387  if (FIXNUM_P(vmax)) {
1388  long max = FIX2LONG(vmax);
1389  if (max == -1) return Qnil;
1390  r = random_ulong_limited(obj, rnd, max);
1391  return LONG2NUM(r);
1392  }
1393  ret = random_ulong_limited_big(obj, rnd, vmax);
1394  RB_GC_GUARD(vmax);
1395  return ret;
1396  }
1397 }
1398 
1399 static void
1400 domain_error(void)
1401 {
1402  VALUE error = INT2FIX(EDOM);
1404 }
1405 
1406 NORETURN(static void invalid_argument(VALUE));
1407 static void
1408 invalid_argument(VALUE arg0)
1409 {
1410  rb_raise(rb_eArgError, "invalid argument - %"PRIsVALUE, arg0);
1411 }
1412 
1413 static VALUE
1414 check_random_number(VALUE v, const VALUE *argv)
1415 {
1416  switch (v) {
1417  case Qfalse:
1418  (void)NUM2LONG(argv[0]);
1419  break;
1420  case Qnil:
1421  invalid_argument(argv[0]);
1422  }
1423  return v;
1424 }
1425 
1426 static inline double
1427 float_value(VALUE v)
1428 {
1429  double x = RFLOAT_VALUE(v);
1430  if (!isfinite(x)) {
1431  domain_error();
1432  }
1433  return x;
1434 }
1435 
1436 static inline VALUE
1437 rand_range(VALUE obj, rb_random_t* rnd, VALUE range)
1438 {
1439  VALUE beg = Qundef, end = Qundef, vmax, v;
1440  int excl = 0;
1441 
1442  if ((v = vmax = range_values(range, &beg, &end, &excl)) == Qfalse)
1443  return Qfalse;
1444  if (NIL_P(v)) domain_error();
1445  if (!RB_FLOAT_TYPE_P(vmax) && (v = rb_check_to_int(vmax), !NIL_P(v))) {
1446  long max;
1447  vmax = v;
1448  v = Qnil;
1449  fixnum:
1450  if (FIXNUM_P(vmax)) {
1451  if ((max = FIX2LONG(vmax) - excl) >= 0) {
1452  unsigned long r = random_ulong_limited(obj, rnd, (unsigned long)max);
1453  v = ULONG2NUM(r);
1454  }
1455  }
1456  else if (BUILTIN_TYPE(vmax) == T_BIGNUM && BIGNUM_SIGN(vmax) && !rb_bigzero_p(vmax)) {
1457  vmax = excl ? rb_big_minus(vmax, INT2FIX(1)) : rb_big_norm(vmax);
1458  if (FIXNUM_P(vmax)) {
1459  excl = 0;
1460  goto fixnum;
1461  }
1462  v = random_ulong_limited_big(obj, rnd, vmax);
1463  }
1464  }
1465  else if (v = rb_check_to_float(vmax), !NIL_P(v)) {
1466  int scale = 1;
1467  double max = RFLOAT_VALUE(v), mid = 0.5, r;
1468  if (isinf(max)) {
1469  double min = float_value(rb_to_float(beg)) / 2.0;
1470  max = float_value(rb_to_float(end)) / 2.0;
1471  scale = 2;
1472  mid = max + min;
1473  max -= min;
1474  }
1475  else if (isnan(max)) {
1476  domain_error();
1477  }
1478  v = Qnil;
1479  if (max > 0.0) {
1480  r = random_real(obj, rnd, excl);
1481  if (scale > 1) {
1482  return rb_float_new(+(+(+(r - 0.5) * max) * scale) + mid);
1483  }
1484  v = rb_float_new(r * max);
1485  }
1486  else if (max == 0.0 && !excl) {
1487  v = rb_float_new(0.0);
1488  }
1489  }
1490 
1491  if (FIXNUM_P(beg) && FIXNUM_P(v)) {
1492  long x = FIX2LONG(beg) + FIX2LONG(v);
1493  return LONG2NUM(x);
1494  }
1495  switch (TYPE(v)) {
1496  case T_NIL:
1497  break;
1498  case T_BIGNUM:
1499  return rb_big_plus(v, beg);
1500  case T_FLOAT: {
1501  VALUE f = rb_check_to_float(beg);
1502  if (!NIL_P(f)) {
1503  return DBL2NUM(RFLOAT_VALUE(v) + RFLOAT_VALUE(f));
1504  }
1505  }
1506  default:
1507  return rb_funcallv(beg, id_plus, 1, &v);
1508  }
1509 
1510  return v;
1511 }
1512 
1513 static VALUE rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd);
1514 
1515 /*
1516  * call-seq:
1517  * prng.rand -> float
1518  * prng.rand(max) -> number
1519  * prng.rand(range) -> number
1520  *
1521  * When +max+ is an Integer, +rand+ returns a random integer greater than
1522  * or equal to zero and less than +max+. Unlike Kernel.rand, when +max+
1523  * is a negative integer or zero, +rand+ raises an ArgumentError.
1524  *
1525  * prng = Random.new
1526  * prng.rand(100) # => 42
1527  *
1528  * When +max+ is a Float, +rand+ returns a random floating point number
1529  * between 0.0 and +max+, including 0.0 and excluding +max+.
1530  *
1531  * prng.rand(1.5) # => 1.4600282860034115
1532  *
1533  * When +range+ is a Range, +rand+ returns a random number where
1534  * <code>range.member?(number) == true</code>.
1535  *
1536  * prng.rand(5..9) # => one of [5, 6, 7, 8, 9]
1537  * prng.rand(5...9) # => one of [5, 6, 7, 8]
1538  * prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0
1539  * prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
1540  *
1541  * Both the beginning and ending values of the range must respond to subtract
1542  * (<tt>-</tt>) and add (<tt>+</tt>)methods, or rand will raise an
1543  * ArgumentError.
1544  */
1545 static VALUE
1546 random_rand(int argc, VALUE *argv, VALUE obj)
1547 {
1548  VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj));
1549  check_random_number(v, argv);
1550  return v;
1551 }
1552 
1553 static VALUE
1554 rand_random(int argc, VALUE *argv, VALUE obj, rb_random_t *rnd)
1555 {
1556  VALUE vmax, v;
1557 
1558  if (rb_check_arity(argc, 0, 1) == 0) {
1559  return rb_float_new(random_real(obj, rnd, TRUE));
1560  }
1561  vmax = argv[0];
1562  if (NIL_P(vmax)) return Qnil;
1563  if (!RB_FLOAT_TYPE_P(vmax)) {
1564  v = rb_check_to_int(vmax);
1565  if (!NIL_P(v)) return rand_int(obj, rnd, v, 1);
1566  }
1567  v = rb_check_to_float(vmax);
1568  if (!NIL_P(v)) {
1569  const double max = float_value(v);
1570  if (max < 0.0) {
1571  return Qnil;
1572  }
1573  else {
1574  double r = random_real(obj, rnd, TRUE);
1575  if (max > 0.0) r *= max;
1576  return rb_float_new(r);
1577  }
1578  }
1579  return rand_range(obj, rnd, vmax);
1580 }
1581 
1582 /*
1583  * call-seq:
1584  * prng.random_number -> float
1585  * prng.random_number(max) -> number
1586  * prng.random_number(range) -> number
1587  * prng.rand -> float
1588  * prng.rand(max) -> number
1589  * prng.rand(range) -> number
1590  *
1591  * Generates formatted random number from raw random bytes.
1592  * See Random#rand.
1593  */
1594 static VALUE
1595 rand_random_number(int argc, VALUE *argv, VALUE obj)
1596 {
1597  rb_random_t *rnd = try_get_rnd(obj);
1598  VALUE v = rand_random(argc, argv, obj, rnd);
1599  if (NIL_P(v)) v = rand_random(0, 0, obj, rnd);
1600  else if (!v) invalid_argument(argv[0]);
1601  return v;
1602 }
1603 
1604 /*
1605  * call-seq:
1606  * prng1 == prng2 -> true or false
1607  *
1608  * Returns true if the two generators have the same internal state, otherwise
1609  * false. Equivalent generators will return the same sequence of
1610  * pseudo-random numbers. Two generators will generally have the same state
1611  * only if they were initialized with the same seed
1612  *
1613  * Random.new == Random.new # => false
1614  * Random.new(1234) == Random.new(1234) # => true
1615  *
1616  * and have the same invocation history.
1617  *
1618  * prng1 = Random.new(1234)
1619  * prng2 = Random.new(1234)
1620  * prng1 == prng2 # => true
1621  *
1622  * prng1.rand # => 0.1915194503788923
1623  * prng1 == prng2 # => false
1624  *
1625  * prng2.rand # => 0.1915194503788923
1626  * prng1 == prng2 # => true
1627  */
1628 static VALUE
1629 rand_mt_equal(VALUE self, VALUE other)
1630 {
1631  rb_random_mt_t *r1, *r2;
1632  if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse;
1633  r1 = get_rnd_mt(self);
1634  r2 = get_rnd_mt(other);
1635  if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse;
1636  if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse;
1637  if (r1->mt.left != r2->mt.left) return Qfalse;
1638  return rb_equal(r1->base.seed, r2->base.seed);
1639 }
1640 
1641 /*
1642  * call-seq:
1643  * rand(max=0) -> number
1644  *
1645  * If called without an argument, or if <tt>max.to_i.abs == 0</tt>, rand
1646  * returns a pseudo-random floating point number between 0.0 and 1.0,
1647  * including 0.0 and excluding 1.0.
1648  *
1649  * rand #=> 0.2725926052826416
1650  *
1651  * When +max.abs+ is greater than or equal to 1, +rand+ returns a pseudo-random
1652  * integer greater than or equal to 0 and less than +max.to_i.abs+.
1653  *
1654  * rand(100) #=> 12
1655  *
1656  * When +max+ is a Range, +rand+ returns a random number where
1657  * <code>range.member?(number) == true</code>.
1658  *
1659  * Negative or floating point values for +max+ are allowed, but may give
1660  * surprising results.
1661  *
1662  * rand(-100) # => 87
1663  * rand(-0.5) # => 0.8130921818028143
1664  * rand(1.9) # equivalent to rand(1), which is always 0
1665  *
1666  * Kernel.srand may be used to ensure that sequences of random numbers are
1667  * reproducible between different runs of a program.
1668  *
1669  * See also Random.rand.
1670  */
1671 
1672 static VALUE
1673 rb_f_rand(int argc, VALUE *argv, VALUE obj)
1674 {
1675  VALUE vmax;
1676  rb_random_t *rnd = rand_start(default_rand());
1677 
1678  if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) {
1679  VALUE v = rand_range(obj, rnd, vmax);
1680  if (v != Qfalse) return v;
1681  vmax = rb_to_int(vmax);
1682  if (vmax != INT2FIX(0)) {
1683  v = rand_int(obj, rnd, vmax, 0);
1684  if (!NIL_P(v)) return v;
1685  }
1686  }
1687  return DBL2NUM(random_real(obj, rnd, TRUE));
1688 }
1689 
1690 /*
1691  * call-seq:
1692  * Random.rand -> float
1693  * Random.rand(max) -> number
1694  * Random.rand(range) -> number
1695  *
1696  * Returns a random number using the Ruby system PRNG.
1697  *
1698  * See also Random#rand.
1699  */
1700 static VALUE
1701 random_s_rand(int argc, VALUE *argv, VALUE obj)
1702 {
1703  VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand()));
1704  check_random_number(v, argv);
1705  return v;
1706 }
1707 
1708 #define SIP_HASH_STREAMING 0
1709 #define sip_hash13 ruby_sip_hash13
1710 #if !defined _WIN32 && !defined BYTE_ORDER
1711 # ifdef WORDS_BIGENDIAN
1712 # define BYTE_ORDER BIG_ENDIAN
1713 # else
1714 # define BYTE_ORDER LITTLE_ENDIAN
1715 # endif
1716 # ifndef LITTLE_ENDIAN
1717 # define LITTLE_ENDIAN 1234
1718 # endif
1719 # ifndef BIG_ENDIAN
1720 # define BIG_ENDIAN 4321
1721 # endif
1722 #endif
1723 #include "siphash.c"
1724 
1725 typedef struct {
1726  st_index_t hash;
1727  uint8_t sip[16];
1728 } hash_salt_t;
1729 
1730 static union {
1731  hash_salt_t key;
1732  uint32_t u32[type_roomof(hash_salt_t, uint32_t)];
1733 } hash_salt;
1734 
1735 static void
1736 init_hash_salt(struct MT *mt)
1737 {
1738  int i;
1739 
1740  for (i = 0; i < numberof(hash_salt.u32); ++i)
1741  hash_salt.u32[i] = genrand_int32(mt);
1742 }
1743 
1744 NO_SANITIZE("unsigned-integer-overflow", extern st_index_t rb_hash_start(st_index_t h));
1745 st_index_t
1746 rb_hash_start(st_index_t h)
1747 {
1748  return st_hash_start(hash_salt.key.hash + h);
1749 }
1750 
1751 st_index_t
1752 rb_memhash(const void *ptr, long len)
1753 {
1754  sip_uint64_t h = sip_hash13(hash_salt.key.sip, ptr, len);
1755 #ifdef HAVE_UINT64_T
1756  return (st_index_t)h;
1757 #else
1758  return (st_index_t)(h.u32[0] ^ h.u32[1]);
1759 #endif
1760 }
1761 
1762 /* Initialize Ruby internal seeds. This function is called at very early stage
1763  * of Ruby startup. Thus, you can't use Ruby's object. */
1764 void
1765 Init_RandomSeedCore(void)
1766 {
1767  if (!fill_random_bytes(&hash_salt, sizeof(hash_salt), FALSE)) return;
1768 
1769  /*
1770  If failed to fill siphash's salt with random data, expand less random
1771  data with MT.
1772 
1773  Don't reuse this MT for default_rand(). default_rand()::seed shouldn't
1774  provide a hint that an attacker guess siphash's seed.
1775  */
1776  struct MT mt;
1777 
1778  with_random_seed(DEFAULT_SEED_CNT, 0, false) {
1779  init_by_array(&mt, seedbuf, DEFAULT_SEED_CNT);
1780  }
1781 
1782  init_hash_salt(&mt);
1783  explicit_bzero(&mt, sizeof(mt));
1784 }
1785 
1786 void
1788 {
1789  rb_random_mt_t *r = default_rand();
1790  uninit_genrand(&r->mt);
1791  r->base.seed = INT2FIX(0);
1792 }
1793 
1794 /*
1795  * Document-class: Random
1796  *
1797  * Random provides an interface to Ruby's pseudo-random number generator, or
1798  * PRNG. The PRNG produces a deterministic sequence of bits which approximate
1799  * true randomness. The sequence may be represented by integers, floats, or
1800  * binary strings.
1801  *
1802  * The generator may be initialized with either a system-generated or
1803  * user-supplied seed value by using Random.srand.
1804  *
1805  * The class method Random.rand provides the base functionality of Kernel.rand
1806  * along with better handling of floating point values. These are both
1807  * interfaces to the Ruby system PRNG.
1808  *
1809  * Random.new will create a new PRNG with a state independent of the Ruby
1810  * system PRNG, allowing multiple generators with different seed values or
1811  * sequence positions to exist simultaneously. Random objects can be
1812  * marshaled, allowing sequences to be saved and resumed.
1813  *
1814  * PRNGs are currently implemented as a modified Mersenne Twister with a period
1815  * of 2**19937-1. As this algorithm is _not_ for cryptographical use, you must
1816  * use SecureRandom for security purpose, instead of this PRNG.
1817  *
1818  * See also Random::Formatter module that adds convenience methods to generate
1819  * various forms of random data.
1820  */
1821 
1822 void
1823 InitVM_Random(void)
1824 {
1825  VALUE base;
1826  ID id_base = rb_intern_const("Base");
1827 
1828  rb_define_global_function("srand", rb_f_srand, -1);
1829  rb_define_global_function("rand", rb_f_rand, -1);
1830 
1831  base = rb_define_class_id(id_base, rb_cObject);
1832  rb_undef_alloc_func(base);
1833  rb_cRandom = rb_define_class("Random", base);
1834  rb_const_set(rb_cRandom, id_base, base);
1835  rb_define_alloc_func(rb_cRandom, random_alloc);
1836  rb_define_method(base, "initialize", random_init, -1);
1837  rb_define_method(base, "rand", random_rand, -1);
1838  rb_define_method(base, "bytes", random_bytes, 1);
1839  rb_define_method(base, "seed", random_get_seed, 0);
1840  rb_define_method(rb_cRandom, "initialize_copy", rand_mt_copy, 1);
1841  rb_define_private_method(rb_cRandom, "marshal_dump", rand_mt_dump, 0);
1842  rb_define_private_method(rb_cRandom, "marshal_load", rand_mt_load, 1);
1843  rb_define_private_method(rb_cRandom, "state", rand_mt_state, 0);
1844  rb_define_private_method(rb_cRandom, "left", rand_mt_left, 0);
1845  rb_define_method(rb_cRandom, "==", rand_mt_equal, 1);
1846 
1847 #if 0 /* for RDoc: it can't handle unnamed base class */
1848  rb_define_method(rb_cRandom, "initialize", random_init, -1);
1849  rb_define_method(rb_cRandom, "rand", random_rand, -1);
1850  rb_define_method(rb_cRandom, "bytes", random_bytes, 1);
1851  rb_define_method(rb_cRandom, "seed", random_get_seed, 0);
1852 #endif
1853 
1854  rb_define_singleton_method(rb_cRandom, "srand", rb_f_srand, -1);
1855  rb_define_singleton_method(rb_cRandom, "rand", random_s_rand, -1);
1856  rb_define_singleton_method(rb_cRandom, "bytes", random_s_bytes, 1);
1857  rb_define_singleton_method(rb_cRandom, "seed", random_s_seed, 0);
1858  rb_define_singleton_method(rb_cRandom, "new_seed", random_seed, 0);
1859  rb_define_singleton_method(rb_cRandom, "urandom", random_raw_seed, 1);
1860  rb_define_private_method(CLASS_OF(rb_cRandom), "state", random_s_state, 0);
1861  rb_define_private_method(CLASS_OF(rb_cRandom), "left", random_s_left, 0);
1862 
1863  {
1864  /*
1865  * Generate a random number in the given range as Random does
1866  *
1867  * prng.random_number #=> 0.5816771641321361
1868  * prng.random_number(1000) #=> 485
1869  * prng.random_number(1..6) #=> 3
1870  * prng.rand #=> 0.5816771641321361
1871  * prng.rand(1000) #=> 485
1872  * prng.rand(1..6) #=> 3
1873  */
1874  VALUE m = rb_define_module_under(rb_cRandom, "Formatter");
1875  rb_include_module(base, m);
1876  rb_extend_object(base, m);
1877  rb_define_method(m, "random_number", rand_random_number, -1);
1878  rb_define_method(m, "rand", rand_random_number, -1);
1879  }
1880 
1881  default_rand_key = rb_ractor_local_storage_ptr_newkey(&default_rand_key_storage_type);
1882 }
1883 
1884 #undef rb_intern
1885 void
1886 Init_Random(void)
1887 {
1888  id_rand = rb_intern("rand");
1889  id_bytes = rb_intern("bytes");
1890 
1891  InitVM(Random);
1892 }
std::atomic< unsigned > rb_atomic_t
Type that is eligible for atomic operations.
Definition: atomic.h:69
#define LONG_LONG
Definition: long_long.h:38
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
Definition: cxxanyargs.hpp:685
#define rb_define_private_method(klass, mid, func, arity)
Defines klass#mid and makes it private.
Definition: cxxanyargs.hpp:677
VALUE rb_float_new(double d)
Converts a C's double into an instance of rb_cFloat.
Definition: numeric.c:6525
void rb_include_module(VALUE klass, VALUE module)
Includes a module to a class.
Definition: class.c:1187
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition: class.c:980
void rb_extend_object(VALUE obj, VALUE module)
Extend the object with the module.
Definition: eval.c:1735
VALUE rb_define_module_under(VALUE outer, const char *name)
Defines a module under the namespace of outer.
Definition: class.c:1119
VALUE rb_define_class_id(ID id, VALUE super)
This is a very badly designed API that creates an anonymous class.
Definition: class.c:950
void rb_define_method(VALUE klass, const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a method.
Definition: class.c:2142
void rb_define_global_function(const char *name, VALUE(*func)(ANYARGS), int argc)
Defines a global function.
Definition: class.c:2339
#define TYPE(_)
Old name of rb_type.
Definition: value_type.h:108
#define NUM2ULONG
Old name of RB_NUM2ULONG.
Definition: long.h:52
#define OBJ_INIT_COPY(obj, orig)
Old name of RB_OBJ_INIT_COPY.
Definition: object.h:41
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition: double.h:28
#define T_STRING
Old name of RUBY_T_STRING.
Definition: value_type.h:78
#define xfree
Old name of ruby_xfree.
Definition: xmalloc.h:58
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition: long.h:48
#define T_NIL
Old name of RUBY_T_NIL.
Definition: value_type.h:72
#define T_FLOAT
Old name of RUBY_T_FLOAT.
Definition: value_type.h:64
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
Definition: value_type.h:57
#define ULONG2NUM
Old name of RB_ULONG2NUM.
Definition: long.h:60
#define ZALLOC
Old name of RB_ZALLOC.
Definition: memory.h:397
#define CLASS_OF
Old name of rb_class_of.
Definition: globals.h:203
#define NUM2DBL
Old name of rb_num2dbl.
Definition: double.h:27
#define LONG2NUM
Old name of RB_LONG2NUM.
Definition: long.h:50
#define ULL2NUM
Old name of RB_ULL2NUM.
Definition: long_long.h:31
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition: long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition: value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define ALLOCV_N
Old name of RB_ALLOCV_N.
Definition: memory.h:400
#define DBL2NUM
Old name of rb_float_new.
Definition: double.h:29
#define BUILTIN_TYPE
Old name of RB_BUILTIN_TYPE.
Definition: value_type.h:85
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition: long.h:51
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define rb_ary_new2
Old name of rb_ary_new_capa.
Definition: array.h:657
#define ALLOCV_END
Old name of RB_ALLOCV_END.
Definition: memory.h:401
void * rb_check_typeddata(VALUE obj, const rb_data_type_t *data_type)
Identical to rb_typeddata_is_kind_of(), except it raises exceptions instead of returning false.
Definition: error.c:1375
void rb_raise(VALUE exc_class, const char *fmt,...)
Exception entry point.
Definition: error.c:3635
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition: eval.c:676
int rb_typeddata_is_kind_of(VALUE obj, const rb_data_type_t *data_type)
Checks if the given object is of given kind.
Definition: error.c:1358
void rb_check_copyable(VALUE obj, VALUE orig)
Ensures that the passed object can be initialize_copy relationship.
Definition: error.c:4068
VALUE rb_eRangeError
RangeError exception.
Definition: error.c:1412
VALUE rb_eTypeError
TypeError exception.
Definition: error.c:1408
VALUE rb_eRuntimeError
RuntimeError exception.
Definition: error.c:1406
VALUE rb_eArgError
ArgumentError exception.
Definition: error.c:1409
VALUE rb_eSystemCallError
SystemCallError exception.
Definition: error.c:1428
VALUE rb_check_to_int(VALUE val)
Identical to rb_check_to_integer(), except it uses #to_int for conversion.
Definition: object.c:3194
VALUE rb_class_new_instance(int argc, const VALUE *argv, VALUE klass)
Allocates, then initialises an instance of the given class.
Definition: object.c:2134
VALUE rb_check_to_float(VALUE val)
This is complicated.
Definition: object.c:3634
VALUE rb_cRandom
Random class.
Definition: random.c:236
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition: object.c:247
VALUE rb_to_float(VALUE val)
Identical to rb_check_to_float(), except it raises on error.
Definition: object.c:3624
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition: object.c:179
VALUE rb_to_int(VALUE val)
Identical to rb_check_to_int(), except it raises in case of conversion mismatch.
Definition: object.c:3188
VALUE rb_funcallv(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcall(), except it takes the method arguments as a C array.
Definition: vm_eval.c:1058
VALUE rb_funcallv_public(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcallv(), except it only takes public methods into account.
Definition: vm_eval.c:1150
void rb_gc_mark(VALUE obj)
Marks an object.
Definition: gc.c:2211
VALUE rb_ary_push(VALUE ary, VALUE elem)
Special case of rb_ary_cat() that it adds only one element.
Definition: array.c:1378
int rb_integer_pack(VALUE val, void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
Exports an integer into a buffer.
Definition: bignum.c:3588
VALUE rb_big_minus(VALUE x, VALUE y)
Performs subtraction of the passed two objects.
Definition: bignum.c:5881
int rb_bigzero_p(VALUE x)
Queries if the passed bignum instance is a "bigzero".
Definition: bignum.c:2959
#define INTEGER_PACK_NATIVE_BYTE_ORDER
Means either INTEGER_PACK_MSBYTE_FIRST or INTEGER_PACK_LSBYTE_FIRST, depending on the host processor'...
Definition: bignum.h:546
VALUE rb_big_plus(VALUE x, VALUE y)
Performs addition of the passed two objects.
Definition: bignum.c:5852
size_t rb_absint_numwords(VALUE val, size_t word_numbits, size_t *nlz_bits_ret)
Calculates the number of words needed represent the absolute value of the passed integer.
Definition: bignum.c:3424
VALUE rb_integer_unpack(const void *words, size_t numwords, size_t wordsize, size_t nails, int flags)
Import an integer from a buffer.
Definition: bignum.c:3674
#define INTEGER_PACK_MSWORD_FIRST
Stores/interprets the most significant word as the first word.
Definition: bignum.h:525
VALUE rb_big_norm(VALUE x)
Normalises the passed bignum.
Definition: bignum.c:3194
#define INTEGER_PACK_LSWORD_FIRST
Stores/interprets the least significant word as the first word.
Definition: bignum.h:528
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition: error.h:284
void rb_update_max_fd(int fd)
Informs the interpreter that the passed fd can be the max.
Definition: io.c:248
int rb_cloexec_open(const char *pathname, int flags, mode_t mode)
Opens a file that closes on exec.
Definition: io.c:328
unsigned long rb_genrand_ulong_limited(unsigned long i)
Generates a random number whose upper limit is i.
Definition: random.c:1076
double rb_random_real(VALUE rnd)
Identical to rb_genrand_real(), except it generates using the passed RNG.
Definition: random.c:1148
unsigned int rb_random_int32(VALUE rnd)
Identical to rb_genrand_int32(), except it generates using the passed RNG.
Definition: random.c:1105
void rb_reset_random_seed(void)
Resets the RNG behind rb_genrand_int32()/rb_genrand_real().
Definition: random.c:1787
VALUE rb_random_bytes(VALUE rnd, long n)
Generates a String of random bytes.
Definition: random.c:1306
double rb_genrand_real(void)
Generates a double random number.
Definition: random.c:206
unsigned long rb_random_ulong_limited(VALUE rnd, unsigned long limit)
Identical to rb_genrand_ulong_limited(), except it generates using the passed RNG.
Definition: random.c:1208
unsigned int rb_genrand_int32(void)
Generates a 32 bit random number.
Definition: random.c:199
int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
Deconstructs a range into its components.
Definition: range.c:1754
st_index_t rb_memhash(const void *ptr, long len)
This is a universal hash function.
Definition: random.c:1752
st_index_t rb_hash_start(st_index_t i)
Starts a series of hashing.
Definition: random.c:1746
VALUE rb_str_new(const char *ptr, long len)
Allocates an instance of rb_cString.
Definition: string.c:1050
void rb_const_set(VALUE space, ID name, VALUE val)
Names a constant.
Definition: variable.c:3632
void rb_undef_alloc_func(VALUE klass)
Deletes the allocator function of a class.
Definition: vm_method.c:1291
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition: symbol.h:277
ID rb_intern(const char *name)
Finds or creates a symbol of the given name.
Definition: symbol.c:823
char * ptr
Pointer to the underlying memory region, of at least capa bytes.
Definition: io.h:2
int len
Length of the buffer.
Definition: io.h:8
void rb_ractor_local_storage_ptr_set(rb_ractor_local_key_t key, void *ptr)
Identical to rb_ractor_local_storage_value_set() except the parameter type.
Definition: ractor.c:3835
rb_ractor_local_key_t rb_ractor_local_storage_ptr_newkey(const struct rb_ractor_local_storage_type *type)
Extended version of rb_ractor_local_storage_value_newkey().
Definition: ractor.c:3725
void * rb_ractor_local_storage_ptr(rb_ractor_local_key_t key)
Identical to rb_ractor_local_storage_value() except the return type.
Definition: ractor.c:3823
static const rb_random_interface_t * rb_rand_if(VALUE obj)
Queries the interface of the passed random object.
Definition: random.h:333
const rb_data_type_t rb_random_data_type
The data that holds the backend type of rb_cRandom.
Definition: random.c:259
#define RB_RANDOM_INTERFACE_DEFINE(prefix)
This utility macro expands to the names declared using RB_RANDOM_INTERFACE_DECLARE.
Definition: random.h:210
struct rb_random_struct rb_random_t
Definition: random.h:53
#define RB_RANDOM_INTERFACE_DECLARE(prefix)
This utility macro defines 4 functions named prefix_init, prefix_init_int32, prefix_get_int32,...
Definition: random.h:182
void rb_rand_bytes_int32(rb_random_get_int32_func *func, rb_random_t *prng, void *buff, size_t size)
Repeatedly calls the passed function over and over again until the passed buffer is filled with rando...
Definition: random.c:1283
unsigned int rb_random_get_int32_func(rb_random_t *rng)
This is the type of functions called from your object's #rand method.
Definition: random.h:88
double rb_int_pair_to_real(uint32_t a, uint32_t b, int excl)
Generates a 64 bit floating point number by concatenating two 32bit unsigned integers.
Definition: random.c:1137
void rb_random_base_init(rb_random_t *rnd)
Initialises an allocated rb_random_t instance.
Definition: random.c:336
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition: memory.h:162
#define RARRAY_LEN
Just another name of rb_array_len.
Definition: rarray.h:51
#define RARRAY_AREF(a, i)
Definition: rarray.h:403
#define DATA_PTR(obj)
Convenient getter macro.
Definition: rdata.h:67
static char * RSTRING_PTR(VALUE str)
Queries the contents pointer of the string.
Definition: rstring.h:416
static long RSTRING_LEN(VALUE str)
Queries the length of the string.
Definition: rstring.h:367
#define TypedData_Get_Struct(obj, type, data_type, sval)
Obtains a C struct from inside of a wrapper Ruby object.
Definition: rtypeddata.h:515
#define TypedData_Wrap_Struct(klass, data_type, sval)
Converts sval, a pointer to your struct, into a Ruby object.
Definition: rtypeddata.h:449
static const struct rb_data_type_struct * RTYPEDDATA_TYPE(VALUE obj)
Queries for the type of given object.
Definition: rtypeddata.h:602
#define TypedData_Make_Struct(klass, type, data_type, sval)
Identical to TypedData_Wrap_Struct, except it allocates a new data region internally instead of takin...
Definition: rtypeddata.h:497
#define errno
Ractor-aware version of errno.
Definition: ruby.h:388
#define InitVM(ext)
This macro is for internal use.
Definition: ruby.h:231
#define _(args)
This was a transition path from K&R to ANSI.
Definition: stdarg.h:35
Definition: mt19937.c:62
This is the struct that holds necessary info for a struct.
Definition: rtypeddata.h:200
Type that defines a ractor-local storage.
Definition: ractor.h:21
PRNG algorithmic interface, analogous to Ruby level classes.
Definition: random.h:114
rb_random_init_func * init
Function to initialize from uint32_t array.
Definition: random.h:131
rb_random_init_int32_func * init_int32
Function to initialize from single uint32_t.
Definition: random.h:134
struct rb_random_interface_t::@59 version
Major/minor versions of this interface.
size_t default_seed_bits
Number of bits of seed numbers.
Definition: random.h:116
rb_random_get_int32_func * get_int32
Function to obtain a random integer.
Definition: random.h:137
rb_random_get_real_func * get_real
Function to obtain a random double.
Definition: random.h:175
rb_random_get_bytes_func * get_bytes
Function to obtain a series of random bytes.
Definition: random.h:155
Base components of the random interface.
Definition: random.h:49
VALUE seed
Seed, passed through e.g.
Definition: random.h:51
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition: value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition: value.h:40
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
Definition: value_type.h:264
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition: value_type.h:433
void ruby_xfree(void *ptr)
Deallocates a storage instance.
Definition: gc.c:4594