class Range
A Range object represents a collection of values that are between given begin and end values.
You can create an Range object explicitly with:
-
# Ranges that use '..' to include the given end value. (1..4).to_a # => [1, 2, 3, 4] ('a'..'d').to_a # => ["a", "b", "c", "d"] # Ranges that use '...' to exclude the given end value. (1...4).to_a # => [1, 2, 3] ('a'...'d').to_a # => ["a", "b", "c"]
A range may be created using method Range.new
:
# Ranges that by default include the given end value. Range.new(1, 4).to_a # => [1, 2, 3, 4] Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] # Ranges that use third argument +exclude_end+ to exclude the given end value. Range.new(1, 4, true).to_a # => [1, 2, 3] Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
Beginless Ranges¶ ↑
A beginless range has a definite end value, but a nil
begin value. Such a range includes all values up to the end value.
r = (..4) # => nil..4 r.begin # => nil r.include?(-50) # => true r.include?(4) # => true r = (...4) # => nil...4 r.include?(4) # => false Range.new(nil, 4) # => nil..4 Range.new(nil, 4, true) # => nil...4
A beginless range may be used to slice an array:
a = [1, 2, 3, 4] r = (..2) # => nil...2 a[r] # => [1, 2]
Method each
for a beginless range raises an exception.
Endless Ranges¶ ↑
An endless range has a definite begin value, but a nil
end value. Such a range includes all values from the begin value.
r = (1..) # => 1.. r.end # => nil r.include?(50) # => true Range.new(1, nil) # => 1..
The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:
r0 = (1..) # => 1.. r1 = (1...) # => 1... r0.begin == r1.begin # => true r0.end == r1.end # => true r0 == r1 # => false
An endless range may be used to slice an array:
a = [1, 2, 3, 4] r = (2..) # => 2.. a[r] # => [3, 4]
Method each
for an endless range calls the given block indefinitely:
a = [] r = (1..) r.each do |i| a.push(i) if i.even? break if i > 10 end a # => [2, 4, 6, 8, 10]
A range can be both beginless and endless. For literal beginless, endless ranges, at least the beginning or end of the range must be given as an explicit nil value. It is recommended to use an explicit nil beginning and implicit nil end, since that is what Ruby uses for Range#inspect
:
(nil..) # => (nil..) (..nil) # => (nil..) (nil..nil) # => (nil..)
Ranges and Other Classes¶ ↑
An object may be put into a range if its class implements instance method <=>
. Ruby core classes that do so include Array
, Complex
, File::Stat
, Float
, Integer
, Kernel
, Module
, Numeric
, Rational
, String
, Symbol
, and Time
.
Example:
t0 = Time.now # => 2021-09-19 09:22:48.4854986 -0500 t1 = Time.now # => 2021-09-19 09:22:56.0365079 -0500 t2 = Time.now # => 2021-09-19 09:23:08.5263283 -0500 (t0..t2).include?(t1) # => true (t0..t1).include?(t2) # => false
A range can be iterated over only if its elements implement instance method succ
. Ruby core classes that do so include Integer
, String
, and Symbol
(but not the other classes mentioned above).
Iterator methods include:
-
Included from module Enumerable:
each_entry
,each_with_index
,each_with_object
,each_slice
,each_cons
, andreverse_each
.
Example:
a = [] (1..4).each {|i| a.push(i) } a # => [1, 2, 3, 4]
Ranges and User-Defined Classes¶ ↑
A user-defined class that is to be used in a range must implement instance <=>
; see Integer#<=>
. To make iteration available, it must also implement instance method succ
; see Integer#succ
.
The class below implements both <=>
and succ
, and so can be used both to construct ranges and to iterate over them. Note that the Comparable
module is included so the ==
method is defined in terms of <=>
.
# Represent a string of 'X' characters. class Xs include Comparable attr_accessor :length def initialize(n) @length = n end def succ Xs.new(@length + 1) end def <=>(other) @length <=> other.length end def to_s sprintf "%2d #{inspect}", @length end def inspect 'X' * @length end end r = Xs.new(3)..Xs.new(6) #=> XXX..XXXXXX r.to_a #=> [XXX, XXXX, XXXXX, XXXXXX] r.include?(Xs.new(5)) #=> true r.include?(Xs.new(7)) #=> false
What’s Here¶ ↑
First, what’s elsewhere. Class Range:
-
Inherits from class Object.
-
Includes module Enumerable, which provides dozens of additional methods.
Here, class Range provides methods that are useful for:
Methods for Creating a Range¶ ↑
-
::new
: Returns a new range.
Methods for Querying¶ ↑
-
begin
: Returns the begin value given forself
. -
bsearch
: Returns an element fromself
selected by a binary search. -
count
: Returns a count of elements inself
. -
end
: Returns the end value given forself
. -
exclude_end?
: Returns whether the end object is excluded. -
first
: Returns the first elements ofself
. -
hash
: Returns the integer hash code. -
last
: Returns the last elements ofself
. -
max
: Returns the maximum values inself
. -
min
: Returns the minimum values inself
. -
minmax
: Returns the minimum and maximum values inself
. -
size
: Returns the count of elements inself
.
Methods for Comparing¶ ↑
-
==
: Returns whether a given object is equal toself
(uses==
). -
===
: Returns whether the given object is between the begin and end values. -
cover?
: Returns whether a given object is withinself
. -
eql?
: Returns whether a given object is equal toself
(useseql?
). -
include?
(aliased asmember?
): Returns whether a given object is an element ofself
.
Methods for Iterating¶ ↑
-
%
: Requires argumentn
; calls the block with eachn
-th element ofself
. -
each
: Calls the block with each element ofself
. -
step
: Takes optional argumentn
(defaults to 1); calls the block with eachn
-th element ofself
.
Methods for Converting¶ ↑
-
inspect
: Returns a string representation ofself
(usesinspect
). -
to_a
(aliased asentries
): Returns elements ofself
in an array.
Methods for Working with JSON¶ ↑
-
::json_create
: Returns a new Range object constructed from the given object. -
as_json
: Returns a 2-element hash representingself
. -
to_json
: Returns a JSON string representingself
.
To make these methods available:
require 'json/add/range'
Public Class Methods
See as_json
.
# File ext/json/lib/json/add/range.rb, line 9 def self.json_create(object) new(*object['a']) end
Returns a new range based on the given objects begin
and end
. Optional argument exclude_end
determines whether object end
is included as the last object in the range:
Range.new(2, 5).to_a # => [2, 3, 4, 5] Range.new(2, 5, true).to_a # => [2, 3, 4] Range.new('a', 'd').to_a # => ["a", "b", "c", "d"] Range.new('a', 'd', true).to_a # => ["a", "b", "c"]
static VALUE range_initialize(int argc, VALUE *argv, VALUE range) { VALUE beg, end, flags; rb_scan_args(argc, argv, "21", &beg, &end, &flags); range_modify(range); range_init(range, beg, end, RBOOL(RTEST(flags))); return Qnil; }
Public Instance Methods
Iterates over the elements of self
.
With a block given, calls the block with selected elements of the range; returns self
:
a = [] (1..5).%(2) {|element| a.push(element) } # => 1..5 a # => [1, 3, 5] a = [] ('a'..'e').%(2) {|element| a.push(element) } # => "a".."e" a # => ["a", "c", "e"]
With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence
if self
is numeric; otherwise of class Enumerator:
e = (1..5) % 2 # => ((1..5).%(2)) e.class # => Enumerator::ArithmeticSequence ('a'..'e') % 2 # => #<Enumerator: ...>
Related: Range#step
.
static VALUE range_percent_step(VALUE range, VALUE step) { return range_step(1, &step, range); }
Returns true
if and only if:
-
other
is a range. -
other.begin == self.begin
. -
other.end == self.end
. -
other.exclude_end? == self.exclude_end?
.
Otherwise returns false
.
r = (1..5) r == (1..5) # => true r = Range.new(1, 5) r == 'foo' # => false r == (2..5) # => false r == (1..4) # => false r == (1...5) # => false r == Range.new(1, 5, true) # => false
Note that even with the same argument, the return values of ==
and eql?
can differ:
(1..2) == (1..2.0) # => true (1..2).eql? (1..2.0) # => false
Related: Range#eql?
.
static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_equal, range, obj, obj); }
Returns true
if object
is between self.begin
and self.end
. false
otherwise:
(1..4) === 2 # => true (1..4) === 5 # => false (1..4) === 'a' # => false (1..4) === 4 # => true (1...4) === 4 # => false ('a'..'d') === 'c' # => true ('a'..'d') === 'e' # => false
A case statement uses method ===
, and so:
case 79 when (1..50) "low" when (51..75) "medium" when (76..100) "high" end # => "high" case "2.6.5" when ..."2.4" "EOL" when "2.4"..."2.5" "maintenance" when "2.5"..."3.0" "stable" when "3.1".. "upcoming" end # => "stable"
static VALUE range_eqq(VALUE range, VALUE val) { return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); }
Methods Range#as_json
and Range.json_create
may be used to serialize and deserialize a Range object; see Marshal
.
Method Range#as_json
serializes self
, returning a 2-element hash representing self
:
require 'json/add/range' x = (1..4).as_json # => {"json_class"=>"Range", "a"=>[1, 4, false]} y = (1...4).as_json # => {"json_class"=>"Range", "a"=>[1, 4, true]} z = ('a'..'d').as_json # => {"json_class"=>"Range", "a"=>["a", "d", false]}
Method JSON.create
deserializes such a hash, returning a Range object:
Range.json_create(x) # => 1..4 Range.json_create(y) # => 1...4 Range.json_create(z) # => "a".."d"
# File ext/json/lib/json/add/range.rb, line 31 def as_json(*) { JSON.create_id => self.class.name, 'a' => [ first, last, exclude_end? ] } end
Returns the object that defines the beginning of self
.
(1..4).begin # => 1 (..2).begin # => nil
Related: Range#first
, Range#end
.
static VALUE range_begin(VALUE range) { return RANGE_BEG(range); }
Returns an element from self
selected by a binary search.
See Binary Searching.
static VALUE range_bsearch(VALUE range) { VALUE beg, end, satisfied = Qnil; int smaller; /* Implementation notes: * Floats are handled by mapping them to 64 bits integers. * Apart from sign issues, floats and their 64 bits integer have the * same order, assuming they are represented as exponent followed * by the mantissa. This is true with or without implicit bit. * * Finding the average of two ints needs to be careful about * potential overflow (since float to long can use 64 bits). * * The half-open interval (low, high] indicates where the target is located. * The loop continues until low and high are adjacent. * * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent, * the rounding direction of mid = (low + high) / 2 does not affect the result of * the binary search. * * Note that -0.0 is mapped to the same int as 0.0 as we don't want * (-1...0.0).bsearch to yield -0.0. */ #define BSEARCH(conv, excl) \ do { \ RETURN_ENUMERATOR(range, 0, 0); \ if (!(excl)) high++; \ low--; \ while (low + 1 < high) { \ mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2) \ : (low + high) / 2; \ BSEARCH_CHECK(conv(mid)); \ if (smaller) { \ high = mid; \ } \ else { \ low = mid; \ } \ } \ return satisfied; \ } while (0) #define BSEARCH_FIXNUM(beg, end, excl) \ do { \ long low = FIX2LONG(beg); \ long high = FIX2LONG(end); \ long mid; \ BSEARCH(INT2FIX, (excl)); \ } while (0) beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && FIXNUM_P(end)) { BSEARCH_FIXNUM(beg, end, EXCL(range)); } #if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) { int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); int64_t mid; BSEARCH(int64_as_double_to_num, EXCL(range)); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { RETURN_ENUMERATOR(range, 0, 0); return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { VALUE diff = LONG2FIX(1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(beg, '+', 1, diff); BSEARCH_CHECK(mid); if (smaller) { if (FIXNUM_P(beg) && FIXNUM_P(mid)) { BSEARCH_FIXNUM(beg, mid, false); } else { return bsearch_integer_range(beg, mid, false); } } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); beg = mid; } } else if (NIL_P(beg) && is_integer_p(end)) { VALUE diff = LONG2FIX(-1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(end, '+', 1, diff); BSEARCH_CHECK(mid); if (!smaller) { if (FIXNUM_P(mid) && FIXNUM_P(end)) { BSEARCH_FIXNUM(mid, end, false); } else { return bsearch_integer_range(mid, end, false); } } diff = rb_funcall(diff, '*', 1, LONG2FIX(2)); end = mid; } } else { rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; }
Returns the count of elements, based on an argument or block criterion, if given.
With no argument and no block given, returns the number of elements:
(1..4).count # => 4 (1...4).count # => 3 ('a'..'d').count # => 4 ('a'...'d').count # => 3 (1..).count # => Infinity (..4).count # => Infinity
With argument object
, returns the number of object
found in self
, which will usually be zero or one:
(1..4).count(2) # => 1 (1..4).count(5) # => 0 (1..4).count('a') # => 0
With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:
(1..4).count {|element| element < 3 } # => 2
Related: Range#size
.
static VALUE range_count(int argc, VALUE *argv, VALUE range) { if (argc != 0) { /* It is odd for instance (1...).count(0) to return Infinity. Just let * it loop. */ return rb_call_super(argc, argv); } else if (rb_block_given_p()) { /* Likewise it is odd for instance (1...).count {|x| x == 0 } to return * Infinity. Just let it loop. */ return rb_call_super(argc, argv); } VALUE beg = RANGE_BEG(range), end = RANGE_END(range); if (NIL_P(beg) || NIL_P(end)) { /* We are confident that the answer is Infinity. */ return DBL2NUM(HUGE_VAL); } if (is_integer_p(beg)) { VALUE size = range_size(range); if (!NIL_P(size)) { return size; } } return rb_call_super(argc, argv); }
Returns true
if the given argument is within self
, false
otherwise.
With non-range argument object
, evaluates with <=
and <
.
For range self
with included end value (#exclude_end? == false
), evaluates thus:
self.begin <= object <= self.end
Examples:
r = (1..4) r.cover?(1) # => true r.cover?(4) # => true r.cover?(0) # => false r.cover?(5) # => false r.cover?('foo') # => false r = ('a'..'d') r.cover?('a') # => true r.cover?('d') # => true r.cover?(' ') # => false r.cover?('e') # => false r.cover?(0) # => false
For range r
with excluded end value (#exclude_end? == true
), evaluates thus:
r.begin <= object < r.end
Examples:
r = (1...4) r.cover?(1) # => true r.cover?(3) # => true r.cover?(0) # => false r.cover?(4) # => false r.cover?('foo') # => false r = ('a'...'d') r.cover?('a') # => true r.cover?('c') # => true r.cover?(' ') # => false r.cover?('d') # => false r.cover?(0) # => false
With range argument range
, compares the first and last elements of self
and range
:
r = (1..4) r.cover?(1..4) # => true r.cover?(0..4) # => false r.cover?(1..5) # => false r.cover?('a'..'d') # => false r = (1...4) r.cover?(1..3) # => true r.cover?(1..4) # => false
If begin and end are numeric, cover?
behaves like include?
(1..3).cover?(1.5) # => true (1..3).include?(1.5) # => true
But when not numeric, the two methods may differ:
('a'..'d').cover?('cc') # => true ('a'..'d').include?('cc') # => false
Returns false
if either:
-
The begin value of
self
is larger than its end value. -
An internal call to
<=>
returnsnil
; that is, the operands are not comparable.
Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.
(..2).cover?(1) # => true (..2).cover?(2) # => true (..2).cover?(3) # => false (...2).cover?(2) # => false (..2).cover?("2") # => false (..2).cover?(..2) # => true (..2).cover?(...2) # => true (..2).cover?(.."2") # => false (...2).cover?(..2) # => false
Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.
(2..).cover?(1) # => false (2..).cover?(3) # => true (2...).cover?(3) # => true (2..).cover?(2) # => true (2..).cover?("2") # => false (2..).cover?(2..) # => true (2..).cover?(2...) # => true (2..).cover?("2"..) # => false (2...).cover?(2..) # => false (2...).cover?(3...) # => true (2...).cover?(3..) # => false (3..).cover?(2..) # => false
Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.
(nil...).cover?(Object.new) # => true (nil...).cover?(nil...) # => true (nil..).cover?(nil...) # => true (nil...).cover?(nil..) # => false (nil...).cover?(1..) # => false
Related: Range#include?
.
static VALUE range_cover(VALUE range, VALUE val) { VALUE beg, end; beg = RANGE_BEG(range); end = RANGE_END(range); if (rb_obj_is_kind_of(val, rb_cRange)) { return RBOOL(r_cover_range_p(range, beg, end, val)); } return r_cover_p(range, beg, end, val); }
With a block given, passes each element of self
to the block:
a = [] (1..4).each {|element| a.push(element) } # => 1..4 a # => [1, 2, 3, 4]
Raises an exception unless self.first.respond_to?(:succ)
.
With no block given, returns an enumerator.
static VALUE range_each(VALUE range) { VALUE beg, end; long i; RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); beg = RANGE_BEG(range); end = RANGE_END(range); if (FIXNUM_P(beg) && NIL_P(end)) { range_each_fixnum_endless(beg); } else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */ return range_each_fixnum_loop(beg, end, range); } else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) { if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */ if (!FIXNUM_P(beg)) { if (RBIGNUM_NEGATIVE_P(beg)) { do { rb_yield(beg); } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1)))); if (NIL_P(end)) range_each_fixnum_endless(beg); if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range); } else { if (NIL_P(end)) range_each_bignum_endless(beg); if (FIXNUM_P(end)) return range; } } if (FIXNUM_P(beg)) { i = FIX2LONG(beg); do { rb_yield(LONG2FIX(i)); } while (POSFIXABLE(++i)); beg = LONG2NUM(i); } ASSUME(!FIXNUM_P(beg)); ASSUME(!SPECIAL_CONST_P(end)); } if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) { if (EXCL(range)) { while (rb_big_cmp(beg, end) == INT2FIX(-1)) { rb_yield(beg); beg = rb_big_plus(beg, INT2FIX(1)); } } else { VALUE c; while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) { rb_yield(beg); if (c == INT2FIX(0)) break; beg = rb_big_plus(beg, INT2FIX(1)); } } } } else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */ beg = rb_sym2str(beg); if (NIL_P(end)) { rb_str_upto_endless_each(beg, sym_each_i, 0); } else { rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0); } } else { VALUE tmp = rb_check_string_type(beg); if (!NIL_P(tmp)) { if (!NIL_P(end)) { rb_str_upto_each(tmp, end, EXCL(range), each_i, 0); } else { rb_str_upto_endless_each(tmp, each_i, 0); } } else { if (!discrete_object_p(beg)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(beg)); } if (!NIL_P(end)) range_each_func(range, each_i, 0); else for (;; beg = rb_funcallv(beg, id_succ, 0, 0)) rb_yield(beg); } } return range; }
Returns the object that defines the end of self
.
(1..4).end # => 4 (1...4).end # => 4 (1..).end # => nil
Related: Range#begin
, Range#last
.
static VALUE range_end(VALUE range) { return RANGE_END(range); }
Returns true
if and only if:
-
other
is a range. -
other.begin eql? self.begin
. -
other.end eql? self.end
. -
other.exclude_end? == self.exclude_end?
.
Otherwise returns false
.
r = (1..5) r.eql?(1..5) # => true r = Range.new(1, 5) r.eql?('foo') # => false r.eql?(2..5) # => false r.eql?(1..4) # => false r.eql?(1...5) # => false r.eql?(Range.new(1, 5, true)) # => false
Note that even with the same argument, the return values of ==
and eql?
can differ:
(1..2) == (1..2.0) # => true (1..2).eql? (1..2.0) # => false
Related: Range#==
.
static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); }
Returns true
if self
excludes its end value; false
otherwise:
Range.new(2, 5).exclude_end? # => false Range.new(2, 5, true).exclude_end? # => true (2..5).exclude_end? # => false (2...5).exclude_end? # => true
static VALUE range_exclude_end_p(VALUE range) { return RBOOL(EXCL(range)); }
With no argument, returns the first element of self
, if it exists:
(1..4).first # => 1 ('a'..'d').first # => "a"
With non-negative integer argument n
given, returns the first n
elements in an array:
(1..10).first(3) # => [1, 2, 3] (1..10).first(0) # => [] (1..4).first(50) # => [1, 2, 3, 4]
Raises an exception if there is no first element:
(..4).first # Raises RangeError
static VALUE range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2]; if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the first element of beginless range"); } if (argc == 0) return RANGE_BEG(range); rb_scan_args(argc, argv, "1", &n); ary[0] = n; ary[1] = rb_ary_new2(NUM2LONG(n)); rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary); return ary[1]; }
Returns the integer hash value for self
. Two range objects r0
and r1
have the same hash value if and only if r0.eql?(r1)
.
Related: Range#eql?
, Object#hash
.
static VALUE range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v; hash = rb_hash_start(hash); v = rb_hash(RANGE_BEG(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); v = rb_hash(RANGE_END(range)); hash = rb_hash_uint(hash, NUM2LONG(v)); hash = rb_hash_uint(hash, EXCL(range) << 24); hash = rb_hash_end(hash); return ST2FIX(hash); }
Returns true
if object
is an element of self
, false
otherwise:
(1..4).include?(2) # => true (1..4).include?(5) # => false (1..4).include?(4) # => true (1...4).include?(4) # => false ('a'..'d').include?('b') # => true ('a'..'d').include?('e') # => false ('a'..'d').include?('B') # => false ('a'..'d').include?('d') # => true ('a'...'d').include?('d') # => false
If begin and end are numeric, include?
behaves like cover?
(1..3).include?(1.5) # => true (1..3).cover?(1.5) # => true
But when not numeric, the two methods may differ:
('a'..'d').include?('cc') # => false ('a'..'d').cover?('cc') # => true
Related: Range#cover?
.
Returns a string representation of self
, including begin.inspect
and end.inspect
:
(1..4).inspect # => "1..4" (1...4).inspect # => "1...4" (1..).inspect # => "1.." (..4).inspect # => "..4"
Note that returns from to_s
and inspect
may differ:
('a'..'d').to_s # => "a..d" ('a'..'d').inspect # => "\"a\"..\"d\""
Related: Range#to_s
.
static VALUE range_inspect(VALUE range) { return rb_exec_recursive(inspect_range, range, 0); }
With no argument, returns the last element of self
, if it exists:
(1..4).last # => 4 ('a'..'d').last # => "d"
Note that last
with no argument returns the end element of self
even if exclude_end?
is true
:
(1...4).last # => 4 ('a'...'d').last # => "d"
With non-negative integer argument n
given, returns the last n
elements in an array:
(1..10).last(3) # => [8, 9, 10] (1..10).last(0) # => [] (1..4).last(50) # => [1, 2, 3, 4]
Note that last
with argument does not return the end element of self
if exclude_end?
it true
:
(1...4).last(3) # => [1, 2, 3] ('a'...'d').last(3) # => ["a", "b", "c"]
Raises an exception if there is no last element:
(1..).last # Raises RangeError
static VALUE range_last(int argc, VALUE *argv, VALUE range) { VALUE b, e; if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); b = RANGE_BEG(range); e = RANGE_END(range); if (RB_INTEGER_TYPE_P(b) && RB_INTEGER_TYPE_P(e) && RB_LIKELY(rb_method_basic_definition_p(rb_cRange, idEach))) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); }
Returns the maximum value in self
, using method <=>
or a given block for comparison.
With no argument and no block given, returns the maximum-valued element of self
.
(1..4).max # => 4 ('a'..'d').max # => "d" (-4..-1).max # => -1
With non-negative integer argument n
given, and no block given, returns the n
maximum-valued elements of self
in an array:
(1..4).max(2) # => [4, 3] ('a'..'d').max(2) # => ["d", "c"] (-4..-1).max(2) # => [-1, -2] (1..4).max(50) # => [4, 3, 2, 1]
If a block is given, it is called:
-
First, with the first two element of
self
. -
Then, sequentially, with the so-far maximum value and the next element of
self
.
To illustrate:
(1..4).max {|a, b| p [a, b]; a <=> b } # => 4
Output:
[2, 1] [3, 2] [4, 3]
With no argument and a block given, returns the return value of the last call to the block:
(1..4).max {|a, b| -(a <=> b) } # => 1
With non-negative integer argument n
given, and a block given, returns the return values of the last n
calls to the block in an array:
(1..4).max(2) {|a, b| -(a <=> b) } # => [1, 2] (1..4).max(50) {|a, b| -(a <=> b) } # => [1, 2, 3, 4]
Returns an empty array if n
is zero:
(1..4).max(0) # => [] (1..4).max(0) {|a, b| -(a <=> b) } # => []
Returns nil
or an empty array if:
-
The begin value of the range is larger than the end value:
(4..1).max # => nil (4..1).max(2) # => [] (4..1).max {|a, b| -(a <=> b) } # => nil (4..1).max(2) {|a, b| -(a <=> b) } # => []
-
The begin value of an exclusive range is equal to the end value:
(1...1).max # => nil (1...1).max(2) # => [] (1...1).max {|a, b| -(a <=> b) } # => nil (1...1).max(2) {|a, b| -(a <=> b) } # => []
Raises an exception if either:
-
self
is a endless range:(1..)
. -
A block is given and
self
is a beginless range.
Related: Range#min
, Range#minmax
.
static VALUE range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric); if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the maximum of endless range"); } VALUE b = RANGE_BEG(range); if (rb_block_given_p() || (EXCL(range) && !nm) || argc) { if (NIL_P(b)) { rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method"); } return rb_call_super(argc, argv); } else { int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e); if (c > 0) return Qnil; if (EXCL(range)) { if (!RB_INTEGER_TYPE_P(e)) { rb_raise(rb_eTypeError, "cannot exclude non Integer end value"); } if (c == 0) return Qnil; if (!RB_INTEGER_TYPE_P(b)) { rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value"); } if (FIXNUM_P(e)) { return LONG2NUM(FIX2LONG(e) - 1); } return rb_funcall(e, '-', 1, INT2FIX(1)); } return e; } }
Returns the minimum value in self
, using method <=>
or a given block for comparison.
With no argument and no block given, returns the minimum-valued element of self
.
(1..4).min # => 1 ('a'..'d').min # => "a" (-4..-1).min # => -4
With non-negative integer argument n
given, and no block given, returns the n
minimum-valued elements of self
in an array:
(1..4).min(2) # => [1, 2] ('a'..'d').min(2) # => ["a", "b"] (-4..-1).min(2) # => [-4, -3] (1..4).min(50) # => [1, 2, 3, 4]
If a block is given, it is called:
-
First, with the first two element of
self
. -
Then, sequentially, with the so-far minimum value and the next element of
self
.
To illustrate:
(1..4).min {|a, b| p [a, b]; a <=> b } # => 1
Output:
[2, 1] [3, 1] [4, 1]
With no argument and a block given, returns the return value of the last call to the block:
(1..4).min {|a, b| -(a <=> b) } # => 4
With non-negative integer argument n
given, and a block given, returns the return values of the last n
calls to the block in an array:
(1..4).min(2) {|a, b| -(a <=> b) } # => [4, 3] (1..4).min(50) {|a, b| -(a <=> b) } # => [4, 3, 2, 1]
Returns an empty array if n
is zero:
(1..4).min(0) # => [] (1..4).min(0) {|a, b| -(a <=> b) } # => []
Returns nil
or an empty array if:
-
The begin value of the range is larger than the end value:
(4..1).min # => nil (4..1).min(2) # => [] (4..1).min {|a, b| -(a <=> b) } # => nil (4..1).min(2) {|a, b| -(a <=> b) } # => []
-
The begin value of an exclusive range is equal to the end value:
(1...1).min # => nil (1...1).min(2) # => [] (1...1).min {|a, b| -(a <=> b) } # => nil (1...1).min(2) {|a, b| -(a <=> b) } # => []
Raises an exception if either:
-
self
is a beginless range:(..4)
. -
A block is given and
self
is an endless range.
Related: Range#max
, Range#minmax
.
static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); } if (rb_block_given_p()) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method"); } return rb_call_super(argc, argv); } else if (argc != 0) { return range_first(argc, argv, range); } else { VALUE b = RANGE_BEG(range); VALUE e = RANGE_END(range); int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e); if (c > 0 || (c == 0 && EXCL(range))) return Qnil; return b; } }
Returns a 2-element array containing the minimum and maximum value in self
, either according to comparison method <=>
or a given block.
With no block given, returns the minimum and maximum values, using <=>
for comparison:
(1..4).minmax # => [1, 4] (1...4).minmax # => [1, 3] ('a'..'d').minmax # => ["a", "d"] (-4..-1).minmax # => [-4, -1]
With a block given, the block must return an integer:
-
Negative if
a
is smaller thanb
. -
Zero if
a
andb
are equal. -
Positive if
a
is larger thanb
.
The block is called self.size
times to compare elements; returns a 2-element Array
containing the minimum and maximum values from self
, per the block:
(1..4).minmax {|a, b| -(a <=> b) } # => [4, 1]
Returns [nil, nil]
if:
-
The begin value of the range is larger than the end value:
(4..1).minmax # => [nil, nil] (4..1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
-
The begin value of an exclusive range is equal to the end value:
(1...1).minmax # => [nil, nil] (1...1).minmax {|a, b| -(a <=> b) } # => [nil, nil]
Raises an exception if self
is a beginless or an endless range.
Related: Range#min
, Range#max
.
static VALUE range_minmax(VALUE range) { if (rb_block_given_p()) { return rb_call_super(0, NULL); } return rb_assoc_new( rb_funcall(range, id_min, 0), rb_funcall(range, id_max, 0) ); }
Returns true
if range
overlaps with self
, false
otherwise:
(0..2).overlap?(1..3) #=> true (0..2).overlap?(3..4) #=> false (0..).overlap?(..0) #=> true
With non-range argument, raises TypeError
.
(1..3).overlap?(1) # TypeError
Returns false
if an internal call to <=>
returns nil
; that is, the operands are not comparable.
(1..3).overlap?('a'..'d') # => false
Returns false
if self
or range
is empty. “Empty range” means that its begin value is larger than, or equal for an exclusive range, its end value.
(4..1).overlap?(2..3) # => false (4..1).overlap?(..3) # => false (4..1).overlap?(2..) # => false (2...2).overlap?(1..2) # => false (1..4).overlap?(3..2) # => false (..4).overlap?(3..2) # => false (1..).overlap?(3..2) # => false (1..2).overlap?(2...2) # => false
Returns false
if the begin value one of self
and range
is larger than, or equal if the other is an exclusive range, the end value of the other:
(4..5).overlap?(2..3) # => false (4..5).overlap?(2...4) # => false (1..2).overlap?(3..4) # => false (1...3).overlap?(3..4) # => false
Returns false
if the end value one of self
and range
is larger than, or equal for an exclusive range, the end value of the other:
(4..5).overlap?(2..3) # => false (4..5).overlap?(2...4) # => false (1..2).overlap?(3..4) # => false (1...3).overlap?(3..4) # => false
Note that the method wouldn’t make any assumptions about the beginless range being actually empty, even if its upper bound is the minimum possible value of its type, so all this would return true
:
(...-Float::INFINITY).overlap?(...-Float::INFINITY) # => true (..."").overlap?(..."") # => true (...[]).overlap?(...[]) # => true
Even if those ranges are effectively empty (no number can be smaller than -Float::INFINITY
), they are still considered overlapping with themselves.
Related: Range#cover?
.
static VALUE range_overlap(VALUE range, VALUE other) { if (!rb_obj_is_kind_of(other, rb_cRange)) { rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)", rb_class_name(rb_obj_class(other))); } VALUE self_beg = RANGE_BEG(range); VALUE self_end = RANGE_END(range); int self_excl = EXCL(range); VALUE other_beg = RANGE_BEG(other); VALUE other_end = RANGE_END(other); int other_excl = EXCL(other); if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse; if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse; if (!NIL_P(self_beg) && !NIL_P(other_beg)) { VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg); if (NIL_P(cmp)) return Qfalse; /* if both begin values are equal, no more comparisons needed */ if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue; } else if (NIL_P(self_beg) && NIL_P(other_beg)) { VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end); return RBOOL(!NIL_P(cmp)); } if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse; if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse; return Qtrue; }
With a block given, passes each element of self
to the block in reverse order:
a = [] (1..4).reverse_each {|element| a.push(element) } # => 1..4 a # => [4, 3, 2, 1] a = [] (1...4).reverse_each {|element| a.push(element) } # => 1...4 a # => [3, 2, 1]
With no block given, returns an enumerator.
static VALUE range_reverse_each(VALUE range) { RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size); VALUE beg = RANGE_BEG(range); VALUE end = RANGE_END(range); int excl = EXCL(range); if (NIL_P(end)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(end)); } if (FIXNUM_P(beg) && FIXNUM_P(end)) { if (excl) { if (end == LONG2FIX(FIXNUM_MIN)) return range; end = rb_int_minus(end, INT2FIX(1)); } range_reverse_each_fixnum_section(beg, end); } else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) { if (excl) { end = rb_int_minus(end, INT2FIX(1)); } range_reverse_each_positive_bignum_section(beg, end); range_reverse_each_fixnum_section(beg, end); range_reverse_each_negative_bignum_section(beg, end); } else { return rb_call_super(0, NULL); } return range; }
Returns the count of elements in self
if both begin and end values are numeric; otherwise, returns nil
:
(1..4).size # => 4 (1...4).size # => 3 (1..).size # => Infinity ('a'..'z').size #=> nil
Related: Range#count
.
static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range); if (rb_obj_is_kind_of(b, rb_cNumeric)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range)); } if (NIL_P(e)) { return DBL2NUM(HUGE_VAL); } } else if (NIL_P(b)) { if (rb_obj_is_kind_of(e, rb_cNumeric)) { return DBL2NUM(HUGE_VAL); } } return Qnil; }
Iterates over the elements of self
.
With a block given and no argument, calls the block each element of the range; returns self
:
a = [] (1..5).step {|element| a.push(element) } # => 1..5 a # => [1, 2, 3, 4, 5] a = [] ('a'..'e').step {|element| a.push(element) } # => "a".."e" a # => ["a", "b", "c", "d", "e"]
With a block given and a positive integer argument n
given, calls the block with element 0
, element n
, element 2n
, and so on:
a = [] (1..5).step(2) {|element| a.push(element) } # => 1..5 a # => [1, 3, 5] a = [] ('a'..'e').step(2) {|element| a.push(element) } # => "a".."e" a # => ["a", "c", "e"]
With no block given, returns an enumerator, which will be of class Enumerator::ArithmeticSequence
if self
is numeric; otherwise of class Enumerator:
e = (1..5).step(2) # => ((1..5).step(2)) e.class # => Enumerator::ArithmeticSequence ('a'..'e').step # => #<Enumerator: ...>
Related: Range#%
.
static VALUE range_step(int argc, VALUE *argv, VALUE range) { VALUE b, e, step, tmp; b = RANGE_BEG(range); e = RANGE_END(range); step = (!rb_check_arity(argc, 0, 1) ? INT2FIX(1) : argv[0]); if (!rb_block_given_p()) { if (!rb_obj_is_kind_of(step, rb_cNumeric)) { step = rb_to_int(step); } if (rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric); const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric); if ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p)) { return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv, range_step_size, b, e, step, EXCL(range)); } RETURN_SIZED_ENUMERATOR(range, argc, argv, range_step_size); } step = check_step_domain(step); VALUE iter[2] = {INT2FIX(1), step}; if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) { long i = FIX2LONG(b), unit = FIX2LONG(step); do { rb_yield(LONG2FIX(i)); i += unit; /* FIXABLE+FIXABLE never overflow */ } while (FIXABLE(i)); b = LONG2NUM(i); for (;; b = rb_big_plus(b, step)) rb_yield(b); } else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) { /* fixnums are special */ long end = FIX2LONG(e); long i, unit = FIX2LONG(step); if (!EXCL(range)) end += 1; i = FIX2LONG(b); while (i < end) { rb_yield(LONG2NUM(i)); if (i + unit < i) break; i += unit; } } else if (SYMBOL_P(b) && (NIL_P(e) || SYMBOL_P(e))) { /* symbols are special */ b = rb_sym2str(b); if (NIL_P(e)) { rb_str_upto_endless_each(b, sym_step_i, (VALUE)iter); } else { rb_str_upto_each(b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter); } } else if (ruby_float_step(b, e, step, EXCL(range), TRUE)) { /* done */ } else if (rb_obj_is_kind_of(b, rb_cNumeric) || !NIL_P(rb_check_to_integer(b, "to_int")) || !NIL_P(rb_check_to_integer(e, "to_int"))) { ID op = EXCL(range) ? '<' : idLE; VALUE v = b; int i = 0; while (NIL_P(e) || RTEST(rb_funcall(v, op, 1, e))) { rb_yield(v); i++; v = rb_funcall(b, '+', 1, rb_funcall(INT2NUM(i), '*', 1, step)); } } else { tmp = rb_check_string_type(b); if (!NIL_P(tmp)) { b = tmp; if (NIL_P(e)) { rb_str_upto_endless_each(b, step_i, (VALUE)iter); } else { rb_str_upto_each(b, e, EXCL(range), step_i, (VALUE)iter); } } else { if (!discrete_object_p(b)) { rb_raise(rb_eTypeError, "can't iterate from %s", rb_obj_classname(b)); } if (!NIL_P(e)) range_each_func(range, step_i, (VALUE)iter); else for (;; b = rb_funcallv(b, id_succ, 0, 0)) step_i(b, (VALUE)iter); } } return range; }
Returns an array containing the elements in self
, if a finite collection; raises an exception otherwise.
(1..4).to_a # => [1, 2, 3, 4] (1...4).to_a # => [1, 2, 3] ('a'..'d').to_a # => ["a", "b", "c", "d"]
static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); }
Returns a JSON
string representing self
:
require 'json/add/range' puts (1..4).to_json puts (1...4).to_json puts ('a'..'d').to_json
Output:
{"json_class":"Range","a":[1,4,false]} {"json_class":"Range","a":[1,4,true]} {"json_class":"Range","a":["a","d",false]}
# File ext/json/lib/json/add/range.rb, line 51 def to_json(*args) as_json.to_json(*args) end
Returns a string representation of self
, including begin.to_s
and end.to_s
:
(1..4).to_s # => "1..4" (1...4).to_s # => "1...4" (1..).to_s # => "1.." (..4).to_s # => "..4"
Note that returns from to_s
and inspect
may differ:
('a'..'d').to_s # => "a..d" ('a'..'d').inspect # => "\"a\"..\"d\""
Related: Range#inspect
.
static VALUE range_to_s(VALUE range) { VALUE str, str2; str = rb_obj_as_string(RANGE_BEG(range)); str2 = rb_obj_as_string(RANGE_END(range)); str = rb_str_dup(str); rb_str_cat(str, "...", EXCL(range) ? 3 : 2); rb_str_append(str, str2); return str; }