Ruby 3.5.0dev (2025-02-20 revision 34098b669c0cbc024cd08e686891f1dfe0a10aaf)
enum.c (34098b669c0cbc024cd08e686891f1dfe0a10aaf)
1/**********************************************************************
2
3 enum.c -
4
5 $Author$
6 created at: Fri Oct 1 15:15:19 JST 1993
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9
10**********************************************************************/
11
12#include "id.h"
13#include "internal.h"
14#include "internal/compar.h"
15#include "internal/enum.h"
16#include "internal/hash.h"
17#include "internal/imemo.h"
18#include "internal/numeric.h"
19#include "internal/object.h"
20#include "internal/proc.h"
21#include "internal/rational.h"
22#include "internal/re.h"
23#include "ruby/util.h"
24#include "ruby_assert.h"
25#include "symbol.h"
26
28
29static ID id_next;
30static ID id__alone;
31static ID id__separator;
32static ID id_chunk_categorize;
33static ID id_chunk_enumerable;
34static ID id_sliceafter_enum;
35static ID id_sliceafter_pat;
36static ID id_sliceafter_pred;
37static ID id_slicebefore_enumerable;
38static ID id_slicebefore_sep_pat;
39static ID id_slicebefore_sep_pred;
40static ID id_slicewhen_enum;
41static ID id_slicewhen_inverted;
42static ID id_slicewhen_pred;
43
44#define id_div idDiv
45#define id_each idEach
46#define id_eqq idEqq
47#define id_cmp idCmp
48#define id_lshift idLTLT
49#define id_call idCall
50#define id_size idSize
51
53rb_enum_values_pack(int argc, const VALUE *argv)
54{
55 if (argc == 0) return Qnil;
56 if (argc == 1) return argv[0];
57 return rb_ary_new4(argc, argv);
58}
59
60#define ENUM_WANT_SVALUE() do { \
61 i = rb_enum_values_pack(argc, argv); \
62} while (0)
63
64static VALUE
65enum_yield(int argc, VALUE ary)
66{
67 if (argc > 1)
68 return rb_yield_force_blockarg(ary);
69 if (argc == 1)
70 return rb_yield(ary);
71 return rb_yield_values2(0, 0);
72}
73
74static VALUE
75enum_yield_array(VALUE ary)
76{
77 long len = RARRAY_LEN(ary);
78
79 if (len > 1)
80 return rb_yield_force_blockarg(ary);
81 if (len == 1)
82 return rb_yield(RARRAY_AREF(ary, 0));
83 return rb_yield_values2(0, 0);
84}
85
86static VALUE
87grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
88{
89 struct MEMO *memo = MEMO_CAST(args);
90 ENUM_WANT_SVALUE();
91
92 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
93 rb_ary_push(memo->v2, i);
94 }
95 return Qnil;
96}
97
98static VALUE
99grep_regexp_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
100{
101 struct MEMO *memo = MEMO_CAST(args);
102 VALUE converted_element, match;
103 ENUM_WANT_SVALUE();
104
105 /* In case element can't be converted to a Symbol or String: not a match (don't raise) */
106 converted_element = SYMBOL_P(i) ? i : rb_check_string_type(i);
107 match = NIL_P(converted_element) ? Qfalse : rb_reg_match_p(memo->v1, i, 0);
108 if (match == memo->u3.value) {
109 rb_ary_push(memo->v2, i);
110 }
111 return Qnil;
112}
113
114static VALUE
115grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
116{
117 struct MEMO *memo = MEMO_CAST(args);
118 ENUM_WANT_SVALUE();
119
120 if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) {
121 rb_ary_push(memo->v2, enum_yield(argc, i));
122 }
123 return Qnil;
124}
125
126static VALUE
127enum_grep0(VALUE obj, VALUE pat, VALUE test)
128{
129 VALUE ary = rb_ary_new();
130 struct MEMO *memo = MEMO_NEW(pat, ary, test);
132 if (rb_block_given_p()) {
133 fn = grep_iter_i;
134 }
135 else if (RB_TYPE_P(pat, T_REGEXP) &&
136 LIKELY(rb_method_basic_definition_p(CLASS_OF(pat), idEqq))) {
137 fn = grep_regexp_i;
138 }
139 else {
140 fn = grep_i;
141 }
142 rb_block_call(obj, id_each, 0, 0, fn, (VALUE)memo);
143
144 return ary;
145}
146
147/*
148 * call-seq:
149 * grep(pattern) -> array
150 * grep(pattern) {|element| ... } -> array
151 *
152 * Returns an array of objects based elements of +self+ that match the given pattern.
153 *
154 * With no block given, returns an array containing each element
155 * for which <tt>pattern === element</tt> is +true+:
156 *
157 * a = ['foo', 'bar', 'car', 'moo']
158 * a.grep(/ar/) # => ["bar", "car"]
159 * (1..10).grep(3..8) # => [3, 4, 5, 6, 7, 8]
160 * ['a', 'b', 0, 1].grep(Integer) # => [0, 1]
161 *
162 * With a block given,
163 * calls the block with each matching element and returns an array containing each
164 * object returned by the block:
165 *
166 * a = ['foo', 'bar', 'car', 'moo']
167 * a.grep(/ar/) {|element| element.upcase } # => ["BAR", "CAR"]
168 *
169 * Related: #grep_v.
170 */
171
172static VALUE
173enum_grep(VALUE obj, VALUE pat)
174{
175 return enum_grep0(obj, pat, Qtrue);
176}
177
178/*
179 * call-seq:
180 * grep_v(pattern) -> array
181 * grep_v(pattern) {|element| ... } -> array
182 *
183 * Returns an array of objects based on elements of +self+
184 * that <em>don't</em> match the given pattern.
185 *
186 * With no block given, returns an array containing each element
187 * for which <tt>pattern === element</tt> is +false+:
188 *
189 * a = ['foo', 'bar', 'car', 'moo']
190 * a.grep_v(/ar/) # => ["foo", "moo"]
191 * (1..10).grep_v(3..8) # => [1, 2, 9, 10]
192 * ['a', 'b', 0, 1].grep_v(Integer) # => ["a", "b"]
193 *
194 * With a block given,
195 * calls the block with each non-matching element and returns an array containing each
196 * object returned by the block:
197 *
198 * a = ['foo', 'bar', 'car', 'moo']
199 * a.grep_v(/ar/) {|element| element.upcase } # => ["FOO", "MOO"]
200 *
201 * Related: #grep.
202 */
203
204static VALUE
205enum_grep_v(VALUE obj, VALUE pat)
206{
207 return enum_grep0(obj, pat, Qfalse);
208}
209
210#define COUNT_BIGNUM IMEMO_FL_USER0
211#define MEMO_V3_SET(m, v) RB_OBJ_WRITE((m), &(m)->u3.value, (v))
212
213static void
214imemo_count_up(struct MEMO *memo)
215{
216 if (memo->flags & COUNT_BIGNUM) {
217 MEMO_V3_SET(memo, rb_int_succ(memo->u3.value));
218 }
219 else if (++memo->u3.cnt == 0) {
220 /* overflow */
221 unsigned long buf[2] = {0, 1};
222 MEMO_V3_SET(memo, rb_big_unpack(buf, 2));
223 memo->flags |= COUNT_BIGNUM;
224 }
225}
226
227static VALUE
228imemo_count_value(struct MEMO *memo)
229{
230 if (memo->flags & COUNT_BIGNUM) {
231 return memo->u3.value;
232 }
233 else {
234 return ULONG2NUM(memo->u3.cnt);
235 }
236}
237
238static VALUE
239count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
240{
241 struct MEMO *memo = MEMO_CAST(memop);
242
243 ENUM_WANT_SVALUE();
244
245 if (rb_equal(i, memo->v1)) {
246 imemo_count_up(memo);
247 }
248 return Qnil;
249}
250
251static VALUE
252count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
253{
254 struct MEMO *memo = MEMO_CAST(memop);
255
256 if (RTEST(rb_yield_values2(argc, argv))) {
257 imemo_count_up(memo);
258 }
259 return Qnil;
260}
261
262static VALUE
263count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
264{
265 struct MEMO *memo = MEMO_CAST(memop);
266
267 imemo_count_up(memo);
268 return Qnil;
269}
270
271/*
272 * call-seq:
273 * count -> integer
274 * count(object) -> integer
275 * count {|element| ... } -> integer
276 *
277 * Returns the count of elements, based on an argument or block criterion, if given.
278 *
279 * With no argument and no block given, returns the number of elements:
280 *
281 * [0, 1, 2].count # => 3
282 * {foo: 0, bar: 1, baz: 2}.count # => 3
283 *
284 * With argument +object+ given,
285 * returns the number of elements that are <tt>==</tt> to +object+:
286 *
287 * [0, 1, 2, 1].count(1) # => 2
288 *
289 * With a block given, calls the block with each element
290 * and returns the number of elements for which the block returns a truthy value:
291 *
292 * [0, 1, 2, 3].count {|element| element < 2} # => 2
293 * {foo: 0, bar: 1, baz: 2}.count {|key, value| value < 2} # => 2
294 *
295 */
296
297static VALUE
298enum_count(int argc, VALUE *argv, VALUE obj)
299{
300 VALUE item = Qnil;
301 struct MEMO *memo;
302 rb_block_call_func *func;
303
304 if (argc == 0) {
305 if (rb_block_given_p()) {
306 func = count_iter_i;
307 }
308 else {
309 func = count_all_i;
310 }
311 }
312 else {
313 rb_scan_args(argc, argv, "1", &item);
314 if (rb_block_given_p()) {
315 rb_warn("given block not used");
316 }
317 func = count_i;
318 }
319
320 memo = MEMO_NEW(item, 0, 0);
321 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
322 return imemo_count_value(memo);
323}
324
325NORETURN(static void found(VALUE i, VALUE memop));
326static void
327found(VALUE i, VALUE memop) {
328 struct MEMO *memo = MEMO_CAST(memop);
329 MEMO_V1_SET(memo, i);
330 memo->u3.cnt = 1;
332}
333
334static VALUE
335find_i_fast(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
336{
337 if (RTEST(rb_yield_values2(argc, argv))) {
338 ENUM_WANT_SVALUE();
339 found(i, memop);
340 }
341 return Qnil;
342}
343
344static VALUE
345find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
346{
347 ENUM_WANT_SVALUE();
348
349 if (RTEST(enum_yield(argc, i))) {
350 found(i, memop);
351 }
352 return Qnil;
353}
354
355/*
356 * call-seq:
357 * find(if_none_proc = nil) {|element| ... } -> object or nil
358 * find(if_none_proc = nil) -> enumerator
359 *
360 * Returns the first element for which the block returns a truthy value.
361 *
362 * With a block given, calls the block with successive elements of the collection;
363 * returns the first element for which the block returns a truthy value:
364 *
365 * (0..9).find {|element| element > 2} # => 3
366 *
367 * If no such element is found, calls +if_none_proc+ and returns its return value.
368 *
369 * (0..9).find(proc {false}) {|element| element > 12} # => false
370 * {foo: 0, bar: 1, baz: 2}.find {|key, value| key.start_with?('b') } # => [:bar, 1]
371 * {foo: 0, bar: 1, baz: 2}.find(proc {[]}) {|key, value| key.start_with?('c') } # => []
372 *
373 * With no block given, returns an Enumerator.
374 *
375 */
376static VALUE
377enum_find(int argc, VALUE *argv, VALUE obj)
378{
379 struct MEMO *memo;
380 VALUE if_none;
381
382 if_none = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
383 RETURN_ENUMERATOR(obj, argc, argv);
384 memo = MEMO_NEW(Qundef, 0, 0);
385 if (rb_block_pair_yield_optimizable())
386 rb_block_call2(obj, id_each, 0, 0, find_i_fast, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
387 else
388 rb_block_call2(obj, id_each, 0, 0, find_i, (VALUE)memo, RB_BLOCK_NO_USE_PACKED_ARGS);
389 if (memo->u3.cnt) {
390 return memo->v1;
391 }
392 if (!NIL_P(if_none)) {
393 return rb_funcallv(if_none, id_call, 0, 0);
394 }
395 return Qnil;
396}
397
398static VALUE
399find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
400{
401 struct MEMO *memo = MEMO_CAST(memop);
402
403 ENUM_WANT_SVALUE();
404
405 if (rb_equal(i, memo->v2)) {
406 MEMO_V1_SET(memo, imemo_count_value(memo));
408 }
409 imemo_count_up(memo);
410 return Qnil;
411}
412
413static VALUE
414find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
415{
416 struct MEMO *memo = MEMO_CAST(memop);
417
418 if (RTEST(rb_yield_values2(argc, argv))) {
419 MEMO_V1_SET(memo, imemo_count_value(memo));
421 }
422 imemo_count_up(memo);
423 return Qnil;
424}
425
426/*
427 * call-seq:
428 * find_index(object) -> integer or nil
429 * find_index {|element| ... } -> integer or nil
430 * find_index -> enumerator
431 *
432 * Returns the index of the first element that meets a specified criterion,
433 * or +nil+ if no such element is found.
434 *
435 * With argument +object+ given,
436 * returns the index of the first element that is <tt>==</tt> +object+:
437 *
438 * ['a', 'b', 'c', 'b'].find_index('b') # => 1
439 *
440 * With a block given, calls the block with successive elements;
441 * returns the first element for which the block returns a truthy value:
442 *
443 * ['a', 'b', 'c', 'b'].find_index {|element| element.start_with?('b') } # => 1
444 * {foo: 0, bar: 1, baz: 2}.find_index {|key, value| value > 1 } # => 2
445 *
446 * With no argument and no block given, returns an Enumerator.
447 *
448 */
449
450static VALUE
451enum_find_index(int argc, VALUE *argv, VALUE obj)
452{
453 struct MEMO *memo; /* [return value, current index, ] */
454 VALUE condition_value = Qnil;
455 rb_block_call_func *func;
456
457 if (argc == 0) {
458 RETURN_ENUMERATOR(obj, 0, 0);
459 func = find_index_iter_i;
460 }
461 else {
462 rb_scan_args(argc, argv, "1", &condition_value);
463 if (rb_block_given_p()) {
464 rb_warn("given block not used");
465 }
466 func = find_index_i;
467 }
468
469 memo = MEMO_NEW(Qnil, condition_value, 0);
470 rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
471 return memo->v1;
472}
473
474static VALUE
475find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
476{
477 ENUM_WANT_SVALUE();
478
479 if (RTEST(enum_yield(argc, i))) {
480 rb_ary_push(ary, i);
481 }
482 return Qnil;
483}
484
485static VALUE
486enum_size(VALUE self, VALUE args, VALUE eobj)
487{
488 return rb_check_funcall_default(self, id_size, 0, 0, Qnil);
489}
490
491static long
492limit_by_enum_size(VALUE obj, long n)
493{
494 unsigned long limit;
495 VALUE size = rb_check_funcall(obj, id_size, 0, 0);
496 if (!FIXNUM_P(size)) return n;
497 limit = FIX2ULONG(size);
498 return ((unsigned long)n > limit) ? (long)limit : n;
499}
500
501static int
502enum_size_over_p(VALUE obj, long n)
503{
504 VALUE size = rb_check_funcall(obj, id_size, 0, 0);
505 if (!FIXNUM_P(size)) return 0;
506 return ((unsigned long)n > FIX2ULONG(size));
507}
508
509/*
510 * call-seq:
511 * select {|element| ... } -> array
512 * select -> enumerator
513 *
514 * Returns an array containing elements selected by the block.
515 *
516 * With a block given, calls the block with successive elements;
517 * returns an array of those elements for which the block returns a truthy value:
518 *
519 * (0..9).select {|element| element % 3 == 0 } # => [0, 3, 6, 9]
520 * a = {foo: 0, bar: 1, baz: 2}.select {|key, value| key.start_with?('b') }
521 * a # => {:bar=>1, :baz=>2}
522 *
523 * With no block given, returns an Enumerator.
524 *
525 * Related: #reject.
526 */
527static VALUE
528enum_find_all(VALUE obj)
529{
530 VALUE ary;
531
532 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
533
534 ary = rb_ary_new();
535 rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
536
537 return ary;
538}
539
540static VALUE
541filter_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
542{
543 i = rb_yield_values2(argc, argv);
544
545 if (RTEST(i)) {
546 rb_ary_push(ary, i);
547 }
548
549 return Qnil;
550}
551
552/*
553 * call-seq:
554 * filter_map {|element| ... } -> array
555 * filter_map -> enumerator
556 *
557 * Returns an array containing truthy elements returned by the block.
558 *
559 * With a block given, calls the block with successive elements;
560 * returns an array containing each truthy value returned by the block:
561 *
562 * (0..9).filter_map {|i| i * 2 if i.even? } # => [0, 4, 8, 12, 16]
563 * {foo: 0, bar: 1, baz: 2}.filter_map {|key, value| key if value.even? } # => [:foo, :baz]
564 *
565 * When no block given, returns an Enumerator.
566 *
567 */
568static VALUE
569enum_filter_map(VALUE obj)
570{
571 VALUE ary;
572
573 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
574
575 ary = rb_ary_new();
576 rb_block_call(obj, id_each, 0, 0, filter_map_i, ary);
577
578 return ary;
579}
580
581
582static VALUE
583reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
584{
585 ENUM_WANT_SVALUE();
586
587 if (!RTEST(enum_yield(argc, i))) {
588 rb_ary_push(ary, i);
589 }
590 return Qnil;
591}
592
593/*
594 * call-seq:
595 * reject {|element| ... } -> array
596 * reject -> enumerator
597 *
598 * Returns an array of objects rejected by the block.
599 *
600 * With a block given, calls the block with successive elements;
601 * returns an array of those elements for which the block returns +nil+ or +false+:
602 *
603 * (0..9).reject {|i| i * 2 if i.even? } # => [1, 3, 5, 7, 9]
604 * {foo: 0, bar: 1, baz: 2}.reject {|key, value| key if value.odd? } # => {:foo=>0, :baz=>2}
605 *
606 * When no block given, returns an Enumerator.
607 *
608 * Related: #select.
609 */
610
611static VALUE
612enum_reject(VALUE obj)
613{
614 VALUE ary;
615
616 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
617
618 ary = rb_ary_new();
619 rb_block_call(obj, id_each, 0, 0, reject_i, ary);
620
621 return ary;
622}
623
624static VALUE
625collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
626{
627 rb_ary_push(ary, rb_yield_values2(argc, argv));
628
629 return Qnil;
630}
631
632static VALUE
633collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
634{
635 rb_ary_push(ary, rb_enum_values_pack(argc, argv));
636
637 return Qnil;
638}
639
640/*
641 * call-seq:
642 * map {|element| ... } -> array
643 * map -> enumerator
644 *
645 * Returns an array of objects returned by the block.
646 *
647 * With a block given, calls the block with successive elements;
648 * returns an array of the objects returned by the block:
649 *
650 * (0..4).map {|i| i*i } # => [0, 1, 4, 9, 16]
651 * {foo: 0, bar: 1, baz: 2}.map {|key, value| value*2} # => [0, 2, 4]
652 *
653 * With no block given, returns an Enumerator.
654 *
655 */
656static VALUE
657enum_collect(VALUE obj)
658{
659 VALUE ary;
660 int min_argc, max_argc;
661
662 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
663
664 ary = rb_ary_new();
665 min_argc = rb_block_min_max_arity(&max_argc);
666 rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary);
667
668 return ary;
669}
670
671static VALUE
672flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
673{
674 VALUE tmp;
675
676 i = rb_yield_values2(argc, argv);
677 tmp = rb_check_array_type(i);
678
679 if (NIL_P(tmp)) {
680 rb_ary_push(ary, i);
681 }
682 else {
683 rb_ary_concat(ary, tmp);
684 }
685 return Qnil;
686}
687
688/*
689 * call-seq:
690 * flat_map {|element| ... } -> array
691 * flat_map -> enumerator
692 *
693 * Returns an array of flattened objects returned by the block.
694 *
695 * With a block given, calls the block with successive elements;
696 * returns a flattened array of objects returned by the block:
697 *
698 * [0, 1, 2, 3].flat_map {|element| -element } # => [0, -1, -2, -3]
699 * [0, 1, 2, 3].flat_map {|element| [element, -element] } # => [0, 0, 1, -1, 2, -2, 3, -3]
700 * [[0, 1], [2, 3]].flat_map {|e| e + [100] } # => [0, 1, 100, 2, 3, 100]
701 * {foo: 0, bar: 1, baz: 2}.flat_map {|key, value| [key, value] } # => [:foo, 0, :bar, 1, :baz, 2]
702 *
703 * With no block given, returns an Enumerator.
704 *
705 * Alias: #collect_concat.
706 */
707static VALUE
708enum_flat_map(VALUE obj)
709{
710 VALUE ary;
711
712 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
713
714 ary = rb_ary_new();
715 rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
716
717 return ary;
718}
719
720/*
721 * call-seq:
722 * to_a(*args) -> array
723 *
724 * Returns an array containing the items in +self+:
725 *
726 * (0..4).to_a # => [0, 1, 2, 3, 4]
727 *
728 */
729static VALUE
730enum_to_a(int argc, VALUE *argv, VALUE obj)
731{
732 VALUE ary = rb_ary_new();
733
734 rb_block_call_kw(obj, id_each, argc, argv, collect_all, ary, RB_PASS_CALLED_KEYWORDS);
735
736 return ary;
737}
738
739static VALUE
740enum_hashify_into(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter, VALUE hash)
741{
742 rb_block_call(obj, id_each, argc, argv, iter, hash);
743 return hash;
744}
745
746static VALUE
747enum_hashify(VALUE obj, int argc, const VALUE *argv, rb_block_call_func *iter)
748{
749 return enum_hashify_into(obj, argc, argv, iter, rb_hash_new());
750}
751
752static VALUE
753enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
754{
755 ENUM_WANT_SVALUE();
756 return rb_hash_set_pair(hash, i);
757}
758
759static VALUE
760enum_to_h_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
761{
762 return rb_hash_set_pair(hash, rb_yield_values2(argc, argv));
763}
764
765/*
766 * call-seq:
767 * to_h(*args) -> hash
768 * to_h(*args) {|element| ... } -> hash
769 *
770 * When +self+ consists of 2-element arrays,
771 * returns a hash each of whose entries is the key-value pair
772 * formed from one of those arrays:
773 *
774 * [[:foo, 0], [:bar, 1], [:baz, 2]].to_h # => {:foo=>0, :bar=>1, :baz=>2}
775 *
776 * When a block is given, the block is called with each element of +self+;
777 * the block should return a 2-element array which becomes a key-value pair
778 * in the returned hash:
779 *
780 * (0..3).to_h {|i| [i, i ** 2]} # => {0=>0, 1=>1, 2=>4, 3=>9}
781 *
782 * Raises an exception if an element of +self+ is not a 2-element array,
783 * and a block is not passed.
784 */
785
786static VALUE
787enum_to_h(int argc, VALUE *argv, VALUE obj)
788{
789 rb_block_call_func *iter = rb_block_given_p() ? enum_to_h_ii : enum_to_h_i;
790 return enum_hashify(obj, argc, argv, iter);
791}
792
793static VALUE
794inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
795{
796 struct MEMO *memo = MEMO_CAST(p);
797
798 ENUM_WANT_SVALUE();
799
800 if (UNDEF_P(memo->v1)) {
801 MEMO_V1_SET(memo, i);
802 }
803 else {
804 MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i));
805 }
806 return Qnil;
807}
808
809static VALUE
810inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
811{
812 struct MEMO *memo = MEMO_CAST(p);
813 VALUE name;
814
815 ENUM_WANT_SVALUE();
816
817 if (UNDEF_P(memo->v1)) {
818 MEMO_V1_SET(memo, i);
819 }
820 else if (SYMBOL_P(name = memo->u3.value)) {
821 const ID mid = SYM2ID(name);
822 MEMO_V1_SET(memo, rb_funcallv_public(memo->v1, mid, 1, &i));
823 }
824 else {
825 VALUE args[2];
826 args[0] = name;
827 args[1] = i;
828 MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1));
829 }
830 return Qnil;
831}
832
833static VALUE
834ary_inject_op(VALUE ary, VALUE init, VALUE op)
835{
836 ID id;
837 VALUE v, e;
838 long i, n;
839
840 if (RARRAY_LEN(ary) == 0)
841 return UNDEF_P(init) ? Qnil : init;
842
843 if (UNDEF_P(init)) {
844 v = RARRAY_AREF(ary, 0);
845 i = 1;
846 if (RARRAY_LEN(ary) == 1)
847 return v;
848 }
849 else {
850 v = init;
851 i = 0;
852 }
853
854 id = SYM2ID(op);
855 if (id == idPLUS) {
856 if (RB_INTEGER_TYPE_P(v) &&
857 rb_method_basic_definition_p(rb_cInteger, idPLUS) &&
858 rb_obj_respond_to(v, idPLUS, FALSE)) {
859 n = 0;
860 for (; i < RARRAY_LEN(ary); i++) {
861 e = RARRAY_AREF(ary, i);
862 if (FIXNUM_P(e)) {
863 n += FIX2LONG(e); /* should not overflow long type */
864 if (!FIXABLE(n)) {
865 v = rb_big_plus(LONG2NUM(n), v);
866 n = 0;
867 }
868 }
869 else if (RB_BIGNUM_TYPE_P(e))
870 v = rb_big_plus(e, v);
871 else
872 goto not_integer;
873 }
874 if (n != 0)
875 v = rb_fix_plus(LONG2FIX(n), v);
876 return v;
877
878 not_integer:
879 if (n != 0)
880 v = rb_fix_plus(LONG2FIX(n), v);
881 }
882 }
883 for (; i < RARRAY_LEN(ary); i++) {
884 VALUE arg = RARRAY_AREF(ary, i);
885 v = rb_funcallv_public(v, id, 1, &arg);
886 }
887 return v;
888}
889
890/*
891 * call-seq:
892 * inject(symbol) -> object
893 * inject(initial_value, symbol) -> object
894 * inject {|memo, value| ... } -> object
895 * inject(initial_value) {|memo, value| ... } -> object
896 *
897 * Returns the result of applying a reducer to an initial value and
898 * the first element of the Enumerable. It then takes the result and applies the
899 * function to it and the second element of the collection, and so on. The
900 * return value is the result returned by the final call to the function.
901 *
902 * You can think of
903 *
904 * [ a, b, c, d ].inject(i) { |r, v| fn(r, v) }
905 *
906 * as being
907 *
908 * fn(fn(fn(fn(i, a), b), c), d)
909 *
910 * In a way the +inject+ function _injects_ the function
911 * between the elements of the enumerable.
912 *
913 * +inject+ is aliased as +reduce+. You use it when you want to
914 * _reduce_ a collection to a single value.
915 *
916 * <b>The Calling Sequences</b>
917 *
918 * Let's start with the most verbose:
919 *
920 * enum.inject(initial_value) do |result, next_value|
921 * # do something with +result+ and +next_value+
922 * # the value returned by the block becomes the
923 * # value passed in to the next iteration
924 * # as +result+
925 * end
926 *
927 * For example:
928 *
929 * product = [ 2, 3, 4 ].inject(1) do |result, next_value|
930 * result * next_value
931 * end
932 * product #=> 24
933 *
934 * When this runs, the block is first called with +1+ (the initial value) and
935 * +2+ (the first element of the array). The block returns <tt>1*2</tt>, so on
936 * the next iteration the block is called with +2+ (the previous result) and
937 * +3+. The block returns +6+, and is called one last time with +6+ and +4+.
938 * The result of the block, +24+ becomes the value returned by +inject+. This
939 * code returns the product of the elements in the enumerable.
940 *
941 * <b>First Shortcut: Default Initial value</b>
942 *
943 * In the case of the previous example, the initial value, +1+, wasn't really
944 * necessary: the calculation of the product of a list of numbers is self-contained.
945 *
946 * In these circumstances, you can omit the +initial_value+ parameter. +inject+
947 * will then initially call the block with the first element of the collection
948 * as the +result+ parameter and the second element as the +next_value+.
949 *
950 * [ 2, 3, 4 ].inject do |result, next_value|
951 * result * next_value
952 * end
953 *
954 * This shortcut is convenient, but can only be used when the block produces a result
955 * which can be passed back to it as a first parameter.
956 *
957 * Here's an example where that's not the case: it returns a hash where the keys are words
958 * and the values are the number of occurrences of that word in the enumerable.
959 *
960 * freqs = File.read("README.md")
961 * .scan(/\w{2,}/)
962 * .reduce(Hash.new(0)) do |counts, word|
963 * counts[word] += 1
964 * counts
965 * end
966 * freqs #=> {"Actions"=>4,
967 * "Status"=>5,
968 * "MinGW"=>3,
969 * "https"=>27,
970 * "github"=>10,
971 * "com"=>15, ...
972 *
973 * Note that the last line of the block is just the word +counts+. This ensures the
974 * return value of the block is the result that's being calculated.
975 *
976 * <b>Second Shortcut: a Reducer function</b>
977 *
978 * A <i>reducer function</i> is a function that takes a partial result and the next value,
979 * returning the next partial result. The block that is given to +inject+ is a reducer.
980 *
981 * You can also write a reducer as a function and pass the name of that function
982 * (as a symbol) to +inject+. However, for this to work, the function
983 *
984 * 1. Must be defined on the type of the result value
985 * 2. Must accept a single parameter, the next value in the collection, and
986 * 3. Must return an updated result which will also implement the function.
987 *
988 * Here's an example that adds elements to a string. The two calls invoke the functions
989 * String#concat and String#+ on the result so far, passing it the next value.
990 *
991 * s = [ "cat", " ", "dog" ].inject("", :concat)
992 * s #=> "cat dog"
993 * s = [ "cat", " ", "dog" ].inject("The result is:", :+)
994 * s #=> "The result is: cat dog"
995 *
996 * Here's a more complex example when the result object maintains
997 * state of a different type to the enumerable elements.
998 *
999 * class Turtle
1000 *
1001 * def initialize
1002 * @x = @y = 0
1003 * end
1004 *
1005 * def move(dir)
1006 * case dir
1007 * when "n" then @y += 1
1008 * when "s" then @y -= 1
1009 * when "e" then @x += 1
1010 * when "w" then @x -= 1
1011 * end
1012 * self
1013 * end
1014 * end
1015 *
1016 * position = "nnneesw".chars.reduce(Turtle.new, :move)
1017 * position #=>> #<Turtle:0x00000001052f4698 @y=2, @x=1>
1018 *
1019 * <b>Third Shortcut: Reducer With no Initial Value</b>
1020 *
1021 * If your reducer returns a value that it can accept as a parameter, then you
1022 * don't have to pass in an initial value. Here <tt>:*</tt> is the name of the
1023 * _times_ function:
1024 *
1025 * product = [ 2, 3, 4 ].inject(:*)
1026 * product # => 24
1027 *
1028 * String concatenation again:
1029 *
1030 * s = [ "cat", " ", "dog" ].inject(:+)
1031 * s #=> "cat dog"
1032 *
1033 * And an example that converts a hash to an array of two-element subarrays.
1034 *
1035 * nested = {foo: 0, bar: 1}.inject([], :push)
1036 * nested # => [[:foo, 0], [:bar, 1]]
1037 *
1038 *
1039 */
1040static VALUE
1041enum_inject(int argc, VALUE *argv, VALUE obj)
1042{
1043 struct MEMO *memo;
1044 VALUE init, op;
1045 rb_block_call_func *iter = inject_i;
1046 ID id;
1047 int num_args;
1048
1049 if (rb_block_given_p()) {
1050 num_args = rb_scan_args(argc, argv, "02", &init, &op);
1051 }
1052 else {
1053 num_args = rb_scan_args(argc, argv, "11", &init, &op);
1054 }
1055
1056 switch (num_args) {
1057 case 0:
1058 init = Qundef;
1059 break;
1060 case 1:
1061 if (rb_block_given_p()) {
1062 break;
1063 }
1064 id = rb_check_id(&init);
1065 op = id ? ID2SYM(id) : init;
1066 init = Qundef;
1067 iter = inject_op_i;
1068 break;
1069 case 2:
1070 if (rb_block_given_p()) {
1071 rb_warning("given block not used");
1072 }
1073 id = rb_check_id(&op);
1074 if (id) op = ID2SYM(id);
1075 iter = inject_op_i;
1076 break;
1077 }
1078
1079 if (iter == inject_op_i &&
1080 SYMBOL_P(op) &&
1081 RB_TYPE_P(obj, T_ARRAY) &&
1082 rb_method_basic_definition_p(CLASS_OF(obj), id_each)) {
1083 return ary_inject_op(obj, init, op);
1084 }
1085
1086 memo = MEMO_NEW(init, Qnil, op);
1087 rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
1088 if (UNDEF_P(memo->v1)) return Qnil;
1089 return memo->v1;
1090}
1091
1092static VALUE
1093partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
1094{
1095 struct MEMO *memo = MEMO_CAST(arys);
1096 VALUE ary;
1097 ENUM_WANT_SVALUE();
1098
1099 if (RTEST(enum_yield(argc, i))) {
1100 ary = memo->v1;
1101 }
1102 else {
1103 ary = memo->v2;
1104 }
1105 rb_ary_push(ary, i);
1106 return Qnil;
1107}
1108
1109/*
1110 * call-seq:
1111 * partition {|element| ... } -> [true_array, false_array]
1112 * partition -> enumerator
1113 *
1114 * With a block given, returns an array of two arrays:
1115 *
1116 * - The first having those elements for which the block returns a truthy value.
1117 * - The other having all other elements.
1118 *
1119 * Examples:
1120 *
1121 * p = (1..4).partition {|i| i.even? }
1122 * p # => [[2, 4], [1, 3]]
1123 * p = ('a'..'d').partition {|c| c < 'c' }
1124 * p # => [["a", "b"], ["c", "d"]]
1125 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
1126 * p = h.partition {|key, value| key.start_with?('b') }
1127 * p # => [[[:bar, 1], [:baz, 2], [:bat, 3]], [[:foo, 0]]]
1128 * p = h.partition {|key, value| value < 2 }
1129 * p # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]]]
1130 *
1131 * With no block given, returns an Enumerator.
1132 *
1133 * Related: Enumerable#group_by.
1134 *
1135 */
1136
1137static VALUE
1138enum_partition(VALUE obj)
1139{
1140 struct MEMO *memo;
1141
1142 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1143
1144 memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0);
1145 rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
1146
1147 return rb_assoc_new(memo->v1, memo->v2);
1148}
1149
1150static VALUE
1151group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
1152{
1153 VALUE group;
1154 VALUE values;
1155
1156 ENUM_WANT_SVALUE();
1157
1158 group = enum_yield(argc, i);
1159 values = rb_hash_aref(hash, group);
1160 if (!RB_TYPE_P(values, T_ARRAY)) {
1161 values = rb_ary_new3(1, i);
1162 rb_hash_aset(hash, group, values);
1163 }
1164 else {
1165 rb_ary_push(values, i);
1166 }
1167 return Qnil;
1168}
1169
1170/*
1171 * call-seq:
1172 * group_by {|element| ... } -> hash
1173 * group_by -> enumerator
1174 *
1175 * With a block given returns a hash:
1176 *
1177 * - Each key is a return value from the block.
1178 * - Each value is an array of those elements for which the block returned that key.
1179 *
1180 * Examples:
1181 *
1182 * g = (1..6).group_by {|i| i%3 }
1183 * g # => {1=>[1, 4], 2=>[2, 5], 0=>[3, 6]}
1184 * h = {foo: 0, bar: 1, baz: 0, bat: 1}
1185 * g = h.group_by {|key, value| value }
1186 * g # => {0=>[[:foo, 0], [:baz, 0]], 1=>[[:bar, 1], [:bat, 1]]}
1187 *
1188 * With no block given, returns an Enumerator.
1189 *
1190 */
1191
1192static VALUE
1193enum_group_by(VALUE obj)
1194{
1195 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1196
1197 return enum_hashify(obj, 0, 0, group_by_i);
1198}
1199
1200static int
1201tally_up(st_data_t *group, st_data_t *value, st_data_t arg, int existing)
1202{
1203 VALUE tally = (VALUE)*value;
1204 VALUE hash = (VALUE)arg;
1205 if (!existing) {
1206 tally = INT2FIX(1);
1207 }
1208 else if (FIXNUM_P(tally) && tally < INT2FIX(FIXNUM_MAX)) {
1209 tally += INT2FIX(1) & ~FIXNUM_FLAG;
1210 }
1211 else {
1212 Check_Type(tally, T_BIGNUM);
1213 tally = rb_big_plus(tally, INT2FIX(1));
1214 RB_OBJ_WRITTEN(hash, Qundef, tally);
1215 }
1216 *value = (st_data_t)tally;
1217 if (!SPECIAL_CONST_P(*group)) RB_OBJ_WRITTEN(hash, Qundef, *group);
1218 return ST_CONTINUE;
1219}
1220
1221static VALUE
1222rb_enum_tally_up(VALUE hash, VALUE group)
1223{
1224 rb_hash_stlike_update(hash, group, tally_up, (st_data_t)hash);
1225 return hash;
1226}
1227
1228static VALUE
1229tally_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
1230{
1231 ENUM_WANT_SVALUE();
1232 rb_enum_tally_up(hash, i);
1233 return Qnil;
1234}
1235
1236/*
1237 * call-seq:
1238 * tally(hash = {}) -> hash
1239 *
1240 * When argument +hash+ is not given,
1241 * returns a new hash whose keys are the distinct elements in +self+;
1242 * each integer value is the count of occurrences of each element:
1243 *
1244 * %w[a b c b c a c b].tally # => {"a"=>2, "b"=>3, "c"=>3}
1245 *
1246 * When argument +hash+ is given,
1247 * returns +hash+, possibly augmented; for each element +ele+ in +self+:
1248 *
1249 * - Adds it as a key with a zero value if that key does not already exist:
1250 *
1251 * hash[ele] = 0 unless hash.include?(ele)
1252 *
1253 * - Increments the value of key +ele+:
1254 *
1255 * hash[ele] += 1
1256 *
1257 * This is useful for accumulating tallies across multiple enumerables:
1258 *
1259 * h = {} # => {}
1260 * %w[a c d b c a].tally(h) # => {"a"=>2, "c"=>2, "d"=>1, "b"=>1}
1261 * %w[b a z].tally(h) # => {"a"=>3, "c"=>2, "d"=>1, "b"=>2, "z"=>1}
1262 * %w[b a m].tally(h) # => {"a"=>4, "c"=>2, "d"=>1, "b"=>3, "z"=>1, "m"=>1}
1263 *
1264 * The key to be added or found for an element depends on the class of +self+;
1265 * see {Enumerable in Ruby Classes}[rdoc-ref:Enumerable@Enumerable+in+Ruby+Classes].
1266 *
1267 * Examples:
1268 *
1269 * - Array (and certain array-like classes):
1270 * the key is the element (as above).
1271 * - Hash (and certain hash-like classes):
1272 * the key is the 2-element array formed from the key-value pair:
1273 *
1274 * h = {} # => {}
1275 * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1}
1276 * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>1, [:bar, "b"]=>1, [:foo, "c"]=>1, [:bar, "d"]=>1}
1277 * {foo: 'a', bar: 'b'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>1, [:bar, "d"]=>1}
1278 * {foo: 'c', bar: 'd'}.tally(h) # => {[:foo, "a"]=>2, [:bar, "b"]=>2, [:foo, "c"]=>2, [:bar, "d"]=>2}
1279 *
1280 */
1281
1282static VALUE
1283enum_tally(int argc, VALUE *argv, VALUE obj)
1284{
1285 VALUE hash;
1286 if (rb_check_arity(argc, 0, 1)) {
1287 hash = rb_to_hash_type(argv[0]);
1288 rb_check_frozen(hash);
1289 }
1290 else {
1291 hash = rb_hash_new();
1292 }
1293
1294 return enum_hashify_into(obj, 0, 0, tally_i, hash);
1295}
1296
1297NORETURN(static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)));
1298static VALUE
1299first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
1300{
1301 struct MEMO *memo = MEMO_CAST(params);
1302 ENUM_WANT_SVALUE();
1303
1304 MEMO_V1_SET(memo, i);
1305 rb_iter_break();
1306
1308}
1309
1310static VALUE enum_take(VALUE obj, VALUE n);
1311
1312/*
1313 * call-seq:
1314 * first -> element or nil
1315 * first(n) -> array
1316 *
1317 * Returns the first element or elements.
1318 *
1319 * With no argument, returns the first element, or +nil+ if there is none:
1320 *
1321 * (1..4).first # => 1
1322 * %w[a b c].first # => "a"
1323 * {foo: 1, bar: 1, baz: 2}.first # => [:foo, 1]
1324 * [].first # => nil
1325 *
1326 * With integer argument +n+, returns an array
1327 * containing the first +n+ elements that exist:
1328 *
1329 * (1..4).first(2) # => [1, 2]
1330 * %w[a b c d].first(3) # => ["a", "b", "c"]
1331 * %w[a b c d].first(50) # => ["a", "b", "c", "d"]
1332 * {foo: 1, bar: 1, baz: 2}.first(2) # => [[:foo, 1], [:bar, 1]]
1333 * [].first(2) # => []
1334 *
1335 */
1336
1337static VALUE
1338enum_first(int argc, VALUE *argv, VALUE obj)
1339{
1340 struct MEMO *memo;
1341 rb_check_arity(argc, 0, 1);
1342 if (argc > 0) {
1343 return enum_take(obj, argv[0]);
1344 }
1345 else {
1346 memo = MEMO_NEW(Qnil, 0, 0);
1347 rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
1348 return memo->v1;
1349 }
1350}
1351
1352/*
1353 * call-seq:
1354 * sort -> array
1355 * sort {|a, b| ... } -> array
1356 *
1357 * Returns an array containing the sorted elements of +self+.
1358 * The ordering of equal elements is indeterminate and may be unstable.
1359 *
1360 * With no block given, the sort compares
1361 * using the elements' own method <tt>#<=></tt>:
1362 *
1363 * %w[b c a d].sort # => ["a", "b", "c", "d"]
1364 * {foo: 0, bar: 1, baz: 2}.sort # => [[:bar, 1], [:baz, 2], [:foo, 0]]
1365 *
1366 * With a block given, comparisons in the block determine the ordering.
1367 * The block is called with two elements +a+ and +b+, and must return:
1368 *
1369 * - A negative integer if <tt>a < b</tt>.
1370 * - Zero if <tt>a == b</tt>.
1371 * - A positive integer if <tt>a > b</tt>.
1372 *
1373 * Examples:
1374 *
1375 * a = %w[b c a d]
1376 * a.sort {|a, b| b <=> a } # => ["d", "c", "b", "a"]
1377 * h = {foo: 0, bar: 1, baz: 2}
1378 * h.sort {|a, b| b <=> a } # => [[:foo, 0], [:baz, 2], [:bar, 1]]
1379 *
1380 * See also #sort_by. It implements a Schwartzian transform
1381 * which is useful when key computation or comparison is expensive.
1382 */
1383
1384static VALUE
1385enum_sort(VALUE obj)
1386{
1387 return rb_ary_sort_bang(enum_to_a(0, 0, obj));
1388}
1389
1390#define SORT_BY_BUFSIZE 16
1391#define SORT_BY_UNIFORMED(num, flo, fix) (((num&1)<<2)|((flo&1)<<1)|fix)
1393 const VALUE ary;
1394 const VALUE buf;
1395 uint8_t n;
1396 uint8_t primitive_uniformed;
1397};
1398
1399static VALUE
1400sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
1401{
1402 struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1;
1403 VALUE ary = data->ary;
1404 VALUE v;
1405
1406 ENUM_WANT_SVALUE();
1407
1408 v = enum_yield(argc, i);
1409
1410 if (RBASIC(ary)->klass) {
1411 rb_raise(rb_eRuntimeError, "sort_by reentered");
1412 }
1413 if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
1414 rb_raise(rb_eRuntimeError, "sort_by reentered");
1415 }
1416
1417 if (data->primitive_uniformed) {
1418 data->primitive_uniformed &= SORT_BY_UNIFORMED((FIXNUM_P(v)) || (RB_FLOAT_TYPE_P(v)),
1419 RB_FLOAT_TYPE_P(v),
1420 FIXNUM_P(v));
1421 }
1422 RARRAY_ASET(data->buf, data->n*2, v);
1423 RARRAY_ASET(data->buf, data->n*2+1, i);
1424 data->n++;
1425 if (data->n == SORT_BY_BUFSIZE) {
1426 rb_ary_concat(ary, data->buf);
1427 data->n = 0;
1428 }
1429 return Qnil;
1430}
1431
1432static int
1433sort_by_cmp(const void *ap, const void *bp, void *data)
1434{
1435 VALUE a;
1436 VALUE b;
1437 VALUE ary = (VALUE)data;
1438
1439 if (RBASIC(ary)->klass) {
1440 rb_raise(rb_eRuntimeError, "sort_by reentered");
1441 }
1442
1443 a = *(VALUE *)ap;
1444 b = *(VALUE *)bp;
1445
1446 return OPTIMIZED_CMP(a, b);
1447}
1448
1449
1450/*
1451 This is parts of uniform sort
1452*/
1453
1454#define uless rb_uniform_is_less
1455#define UNIFORM_SWAP(a,b)\
1456 do{struct rb_uniform_sort_data tmp = a; a = b; b = tmp;} while(0)
1457
1459 VALUE v;
1460 VALUE i;
1461};
1462
1463static inline bool
1464rb_uniform_is_less(VALUE a, VALUE b)
1465{
1466
1467 if (FIXNUM_P(a) && FIXNUM_P(b)) {
1468 return (SIGNED_VALUE)a < (SIGNED_VALUE)b;
1469 }
1470 else if (FIXNUM_P(a)) {
1472 return rb_float_cmp(b, a) > 0;
1473 }
1474 else {
1476 return rb_float_cmp(a, b) < 0;
1477 }
1478}
1479
1480static inline bool
1481rb_uniform_is_larger(VALUE a, VALUE b)
1482{
1483
1484 if (FIXNUM_P(a) && FIXNUM_P(b)) {
1485 return (SIGNED_VALUE)a > (SIGNED_VALUE)b;
1486 }
1487 else if (FIXNUM_P(a)) {
1489 return rb_float_cmp(b, a) < 0;
1490 }
1491 else {
1493 return rb_float_cmp(a, b) > 0;
1494 }
1495}
1496
1497#define med3_val(a,b,c) (uless(a,b)?(uless(b,c)?b:uless(c,a)?a:c):(uless(c,b)?b:uless(a,c)?a:c))
1498
1499static void
1500rb_uniform_insertionsort_2(struct rb_uniform_sort_data* ptr_begin,
1501 struct rb_uniform_sort_data* ptr_end)
1502{
1503 if ((ptr_end - ptr_begin) < 2) return;
1504 struct rb_uniform_sort_data tmp, *j, *k,
1505 *index = ptr_begin+1;
1506 for (; index < ptr_end; index++) {
1507 tmp = *index;
1508 j = k = index;
1509 if (uless(tmp.v, ptr_begin->v)) {
1510 while (ptr_begin < j) {
1511 *j = *(--k);
1512 j = k;
1513 }
1514 }
1515 else {
1516 while (uless(tmp.v, (--k)->v)) {
1517 *j = *k;
1518 j = k;
1519 }
1520 }
1521 *j = tmp;
1522 }
1523}
1524
1525static inline void
1526rb_uniform_heap_down_2(struct rb_uniform_sort_data* ptr_begin,
1527 size_t offset, size_t len)
1528{
1529 size_t c;
1530 struct rb_uniform_sort_data tmp = ptr_begin[offset];
1531 while ((c = (offset<<1)+1) <= len) {
1532 if (c < len && uless(ptr_begin[c].v, ptr_begin[c+1].v)) {
1533 c++;
1534 }
1535 if (!uless(tmp.v, ptr_begin[c].v)) break;
1536 ptr_begin[offset] = ptr_begin[c];
1537 offset = c;
1538 }
1539 ptr_begin[offset] = tmp;
1540}
1541
1542static void
1543rb_uniform_heapsort_2(struct rb_uniform_sort_data* ptr_begin,
1544 struct rb_uniform_sort_data* ptr_end)
1545{
1546 size_t n = ptr_end - ptr_begin;
1547 if (n < 2) return;
1548
1549 for (size_t offset = n>>1; offset > 0;) {
1550 rb_uniform_heap_down_2(ptr_begin, --offset, n-1);
1551 }
1552 for (size_t offset = n-1; offset > 0;) {
1553 UNIFORM_SWAP(*ptr_begin, ptr_begin[offset]);
1554 rb_uniform_heap_down_2(ptr_begin, 0, --offset);
1555 }
1556}
1557
1558
1559static void
1560rb_uniform_quicksort_intro_2(struct rb_uniform_sort_data* ptr_begin,
1561 struct rb_uniform_sort_data* ptr_end, size_t d)
1562{
1563
1564 if (ptr_end - ptr_begin <= 16) {
1565 rb_uniform_insertionsort_2(ptr_begin, ptr_end);
1566 return;
1567 }
1568 if (d == 0) {
1569 rb_uniform_heapsort_2(ptr_begin, ptr_end);
1570 return;
1571 }
1572
1573 VALUE x = med3_val(ptr_begin->v,
1574 ptr_begin[(ptr_end - ptr_begin)>>1].v,
1575 ptr_end[-1].v);
1576 struct rb_uniform_sort_data *i = ptr_begin;
1577 struct rb_uniform_sort_data *j = ptr_end-1;
1578
1579 do {
1580 while (uless(i->v, x)) i++;
1581 while (uless(x, j->v)) j--;
1582 if (i <= j) {
1583 UNIFORM_SWAP(*i, *j);
1584 i++;
1585 j--;
1586 }
1587 } while (i <= j);
1588 j++;
1589 if (ptr_end - j > 1) rb_uniform_quicksort_intro_2(j, ptr_end, d-1);
1590 if (i - ptr_begin > 1) rb_uniform_quicksort_intro_2(ptr_begin, i, d-1);
1591}
1592
1598static void
1599rb_uniform_intro_sort_2(struct rb_uniform_sort_data* ptr_begin,
1600 struct rb_uniform_sort_data* ptr_end)
1601{
1602 size_t n = ptr_end - ptr_begin;
1603 size_t d = CHAR_BIT * sizeof(n) - nlz_intptr(n) - 1;
1604 bool sorted_flag = true;
1605
1606 for (struct rb_uniform_sort_data* ptr = ptr_begin+1; ptr < ptr_end; ptr++) {
1607 if (rb_uniform_is_larger((ptr-1)->v, (ptr)->v)) {
1608 sorted_flag = false;
1609 break;
1610 }
1611 }
1612
1613 if (sorted_flag) {
1614 return;
1615 }
1616 rb_uniform_quicksort_intro_2(ptr_begin, ptr_end, d<<1);
1617}
1618
1619#undef uless
1620
1621
1622/*
1623 * call-seq:
1624 * sort_by {|element| ... } -> array
1625 * sort_by -> enumerator
1626 *
1627 * With a block given, returns an array of elements of +self+,
1628 * sorted according to the value returned by the block for each element.
1629 * The ordering of equal elements is indeterminate and may be unstable.
1630 *
1631 * Examples:
1632 *
1633 * a = %w[xx xxx x xxxx]
1634 * a.sort_by {|s| s.size } # => ["x", "xx", "xxx", "xxxx"]
1635 * a.sort_by {|s| -s.size } # => ["xxxx", "xxx", "xx", "x"]
1636 * h = {foo: 2, bar: 1, baz: 0}
1637 * h.sort_by{|key, value| value } # => [[:baz, 0], [:bar, 1], [:foo, 2]]
1638 * h.sort_by{|key, value| key } # => [[:bar, 1], [:baz, 0], [:foo, 2]]
1639 *
1640 * With no block given, returns an Enumerator.
1641 *
1642 * The current implementation of #sort_by generates an array of
1643 * tuples containing the original collection element and the mapped
1644 * value. This makes #sort_by fairly expensive when the keysets are
1645 * simple.
1646 *
1647 * require 'benchmark'
1648 *
1649 * a = (1..100000).map { rand(100000) }
1650 *
1651 * Benchmark.bm(10) do |b|
1652 * b.report("Sort") { a.sort }
1653 * b.report("Sort by") { a.sort_by { |a| a } }
1654 * end
1655 *
1656 * <em>produces:</em>
1657 *
1658 * user system total real
1659 * Sort 0.180000 0.000000 0.180000 ( 0.175469)
1660 * Sort by 1.980000 0.040000 2.020000 ( 2.013586)
1661 *
1662 * However, consider the case where comparing the keys is a non-trivial
1663 * operation. The following code sorts some files on modification time
1664 * using the basic #sort method.
1665 *
1666 * files = Dir["*"]
1667 * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
1668 * sorted #=> ["mon", "tues", "wed", "thurs"]
1669 *
1670 * This sort is inefficient: it generates two new File
1671 * objects during every comparison. A slightly better technique is to
1672 * use the Kernel#test method to generate the modification
1673 * times directly.
1674 *
1675 * files = Dir["*"]
1676 * sorted = files.sort { |a, b|
1677 * test(?M, a) <=> test(?M, b)
1678 * }
1679 * sorted #=> ["mon", "tues", "wed", "thurs"]
1680 *
1681 * This still generates many unnecessary Time objects. A more
1682 * efficient technique is to cache the sort keys (modification times
1683 * in this case) before the sort. Perl users often call this approach
1684 * a Schwartzian transform, after Randal Schwartz. We construct a
1685 * temporary array, where each element is an array containing our
1686 * sort key along with the filename. We sort this array, and then
1687 * extract the filename from the result.
1688 *
1689 * sorted = Dir["*"].collect { |f|
1690 * [test(?M, f), f]
1691 * }.sort.collect { |f| f[1] }
1692 * sorted #=> ["mon", "tues", "wed", "thurs"]
1693 *
1694 * This is exactly what #sort_by does internally.
1695 *
1696 * sorted = Dir["*"].sort_by { |f| test(?M, f) }
1697 * sorted #=> ["mon", "tues", "wed", "thurs"]
1698 *
1699 * To produce the reverse of a specific order, the following can be used:
1700 *
1701 * ary.sort_by { ... }.reverse!
1702 */
1703
1704static VALUE
1705enum_sort_by(VALUE obj)
1706{
1707 VALUE ary, buf;
1708 struct MEMO *memo;
1709 long i;
1710 struct sort_by_data *data;
1711
1712 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
1713
1714 if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
1715 ary = rb_ary_new2(RARRAY_LEN(obj)*2);
1716 }
1717 else {
1718 ary = rb_ary_new();
1719 }
1720 RBASIC_CLEAR_CLASS(ary);
1721 buf = rb_ary_hidden_new(SORT_BY_BUFSIZE*2);
1722 rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
1723 memo = MEMO_NEW(0, 0, 0);
1724 data = (struct sort_by_data *)&memo->v1;
1725 RB_OBJ_WRITE(memo, &data->ary, ary);
1726 RB_OBJ_WRITE(memo, &data->buf, buf);
1727 data->n = 0;
1728 data->primitive_uniformed = SORT_BY_UNIFORMED((CMP_OPTIMIZABLE(FLOAT) && CMP_OPTIMIZABLE(INTEGER)),
1729 CMP_OPTIMIZABLE(FLOAT),
1730 CMP_OPTIMIZABLE(INTEGER));
1731 rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
1732 ary = data->ary;
1733 buf = data->buf;
1734 if (data->n) {
1735 rb_ary_resize(buf, data->n*2);
1736 rb_ary_concat(ary, buf);
1737 }
1738 if (RARRAY_LEN(ary) > 2) {
1739 if (data->primitive_uniformed) {
1740 RARRAY_PTR_USE(ary, ptr,
1741 rb_uniform_intro_sort_2((struct rb_uniform_sort_data*)ptr,
1742 (struct rb_uniform_sort_data*)(ptr + RARRAY_LEN(ary))));
1743 }
1744 else {
1745 RARRAY_PTR_USE(ary, ptr,
1746 ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
1747 sort_by_cmp, (void *)ary));
1748 }
1749 }
1750 if (RBASIC(ary)->klass) {
1751 rb_raise(rb_eRuntimeError, "sort_by reentered");
1752 }
1753 for (i=1; i<RARRAY_LEN(ary); i+=2) {
1754 RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
1755 }
1756 rb_ary_resize(ary, RARRAY_LEN(ary)/2);
1757 RBASIC_SET_CLASS_RAW(ary, rb_cArray);
1758
1759 return ary;
1760}
1761
1762#define ENUMFUNC(name) argc ? name##_eqq : rb_block_given_p() ? name##_iter_i : name##_i
1763
1764#define ENUM_BLOCK_CALL(name) \
1765 rb_block_call2(obj, id_each, 0, 0, ENUMFUNC(name), (VALUE)memo, rb_block_given_p() && rb_block_pair_yield_optimizable() ? RB_BLOCK_NO_USE_PACKED_ARGS : 0);
1766
1767#define MEMO_ENUM_NEW(v1) (rb_check_arity(argc, 0, 1), MEMO_NEW((v1), (argc ? *argv : 0), 0))
1768
1769#define DEFINE_ENUMFUNCS(name) \
1770static VALUE enum_##name##_func(VALUE result, struct MEMO *memo); \
1771\
1772static VALUE \
1773name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1774{ \
1775 return enum_##name##_func(rb_enum_values_pack(argc, argv), MEMO_CAST(memo)); \
1776} \
1777\
1778static VALUE \
1779name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1780{ \
1781 return enum_##name##_func(rb_yield_values2(argc, argv), MEMO_CAST(memo)); \
1782} \
1783\
1784static VALUE \
1785name##_eqq(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
1786{ \
1787 ENUM_WANT_SVALUE(); \
1788 return enum_##name##_func(rb_funcallv(MEMO_CAST(memo)->v2, id_eqq, 1, &i), MEMO_CAST(memo)); \
1789} \
1790\
1791static VALUE \
1792enum_##name##_func(VALUE result, struct MEMO *memo)
1793
1794#define WARN_UNUSED_BLOCK(argc) do { \
1795 if ((argc) > 0 && rb_block_given_p()) { \
1796 rb_warn("given block not used"); \
1797 } \
1798} while (0)
1799
1800DEFINE_ENUMFUNCS(all)
1801{
1802 if (!RTEST(result)) {
1803 MEMO_V1_SET(memo, Qfalse);
1804 rb_iter_break();
1805 }
1806 return Qnil;
1807}
1808
1809/*
1810 * call-seq:
1811 * all? -> true or false
1812 * all?(pattern) -> true or false
1813 * all? {|element| ... } -> true or false
1814 *
1815 * Returns whether every element meets a given criterion.
1816 *
1817 * If +self+ has no element, returns +true+ and argument or block
1818 * are not used.
1819 *
1820 * With no argument and no block,
1821 * returns whether every element is truthy:
1822 *
1823 * (1..4).all? # => true
1824 * %w[a b c d].all? # => true
1825 * [1, 2, nil].all? # => false
1826 * ['a','b', false].all? # => false
1827 * [].all? # => true
1828 *
1829 * With argument +pattern+ and no block,
1830 * returns whether for each element +element+,
1831 * <tt>pattern === element</tt>:
1832 *
1833 * (1..4).all?(Integer) # => true
1834 * (1..4).all?(Numeric) # => true
1835 * (1..4).all?(Float) # => false
1836 * %w[bar baz bat bam].all?(/ba/) # => true
1837 * %w[bar baz bat bam].all?(/bar/) # => false
1838 * %w[bar baz bat bam].all?('ba') # => false
1839 * {foo: 0, bar: 1, baz: 2}.all?(Array) # => true
1840 * {foo: 0, bar: 1, baz: 2}.all?(Hash) # => false
1841 * [].all?(Integer) # => true
1842 *
1843 * With a block given, returns whether the block returns a truthy value
1844 * for every element:
1845 *
1846 * (1..4).all? {|element| element < 5 } # => true
1847 * (1..4).all? {|element| element < 4 } # => false
1848 * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 3 } # => true
1849 * {foo: 0, bar: 1, baz: 2}.all? {|key, value| value < 2 } # => false
1850 *
1851 * Related: #any?, #none? #one?.
1852 *
1853 */
1854
1855static VALUE
1856enum_all(int argc, VALUE *argv, VALUE obj)
1857{
1858 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
1859 WARN_UNUSED_BLOCK(argc);
1860 ENUM_BLOCK_CALL(all);
1861 return memo->v1;
1862}
1863
1864DEFINE_ENUMFUNCS(any)
1865{
1866 if (RTEST(result)) {
1867 MEMO_V1_SET(memo, Qtrue);
1868 rb_iter_break();
1869 }
1870 return Qnil;
1871}
1872
1873/*
1874 * call-seq:
1875 * any? -> true or false
1876 * any?(pattern) -> true or false
1877 * any? {|element| ... } -> true or false
1878 *
1879 * Returns whether any element meets a given criterion.
1880 *
1881 * If +self+ has no element, returns +false+ and argument or block
1882 * are not used.
1883 *
1884 * With no argument and no block,
1885 * returns whether any element is truthy:
1886 *
1887 * (1..4).any? # => true
1888 * %w[a b c d].any? # => true
1889 * [1, false, nil].any? # => true
1890 * [].any? # => false
1891 *
1892 * With argument +pattern+ and no block,
1893 * returns whether for any element +element+,
1894 * <tt>pattern === element</tt>:
1895 *
1896 * [nil, false, 0].any?(Integer) # => true
1897 * [nil, false, 0].any?(Numeric) # => true
1898 * [nil, false, 0].any?(Float) # => false
1899 * %w[bar baz bat bam].any?(/m/) # => true
1900 * %w[bar baz bat bam].any?(/foo/) # => false
1901 * %w[bar baz bat bam].any?('ba') # => false
1902 * {foo: 0, bar: 1, baz: 2}.any?(Array) # => true
1903 * {foo: 0, bar: 1, baz: 2}.any?(Hash) # => false
1904 * [].any?(Integer) # => false
1905 *
1906 * With a block given, returns whether the block returns a truthy value
1907 * for any element:
1908 *
1909 * (1..4).any? {|element| element < 2 } # => true
1910 * (1..4).any? {|element| element < 1 } # => false
1911 * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 1 } # => true
1912 * {foo: 0, bar: 1, baz: 2}.any? {|key, value| value < 0 } # => false
1913 *
1914 * Related: #all?, #none?, #one?.
1915 */
1916
1917static VALUE
1918enum_any(int argc, VALUE *argv, VALUE obj)
1919{
1920 struct MEMO *memo = MEMO_ENUM_NEW(Qfalse);
1921 WARN_UNUSED_BLOCK(argc);
1922 ENUM_BLOCK_CALL(any);
1923 return memo->v1;
1924}
1925
1926DEFINE_ENUMFUNCS(one)
1927{
1928 if (RTEST(result)) {
1929 if (UNDEF_P(memo->v1)) {
1930 MEMO_V1_SET(memo, Qtrue);
1931 }
1932 else if (memo->v1 == Qtrue) {
1933 MEMO_V1_SET(memo, Qfalse);
1934 rb_iter_break();
1935 }
1936 }
1937 return Qnil;
1938}
1939
1941 long n;
1942 long bufmax;
1943 long curlen;
1944 VALUE buf;
1945 VALUE limit;
1946 int (*cmpfunc)(const void *, const void *, void *);
1947 int rev: 1; /* max if 1 */
1948 int by: 1; /* min_by if 1 */
1949};
1950
1951static VALUE
1952cmpint_reenter_check(struct nmin_data *data, VALUE val)
1953{
1954 if (RBASIC(data->buf)->klass) {
1955 rb_raise(rb_eRuntimeError, "%s%s reentered",
1956 data->rev ? "max" : "min",
1957 data->by ? "_by" : "");
1958 }
1959 return val;
1960}
1961
1962static int
1963nmin_cmp(const void *ap, const void *bp, void *_data)
1964{
1965 struct nmin_data *data = (struct nmin_data *)_data;
1966 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1967#define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b)
1968 return OPTIMIZED_CMP(a, b);
1969#undef rb_cmpint
1970}
1971
1972static int
1973nmin_block_cmp(const void *ap, const void *bp, void *_data)
1974{
1975 struct nmin_data *data = (struct nmin_data *)_data;
1976 VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
1977 VALUE cmp = rb_yield_values(2, a, b);
1978 cmpint_reenter_check(data, cmp);
1979 return rb_cmpint(cmp, a, b);
1980}
1981
1982static void
1983nmin_filter(struct nmin_data *data)
1984{
1985 long n;
1986 VALUE *beg;
1987 int eltsize;
1988 long numelts;
1989
1990 long left, right;
1991 long store_index;
1992
1993 long i, j;
1994
1995 if (data->curlen <= data->n)
1996 return;
1997
1998 n = data->n;
1999 beg = RARRAY_PTR(data->buf);
2000 eltsize = data->by ? 2 : 1;
2001 numelts = data->curlen;
2002
2003 left = 0;
2004 right = numelts-1;
2005
2006#define GETPTR(i) (beg+(i)*eltsize)
2007
2008#define SWAP(i, j) do { \
2009 VALUE tmp[2]; \
2010 memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
2011 memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
2012 memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
2013} while (0)
2014
2015 while (1) {
2016 long pivot_index = left + (right-left)/2;
2017 long num_pivots = 1;
2018
2019 SWAP(pivot_index, right);
2020 pivot_index = right;
2021
2022 store_index = left;
2023 i = left;
2024 while (i <= right-num_pivots) {
2025 int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
2026 if (data->rev)
2027 c = -c;
2028 if (c == 0) {
2029 SWAP(i, right-num_pivots);
2030 num_pivots++;
2031 continue;
2032 }
2033 if (c < 0) {
2034 SWAP(i, store_index);
2035 store_index++;
2036 }
2037 i++;
2038 }
2039 j = store_index;
2040 for (i = right; right-num_pivots < i; i--) {
2041 if (i <= j)
2042 break;
2043 SWAP(j, i);
2044 j++;
2045 }
2046
2047 if (store_index <= n && n <= store_index+num_pivots)
2048 break;
2049
2050 if (n < store_index) {
2051 right = store_index-1;
2052 }
2053 else {
2054 left = store_index+num_pivots;
2055 }
2056 }
2057#undef GETPTR
2058#undef SWAP
2059
2060 data->limit = RARRAY_AREF(data->buf, store_index*eltsize); /* the last pivot */
2061 data->curlen = data->n;
2062 rb_ary_resize(data->buf, data->n * eltsize);
2063}
2064
2065static VALUE
2066nmin_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
2067{
2068 struct nmin_data *data = (struct nmin_data *)_data;
2069 VALUE cmpv;
2070
2071 ENUM_WANT_SVALUE();
2072
2073 if (data->by)
2074 cmpv = enum_yield(argc, i);
2075 else
2076 cmpv = i;
2077
2078 if (!UNDEF_P(data->limit)) {
2079 int c = data->cmpfunc(&cmpv, &data->limit, data);
2080 if (data->rev)
2081 c = -c;
2082 if (c >= 0)
2083 return Qnil;
2084 }
2085
2086 if (data->by)
2087 rb_ary_push(data->buf, cmpv);
2088 rb_ary_push(data->buf, i);
2089
2090 data->curlen++;
2091
2092 if (data->curlen == data->bufmax) {
2093 nmin_filter(data);
2094 }
2095
2096 return Qnil;
2097}
2098
2099VALUE
2100rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary)
2101{
2102 VALUE result;
2103 struct nmin_data data;
2104
2105 data.n = NUM2LONG(num);
2106 if (data.n < 0)
2107 rb_raise(rb_eArgError, "negative size (%ld)", data.n);
2108 if (data.n == 0)
2109 return rb_ary_new2(0);
2110 if (LONG_MAX/4/(by ? 2 : 1) < data.n)
2111 rb_raise(rb_eArgError, "too big size");
2112 data.bufmax = data.n * 4;
2113 data.curlen = 0;
2114 data.buf = rb_ary_hidden_new(data.bufmax * (by ? 2 : 1));
2115 data.limit = Qundef;
2116 data.cmpfunc = by ? nmin_cmp :
2117 rb_block_given_p() ? nmin_block_cmp :
2118 nmin_cmp;
2119 data.rev = rev;
2120 data.by = by;
2121 if (ary) {
2122 long i;
2123 for (i = 0; i < RARRAY_LEN(obj); i++) {
2124 VALUE args[1];
2125 args[0] = RARRAY_AREF(obj, i);
2126 nmin_i(obj, (VALUE)&data, 1, args, Qundef);
2127 }
2128 }
2129 else {
2130 rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
2131 }
2132 nmin_filter(&data);
2133 result = data.buf;
2134 if (by) {
2135 long i;
2136 RARRAY_PTR_USE(result, ptr, {
2137 ruby_qsort(ptr,
2138 RARRAY_LEN(result)/2,
2139 sizeof(VALUE)*2,
2140 data.cmpfunc, (void *)&data);
2141 for (i=1; i<RARRAY_LEN(result); i+=2) {
2142 ptr[i/2] = ptr[i];
2143 }
2144 });
2145 rb_ary_resize(result, RARRAY_LEN(result)/2);
2146 }
2147 else {
2148 RARRAY_PTR_USE(result, ptr, {
2149 ruby_qsort(ptr, RARRAY_LEN(result), sizeof(VALUE),
2150 data.cmpfunc, (void *)&data);
2151 });
2152 }
2153 if (rev) {
2154 rb_ary_reverse(result);
2155 }
2156 RBASIC_SET_CLASS(result, rb_cArray);
2157 return result;
2158
2159}
2160
2161/*
2162 * call-seq:
2163 * one? -> true or false
2164 * one?(pattern) -> true or false
2165 * one? {|element| ... } -> true or false
2166 *
2167 * Returns whether exactly one element meets a given criterion.
2168 *
2169 * With no argument and no block,
2170 * returns whether exactly one element is truthy:
2171 *
2172 * (1..1).one? # => true
2173 * [1, nil, false].one? # => true
2174 * (1..4).one? # => false
2175 * {foo: 0}.one? # => true
2176 * {foo: 0, bar: 1}.one? # => false
2177 * [].one? # => false
2178 *
2179 * With argument +pattern+ and no block,
2180 * returns whether for exactly one element +element+,
2181 * <tt>pattern === element</tt>:
2182 *
2183 * [nil, false, 0].one?(Integer) # => true
2184 * [nil, false, 0].one?(Numeric) # => true
2185 * [nil, false, 0].one?(Float) # => false
2186 * %w[bar baz bat bam].one?(/m/) # => true
2187 * %w[bar baz bat bam].one?(/foo/) # => false
2188 * %w[bar baz bat bam].one?('ba') # => false
2189 * {foo: 0, bar: 1, baz: 2}.one?(Array) # => false
2190 * {foo: 0}.one?(Array) # => true
2191 * [].one?(Integer) # => false
2192 *
2193 * With a block given, returns whether the block returns a truthy value
2194 * for exactly one element:
2195 *
2196 * (1..4).one? {|element| element < 2 } # => true
2197 * (1..4).one? {|element| element < 1 } # => false
2198 * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 1 } # => true
2199 * {foo: 0, bar: 1, baz: 2}.one? {|key, value| value < 2 } # => false
2200 *
2201 * Related: #none?, #all?, #any?.
2202 *
2203 */
2204static VALUE
2205enum_one(int argc, VALUE *argv, VALUE obj)
2206{
2207 struct MEMO *memo = MEMO_ENUM_NEW(Qundef);
2208 VALUE result;
2209
2210 WARN_UNUSED_BLOCK(argc);
2211 ENUM_BLOCK_CALL(one);
2212 result = memo->v1;
2213 if (UNDEF_P(result)) return Qfalse;
2214 return result;
2215}
2216
2217DEFINE_ENUMFUNCS(none)
2218{
2219 if (RTEST(result)) {
2220 MEMO_V1_SET(memo, Qfalse);
2221 rb_iter_break();
2222 }
2223 return Qnil;
2224}
2225
2226/*
2227 * call-seq:
2228 * none? -> true or false
2229 * none?(pattern) -> true or false
2230 * none? {|element| ... } -> true or false
2231 *
2232 * Returns whether no element meets a given criterion.
2233 *
2234 * With no argument and no block,
2235 * returns whether no element is truthy:
2236 *
2237 * (1..4).none? # => false
2238 * [nil, false].none? # => true
2239 * {foo: 0}.none? # => false
2240 * {foo: 0, bar: 1}.none? # => false
2241 * [].none? # => true
2242 *
2243 * With argument +pattern+ and no block,
2244 * returns whether for no element +element+,
2245 * <tt>pattern === element</tt>:
2246 *
2247 * [nil, false, 1.1].none?(Integer) # => true
2248 * %w[bar baz bat bam].none?(/m/) # => false
2249 * %w[bar baz bat bam].none?(/foo/) # => true
2250 * %w[bar baz bat bam].none?('ba') # => true
2251 * {foo: 0, bar: 1, baz: 2}.none?(Hash) # => true
2252 * {foo: 0}.none?(Array) # => false
2253 * [].none?(Integer) # => true
2254 *
2255 * With a block given, returns whether the block returns a truthy value
2256 * for no element:
2257 *
2258 * (1..4).none? {|element| element < 1 } # => true
2259 * (1..4).none? {|element| element < 2 } # => false
2260 * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 0 } # => true
2261 * {foo: 0, bar: 1, baz: 2}.none? {|key, value| value < 1 } # => false
2262 *
2263 * Related: #one?, #all?, #any?.
2264 *
2265 */
2266static VALUE
2267enum_none(int argc, VALUE *argv, VALUE obj)
2268{
2269 struct MEMO *memo = MEMO_ENUM_NEW(Qtrue);
2270
2271 WARN_UNUSED_BLOCK(argc);
2272 ENUM_BLOCK_CALL(none);
2273 return memo->v1;
2274}
2275
2276struct min_t {
2277 VALUE min;
2278};
2279
2280static VALUE
2281min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2282{
2283 struct min_t *memo = MEMO_FOR(struct min_t, args);
2284
2285 ENUM_WANT_SVALUE();
2286
2287 if (UNDEF_P(memo->min)) {
2288 memo->min = i;
2289 }
2290 else {
2291 if (OPTIMIZED_CMP(i, memo->min) < 0) {
2292 memo->min = i;
2293 }
2294 }
2295 return Qnil;
2296}
2297
2298static VALUE
2299min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2300{
2301 VALUE cmp;
2302 struct min_t *memo = MEMO_FOR(struct min_t, args);
2303
2304 ENUM_WANT_SVALUE();
2305
2306 if (UNDEF_P(memo->min)) {
2307 memo->min = i;
2308 }
2309 else {
2310 cmp = rb_yield_values(2, i, memo->min);
2311 if (rb_cmpint(cmp, i, memo->min) < 0) {
2312 memo->min = i;
2313 }
2314 }
2315 return Qnil;
2316}
2317
2318
2319/*
2320 * call-seq:
2321 * min -> element
2322 * min(n) -> array
2323 * min {|a, b| ... } -> element
2324 * min(n) {|a, b| ... } -> array
2325 *
2326 * Returns the element with the minimum element according to a given criterion.
2327 * The ordering of equal elements is indeterminate and may be unstable.
2328 *
2329 * With no argument and no block, returns the minimum element,
2330 * using the elements' own method <tt>#<=></tt> for comparison:
2331 *
2332 * (1..4).min # => 1
2333 * (-4..-1).min # => -4
2334 * %w[d c b a].min # => "a"
2335 * {foo: 0, bar: 1, baz: 2}.min # => [:bar, 1]
2336 * [].min # => nil
2337 *
2338 * With positive integer argument +n+ given, and no block,
2339 * returns an array containing the first +n+ minimum elements that exist:
2340 *
2341 * (1..4).min(2) # => [1, 2]
2342 * (-4..-1).min(2) # => [-4, -3]
2343 * %w[d c b a].min(2) # => ["a", "b"]
2344 * {foo: 0, bar: 1, baz: 2}.min(2) # => [[:bar, 1], [:baz, 2]]
2345 * [].min(2) # => []
2346 *
2347 * With a block given, the block determines the minimum elements.
2348 * The block is called with two elements +a+ and +b+, and must return:
2349 *
2350 * - A negative integer if <tt>a < b</tt>.
2351 * - Zero if <tt>a == b</tt>.
2352 * - A positive integer if <tt>a > b</tt>.
2353 *
2354 * With a block given and no argument,
2355 * returns the minimum element as determined by the block:
2356 *
2357 * %w[xxx x xxxx xx].min {|a, b| a.size <=> b.size } # => "x"
2358 * h = {foo: 0, bar: 1, baz: 2}
2359 * h.min {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:foo, 0]
2360 * [].min {|a, b| a <=> b } # => nil
2361 *
2362 * With a block given and positive integer argument +n+ given,
2363 * returns an array containing the first +n+ minimum elements that exist,
2364 * as determined by the block.
2365 *
2366 * %w[xxx x xxxx xx].min(2) {|a, b| a.size <=> b.size } # => ["x", "xx"]
2367 * h = {foo: 0, bar: 1, baz: 2}
2368 * h.min(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
2369 * # => [[:foo, 0], [:bar, 1]]
2370 * [].min(2) {|a, b| a <=> b } # => []
2371 *
2372 * Related: #min_by, #minmax, #max.
2373 *
2374 */
2375
2376static VALUE
2377enum_min(int argc, VALUE *argv, VALUE obj)
2378{
2379 VALUE memo;
2380 struct min_t *m = NEW_MEMO_FOR(struct min_t, memo);
2381 VALUE result;
2382 VALUE num;
2383
2384 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
2385 return rb_nmin_run(obj, num, 0, 0, 0);
2386
2387 m->min = Qundef;
2388 if (rb_block_given_p()) {
2389 rb_block_call(obj, id_each, 0, 0, min_ii, memo);
2390 }
2391 else {
2392 rb_block_call(obj, id_each, 0, 0, min_i, memo);
2393 }
2394 result = m->min;
2395 if (UNDEF_P(result)) return Qnil;
2396 return result;
2397}
2398
2399struct max_t {
2400 VALUE max;
2401};
2402
2403static VALUE
2404max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2405{
2406 struct max_t *memo = MEMO_FOR(struct max_t, args);
2407
2408 ENUM_WANT_SVALUE();
2409
2410 if (UNDEF_P(memo->max)) {
2411 memo->max = i;
2412 }
2413 else {
2414 if (OPTIMIZED_CMP(i, memo->max) > 0) {
2415 memo->max = i;
2416 }
2417 }
2418 return Qnil;
2419}
2420
2421static VALUE
2422max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2423{
2424 struct max_t *memo = MEMO_FOR(struct max_t, args);
2425 VALUE cmp;
2426
2427 ENUM_WANT_SVALUE();
2428
2429 if (UNDEF_P(memo->max)) {
2430 memo->max = i;
2431 }
2432 else {
2433 cmp = rb_yield_values(2, i, memo->max);
2434 if (rb_cmpint(cmp, i, memo->max) > 0) {
2435 memo->max = i;
2436 }
2437 }
2438 return Qnil;
2439}
2440
2441/*
2442 * call-seq:
2443 * max -> element
2444 * max(n) -> array
2445 * max {|a, b| ... } -> element
2446 * max(n) {|a, b| ... } -> array
2447 *
2448 * Returns the element with the maximum element according to a given criterion.
2449 * The ordering of equal elements is indeterminate and may be unstable.
2450 *
2451 * With no argument and no block, returns the maximum element,
2452 * using the elements' own method <tt>#<=></tt> for comparison:
2453 *
2454 * (1..4).max # => 4
2455 * (-4..-1).max # => -1
2456 * %w[d c b a].max # => "d"
2457 * {foo: 0, bar: 1, baz: 2}.max # => [:foo, 0]
2458 * [].max # => nil
2459 *
2460 * With positive integer argument +n+ given, and no block,
2461 * returns an array containing the first +n+ maximum elements that exist:
2462 *
2463 * (1..4).max(2) # => [4, 3]
2464 * (-4..-1).max(2) # => [-1, -2]
2465 * %w[d c b a].max(2) # => ["d", "c"]
2466 * {foo: 0, bar: 1, baz: 2}.max(2) # => [[:foo, 0], [:baz, 2]]
2467 * [].max(2) # => []
2468 *
2469 * With a block given, the block determines the maximum elements.
2470 * The block is called with two elements +a+ and +b+, and must return:
2471 *
2472 * - A negative integer if <tt>a < b</tt>.
2473 * - Zero if <tt>a == b</tt>.
2474 * - A positive integer if <tt>a > b</tt>.
2475 *
2476 * With a block given and no argument,
2477 * returns the maximum element as determined by the block:
2478 *
2479 * %w[xxx x xxxx xx].max {|a, b| a.size <=> b.size } # => "xxxx"
2480 * h = {foo: 0, bar: 1, baz: 2}
2481 * h.max {|pair1, pair2| pair1[1] <=> pair2[1] } # => [:baz, 2]
2482 * [].max {|a, b| a <=> b } # => nil
2483 *
2484 * With a block given and positive integer argument +n+ given,
2485 * returns an array containing the first +n+ maximum elements that exist,
2486 * as determined by the block.
2487 *
2488 * %w[xxx x xxxx xx].max(2) {|a, b| a.size <=> b.size } # => ["xxxx", "xxx"]
2489 * h = {foo: 0, bar: 1, baz: 2}
2490 * h.max(2) {|pair1, pair2| pair1[1] <=> pair2[1] }
2491 * # => [[:baz, 2], [:bar, 1]]
2492 * [].max(2) {|a, b| a <=> b } # => []
2493 *
2494 * Related: #min, #minmax, #max_by.
2495 *
2496 */
2497
2498static VALUE
2499enum_max(int argc, VALUE *argv, VALUE obj)
2500{
2501 VALUE memo;
2502 struct max_t *m = NEW_MEMO_FOR(struct max_t, memo);
2503 VALUE result;
2504 VALUE num;
2505
2506 if (rb_check_arity(argc, 0, 1) && !NIL_P(num = argv[0]))
2507 return rb_nmin_run(obj, num, 0, 1, 0);
2508
2509 m->max = Qundef;
2510 if (rb_block_given_p()) {
2511 rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
2512 }
2513 else {
2514 rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
2515 }
2516 result = m->max;
2517 if (UNDEF_P(result)) return Qnil;
2518 return result;
2519}
2520
2521struct minmax_t {
2522 VALUE min;
2523 VALUE max;
2524 VALUE last;
2525};
2526
2527static void
2528minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
2529{
2530 int n;
2531
2532 if (UNDEF_P(memo->min)) {
2533 memo->min = i;
2534 memo->max = j;
2535 }
2536 else {
2537 n = OPTIMIZED_CMP(i, memo->min);
2538 if (n < 0) {
2539 memo->min = i;
2540 }
2541 n = OPTIMIZED_CMP(j, memo->max);
2542 if (n > 0) {
2543 memo->max = j;
2544 }
2545 }
2546}
2547
2548static VALUE
2549minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2550{
2551 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
2552 int n;
2553 VALUE j;
2554
2555 ENUM_WANT_SVALUE();
2556
2557 if (UNDEF_P(memo->last)) {
2558 memo->last = i;
2559 return Qnil;
2560 }
2561 j = memo->last;
2562 memo->last = Qundef;
2563
2564 n = OPTIMIZED_CMP(j, i);
2565 if (n == 0)
2566 i = j;
2567 else if (n < 0) {
2568 VALUE tmp;
2569 tmp = i;
2570 i = j;
2571 j = tmp;
2572 }
2573
2574 minmax_i_update(i, j, memo);
2575
2576 return Qnil;
2577}
2578
2579static void
2580minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
2581{
2582 int n;
2583
2584 if (UNDEF_P(memo->min)) {
2585 memo->min = i;
2586 memo->max = j;
2587 }
2588 else {
2589 n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
2590 if (n < 0) {
2591 memo->min = i;
2592 }
2593 n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
2594 if (n > 0) {
2595 memo->max = j;
2596 }
2597 }
2598}
2599
2600static VALUE
2601minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2602{
2603 struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo);
2604 int n;
2605 VALUE j;
2606
2607 ENUM_WANT_SVALUE();
2608
2609 if (UNDEF_P(memo->last)) {
2610 memo->last = i;
2611 return Qnil;
2612 }
2613 j = memo->last;
2614 memo->last = Qundef;
2615
2616 n = rb_cmpint(rb_yield_values(2, j, i), j, i);
2617 if (n == 0)
2618 i = j;
2619 else if (n < 0) {
2620 VALUE tmp;
2621 tmp = i;
2622 i = j;
2623 j = tmp;
2624 }
2625
2626 minmax_ii_update(i, j, memo);
2627
2628 return Qnil;
2629}
2630
2631/*
2632 * call-seq:
2633 * minmax -> [minimum, maximum]
2634 * minmax {|a, b| ... } -> [minimum, maximum]
2635 *
2636 * Returns a 2-element array containing the minimum and maximum elements
2637 * according to a given criterion.
2638 * The ordering of equal elements is indeterminate and may be unstable.
2639 *
2640 * With no argument and no block, returns the minimum and maximum elements,
2641 * using the elements' own method <tt>#<=></tt> for comparison:
2642 *
2643 * (1..4).minmax # => [1, 4]
2644 * (-4..-1).minmax # => [-4, -1]
2645 * %w[d c b a].minmax # => ["a", "d"]
2646 * {foo: 0, bar: 1, baz: 2}.minmax # => [[:bar, 1], [:foo, 0]]
2647 * [].minmax # => [nil, nil]
2648 *
2649 * With a block given, returns the minimum and maximum elements
2650 * as determined by the block:
2651 *
2652 * %w[xxx x xxxx xx].minmax {|a, b| a.size <=> b.size } # => ["x", "xxxx"]
2653 * h = {foo: 0, bar: 1, baz: 2}
2654 * h.minmax {|pair1, pair2| pair1[1] <=> pair2[1] }
2655 * # => [[:foo, 0], [:baz, 2]]
2656 * [].minmax {|a, b| a <=> b } # => [nil, nil]
2657 *
2658 * Related: #min, #max, #minmax_by.
2659 *
2660 */
2661
2662static VALUE
2663enum_minmax(VALUE obj)
2664{
2665 VALUE memo;
2666 struct minmax_t *m = NEW_MEMO_FOR(struct minmax_t, memo);
2667
2668 m->min = Qundef;
2669 m->last = Qundef;
2670 if (rb_block_given_p()) {
2671 rb_block_call(obj, id_each, 0, 0, minmax_ii, memo);
2672 if (!UNDEF_P(m->last))
2673 minmax_ii_update(m->last, m->last, m);
2674 }
2675 else {
2676 rb_block_call(obj, id_each, 0, 0, minmax_i, memo);
2677 if (!UNDEF_P(m->last))
2678 minmax_i_update(m->last, m->last, m);
2679 }
2680 if (!UNDEF_P(m->min)) {
2681 return rb_assoc_new(m->min, m->max);
2682 }
2683 return rb_assoc_new(Qnil, Qnil);
2684}
2685
2686static VALUE
2687min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2688{
2689 struct MEMO *memo = MEMO_CAST(args);
2690 VALUE v;
2691
2692 ENUM_WANT_SVALUE();
2693
2694 v = enum_yield(argc, i);
2695 if (UNDEF_P(memo->v1)) {
2696 MEMO_V1_SET(memo, v);
2697 MEMO_V2_SET(memo, i);
2698 }
2699 else if (OPTIMIZED_CMP(v, memo->v1) < 0) {
2700 MEMO_V1_SET(memo, v);
2701 MEMO_V2_SET(memo, i);
2702 }
2703 return Qnil;
2704}
2705
2706/*
2707 * call-seq:
2708 * min_by {|element| ... } -> element
2709 * min_by(n) {|element| ... } -> array
2710 * min_by -> enumerator
2711 * min_by(n) -> enumerator
2712 *
2713 * Returns the elements for which the block returns the minimum values.
2714 *
2715 * With a block given and no argument,
2716 * returns the element for which the block returns the minimum value:
2717 *
2718 * (1..4).min_by {|element| -element } # => 4
2719 * %w[a b c d].min_by {|element| -element.ord } # => "d"
2720 * {foo: 0, bar: 1, baz: 2}.min_by {|key, value| -value } # => [:baz, 2]
2721 * [].min_by {|element| -element } # => nil
2722 *
2723 * With a block given and positive integer argument +n+ given,
2724 * returns an array containing the +n+ elements
2725 * for which the block returns minimum values:
2726 *
2727 * (1..4).min_by(2) {|element| -element }
2728 * # => [4, 3]
2729 * %w[a b c d].min_by(2) {|element| -element.ord }
2730 * # => ["d", "c"]
2731 * {foo: 0, bar: 1, baz: 2}.min_by(2) {|key, value| -value }
2732 * # => [[:baz, 2], [:bar, 1]]
2733 * [].min_by(2) {|element| -element }
2734 * # => []
2735 *
2736 * Returns an Enumerator if no block is given.
2737 *
2738 * Related: #min, #minmax, #max_by.
2739 *
2740 */
2741
2742static VALUE
2743enum_min_by(int argc, VALUE *argv, VALUE obj)
2744{
2745 struct MEMO *memo;
2746 VALUE num;
2747
2748 rb_check_arity(argc, 0, 1);
2749
2750 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2751
2752 if (argc && !NIL_P(num = argv[0]))
2753 return rb_nmin_run(obj, num, 1, 0, 0);
2754
2755 memo = MEMO_NEW(Qundef, Qnil, 0);
2756 rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
2757 return memo->v2;
2758}
2759
2760static VALUE
2761max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
2762{
2763 struct MEMO *memo = MEMO_CAST(args);
2764 VALUE v;
2765
2766 ENUM_WANT_SVALUE();
2767
2768 v = enum_yield(argc, i);
2769 if (UNDEF_P(memo->v1)) {
2770 MEMO_V1_SET(memo, v);
2771 MEMO_V2_SET(memo, i);
2772 }
2773 else if (OPTIMIZED_CMP(v, memo->v1) > 0) {
2774 MEMO_V1_SET(memo, v);
2775 MEMO_V2_SET(memo, i);
2776 }
2777 return Qnil;
2778}
2779
2780/*
2781 * call-seq:
2782 * max_by {|element| ... } -> element
2783 * max_by(n) {|element| ... } -> array
2784 * max_by -> enumerator
2785 * max_by(n) -> enumerator
2786 *
2787 * Returns the elements for which the block returns the maximum values.
2788 *
2789 * With a block given and no argument,
2790 * returns the element for which the block returns the maximum value:
2791 *
2792 * (1..4).max_by {|element| -element } # => 1
2793 * %w[a b c d].max_by {|element| -element.ord } # => "a"
2794 * {foo: 0, bar: 1, baz: 2}.max_by {|key, value| -value } # => [:foo, 0]
2795 * [].max_by {|element| -element } # => nil
2796 *
2797 * With a block given and positive integer argument +n+ given,
2798 * returns an array containing the +n+ elements
2799 * for which the block returns maximum values:
2800 *
2801 * (1..4).max_by(2) {|element| -element }
2802 * # => [1, 2]
2803 * %w[a b c d].max_by(2) {|element| -element.ord }
2804 * # => ["a", "b"]
2805 * {foo: 0, bar: 1, baz: 2}.max_by(2) {|key, value| -value }
2806 * # => [[:foo, 0], [:bar, 1]]
2807 * [].max_by(2) {|element| -element }
2808 * # => []
2809 *
2810 * Returns an Enumerator if no block is given.
2811 *
2812 * Related: #max, #minmax, #min_by.
2813 *
2814 */
2815
2816static VALUE
2817enum_max_by(int argc, VALUE *argv, VALUE obj)
2818{
2819 struct MEMO *memo;
2820 VALUE num;
2821
2822 rb_check_arity(argc, 0, 1);
2823
2824 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
2825
2826 if (argc && !NIL_P(num = argv[0]))
2827 return rb_nmin_run(obj, num, 1, 1, 0);
2828
2829 memo = MEMO_NEW(Qundef, Qnil, 0);
2830 rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
2831 return memo->v2;
2832}
2833
2835 VALUE min_bv;
2836 VALUE max_bv;
2837 VALUE min;
2838 VALUE max;
2839 VALUE last_bv;
2840 VALUE last;
2841};
2842
2843static void
2844minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
2845{
2846 if (UNDEF_P(memo->min_bv)) {
2847 memo->min_bv = v1;
2848 memo->max_bv = v2;
2849 memo->min = i1;
2850 memo->max = i2;
2851 }
2852 else {
2853 if (OPTIMIZED_CMP(v1, memo->min_bv) < 0) {
2854 memo->min_bv = v1;
2855 memo->min = i1;
2856 }
2857 if (OPTIMIZED_CMP(v2, memo->max_bv) > 0) {
2858 memo->max_bv = v2;
2859 memo->max = i2;
2860 }
2861 }
2862}
2863
2864static VALUE
2865minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
2866{
2867 struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
2868 VALUE vi, vj, j;
2869 int n;
2870
2871 ENUM_WANT_SVALUE();
2872
2873 vi = enum_yield(argc, i);
2874
2875 if (UNDEF_P(memo->last_bv)) {
2876 memo->last_bv = vi;
2877 memo->last = i;
2878 return Qnil;
2879 }
2880 vj = memo->last_bv;
2881 j = memo->last;
2882 memo->last_bv = Qundef;
2883
2884 n = OPTIMIZED_CMP(vj, vi);
2885 if (n == 0) {
2886 i = j;
2887 vi = vj;
2888 }
2889 else if (n < 0) {
2890 VALUE tmp;
2891 tmp = i;
2892 i = j;
2893 j = tmp;
2894 tmp = vi;
2895 vi = vj;
2896 vj = tmp;
2897 }
2898
2899 minmax_by_i_update(vi, vj, i, j, memo);
2900
2901 return Qnil;
2902}
2903
2904/*
2905 * call-seq:
2906 * minmax_by {|element| ... } -> [minimum, maximum]
2907 * minmax_by -> enumerator
2908 *
2909 * Returns a 2-element array containing the elements
2910 * for which the block returns minimum and maximum values:
2911 *
2912 * (1..4).minmax_by {|element| -element }
2913 * # => [4, 1]
2914 * %w[a b c d].minmax_by {|element| -element.ord }
2915 * # => ["d", "a"]
2916 * {foo: 0, bar: 1, baz: 2}.minmax_by {|key, value| -value }
2917 * # => [[:baz, 2], [:foo, 0]]
2918 * [].minmax_by {|element| -element }
2919 * # => [nil, nil]
2920 *
2921 * Returns an Enumerator if no block is given.
2922 *
2923 * Related: #max_by, #minmax, #min_by.
2924 *
2925 */
2926
2927static VALUE
2928enum_minmax_by(VALUE obj)
2929{
2930 VALUE memo;
2931 struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
2932
2933 RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
2934
2935 m->min_bv = Qundef;
2936 m->max_bv = Qundef;
2937 m->min = Qnil;
2938 m->max = Qnil;
2939 m->last_bv = Qundef;
2940 m->last = Qundef;
2941 rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
2942 if (!UNDEF_P(m->last_bv))
2943 minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
2944 m = MEMO_FOR(struct minmax_by_t, memo);
2945 return rb_assoc_new(m->min, m->max);
2946}
2947
2948static VALUE
2949member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
2950{
2951 struct MEMO *memo = MEMO_CAST(args);
2952
2953 if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) {
2954 MEMO_V2_SET(memo, Qtrue);
2955 rb_iter_break();
2956 }
2957 return Qnil;
2958}
2959
2960/*
2961 * call-seq:
2962 * include?(object) -> true or false
2963 *
2964 * Returns whether for any element <tt>object == element</tt>:
2965 *
2966 * (1..4).include?(2) # => true
2967 * (1..4).include?(5) # => false
2968 * (1..4).include?('2') # => false
2969 * %w[a b c d].include?('b') # => true
2970 * %w[a b c d].include?('2') # => false
2971 * {foo: 0, bar: 1, baz: 2}.include?(:foo) # => true
2972 * {foo: 0, bar: 1, baz: 2}.include?('foo') # => false
2973 * {foo: 0, bar: 1, baz: 2}.include?(0) # => false
2974 *
2975 */
2976
2977static VALUE
2978enum_member(VALUE obj, VALUE val)
2979{
2980 struct MEMO *memo = MEMO_NEW(val, Qfalse, 0);
2981
2982 rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
2983 return memo->v2;
2984}
2985
2986static VALUE
2987each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(_, index))
2988{
2989 struct vm_ifunc *ifunc = rb_current_ifunc();
2990 ifunc->data = (const void *)rb_int_succ(index);
2991
2992 return rb_yield_values(2, rb_enum_values_pack(argc, argv), index);
2993}
2994
2995/*
2996 * call-seq:
2997 * each_with_index(*args) {|element, i| ..... } -> self
2998 * each_with_index(*args) -> enumerator
2999 *
3000 * Invoke <tt>self.each</tt> with <tt>*args</tt>.
3001 * With a block given, the block receives each element and its index;
3002 * returns +self+:
3003 *
3004 * h = {}
3005 * (1..4).each_with_index {|element, i| h[element] = i } # => 1..4
3006 * h # => {1=>0, 2=>1, 3=>2, 4=>3}
3007 *
3008 * h = {}
3009 * %w[a b c d].each_with_index {|element, i| h[element] = i }
3010 * # => ["a", "b", "c", "d"]
3011 * h # => {"a"=>0, "b"=>1, "c"=>2, "d"=>3}
3012 *
3013 * a = []
3014 * h = {foo: 0, bar: 1, baz: 2}
3015 * h.each_with_index {|element, i| a.push([i, element]) }
3016 * # => {:foo=>0, :bar=>1, :baz=>2}
3017 * a # => [[0, [:foo, 0]], [1, [:bar, 1]], [2, [:baz, 2]]]
3018 *
3019 * With no block given, returns an Enumerator.
3020 *
3021 */
3022
3023static VALUE
3024enum_each_with_index(int argc, VALUE *argv, VALUE obj)
3025{
3026 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
3027
3028 rb_block_call(obj, id_each, argc, argv, each_with_index_i, INT2FIX(0));
3029 return obj;
3030}
3031
3032
3033/*
3034 * call-seq:
3035 * reverse_each(*args) {|element| ... } -> self
3036 * reverse_each(*args) -> enumerator
3037 *
3038 * With a block given, calls the block with each element,
3039 * but in reverse order; returns +self+:
3040 *
3041 * a = []
3042 * (1..4).reverse_each {|element| a.push(-element) } # => 1..4
3043 * a # => [-4, -3, -2, -1]
3044 *
3045 * a = []
3046 * %w[a b c d].reverse_each {|element| a.push(element) }
3047 * # => ["a", "b", "c", "d"]
3048 * a # => ["d", "c", "b", "a"]
3049 *
3050 * a = []
3051 * h.reverse_each {|element| a.push(element) }
3052 * # => {:foo=>0, :bar=>1, :baz=>2}
3053 * a # => [[:baz, 2], [:bar, 1], [:foo, 0]]
3054 *
3055 * With no block given, returns an Enumerator.
3056 *
3057 */
3058
3059static VALUE
3060enum_reverse_each(int argc, VALUE *argv, VALUE obj)
3061{
3062 VALUE ary;
3063 long len;
3064
3065 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
3066
3067 ary = enum_to_a(argc, argv, obj);
3068
3069 len = RARRAY_LEN(ary);
3070 while (len--) {
3071 long nlen;
3072 rb_yield(RARRAY_AREF(ary, len));
3073 nlen = RARRAY_LEN(ary);
3074 if (nlen < len) {
3075 len = nlen;
3076 }
3077 }
3078
3079 return obj;
3080}
3081
3082
3083static VALUE
3084each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
3085{
3086 ENUM_WANT_SVALUE();
3087 enum_yield(argc, i);
3088 return Qnil;
3089}
3090
3091/*
3092 * call-seq:
3093 * each_entry(*args) {|element| ... } -> self
3094 * each_entry(*args) -> enumerator
3095 *
3096 * Calls the given block with each element,
3097 * converting multiple values from yield to an array; returns +self+:
3098 *
3099 * a = []
3100 * (1..4).each_entry {|element| a.push(element) } # => 1..4
3101 * a # => [1, 2, 3, 4]
3102 *
3103 * a = []
3104 * h = {foo: 0, bar: 1, baz:2}
3105 * h.each_entry {|element| a.push(element) }
3106 * # => {:foo=>0, :bar=>1, :baz=>2}
3107 * a # => [[:foo, 0], [:bar, 1], [:baz, 2]]
3108 *
3109 * class Foo
3110 * include Enumerable
3111 * def each
3112 * yield 1
3113 * yield 1, 2
3114 * yield
3115 * end
3116 * end
3117 * Foo.new.each_entry {|yielded| p yielded }
3118 *
3119 * Output:
3120 *
3121 * 1
3122 * [1, 2]
3123 * nil
3124 *
3125 * With no block given, returns an Enumerator.
3126 *
3127 */
3128
3129static VALUE
3130enum_each_entry(int argc, VALUE *argv, VALUE obj)
3131{
3132 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
3133 rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
3134 return obj;
3135}
3136
3137static VALUE
3138add_int(VALUE x, long n)
3139{
3140 const VALUE y = LONG2NUM(n);
3141 if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y);
3142 return rb_funcallv(x, '+', 1, &y);
3143}
3144
3145static VALUE
3146div_int(VALUE x, long n)
3147{
3148 const VALUE y = LONG2NUM(n);
3149 if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y);
3150 return rb_funcallv(x, id_div, 1, &y);
3151}
3152
3153#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
3154
3155static VALUE
3156each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
3157{
3158 struct MEMO *memo = MEMO_CAST(m);
3159 VALUE ary = memo->v1;
3160 VALUE v = Qnil;
3161 long size = memo->u3.cnt;
3162 ENUM_WANT_SVALUE();
3163
3164 rb_ary_push(ary, i);
3165
3166 if (RARRAY_LEN(ary) == size) {
3167 v = rb_yield(ary);
3168
3169 if (memo->v2) {
3170 MEMO_V1_SET(memo, rb_ary_new2(size));
3171 }
3172 else {
3173 rb_ary_clear(ary);
3174 }
3175 }
3176
3177 return v;
3178}
3179
3180static VALUE
3181enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
3182{
3183 VALUE n, size;
3184 long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
3185 ID infinite_p;
3186 CONST_ID(infinite_p, "infinite?");
3187 if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
3188
3189 size = enum_size(obj, 0, 0);
3190 if (NIL_P(size)) return Qnil;
3191 if (RB_FLOAT_TYPE_P(size) && RTEST(rb_funcall(size, infinite_p, 0))) {
3192 return size;
3193 }
3194
3195 n = add_int(size, slice_size-1);
3196 return div_int(n, slice_size);
3197}
3198
3199/*
3200 * call-seq:
3201 * each_slice(n) { ... } -> self
3202 * each_slice(n) -> enumerator
3203 *
3204 * Calls the block with each successive disjoint +n+-tuple of elements;
3205 * returns +self+:
3206 *
3207 * a = []
3208 * (1..10).each_slice(3) {|tuple| a.push(tuple) }
3209 * a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]
3210 *
3211 * a = []
3212 * h = {foo: 0, bar: 1, baz: 2, bat: 3, bam: 4}
3213 * h.each_slice(2) {|tuple| a.push(tuple) }
3214 * a # => [[[:foo, 0], [:bar, 1]], [[:baz, 2], [:bat, 3]], [[:bam, 4]]]
3215 *
3216 * With no block given, returns an Enumerator.
3217 *
3218 */
3219static VALUE
3220enum_each_slice(VALUE obj, VALUE n)
3221{
3222 long size = NUM2LONG(n);
3223 VALUE ary;
3224 struct MEMO *memo;
3225 int arity;
3226
3227 if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
3228 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
3229 size = limit_by_enum_size(obj, size);
3230 ary = rb_ary_new2(size);
3231 arity = rb_block_arity();
3232 memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size);
3233 rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
3234 ary = memo->v1;
3235 if (RARRAY_LEN(ary) > 0) rb_yield(ary);
3236
3237 return obj;
3238}
3239
3240static VALUE
3241each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3242{
3243 struct MEMO *memo = MEMO_CAST(args);
3244 VALUE ary = memo->v1;
3245 VALUE v = Qnil;
3246 long size = memo->u3.cnt;
3247 ENUM_WANT_SVALUE();
3248
3249 if (RARRAY_LEN(ary) == size) {
3250 rb_ary_shift(ary);
3251 }
3252 rb_ary_push(ary, i);
3253 if (RARRAY_LEN(ary) == size) {
3254 if (memo->v2) {
3255 ary = rb_ary_dup(ary);
3256 }
3257 v = rb_yield(ary);
3258 }
3259 return v;
3260}
3261
3262static VALUE
3263enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
3264{
3265 const VALUE zero = LONG2FIX(0);
3266 VALUE n, size;
3267 long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
3268 if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
3269
3270 size = enum_size(obj, 0, 0);
3271 if (NIL_P(size)) return Qnil;
3272
3273 n = add_int(size, 1 - cons_size);
3274 return (OPTIMIZED_CMP(n, zero) == -1) ? zero : n;
3275}
3276
3277/*
3278 * call-seq:
3279 * each_cons(n) { ... } -> self
3280 * each_cons(n) -> enumerator
3281 *
3282 * Calls the block with each successive overlapped +n+-tuple of elements;
3283 * returns +self+:
3284 *
3285 * a = []
3286 * (1..5).each_cons(3) {|element| a.push(element) }
3287 * a # => [[1, 2, 3], [2, 3, 4], [3, 4, 5]]
3288 *
3289 * a = []
3290 * h = {foo: 0, bar: 1, baz: 2, bam: 3}
3291 * h.each_cons(2) {|element| a.push(element) }
3292 * a # => [[[:foo, 0], [:bar, 1]], [[:bar, 1], [:baz, 2]], [[:baz, 2], [:bam, 3]]]
3293 *
3294 * With no block given, returns an Enumerator.
3295 *
3296 */
3297static VALUE
3298enum_each_cons(VALUE obj, VALUE n)
3299{
3300 long size = NUM2LONG(n);
3301 struct MEMO *memo;
3302 int arity;
3303
3304 if (size <= 0) rb_raise(rb_eArgError, "invalid size");
3305 RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
3306 arity = rb_block_arity();
3307 if (enum_size_over_p(obj, size)) return obj;
3308 memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
3309 rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
3310
3311 return obj;
3312}
3313
3314static VALUE
3315each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
3316{
3317 ENUM_WANT_SVALUE();
3318 return rb_yield_values(2, i, memo);
3319}
3320
3321/*
3322 * call-seq:
3323 * each_with_object(object) { |(*args), memo_object| ... } -> object
3324 * each_with_object(object) -> enumerator
3325 *
3326 * Calls the block once for each element, passing both the element
3327 * and the given object:
3328 *
3329 * (1..4).each_with_object([]) {|i, a| a.push(i**2) }
3330 * # => [1, 4, 9, 16]
3331 *
3332 * {foo: 0, bar: 1, baz: 2}.each_with_object({}) {|(k, v), h| h[v] = k }
3333 * # => {0=>:foo, 1=>:bar, 2=>:baz}
3334 *
3335 * With no block given, returns an Enumerator.
3336 *
3337 */
3338static VALUE
3339enum_each_with_object(VALUE obj, VALUE memo)
3340{
3341 RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
3342
3343 rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
3344
3345 return memo;
3346}
3347
3348static VALUE
3349zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
3350{
3351 struct MEMO *memo = (struct MEMO *)memoval;
3352 VALUE result = memo->v1;
3353 VALUE args = memo->v2;
3354 long n = memo->u3.cnt++;
3355 VALUE tmp;
3356 int i;
3357
3358 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
3359 rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
3360 for (i=0; i<RARRAY_LEN(args); i++) {
3361 VALUE e = RARRAY_AREF(args, i);
3362
3363 if (RARRAY_LEN(e) <= n) {
3364 rb_ary_push(tmp, Qnil);
3365 }
3366 else {
3367 rb_ary_push(tmp, RARRAY_AREF(e, n));
3368 }
3369 }
3370 if (NIL_P(result)) {
3371 enum_yield_array(tmp);
3372 }
3373 else {
3374 rb_ary_push(result, tmp);
3375 }
3376
3377 RB_GC_GUARD(args);
3378
3379 return Qnil;
3380}
3381
3382static VALUE
3383call_next(VALUE w)
3384{
3385 VALUE *v = (VALUE *)w;
3386 return v[0] = rb_funcallv(v[1], id_next, 0, 0);
3387}
3388
3389static VALUE
3390call_stop(VALUE w, VALUE _)
3391{
3392 VALUE *v = (VALUE *)w;
3393 return v[0] = Qundef;
3394}
3395
3396static VALUE
3397zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
3398{
3399 struct MEMO *memo = (struct MEMO *)memoval;
3400 VALUE result = memo->v1;
3401 VALUE args = memo->v2;
3402 VALUE tmp;
3403 int i;
3404
3405 tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
3406 rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
3407 for (i=0; i<RARRAY_LEN(args); i++) {
3408 if (NIL_P(RARRAY_AREF(args, i))) {
3409 rb_ary_push(tmp, Qnil);
3410 }
3411 else {
3412 VALUE v[2];
3413
3414 v[1] = RARRAY_AREF(args, i);
3415 rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
3416 if (UNDEF_P(v[0])) {
3417 RARRAY_ASET(args, i, Qnil);
3418 v[0] = Qnil;
3419 }
3420 rb_ary_push(tmp, v[0]);
3421 }
3422 }
3423 if (NIL_P(result)) {
3424 enum_yield_array(tmp);
3425 }
3426 else {
3427 rb_ary_push(result, tmp);
3428 }
3429
3430 RB_GC_GUARD(args);
3431
3432 return Qnil;
3433}
3434
3435/*
3436 * call-seq:
3437 * zip(*other_enums) -> array
3438 * zip(*other_enums) {|array| ... } -> nil
3439 *
3440 * With no block given, returns a new array +new_array+ of size self.size
3441 * whose elements are arrays.
3442 * Each nested array <tt>new_array[n]</tt>
3443 * is of size <tt>other_enums.size+1</tt>, and contains:
3444 *
3445 * - The +n+-th element of self.
3446 * - The +n+-th element of each of the +other_enums+.
3447 *
3448 * If all +other_enums+ and self are the same size,
3449 * all elements are included in the result, and there is no +nil+-filling:
3450 *
3451 * a = [:a0, :a1, :a2, :a3]
3452 * b = [:b0, :b1, :b2, :b3]
3453 * c = [:c0, :c1, :c2, :c3]
3454 * d = a.zip(b, c)
3455 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
3456 *
3457 * f = {foo: 0, bar: 1, baz: 2}
3458 * g = {goo: 3, gar: 4, gaz: 5}
3459 * h = {hoo: 6, har: 7, haz: 8}
3460 * d = f.zip(g, h)
3461 * d # => [
3462 * # [[:foo, 0], [:goo, 3], [:hoo, 6]],
3463 * # [[:bar, 1], [:gar, 4], [:har, 7]],
3464 * # [[:baz, 2], [:gaz, 5], [:haz, 8]]
3465 * # ]
3466 *
3467 * If any enumerable in other_enums is smaller than self,
3468 * fills to <tt>self.size</tt> with +nil+:
3469 *
3470 * a = [:a0, :a1, :a2, :a3]
3471 * b = [:b0, :b1, :b2]
3472 * c = [:c0, :c1]
3473 * d = a.zip(b, c)
3474 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, nil], [:a3, nil, nil]]
3475 *
3476 * If any enumerable in other_enums is larger than self,
3477 * its trailing elements are ignored:
3478 *
3479 * a = [:a0, :a1, :a2, :a3]
3480 * b = [:b0, :b1, :b2, :b3, :b4]
3481 * c = [:c0, :c1, :c2, :c3, :c4, :c5]
3482 * d = a.zip(b, c)
3483 * d # => [[:a0, :b0, :c0], [:a1, :b1, :c1], [:a2, :b2, :c2], [:a3, :b3, :c3]]
3484 *
3485 * When a block is given, calls the block with each of the sub-arrays
3486 * (formed as above); returns nil:
3487 *
3488 * a = [:a0, :a1, :a2, :a3]
3489 * b = [:b0, :b1, :b2, :b3]
3490 * c = [:c0, :c1, :c2, :c3]
3491 * a.zip(b, c) {|sub_array| p sub_array} # => nil
3492 *
3493 * Output:
3494 *
3495 * [:a0, :b0, :c0]
3496 * [:a1, :b1, :c1]
3497 * [:a2, :b2, :c2]
3498 * [:a3, :b3, :c3]
3499 *
3500 */
3501
3502static VALUE
3503enum_zip(int argc, VALUE *argv, VALUE obj)
3504{
3505 int i;
3506 ID conv;
3507 struct MEMO *memo;
3508 VALUE result = Qnil;
3509 VALUE args = rb_ary_new4(argc, argv);
3510 int allary = TRUE;
3511
3512 argv = RARRAY_PTR(args);
3513 for (i=0; i<argc; i++) {
3514 VALUE ary = rb_check_array_type(argv[i]);
3515 if (NIL_P(ary)) {
3516 allary = FALSE;
3517 break;
3518 }
3519 argv[i] = ary;
3520 }
3521 if (!allary) {
3522 static const VALUE sym_each = STATIC_ID2SYM(id_each);
3523 CONST_ID(conv, "to_enum");
3524 for (i=0; i<argc; i++) {
3525 if (!rb_respond_to(argv[i], id_each)) {
3526 rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
3527 rb_obj_class(argv[i]));
3528 }
3529 argv[i] = rb_funcallv(argv[i], conv, 1, &sym_each);
3530 }
3531 }
3532 if (!rb_block_given_p()) {
3533 result = rb_ary_new();
3534 }
3535
3536 /* TODO: use NODE_DOT2 as memo(v, v, -) */
3537 memo = MEMO_NEW(result, args, 0);
3538 rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
3539
3540 return result;
3541}
3542
3543static VALUE
3544take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3545{
3546 struct MEMO *memo = MEMO_CAST(args);
3547 rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
3548 if (--memo->u3.cnt == 0) rb_iter_break();
3549 return Qnil;
3550}
3551
3552/*
3553 * call-seq:
3554 * take(n) -> array
3555 *
3556 * For non-negative integer +n+, returns the first +n+ elements:
3557 *
3558 * r = (1..4)
3559 * r.take(2) # => [1, 2]
3560 * r.take(0) # => []
3561 *
3562 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
3563 * h.take(2) # => [[:foo, 0], [:bar, 1]]
3564 *
3565 */
3566
3567static VALUE
3568enum_take(VALUE obj, VALUE n)
3569{
3570 struct MEMO *memo;
3571 VALUE result;
3572 long len = NUM2LONG(n);
3573
3574 if (len < 0) {
3575 rb_raise(rb_eArgError, "attempt to take negative size");
3576 }
3577
3578 if (len == 0) return rb_ary_new2(0);
3579 result = rb_ary_new2(len);
3580 memo = MEMO_NEW(result, 0, len);
3581 rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
3582 return result;
3583}
3584
3585
3586static VALUE
3587take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
3588{
3589 if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break();
3590 rb_ary_push(ary, rb_enum_values_pack(argc, argv));
3591 return Qnil;
3592}
3593
3594/*
3595 * call-seq:
3596 * take_while {|element| ... } -> array
3597 * take_while -> enumerator
3598 *
3599 * Calls the block with successive elements as long as the block
3600 * returns a truthy value;
3601 * returns an array of all elements up to that point:
3602 *
3603 *
3604 * (1..4).take_while{|i| i < 3 } # => [1, 2]
3605 * h = {foo: 0, bar: 1, baz: 2}
3606 * h.take_while{|element| key, value = *element; value < 2 }
3607 * # => [[:foo, 0], [:bar, 1]]
3608 *
3609 * With no block given, returns an Enumerator.
3610 *
3611 */
3612
3613static VALUE
3614enum_take_while(VALUE obj)
3615{
3616 VALUE ary;
3617
3618 RETURN_ENUMERATOR(obj, 0, 0);
3619 ary = rb_ary_new();
3620 rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
3621 return ary;
3622}
3623
3624static VALUE
3625drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3626{
3627 struct MEMO *memo = MEMO_CAST(args);
3628 if (memo->u3.cnt == 0) {
3629 rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv));
3630 }
3631 else {
3632 memo->u3.cnt--;
3633 }
3634 return Qnil;
3635}
3636
3637/*
3638 * call-seq:
3639 * drop(n) -> array
3640 *
3641 * For positive integer +n+, returns an array containing
3642 * all but the first +n+ elements:
3643 *
3644 * r = (1..4)
3645 * r.drop(3) # => [4]
3646 * r.drop(2) # => [3, 4]
3647 * r.drop(1) # => [2, 3, 4]
3648 * r.drop(0) # => [1, 2, 3, 4]
3649 * r.drop(50) # => []
3650 *
3651 * h = {foo: 0, bar: 1, baz: 2, bat: 3}
3652 * h.drop(2) # => [[:baz, 2], [:bat, 3]]
3653 *
3654 */
3655
3656static VALUE
3657enum_drop(VALUE obj, VALUE n)
3658{
3659 VALUE result;
3660 struct MEMO *memo;
3661 long len = NUM2LONG(n);
3662
3663 if (len < 0) {
3664 rb_raise(rb_eArgError, "attempt to drop negative size");
3665 }
3666
3667 result = rb_ary_new();
3668 memo = MEMO_NEW(result, 0, len);
3669 rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
3670 return result;
3671}
3672
3673
3674static VALUE
3675drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
3676{
3677 struct MEMO *memo = MEMO_CAST(args);
3678 ENUM_WANT_SVALUE();
3679
3680 if (!memo->u3.state && !RTEST(enum_yield(argc, i))) {
3681 memo->u3.state = TRUE;
3682 }
3683 if (memo->u3.state) {
3684 rb_ary_push(memo->v1, i);
3685 }
3686 return Qnil;
3687}
3688
3689/*
3690 * call-seq:
3691 * drop_while {|element| ... } -> array
3692 * drop_while -> enumerator
3693 *
3694 * Calls the block with successive elements as long as the block
3695 * returns a truthy value;
3696 * returns an array of all elements after that point:
3697 *
3698 *
3699 * (1..4).drop_while{|i| i < 3 } # => [3, 4]
3700 * h = {foo: 0, bar: 1, baz: 2}
3701 * a = h.drop_while{|element| key, value = *element; value < 2 }
3702 * a # => [[:baz, 2]]
3703 *
3704 * With no block given, returns an Enumerator.
3705 *
3706 */
3707
3708static VALUE
3709enum_drop_while(VALUE obj)
3710{
3711 VALUE result;
3712 struct MEMO *memo;
3713
3714 RETURN_ENUMERATOR(obj, 0, 0);
3715 result = rb_ary_new();
3716 memo = MEMO_NEW(result, 0, FALSE);
3717 rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
3718 return result;
3719}
3720
3721static VALUE
3722cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
3723{
3724 ENUM_WANT_SVALUE();
3725
3726 rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv));
3727 enum_yield(argc, i);
3728 return Qnil;
3729}
3730
3731static VALUE
3732enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
3733{
3734 long mul = 0;
3735 VALUE n = Qnil;
3736 VALUE size;
3737
3738 if (args && (RARRAY_LEN(args) > 0)) {
3739 n = RARRAY_AREF(args, 0);
3740 if (!NIL_P(n)) mul = NUM2LONG(n);
3741 }
3742
3743 size = enum_size(self, args, 0);
3744 if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size;
3745
3746 if (NIL_P(n)) return DBL2NUM(HUGE_VAL);
3747 if (mul <= 0) return INT2FIX(0);
3748 n = LONG2FIX(mul);
3749 return rb_funcallv(size, '*', 1, &n);
3750}
3751
3752/*
3753 * call-seq:
3754 * cycle(n = nil) {|element| ...} -> nil
3755 * cycle(n = nil) -> enumerator
3756 *
3757 * When called with positive integer argument +n+ and a block,
3758 * calls the block with each element, then does so again,
3759 * until it has done so +n+ times; returns +nil+:
3760 *
3761 * a = []
3762 * (1..4).cycle(3) {|element| a.push(element) } # => nil
3763 * a # => [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
3764 * a = []
3765 * ('a'..'d').cycle(2) {|element| a.push(element) }
3766 * a # => ["a", "b", "c", "d", "a", "b", "c", "d"]
3767 * a = []
3768 * {foo: 0, bar: 1, baz: 2}.cycle(2) {|element| a.push(element) }
3769 * a # => [[:foo, 0], [:bar, 1], [:baz, 2], [:foo, 0], [:bar, 1], [:baz, 2]]
3770 *
3771 * If count is zero or negative, does not call the block.
3772 *
3773 * When called with a block and +n+ is +nil+, cycles forever.
3774 *
3775 * When no block is given, returns an Enumerator.
3776 *
3777 */
3778
3779static VALUE
3780enum_cycle(int argc, VALUE *argv, VALUE obj)
3781{
3782 VALUE ary;
3783 VALUE nv = Qnil;
3784 long n, i, len;
3785
3786 rb_check_arity(argc, 0, 1);
3787
3788 RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
3789 if (!argc || NIL_P(nv = argv[0])) {
3790 n = -1;
3791 }
3792 else {
3793 n = NUM2LONG(nv);
3794 if (n <= 0) return Qnil;
3795 }
3796 ary = rb_ary_new();
3797 RBASIC_CLEAR_CLASS(ary);
3798 rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
3799 len = RARRAY_LEN(ary);
3800 if (len == 0) return Qnil;
3801 while (n < 0 || 0 < --n) {
3802 for (i=0; i<len; i++) {
3803 enum_yield_array(RARRAY_AREF(ary, i));
3804 }
3805 }
3806 return Qnil;
3807}
3808
3810 VALUE categorize;
3811 VALUE prev_value;
3812 VALUE prev_elts;
3813 VALUE yielder;
3814};
3815
3816static VALUE
3817chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
3818{
3819 struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
3820 VALUE v, s;
3821 VALUE alone = ID2SYM(id__alone);
3822 VALUE separator = ID2SYM(id__separator);
3823
3824 ENUM_WANT_SVALUE();
3825
3826 v = rb_funcallv(argp->categorize, id_call, 1, &i);
3827
3828 if (v == alone) {
3829 if (!NIL_P(argp->prev_value)) {
3830 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3831 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3832 argp->prev_value = argp->prev_elts = Qnil;
3833 }
3834 v = rb_assoc_new(v, rb_ary_new3(1, i));
3835 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3836 }
3837 else if (NIL_P(v) || v == separator) {
3838 if (!NIL_P(argp->prev_value)) {
3839 v = rb_assoc_new(argp->prev_value, argp->prev_elts);
3840 rb_funcallv(argp->yielder, id_lshift, 1, &v);
3841 argp->prev_value = argp->prev_elts = Qnil;
3842 }
3843 }
3844 else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
3845 rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
3846 }
3847 else {
3848 if (NIL_P(argp->prev_value)) {
3849 argp->prev_value = v;
3850 argp->prev_elts = rb_ary_new3(1, i);
3851 }
3852 else {
3853 if (rb_equal(argp->prev_value, v)) {
3854 rb_ary_push(argp->prev_elts, i);
3855 }
3856 else {
3857 s = rb_assoc_new(argp->prev_value, argp->prev_elts);
3858 rb_funcallv(argp->yielder, id_lshift, 1, &s);
3859 argp->prev_value = v;
3860 argp->prev_elts = rb_ary_new3(1, i);
3861 }
3862 }
3863 }
3864 return Qnil;
3865}
3866
3867static VALUE
3869{
3870 VALUE enumerable;
3871 VALUE arg;
3872 struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
3873
3874 enumerable = rb_ivar_get(enumerator, id_chunk_enumerable);
3875 memo->categorize = rb_ivar_get(enumerator, id_chunk_categorize);
3876 memo->prev_value = Qnil;
3877 memo->prev_elts = Qnil;
3878 memo->yielder = yielder;
3879
3880 rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
3881 memo = MEMO_FOR(struct chunk_arg, arg);
3882 if (!NIL_P(memo->prev_elts)) {
3883 arg = rb_assoc_new(memo->prev_value, memo->prev_elts);
3884 rb_funcallv(memo->yielder, id_lshift, 1, &arg);
3885 }
3886 return Qnil;
3887}
3888
3889/*
3890 * call-seq:
3891 * chunk {|array| ... } -> enumerator
3892 *
3893 * Each element in the returned enumerator is a 2-element array consisting of:
3894 *
3895 * - A value returned by the block.
3896 * - An array ("chunk") containing the element for which that value was returned,
3897 * and all following elements for which the block returned the same value:
3898 *
3899 * So that:
3900 *
3901 * - Each block return value that is different from its predecessor
3902 * begins a new chunk.
3903 * - Each block return value that is the same as its predecessor
3904 * continues the same chunk.
3905 *
3906 * Example:
3907 *
3908 * e = (0..10).chunk {|i| (i / 3).floor } # => #<Enumerator: ...>
3909 * # The enumerator elements.
3910 * e.next # => [0, [0, 1, 2]]
3911 * e.next # => [1, [3, 4, 5]]
3912 * e.next # => [2, [6, 7, 8]]
3913 * e.next # => [3, [9, 10]]
3914 *
3915 * Method +chunk+ is especially useful for an enumerable that is already sorted.
3916 * This example counts words for each initial letter in a large array of words:
3917 *
3918 * # Get sorted words from a web page.
3919 * url = 'https://raw.githubusercontent.com/eneko/data-repository/master/data/words.txt'
3920 * words = URI::open(url).readlines
3921 * # Make chunks, one for each letter.
3922 * e = words.chunk {|word| word.upcase[0] } # => #<Enumerator: ...>
3923 * # Display 'A' through 'F'.
3924 * e.each {|c, words| p [c, words.length]; break if c == 'F' }
3925 *
3926 * Output:
3927 *
3928 * ["A", 17096]
3929 * ["B", 11070]
3930 * ["C", 19901]
3931 * ["D", 10896]
3932 * ["E", 8736]
3933 * ["F", 6860]
3934 *
3935 * You can use the special symbol <tt>:_alone</tt> to force an element
3936 * into its own separate chuck:
3937 *
3938 * a = [0, 0, 1, 1]
3939 * e = a.chunk{|i| i.even? ? :_alone : true }
3940 * e.to_a # => [[:_alone, [0]], [:_alone, [0]], [true, [1, 1]]]
3941 *
3942 * For example, you can put each line that contains a URL into its own chunk:
3943 *
3944 * pattern = /http/
3945 * open(filename) { |f|
3946 * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
3947 * pp lines
3948 * }
3949 * }
3950 *
3951 * You can use the special symbol <tt>:_separator</tt> or +nil+
3952 * to force an element to be ignored (not included in any chunk):
3953 *
3954 * a = [0, 0, -1, 1, 1]
3955 * e = a.chunk{|i| i < 0 ? :_separator : true }
3956 * e.to_a # => [[true, [0, 0]], [true, [1, 1]]]
3957 *
3958 * Note that the separator does end the chunk:
3959 *
3960 * a = [0, 0, -1, 1, -1, 1]
3961 * e = a.chunk{|i| i < 0 ? :_separator : true }
3962 * e.to_a # => [[true, [0, 0]], [true, [1]], [true, [1]]]
3963 *
3964 * For example, the sequence of hyphens in svn log can be eliminated as follows:
3965 *
3966 * sep = "-"*72 + "\n"
3967 * IO.popen("svn log README") { |f|
3968 * f.chunk { |line|
3969 * line != sep || nil
3970 * }.each { |_, lines|
3971 * pp lines
3972 * }
3973 * }
3974 * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
3975 * # "\n",
3976 * # "* README, README.ja: Update the portability section.\n",
3977 * # "\n"]
3978 * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
3979 * # "\n",
3980 * # "* README, README.ja: Add a note about default C flags.\n",
3981 * # "\n"]
3982 * # ...
3983 *
3984 * Paragraphs separated by empty lines can be parsed as follows:
3985 *
3986 * File.foreach("README").chunk { |line|
3987 * /\A\s*\z/ !~ line || nil
3988 * }.each { |_, lines|
3989 * pp lines
3990 * }
3991 *
3992 */
3993static VALUE
3994enum_chunk(VALUE enumerable)
3995{
3997
3998 RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size);
3999
4001 rb_ivar_set(enumerator, id_chunk_enumerable, enumerable);
4002 rb_ivar_set(enumerator, id_chunk_categorize, rb_block_proc());
4003 rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
4004 return enumerator;
4005}
4006
4007
4009 VALUE sep_pred;
4010 VALUE sep_pat;
4011 VALUE prev_elts;
4012 VALUE yielder;
4013};
4014
4015static VALUE
4016slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
4017{
4018 struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
4019 VALUE header_p;
4020
4021 ENUM_WANT_SVALUE();
4022
4023 if (!NIL_P(argp->sep_pat))
4024 header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i);
4025 else
4026 header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i);
4027 if (RTEST(header_p)) {
4028 if (!NIL_P(argp->prev_elts))
4029 rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts);
4030 argp->prev_elts = rb_ary_new3(1, i);
4031 }
4032 else {
4033 if (NIL_P(argp->prev_elts))
4034 argp->prev_elts = rb_ary_new3(1, i);
4035 else
4036 rb_ary_push(argp->prev_elts, i);
4037 }
4038
4039 return Qnil;
4040}
4041
4042static VALUE
4044{
4045 VALUE enumerable;
4046 VALUE arg;
4047 struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
4048
4049 enumerable = rb_ivar_get(enumerator, id_slicebefore_enumerable);
4050 memo->sep_pred = rb_attr_get(enumerator, id_slicebefore_sep_pred);
4051 memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, id_slicebefore_sep_pat) : Qnil;
4052 memo->prev_elts = Qnil;
4053 memo->yielder = yielder;
4054
4055 rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
4056 memo = MEMO_FOR(struct slicebefore_arg, arg);
4057 if (!NIL_P(memo->prev_elts))
4058 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4059 return Qnil;
4060}
4061
4062/*
4063 * call-seq:
4064 * slice_before(pattern) -> enumerator
4065 * slice_before {|elt| ... } -> enumerator
4066 *
4067 * With argument +pattern+, returns an enumerator that uses the pattern
4068 * to partition elements into arrays ("slices").
4069 * An element begins a new slice if <tt>element === pattern</tt>
4070 * (or if it is the first element).
4071 *
4072 * a = %w[foo bar fop for baz fob fog bam foy]
4073 * e = a.slice_before(/ba/) # => #<Enumerator: ...>
4074 * e.each {|array| p array }
4075 *
4076 * Output:
4077 *
4078 * ["foo"]
4079 * ["bar", "fop", "for"]
4080 * ["baz", "fob", "fog"]
4081 * ["bam", "foy"]
4082 *
4083 * With a block, returns an enumerator that uses the block
4084 * to partition elements into arrays.
4085 * An element begins a new slice if its block return is a truthy value
4086 * (or if it is the first element):
4087 *
4088 * e = (1..20).slice_before {|i| i % 4 == 2 } # => #<Enumerator: ...>
4089 * e.each {|array| p array }
4090 *
4091 * Output:
4092 *
4093 * [1]
4094 * [2, 3, 4, 5]
4095 * [6, 7, 8, 9]
4096 * [10, 11, 12, 13]
4097 * [14, 15, 16, 17]
4098 * [18, 19, 20]
4099 *
4100 * Other methods of the Enumerator class and Enumerable module,
4101 * such as +to_a+, +map+, etc., are also usable.
4102 *
4103 * For example, iteration over ChangeLog entries can be implemented as
4104 * follows:
4105 *
4106 * # iterate over ChangeLog entries.
4107 * open("ChangeLog") { |f|
4108 * f.slice_before(/\A\S/).each { |e| pp e }
4109 * }
4110 *
4111 * # same as above. block is used instead of pattern argument.
4112 * open("ChangeLog") { |f|
4113 * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
4114 * }
4115 *
4116 * "svn proplist -R" produces multiline output for each file.
4117 * They can be chunked as follows:
4118 *
4119 * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
4120 * f.lines.slice_before(/\AProp/).each { |lines| p lines }
4121 * }
4122 * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
4123 * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
4124 * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
4125 * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
4126 * # ...
4127 *
4128 * If the block needs to maintain state over multiple elements,
4129 * local variables can be used.
4130 * For example, three or more consecutive increasing numbers can be squashed
4131 * as follows (see +chunk_while+ for a better way):
4132 *
4133 * a = [0, 2, 3, 4, 6, 7, 9]
4134 * prev = a[0]
4135 * p a.slice_before { |e|
4136 * prev, prev2 = e, prev
4137 * prev2 + 1 != e
4138 * }.map { |es|
4139 * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
4140 * }.join(",")
4141 * #=> "0,2-4,6,7,9"
4142 *
4143 * However local variables should be used carefully
4144 * if the result enumerator is enumerated twice or more.
4145 * The local variables should be initialized for each enumeration.
4146 * Enumerator.new can be used to do it.
4147 *
4148 * # Word wrapping. This assumes all characters have same width.
4149 * def wordwrap(words, maxwidth)
4150 * Enumerator.new {|y|
4151 * # cols is initialized in Enumerator.new.
4152 * cols = 0
4153 * words.slice_before { |w|
4154 * cols += 1 if cols != 0
4155 * cols += w.length
4156 * if maxwidth < cols
4157 * cols = w.length
4158 * true
4159 * else
4160 * false
4161 * end
4162 * }.each {|ws| y.yield ws }
4163 * }
4164 * end
4165 * text = (1..20).to_a.join(" ")
4166 * enum = wordwrap(text.split(/\s+/), 10)
4167 * puts "-"*10
4168 * enum.each { |ws| puts ws.join(" ") } # first enumeration.
4169 * puts "-"*10
4170 * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
4171 * puts "-"*10
4172 * #=> ----------
4173 * # 1 2 3 4 5
4174 * # 6 7 8 9 10
4175 * # 11 12 13
4176 * # 14 15 16
4177 * # 17 18 19
4178 * # 20
4179 * # ----------
4180 * # 1 2 3 4 5
4181 * # 6 7 8 9 10
4182 * # 11 12 13
4183 * # 14 15 16
4184 * # 17 18 19
4185 * # 20
4186 * # ----------
4187 *
4188 * mbox contains series of mails which start with Unix From line.
4189 * So each mail can be extracted by slice before Unix From line.
4190 *
4191 * # parse mbox
4192 * open("mbox") { |f|
4193 * f.slice_before { |line|
4194 * line.start_with? "From "
4195 * }.each { |mail|
4196 * unix_from = mail.shift
4197 * i = mail.index("\n")
4198 * header = mail[0...i]
4199 * body = mail[(i+1)..-1]
4200 * body.pop if body.last == "\n"
4201 * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
4202 * p unix_from
4203 * pp fields
4204 * pp body
4205 * }
4206 * }
4207 *
4208 * # split mails in mbox (slice before Unix From line after an empty line)
4209 * open("mbox") { |f|
4210 * emp = true
4211 * f.slice_before { |line|
4212 * prevemp = emp
4213 * emp = line == "\n"
4214 * prevemp && line.start_with?("From ")
4215 * }.each { |mail|
4216 * mail.pop if mail.last == "\n"
4217 * pp mail
4218 * }
4219 * }
4220 *
4221 */
4222static VALUE
4223enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
4224{
4226
4227 if (rb_block_given_p()) {
4228 if (argc != 0)
4229 rb_error_arity(argc, 0, 0);
4231 rb_ivar_set(enumerator, id_slicebefore_sep_pred, rb_block_proc());
4232 }
4233 else {
4234 VALUE sep_pat;
4235 rb_scan_args(argc, argv, "1", &sep_pat);
4237 rb_ivar_set(enumerator, id_slicebefore_sep_pat, sep_pat);
4238 }
4239 rb_ivar_set(enumerator, id_slicebefore_enumerable, enumerable);
4240 rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
4241 return enumerator;
4242}
4243
4244
4246 VALUE pat;
4247 VALUE pred;
4248 VALUE prev_elts;
4249 VALUE yielder;
4250};
4251
4252static VALUE
4253sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
4254{
4255#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
4256 struct sliceafter_arg *memo;
4257 int split_p;
4258 UPDATE_MEMO;
4259
4260 ENUM_WANT_SVALUE();
4261
4262 if (NIL_P(memo->prev_elts)) {
4263 memo->prev_elts = rb_ary_new3(1, i);
4264 }
4265 else {
4266 rb_ary_push(memo->prev_elts, i);
4267 }
4268
4269 if (NIL_P(memo->pred)) {
4270 split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i));
4271 UPDATE_MEMO;
4272 }
4273 else {
4274 split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i));
4275 UPDATE_MEMO;
4276 }
4277
4278 if (split_p) {
4279 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4280 UPDATE_MEMO;
4281 memo->prev_elts = Qnil;
4282 }
4283
4284 return Qnil;
4285#undef UPDATE_MEMO
4286}
4287
4288static VALUE
4290{
4291 VALUE enumerable;
4292 VALUE arg;
4293 struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
4294
4295 enumerable = rb_ivar_get(enumerator, id_sliceafter_enum);
4296 memo->pat = rb_ivar_get(enumerator, id_sliceafter_pat);
4297 memo->pred = rb_attr_get(enumerator, id_sliceafter_pred);
4298 memo->prev_elts = Qnil;
4299 memo->yielder = yielder;
4300
4301 rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
4302 memo = MEMO_FOR(struct sliceafter_arg, arg);
4303 if (!NIL_P(memo->prev_elts))
4304 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4305 return Qnil;
4306}
4307
4308/*
4309 * call-seq:
4310 * enum.slice_after(pattern) -> an_enumerator
4311 * enum.slice_after { |elt| bool } -> an_enumerator
4312 *
4313 * Creates an enumerator for each chunked elements.
4314 * The ends of chunks are defined by _pattern_ and the block.
4315 *
4316 * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
4317 * returns <code>true</code> for the element, the element is end of a
4318 * chunk.
4319 *
4320 * The <code>===</code> and _block_ is called from the first element to the last
4321 * element of _enum_.
4322 *
4323 * The result enumerator yields the chunked elements as an array.
4324 * So +each+ method can be called as follows:
4325 *
4326 * enum.slice_after(pattern).each { |ary| ... }
4327 * enum.slice_after { |elt| bool }.each { |ary| ... }
4328 *
4329 * Other methods of the Enumerator class and Enumerable module,
4330 * such as +map+, etc., are also usable.
4331 *
4332 * For example, continuation lines (lines end with backslash) can be
4333 * concatenated as follows:
4334 *
4335 * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
4336 * e = lines.slice_after(/(?<!\\‍)\n\z/)
4337 * p e.to_a
4338 * #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
4339 * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
4340 * #=>["foo\n", "barbaz\n", "\n", "qux\n"]
4341 *
4342 */
4343
4344static VALUE
4345enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
4346{
4348 VALUE pat = Qnil, pred = Qnil;
4349
4350 if (rb_block_given_p()) {
4351 if (0 < argc)
4352 rb_raise(rb_eArgError, "both pattern and block are given");
4353 pred = rb_block_proc();
4354 }
4355 else {
4356 rb_scan_args(argc, argv, "1", &pat);
4357 }
4358
4360 rb_ivar_set(enumerator, id_sliceafter_enum, enumerable);
4361 rb_ivar_set(enumerator, id_sliceafter_pat, pat);
4362 rb_ivar_set(enumerator, id_sliceafter_pred, pred);
4363
4364 rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
4365 return enumerator;
4366}
4367
4369 VALUE pred;
4370 VALUE prev_elt;
4371 VALUE prev_elts;
4372 VALUE yielder;
4373 int inverted; /* 0 for slice_when and 1 for chunk_while. */
4374};
4375
4376static VALUE
4377slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
4378{
4379#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
4380 struct slicewhen_arg *memo;
4381 int split_p;
4382 UPDATE_MEMO;
4383
4384 ENUM_WANT_SVALUE();
4385
4386 if (UNDEF_P(memo->prev_elt)) {
4387 /* The first element */
4388 memo->prev_elt = i;
4389 memo->prev_elts = rb_ary_new3(1, i);
4390 }
4391 else {
4392 VALUE args[2];
4393 args[0] = memo->prev_elt;
4394 args[1] = i;
4395 split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args));
4396 UPDATE_MEMO;
4397
4398 if (memo->inverted)
4399 split_p = !split_p;
4400
4401 if (split_p) {
4402 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4403 UPDATE_MEMO;
4404 memo->prev_elts = rb_ary_new3(1, i);
4405 }
4406 else {
4407 rb_ary_push(memo->prev_elts, i);
4408 }
4409
4410 memo->prev_elt = i;
4411 }
4412
4413 return Qnil;
4414#undef UPDATE_MEMO
4415}
4416
4417static VALUE
4419{
4420 VALUE enumerable;
4421 VALUE arg;
4422 struct slicewhen_arg *memo =
4423 NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted);
4424
4425 enumerable = rb_ivar_get(enumerator, id_slicewhen_enum);
4426 memo->pred = rb_attr_get(enumerator, id_slicewhen_pred);
4427 memo->prev_elt = Qundef;
4428 memo->prev_elts = Qnil;
4429 memo->yielder = yielder;
4430 memo->inverted = RTEST(rb_attr_get(enumerator, id_slicewhen_inverted));
4431
4432 rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
4433 memo = MEMO_FOR(struct slicewhen_arg, arg);
4434 if (!NIL_P(memo->prev_elts))
4435 rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts);
4436 return Qnil;
4437}
4438
4439/*
4440 * call-seq:
4441 * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
4442 *
4443 * Creates an enumerator for each chunked elements.
4444 * The beginnings of chunks are defined by the block.
4445 *
4446 * This method splits each chunk using adjacent elements,
4447 * _elt_before_ and _elt_after_,
4448 * in the receiver enumerator.
4449 * This method split chunks between _elt_before_ and _elt_after_ where
4450 * the block returns <code>true</code>.
4451 *
4452 * The block is called the length of the receiver enumerator minus one.
4453 *
4454 * The result enumerator yields the chunked elements as an array.
4455 * So +each+ method can be called as follows:
4456 *
4457 * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
4458 *
4459 * Other methods of the Enumerator class and Enumerable module,
4460 * such as +to_a+, +map+, etc., are also usable.
4461 *
4462 * For example, one-by-one increasing subsequence can be chunked as follows:
4463 *
4464 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
4465 * b = a.slice_when {|i, j| i+1 != j }
4466 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
4467 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
4468 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
4469 * d = c.join(",")
4470 * p d #=> "1,2,4,9-12,15,16,19-21"
4471 *
4472 * Near elements (threshold: 6) in sorted array can be chunked as follows:
4473 *
4474 * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
4475 * p a.slice_when {|i, j| 6 < j - i }.to_a
4476 * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
4477 *
4478 * Increasing (non-decreasing) subsequence can be chunked as follows:
4479 *
4480 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
4481 * p a.slice_when {|i, j| i > j }.to_a
4482 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
4483 *
4484 * Adjacent evens and odds can be chunked as follows:
4485 * (Enumerable#chunk is another way to do it.)
4486 *
4487 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
4488 * p a.slice_when {|i, j| i.even? != j.even? }.to_a
4489 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
4490 *
4491 * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
4492 * (See Enumerable#chunk to ignore empty lines.)
4493 *
4494 * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
4495 * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
4496 * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
4497 *
4498 * Enumerable#chunk_while does the same, except splitting when the block
4499 * returns <code>false</code> instead of <code>true</code>.
4500 */
4501static VALUE
4502enum_slice_when(VALUE enumerable)
4503{
4505 VALUE pred;
4506
4507 pred = rb_block_proc();
4508
4510 rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
4511 rb_ivar_set(enumerator, id_slicewhen_pred, pred);
4512 rb_ivar_set(enumerator, id_slicewhen_inverted, Qfalse);
4513
4514 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
4515 return enumerator;
4516}
4517
4518/*
4519 * call-seq:
4520 * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator
4521 *
4522 * Creates an enumerator for each chunked elements.
4523 * The beginnings of chunks are defined by the block.
4524 *
4525 * This method splits each chunk using adjacent elements,
4526 * _elt_before_ and _elt_after_,
4527 * in the receiver enumerator.
4528 * This method split chunks between _elt_before_ and _elt_after_ where
4529 * the block returns <code>false</code>.
4530 *
4531 * The block is called the length of the receiver enumerator minus one.
4532 *
4533 * The result enumerator yields the chunked elements as an array.
4534 * So +each+ method can be called as follows:
4535 *
4536 * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... }
4537 *
4538 * Other methods of the Enumerator class and Enumerable module,
4539 * such as +to_a+, +map+, etc., are also usable.
4540 *
4541 * For example, one-by-one increasing subsequence can be chunked as follows:
4542 *
4543 * a = [1,2,4,9,10,11,12,15,16,19,20,21]
4544 * b = a.chunk_while {|i, j| i+1 == j }
4545 * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
4546 * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
4547 * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
4548 * d = c.join(",")
4549 * p d #=> "1,2,4,9-12,15,16,19-21"
4550 *
4551 * Increasing (non-decreasing) subsequence can be chunked as follows:
4552 *
4553 * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
4554 * p a.chunk_while {|i, j| i <= j }.to_a
4555 * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
4556 *
4557 * Adjacent evens and odds can be chunked as follows:
4558 * (Enumerable#chunk is another way to do it.)
4559 *
4560 * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
4561 * p a.chunk_while {|i, j| i.even? == j.even? }.to_a
4562 * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
4563 *
4564 * Enumerable#slice_when does the same, except splitting when the block
4565 * returns <code>true</code> instead of <code>false</code>.
4566 */
4567static VALUE
4568enum_chunk_while(VALUE enumerable)
4569{
4571 VALUE pred;
4572
4573 pred = rb_block_proc();
4574
4576 rb_ivar_set(enumerator, id_slicewhen_enum, enumerable);
4577 rb_ivar_set(enumerator, id_slicewhen_pred, pred);
4578 rb_ivar_set(enumerator, id_slicewhen_inverted, Qtrue);
4579
4580 rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
4581 return enumerator;
4582}
4583
4585 VALUE v, r;
4586 long n;
4587 double f, c;
4588 int block_given;
4589 int float_value;
4590};
4591
4592static void
4593sum_iter_normalize_memo(struct enum_sum_memo *memo)
4594{
4595 RUBY_ASSERT(FIXABLE(memo->n));
4596 memo->v = rb_fix_plus(LONG2FIX(memo->n), memo->v);
4597 memo->n = 0;
4598
4599 switch (TYPE(memo->r)) {
4600 case T_RATIONAL: memo->v = rb_rational_plus(memo->r, memo->v); break;
4601 case T_UNDEF: break;
4602 default: UNREACHABLE; /* or ...? */
4603 }
4604 memo->r = Qundef;
4605}
4606
4607static void
4608sum_iter_fixnum(VALUE i, struct enum_sum_memo *memo)
4609{
4610 memo->n += FIX2LONG(i); /* should not overflow long type */
4611 if (! FIXABLE(memo->n)) {
4612 memo->v = rb_big_plus(LONG2NUM(memo->n), memo->v);
4613 memo->n = 0;
4614 }
4615}
4616
4617static void
4618sum_iter_bignum(VALUE i, struct enum_sum_memo *memo)
4619{
4620 memo->v = rb_big_plus(i, memo->v);
4621}
4622
4623static void
4624sum_iter_rational(VALUE i, struct enum_sum_memo *memo)
4625{
4626 if (UNDEF_P(memo->r)) {
4627 memo->r = i;
4628 }
4629 else {
4630 memo->r = rb_rational_plus(memo->r, i);
4631 }
4632}
4633
4634static void
4635sum_iter_some_value(VALUE i, struct enum_sum_memo *memo)
4636{
4637 memo->v = rb_funcallv(memo->v, idPLUS, 1, &i);
4638}
4639
4640static void
4641sum_iter_Kahan_Babuska(VALUE i, struct enum_sum_memo *memo)
4642{
4643 /*
4644 * Kahan-Babuska balancing compensated summation algorithm
4645 * See https://link.springer.com/article/10.1007/s00607-005-0139-x
4646 */
4647 double x;
4648
4649 switch (TYPE(i)) {
4650 case T_FLOAT: x = RFLOAT_VALUE(i); break;
4651 case T_FIXNUM: x = FIX2LONG(i); break;
4652 case T_BIGNUM: x = rb_big2dbl(i); break;
4653 case T_RATIONAL: x = rb_num2dbl(i); break;
4654 default:
4655 memo->v = DBL2NUM(memo->f);
4656 memo->float_value = 0;
4657 sum_iter_some_value(i, memo);
4658 return;
4659 }
4660
4661 double f = memo->f;
4662
4663 if (isnan(f)) {
4664 return;
4665 }
4666 else if (! isfinite(x)) {
4667 if (isinf(x) && isinf(f) && signbit(x) != signbit(f)) {
4668 i = DBL2NUM(f);
4669 x = nan("");
4670 }
4671 memo->v = i;
4672 memo->f = x;
4673 return;
4674 }
4675 else if (isinf(f)) {
4676 return;
4677 }
4678
4679 double c = memo->c;
4680 double t = f + x;
4681
4682 if (fabs(f) >= fabs(x)) {
4683 c += ((f - t) + x);
4684 }
4685 else {
4686 c += ((x - t) + f);
4687 }
4688 f = t;
4689
4690 memo->f = f;
4691 memo->c = c;
4692}
4693
4694static void
4695sum_iter(VALUE i, struct enum_sum_memo *memo)
4696{
4697 RUBY_ASSERT(memo != NULL);
4698 if (memo->block_given) {
4699 i = rb_yield(i);
4700 }
4701
4702 if (memo->float_value) {
4703 sum_iter_Kahan_Babuska(i, memo);
4704 }
4705 else switch (TYPE(memo->v)) {
4706 default: sum_iter_some_value(i, memo); return;
4707 case T_FLOAT:
4708 case T_FIXNUM:
4709 case T_BIGNUM:
4710 case T_RATIONAL:
4711 switch (TYPE(i)) {
4712 case T_FIXNUM: sum_iter_fixnum(i, memo); return;
4713 case T_BIGNUM: sum_iter_bignum(i, memo); return;
4714 case T_RATIONAL: sum_iter_rational(i, memo); return;
4715 case T_FLOAT:
4716 sum_iter_normalize_memo(memo);
4717 memo->f = NUM2DBL(memo->v);
4718 memo->c = 0.0;
4719 memo->float_value = 1;
4720 sum_iter_Kahan_Babuska(i, memo);
4721 return;
4722 default:
4723 sum_iter_normalize_memo(memo);
4724 sum_iter_some_value(i, memo);
4725 return;
4726 }
4727 }
4728}
4729
4730static VALUE
4731enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
4732{
4733 ENUM_WANT_SVALUE();
4734 sum_iter(i, (struct enum_sum_memo *) args);
4735 return Qnil;
4736}
4737
4738static int
4739hash_sum_i(VALUE key, VALUE value, VALUE arg)
4740{
4741 sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg);
4742 return ST_CONTINUE;
4743}
4744
4745static void
4746hash_sum(VALUE hash, struct enum_sum_memo *memo)
4747{
4749 RUBY_ASSERT(memo != NULL);
4750
4751 rb_hash_foreach(hash, hash_sum_i, (VALUE)memo);
4752}
4753
4754static VALUE
4755int_range_sum(VALUE beg, VALUE end, int excl, VALUE init)
4756{
4757 if (excl) {
4758 if (FIXNUM_P(end))
4759 end = LONG2FIX(FIX2LONG(end) - 1);
4760 else
4761 end = rb_big_minus(end, LONG2FIX(1));
4762 }
4763
4764 if (rb_int_ge(end, beg)) {
4765 VALUE a;
4766 a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1));
4767 a = rb_int_mul(a, rb_int_plus(end, beg));
4768 a = rb_int_idiv(a, LONG2FIX(2));
4769 return rb_int_plus(init, a);
4770 }
4771
4772 return init;
4773}
4774
4775/*
4776 * call-seq:
4777 * sum(initial_value = 0) -> number
4778 * sum(initial_value = 0) {|element| ... } -> object
4779 *
4780 * With no block given,
4781 * returns the sum of +initial_value+ and the elements:
4782 *
4783 * (1..100).sum # => 5050
4784 * (1..100).sum(1) # => 5051
4785 * ('a'..'d').sum('foo') # => "fooabcd"
4786 *
4787 * Generally, the sum is computed using methods <tt>+</tt> and +each+;
4788 * for performance optimizations, those methods may not be used,
4789 * and so any redefinition of those methods may not have effect here.
4790 *
4791 * One such optimization: When possible, computes using Gauss's summation
4792 * formula <em>n(n+1)/2</em>:
4793 *
4794 * 100 * (100 + 1) / 2 # => 5050
4795 *
4796 * With a block given, calls the block with each element;
4797 * returns the sum of +initial_value+ and the block return values:
4798 *
4799 * (1..4).sum {|i| i*i } # => 30
4800 * (1..4).sum(100) {|i| i*i } # => 130
4801 * h = {a: 0, b: 1, c: 2, d: 3, e: 4, f: 5}
4802 * h.sum {|key, value| value.odd? ? value : 0 } # => 9
4803 * ('a'..'f').sum('x') {|c| c < 'd' ? c : '' } # => "xabc"
4804 *
4805 */
4806static VALUE
4807enum_sum(int argc, VALUE* argv, VALUE obj)
4808{
4809 struct enum_sum_memo memo;
4810 VALUE beg, end;
4811 int excl;
4812
4813 memo.v = (rb_check_arity(argc, 0, 1) == 0) ? LONG2FIX(0) : argv[0];
4814 memo.block_given = rb_block_given_p();
4815 memo.n = 0;
4816 memo.r = Qundef;
4817
4818 if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) {
4819 memo.f = RFLOAT_VALUE(memo.v);
4820 memo.c = 0.0;
4821 }
4822 else {
4823 memo.f = 0.0;
4824 memo.c = 0.0;
4825 }
4826
4827 if (RTEST(rb_range_values(obj, &beg, &end, &excl))) {
4828 if (!memo.block_given && !memo.float_value &&
4829 (FIXNUM_P(beg) || RB_BIGNUM_TYPE_P(beg)) &&
4830 (FIXNUM_P(end) || RB_BIGNUM_TYPE_P(end))) {
4831 return int_range_sum(beg, end, excl, memo.v);
4832 }
4833 }
4834
4835 if (RB_TYPE_P(obj, T_HASH) &&
4836 rb_method_basic_definition_p(CLASS_OF(obj), id_each))
4837 hash_sum(obj, &memo);
4838 else
4839 rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo);
4840
4841 if (memo.float_value) {
4842 return DBL2NUM(memo.f + memo.c);
4843 }
4844 else {
4845 if (memo.n != 0)
4846 memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v);
4847 if (!UNDEF_P(memo.r)) {
4848 memo.v = rb_rational_plus(memo.r, memo.v);
4849 }
4850 return memo.v;
4851 }
4852}
4853
4854static VALUE
4855uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4856{
4857 ENUM_WANT_SVALUE();
4858 rb_hash_add_new_element(hash, i, i);
4859 return Qnil;
4860}
4861
4862static VALUE
4863uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
4864{
4865 ENUM_WANT_SVALUE();
4866 rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i);
4867 return Qnil;
4868}
4869
4870/*
4871 * call-seq:
4872 * uniq -> array
4873 * uniq {|element| ... } -> array
4874 *
4875 * With no block, returns a new array containing only unique elements;
4876 * the array has no two elements +e0+ and +e1+ such that <tt>e0.eql?(e1)</tt>:
4877 *
4878 * %w[a b c c b a a b c].uniq # => ["a", "b", "c"]
4879 * [0, 1, 2, 2, 1, 0, 0, 1, 2].uniq # => [0, 1, 2]
4880 *
4881 * With a block, returns a new array containing elements only for which the block
4882 * returns a unique value:
4883 *
4884 * a = [0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1]
4885 * a.uniq {|i| i.even? ? i : 0 } # => [0, 2, 4]
4886 * a = %w[a b c d e e d c b a a b c d e]
4887 * a.uniq {|c| c < 'c' } # => ["a", "c"]
4888 *
4889 */
4890
4891static VALUE
4892enum_uniq(VALUE obj)
4893{
4894 VALUE hash, ret;
4895 rb_block_call_func *const func =
4896 rb_block_given_p() ? uniq_iter : uniq_func;
4897
4898 hash = rb_obj_hide(rb_hash_new());
4899 rb_block_call(obj, id_each, 0, 0, func, hash);
4900 ret = rb_hash_values(hash);
4901 rb_hash_clear(hash);
4902 return ret;
4903}
4904
4905static VALUE
4906compact_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
4907{
4908 ENUM_WANT_SVALUE();
4909
4910 if (!NIL_P(i)) {
4911 rb_ary_push(ary, i);
4912 }
4913 return Qnil;
4914}
4915
4916/*
4917 * call-seq:
4918 * compact -> array
4919 *
4920 * Returns an array of all non-+nil+ elements:
4921 *
4922 * a = [nil, 0, nil, 'a', false, nil, false, nil, 'a', nil, 0, nil]
4923 * a.compact # => [0, "a", false, false, "a", 0]
4924 *
4925 */
4926
4927static VALUE
4928enum_compact(VALUE obj)
4929{
4930 VALUE ary;
4931
4932 ary = rb_ary_new();
4933 rb_block_call(obj, id_each, 0, 0, compact_i, ary);
4934
4935 return ary;
4936}
4937
4938
4939/*
4940 * == What's Here
4941 *
4942 * Module \Enumerable provides methods that are useful to a collection class for:
4943 *
4944 * - {Querying}[rdoc-ref:Enumerable@Methods+for+Querying]
4945 * - {Fetching}[rdoc-ref:Enumerable@Methods+for+Fetching]
4946 * - {Searching and Filtering}[rdoc-ref:Enumerable@Methods+for+Searching+and+Filtering]
4947 * - {Sorting}[rdoc-ref:Enumerable@Methods+for+Sorting]
4948 * - {Iterating}[rdoc-ref:Enumerable@Methods+for+Iterating]
4949 * - {And more....}[rdoc-ref:Enumerable@Other+Methods]
4950 *
4951 * === Methods for Querying
4952 *
4953 * These methods return information about the \Enumerable other than the elements themselves:
4954 *
4955 * - #member? (aliased as #include?): Returns +true+ if <tt>self == object</tt>, +false+ otherwise.
4956 * - #all?: Returns +true+ if all elements meet a specified criterion; +false+ otherwise.
4957 * - #any?: Returns +true+ if any element meets a specified criterion; +false+ otherwise.
4958 * - #none?: Returns +true+ if no element meets a specified criterion; +false+ otherwise.
4959 * - #one?: Returns +true+ if exactly one element meets a specified criterion; +false+ otherwise.
4960 * - #count: Returns the count of elements,
4961 * based on an argument or block criterion, if given.
4962 * - #tally: Returns a new Hash containing the counts of occurrences of each element.
4963 *
4964 * === Methods for Fetching
4965 *
4966 * These methods return entries from the \Enumerable, without modifying it:
4967 *
4968 * <i>Leading, trailing, or all elements</i>:
4969 *
4970 * - #to_a (aliased as #entries): Returns all elements.
4971 * - #first: Returns the first element or leading elements.
4972 * - #take: Returns a specified number of leading elements.
4973 * - #drop: Returns a specified number of trailing elements.
4974 * - #take_while: Returns leading elements as specified by the given block.
4975 * - #drop_while: Returns trailing elements as specified by the given block.
4976 *
4977 * <i>Minimum and maximum value elements</i>:
4978 *
4979 * - #min: Returns the elements whose values are smallest among the elements,
4980 * as determined by <tt>#<=></tt> or a given block.
4981 * - #max: Returns the elements whose values are largest among the elements,
4982 * as determined by <tt>#<=></tt> or a given block.
4983 * - #minmax: Returns a 2-element Array containing the smallest and largest elements.
4984 * - #min_by: Returns the smallest element, as determined by the given block.
4985 * - #max_by: Returns the largest element, as determined by the given block.
4986 * - #minmax_by: Returns the smallest and largest elements, as determined by the given block.
4987 *
4988 * <i>Groups, slices, and partitions</i>:
4989 *
4990 * - #group_by: Returns a Hash that partitions the elements into groups.
4991 * - #partition: Returns elements partitioned into two new Arrays, as determined by the given block.
4992 * - #slice_after: Returns a new Enumerator whose entries are a partition of +self+,
4993 * based either on a given +object+ or a given block.
4994 * - #slice_before: Returns a new Enumerator whose entries are a partition of +self+,
4995 * based either on a given +object+ or a given block.
4996 * - #slice_when: Returns a new Enumerator whose entries are a partition of +self+
4997 * based on the given block.
4998 * - #chunk: Returns elements organized into chunks as specified by the given block.
4999 * - #chunk_while: Returns elements organized into chunks as specified by the given block.
5000 *
5001 * === Methods for Searching and Filtering
5002 *
5003 * These methods return elements that meet a specified criterion:
5004 *
5005 * - #find (aliased as #detect): Returns an element selected by the block.
5006 * - #find_all (aliased as #filter, #select): Returns elements selected by the block.
5007 * - #find_index: Returns the index of an element selected by a given object or block.
5008 * - #reject: Returns elements not rejected by the block.
5009 * - #uniq: Returns elements that are not duplicates.
5010 *
5011 * === Methods for Sorting
5012 *
5013 * These methods return elements in sorted order:
5014 *
5015 * - #sort: Returns the elements, sorted by <tt>#<=></tt> or the given block.
5016 * - #sort_by: Returns the elements, sorted by the given block.
5017 *
5018 * === Methods for Iterating
5019 *
5020 * - #each_entry: Calls the block with each successive element
5021 * (slightly different from #each).
5022 * - #each_with_index: Calls the block with each successive element and its index.
5023 * - #each_with_object: Calls the block with each successive element and a given object.
5024 * - #each_slice: Calls the block with successive non-overlapping slices.
5025 * - #each_cons: Calls the block with successive overlapping slices.
5026 * (different from #each_slice).
5027 * - #reverse_each: Calls the block with each successive element, in reverse order.
5028 *
5029 * === Other Methods
5030 *
5031 * - #collect (aliased as #map): Returns objects returned by the block.
5032 * - #filter_map: Returns truthy objects returned by the block.
5033 * - #flat_map (aliased as #collect_concat): Returns flattened objects returned by the block.
5034 * - #grep: Returns elements selected by a given object
5035 * or objects returned by a given block.
5036 * - #grep_v: Returns elements not selected by a given object
5037 * or objects returned by a given block.
5038 * - #inject (aliased as #reduce): Returns the object formed by combining all elements.
5039 * - #sum: Returns the sum of the elements, using method <tt>+</tt>.
5040 * - #zip: Combines each element with elements from other enumerables;
5041 * returns the n-tuples or calls the block with each.
5042 * - #cycle: Calls the block with each element, cycling repeatedly.
5043 *
5044 * == Usage
5045 *
5046 * To use module \Enumerable in a collection class:
5047 *
5048 * - Include it:
5049 *
5050 * include Enumerable
5051 *
5052 * - Implement method <tt>#each</tt>
5053 * which must yield successive elements of the collection.
5054 * The method will be called by almost any \Enumerable method.
5055 *
5056 * Example:
5057 *
5058 * class Foo
5059 * include Enumerable
5060 * def each
5061 * yield 1
5062 * yield 1, 2
5063 * yield
5064 * end
5065 * end
5066 * Foo.new.each_entry{ |element| p element }
5067 *
5068 * Output:
5069 *
5070 * 1
5071 * [1, 2]
5072 * nil
5073 *
5074 * == \Enumerable in Ruby Classes
5075 *
5076 * These Ruby core classes include (or extend) \Enumerable:
5077 *
5078 * - ARGF
5079 * - Array
5080 * - Dir
5081 * - Enumerator
5082 * - ENV (extends)
5083 * - Hash
5084 * - IO
5085 * - Range
5086 * - Struct
5087 *
5088 * These Ruby standard library classes include \Enumerable:
5089 *
5090 * - CSV
5091 * - CSV::Table
5092 * - CSV::Row
5093 * - Set
5094 *
5095 * Virtually all methods in \Enumerable call method +#each+ in the including class:
5096 *
5097 * - <tt>Hash#each</tt> yields the next key-value pair as a 2-element Array.
5098 * - <tt>Struct#each</tt> yields the next name-value pair as a 2-element Array.
5099 * - For the other classes above, +#each+ yields the next object from the collection.
5100 *
5101 * == About the Examples
5102 *
5103 * The example code snippets for the \Enumerable methods:
5104 *
5105 * - Always show the use of one or more Array-like classes (often Array itself).
5106 * - Sometimes show the use of a Hash-like class.
5107 * For some methods, though, the usage would not make sense,
5108 * and so it is not shown. Example: #tally would find exactly one of each Hash entry.
5109 *
5110 */
5111
5112void
5113Init_Enumerable(void)
5114{
5115 rb_mEnumerable = rb_define_module("Enumerable");
5116
5117 rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
5118 rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
5119 rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
5120
5121 rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
5122 rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
5123 rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
5124 rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1);
5125 rb_define_method(rb_mEnumerable, "count", enum_count, -1);
5126 rb_define_method(rb_mEnumerable, "find", enum_find, -1);
5127 rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
5128 rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
5129 rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
5130 rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
5131 rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0);
5132 rb_define_method(rb_mEnumerable, "filter_map", enum_filter_map, 0);
5133 rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
5134 rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
5135 rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
5136 rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
5137 rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
5138 rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
5139 rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
5140 rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
5141 rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
5142 rb_define_method(rb_mEnumerable, "tally", enum_tally, -1);
5143 rb_define_method(rb_mEnumerable, "first", enum_first, -1);
5144 rb_define_method(rb_mEnumerable, "all?", enum_all, -1);
5145 rb_define_method(rb_mEnumerable, "any?", enum_any, -1);
5146 rb_define_method(rb_mEnumerable, "one?", enum_one, -1);
5147 rb_define_method(rb_mEnumerable, "none?", enum_none, -1);
5148 rb_define_method(rb_mEnumerable, "min", enum_min, -1);
5149 rb_define_method(rb_mEnumerable, "max", enum_max, -1);
5150 rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
5151 rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
5152 rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
5153 rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
5154 rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
5155 rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
5156 rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
5157 rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
5158 rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
5159 rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
5160 rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
5161 rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
5162 rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
5163 rb_define_method(rb_mEnumerable, "take", enum_take, 1);
5164 rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
5165 rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
5166 rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
5167 rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
5168 rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0);
5169 rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
5170 rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
5171 rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
5172 rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0);
5173 rb_define_method(rb_mEnumerable, "sum", enum_sum, -1);
5174 rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0);
5175 rb_define_method(rb_mEnumerable, "compact", enum_compact, 0);
5176
5177 id__alone = rb_intern_const("_alone");
5178 id__separator = rb_intern_const("_separator");
5179 id_chunk_categorize = rb_intern_const("chunk_categorize");
5180 id_chunk_enumerable = rb_intern_const("chunk_enumerable");
5181 id_next = rb_intern_const("next");
5182 id_sliceafter_enum = rb_intern_const("sliceafter_enum");
5183 id_sliceafter_pat = rb_intern_const("sliceafter_pat");
5184 id_sliceafter_pred = rb_intern_const("sliceafter_pred");
5185 id_slicebefore_enumerable = rb_intern_const("slicebefore_enumerable");
5186 id_slicebefore_sep_pat = rb_intern_const("slicebefore_sep_pat");
5187 id_slicebefore_sep_pred = rb_intern_const("slicebefore_sep_pred");
5188 id_slicewhen_enum = rb_intern_const("slicewhen_enum");
5189 id_slicewhen_inverted = rb_intern_const("slicewhen_inverted");
5190 id_slicewhen_pred = rb_intern_const("slicewhen_pred");
5191}
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
VALUE rb_define_module(const char *name)
Defines a top-level module.
Definition class.c:1095
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:2635
int rb_block_given_p(void)
Determines if the current method is given a block.
Definition eval.c:936
#define TYPE(_)
Old name of rb_type.
Definition value_type.h:108
#define RB_INTEGER_TYPE_P
Old name of rb_integer_type_p.
Definition value_type.h:87
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition double.h:28
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define UNREACHABLE
Old name of RBIMPL_UNREACHABLE.
Definition assume.h:28
#define T_FLOAT
Old name of RUBY_T_FLOAT.
Definition value_type.h:64
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define T_BIGNUM
Old name of RUBY_T_BIGNUM.
Definition value_type.h:57
#define SPECIAL_CONST_P
Old name of RB_SPECIAL_CONST_P.
#define ULONG2NUM
Old name of RB_ULONG2NUM.
Definition long.h:60
#define T_FIXNUM
Old name of RUBY_T_FIXNUM.
Definition value_type.h:63
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition assume.h:29
#define SYM2ID
Old name of RB_SYM2ID.
Definition symbol.h:45
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:203
#define rb_ary_new4
Old name of rb_ary_new_from_values.
Definition array.h:659
#define FIXABLE
Old name of RB_FIXABLE.
Definition fixnum.h:25
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define FIX2ULONG
Old name of RB_FIX2ULONG.
Definition long.h:47
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define NUM2DBL
Old name of rb_num2dbl.
Definition double.h:27
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define LONG2NUM
Old name of RB_LONG2NUM.
Definition long.h:50
#define T_UNDEF
Old name of RUBY_T_UNDEF.
Definition value_type.h:82
#define Qtrue
Old name of RUBY_Qtrue.
#define FIXNUM_MAX
Old name of RUBY_FIXNUM_MAX.
Definition fixnum.h:26
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition long.h:51
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define CONST_ID
Old name of RUBY_CONST_ID.
Definition symbol.h:47
#define rb_ary_new2
Old name of rb_ary_new_capa.
Definition array.h:657
#define SYMBOL_P
Old name of RB_SYMBOL_P.
Definition value_type.h:88
#define T_REGEXP
Old name of RUBY_T_REGEXP.
Definition value_type.h:77
void rb_iter_break(void)
Breaks from a block.
Definition vm.c:2086
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
VALUE rb_eRuntimeError
RuntimeError exception.
Definition error.c:1428
VALUE rb_eStopIteration
StopIteration exception.
Definition enumerator.c:181
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
void rb_warning(const char *fmt,...)
Issues a warning.
Definition error.c:497
VALUE rb_cArray
Array class.
Definition array.c:40
VALUE rb_obj_alloc(VALUE klass)
Allocates an instance of the given class.
Definition object.c:2097
VALUE rb_mEnumerable
Enumerable module.
Definition enum.c:27
VALUE rb_cEnumerator
Enumerator class.
Definition enumerator.c:163
VALUE rb_cInteger
Module class.
Definition numeric.c:198
VALUE rb_obj_hide(VALUE obj)
Make the object invisible from Ruby code.
Definition object.c:104
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:247
double rb_num2dbl(VALUE num)
Converts an instance of rb_cNumeric into C's double.
Definition object.c:3690
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition object.c:179
#define RB_OBJ_WRITTEN(old, oldv, young)
Identical to RB_OBJ_WRITE(), except it doesn't write any values, but only a WB declaration.
Definition gc.h:615
#define RB_OBJ_WRITE(old, slot, young)
Declaration of a "back" pointer.
Definition gc.h:603
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1099
VALUE rb_funcallv_public(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcallv(), except it only takes public methods into account.
Definition vm_eval.c:1150
#define RETURN_SIZED_ENUMERATOR(obj, argc, argv, size_fn)
This roughly resembles return enum_for(__callee__) unless block_given?.
Definition enumerator.h:206
#define RETURN_ENUMERATOR(obj, argc, argv)
Identical to RETURN_SIZED_ENUMERATOR(), except its size is unknown.
Definition enumerator.h:239
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition proc.c:845
int rb_range_values(VALUE range, VALUE *begp, VALUE *endp, int *exclp)
Deconstructs a range into its components.
Definition range.c:1804
VALUE rb_check_string_type(VALUE obj)
Try converting an object to its stringised representation using its to_str method,...
Definition string.c:2851
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1844
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1335
int rb_respond_to(VALUE obj, ID mid)
Queries if the object responds to the method.
Definition vm_method.c:2953
VALUE rb_check_funcall(VALUE recv, ID mid, int argc, const VALUE *argv)
Identical to rb_funcallv(), except it returns RUBY_Qundef instead of raising rb_eNoMethodError.
Definition vm_eval.c:668
int rb_obj_respond_to(VALUE obj, ID mid, int private_p)
Identical to rb_respond_to(), except it additionally takes the visibility parameter.
Definition vm_method.c:2937
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
ID rb_check_id(volatile VALUE *namep)
Detects if the given name is already interned or not.
Definition symbol.c:1133
VALUE rb_sym2str(VALUE symbol)
Obtain a frozen string representation of a symbol (not including the leading colon).
Definition symbol.c:986
int len
Length of the buffer.
Definition io.h:8
void ruby_qsort(void *, const size_t, const size_t, int(*)(const void *, const void *, void *), void *)
Reentrant implementation of quick sort.
#define RB_BLOCK_CALL_FUNC_ARGLIST(yielded_arg, callback_arg)
Shim for block function parameters.
Definition iterator.h:58
VALUE rb_yield_values(int n,...)
Identical to rb_yield(), except it takes variadic number of parameters and pass them to the block.
Definition vm_eval.c:1366
VALUE rb_yield_values2(int n, const VALUE *argv)
Identical to rb_yield_values(), except it takes the parameters as a C array instead of variadic argum...
Definition vm_eval.c:1388
VALUE rb_yield(VALUE val)
Yields the block.
Definition vm_eval.c:1354
rb_block_call_func * rb_block_call_func_t
Shorthand type that represents an iterator-written-in-C function pointer.
Definition iterator.h:88
VALUE rb_block_call_func(RB_BLOCK_CALL_FUNC_ARGLIST(yielded_arg, callback_arg))
This is the type of a function that the interpreter expect for C-backended blocks.
Definition iterator.h:83
VALUE rb_block_call_kw(VALUE obj, ID mid, int argc, const VALUE *argv, rb_block_call_func_t proc, VALUE data2, int kw_splat)
Identical to rb_funcallv_kw(), except it additionally passes a function as a block.
Definition vm_eval.c:1541
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
VALUE rb_block_call(VALUE q, ID w, int e, const VALUE *r, type *t, VALUE y)
Call a method with a block.
void rb_hash_foreach(VALUE q, int_type *w, VALUE e)
Iteration over the given hash.
VALUE rb_rescue2(type *q, VALUE w, type *e, VALUE r,...)
An equivalent of rescue clause.
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
static void RARRAY_ASET(VALUE ary, long i, VALUE v)
Assigns an object in an array.
Definition rarray.h:386
#define RARRAY_PTR_USE(ary, ptr_name, expr)
Declares a section of code where raw pointers are used.
Definition rarray.h:348
static VALUE * RARRAY_PTR(VALUE ary)
Wild use of a C pointer.
Definition rarray.h:366
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define RBASIC(obj)
Convenient casting macro.
Definition rbasic.h:40
#define RB_PASS_CALLED_KEYWORDS
Pass keywords if current method is called with keywords, useful for argument delegation.
Definition scan_args.h:78
#define RTEST
This is an old name of RB_TEST.
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
MEMO.
Definition imemo.h:105
Definition enum.c:2399
Definition enum.c:2276
IFUNC (Internal FUNCtion)
Definition imemo.h:84
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
Definition value.h:63
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
Definition value_type.h:264
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition value_type.h:433
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376