class Complex

A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.

Rectangular Coordinates

The rectangular coordinates of a complex number are called the real and imaginary parts; see Complex number definition.

You can create a Complex object from rectangular coordinates with:

Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:

The corresponding (computed) polar values may be retrieved:

Polar Coordinates

The polar coordinates of a complex number are called the absolute and argument parts; see Complex polar plane.

In this class, the argument part in expressed radians (not degrees).

You can create a Complex object from polar coordinates with:

Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:

The corresponding (computed) rectangular values may be retrieved:

Constants

I

Equivalent to Complex(0, 1):

Complex::I # => (0+1i)

Public Class Methods

json_create(object) click to toggle source

See as_json.

# File ext/json/lib/json/add/complex.rb, line 9
def self.json_create(object)
  Complex(object['r'], object['i'])
end
polar(abs, arg = 0) → complex click to toggle source

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational. Argument arg is given in radians; see Polar Coordinates:

Complex.polar(3)        # => (3+0i)
Complex.polar(3, 2.0)   # => (-1.2484405096414273+2.727892280477045i)
Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
    VALUE abs, arg;

    argc = rb_scan_args(argc, argv, "11", &abs, &arg);
    abs = nucomp_real_check(abs);
    if (argc == 2) {
        arg = nucomp_real_check(arg);
    }
    else {
        arg = ZERO;
    }
    return f_complex_polar_real(klass, abs, arg);
}
rect(real, imag = 0) → complex click to toggle source

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        real = nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        real = nucomp_real_check(real);
        imag = nucomp_real_check(imag);
        break;
    }

    return nucomp_s_new_internal(klass, real, imag);
}
rect(real, imag = 0) → complex click to toggle source

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;

    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        real = nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        real = nucomp_real_check(real);
        imag = nucomp_real_check(imag);
        break;
    }

    return nucomp_s_new_internal(klass, real, imag);
}

Public Instance Methods

complex * numeric → new_complex click to toggle source

Returns the product of self and numeric:

Complex(2, 3)  * Complex(2, 3)  # => (-5+12i)
Complex(900)   * Complex(1)     # => (900+0i)
Complex(-2, 9) * Complex(-9, 2) # => (0-85i)
Complex(9, 8)  * 4              # => (36+32i)
Complex(20, 9) * 9.8            # => (196.0+88.2i)
VALUE
rb_complex_mul(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;
        get_dat2(self, other);

        comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_mul(dat->real, other),
                              f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
complex ** numeric → new_complex click to toggle source

Returns self raised to power numeric:

Complex('i') ** 2             # => (-1+0i)
Complex(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
VALUE
rb_complex_pow(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
        return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
        other = RRATIONAL(other)->num; /* c14n */

    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat1(other);

        if (k_exact_zero_p(dat->imag))
            other = dat->real; /* c14n */
    }

    if (other == ONE) {
        get_dat1(self);
        return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
    }

    VALUE result = complex_pow_for_special_angle(self, other);
    if (result != Qundef) return result;

    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE r, theta, nr, ntheta;

        get_dat1(other);

        r = f_abs(self);
        theta = f_arg(self);

        nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
                              f_mul(dat->imag, theta)));
        ntheta = f_add(f_mul(theta, dat->real),
                       f_mul(dat->imag, m_log_bang(r)));
        return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (FIXNUM_P(other)) {
        long n = FIX2LONG(other);
        if (n == 0) {
            return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
        }
        if (n < 0) {
            self = f_reciprocal(self);
            other = rb_int_uminus(other);
            n = -n;
        }
        {
            get_dat1(self);
            VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;

            if (f_zero_p(xi)) {
                zr = rb_num_pow(zr, other);
            }
            else if (f_zero_p(xr)) {
                zi = rb_num_pow(zi, other);
                if (n & 2) zi = f_negate(zi);
                if (!(n & 1)) {
                    VALUE tmp = zr;
                    zr = zi;
                    zi = tmp;
                }
            }
            else {
                while (--n) {
                    long q, r;

                    for (; q = n / 2, r = n % 2, r == 0; n = q) {
                        VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
                        xi = f_mul(f_mul(TWO, xr), xi);
                        xr = tmp;
                    }
                    comp_mul(zr, zi, xr, xi, &zr, &zi);
                }
            }
            return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
        }
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        VALUE r, theta;

        if (RB_BIGNUM_TYPE_P(other))
            rb_warn("in a**b, b may be too big");

        r = f_abs(self);
        theta = f_arg(self);

        return f_complex_polar(CLASS_OF(self), f_expt(r, other),
                               f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
complex + numeric → new_complex click to toggle source

Returns the sum of self and numeric:

Complex(2, 3)  + Complex(2, 3)  # => (4+6i)
Complex(900)   + Complex(1)     # => (901+0i)
Complex(-2, 9) + Complex(-9, 2) # => (-11+11i)
Complex(9, 8)  + 4              # => (13+8i)
Complex(20, 9) + 9.8            # => (29.8+9i)
VALUE
rb_complex_plus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_add(adat->real, bdat->real);
        imag = f_add(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_add(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '+');
}
complex - numeric → new_complex click to toggle source

Returns the difference of self and numeric:

Complex(2, 3)  - Complex(2, 3)  # => (0+0i)
Complex(900)   - Complex(1)     # => (899+0i)
Complex(-2, 9) - Complex(-9, 2) # => (7+7i)
Complex(9, 8)  - 4              # => (5+8i)
Complex(20, 9) - 9.8            # => (10.2+9i)
VALUE
rb_complex_minus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;

        get_dat2(self, other);

        real = f_sub(adat->real, bdat->real);
        imag = f_sub(adat->imag, bdat->imag);

        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return f_complex_new2(CLASS_OF(self),
                              f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
-complex → new_complex click to toggle source

Returns the negation of self, which is the negation of each of its parts:

-Complex(1, 2)   # => (-1-2i)
-Complex(-1, -2) # => (1+2i)
VALUE
rb_complex_uminus(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self),
                          f_negate(dat->real), f_negate(dat->imag));
}
complex / numeric → new_complex click to toggle source

Returns the quotient of self and numeric:

Complex(2, 3)  / Complex(2, 3)  # => ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)     # => ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2) # => ((36/85)-(77/85)*i)
Complex(9, 8)  / 4              # => ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8            # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
complex <=> object → -1, 0, 1, or nil click to toggle source

Returns:

  • self.real <=> object.real if both of the following are true:

    • self.imag == 0.

    • object.imag == 0. # Always true if object is numeric but not complex.

  • nil otherwise.

Examples:

Complex(2) <=> 3             # => -1
Complex(2) <=> 2             # => 0
Complex(2) <=> 1             # => 1
Complex(2, 1) <=> 1          # => nil # self.imag not zero.
Complex(1) <=> Complex(1, 1) # => nil # object.imag not zero.
Complex(1) <=> 'Foo'         # => nil # object.imag not defined.
static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
    if (!k_numeric_p(other)) {
        return rb_num_coerce_cmp(self, other, idCmp);
    }
    if (!nucomp_real_p(self)) {
        return Qnil;
    }
    if (RB_TYPE_P(other, T_COMPLEX)) {
        if (nucomp_real_p(other)) {
            get_dat2(self, other);
            return rb_funcall(adat->real, idCmp, 1, bdat->real);
        }
    }
    else {
        get_dat1(self);
        if (f_real_p(other)) {
            return rb_funcall(dat->real, idCmp, 1, other);
        }
        else {
            return rb_num_coerce_cmp(dat->real, other, idCmp);
        }
    }
    return Qnil;
}
complex == object → true or false click to toggle source

Returns true if self.real == object.real and self.imag == object.imag:

Complex(2, 3)  == Complex(2.0, 3.0)      # => true
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat2(self, other);

        return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
                          f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);

        return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return RBOOL(f_eqeq_p(other, self));
}
abs → float click to toggle source

Returns the absolute value (magnitude) for self; see polar coordinates:

Complex.polar(-1, 0).abs # => 1.0

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
VALUE
rb_complex_abs(VALUE self)
{
    get_dat1(self);

    if (f_zero_p(dat->real)) {
        VALUE a = f_abs(dat->imag);
        if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    if (f_zero_p(dat->imag)) {
        VALUE a = f_abs(dat->real);
        if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    return rb_math_hypot(dat->real, dat->imag);
}
Also aliased as: magnitude
abs2 → float click to toggle source

Returns square of the absolute value (magnitude) for self; see polar coordinates:

Complex.polar(2, 2).abs2 # => 4.0

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
                 f_mul(dat->imag, dat->imag));
}
angle
Alias for: arg
arg → float click to toggle source

Returns the argument (angle) for self in radians; see polar coordinates:

Complex.polar(3, Math::PI/2).arg  # => 1.57079632679489660

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
VALUE
rb_complex_arg(VALUE self)
{
    get_dat1(self);
    return rb_math_atan2(dat->imag, dat->real);
}
Also aliased as: angle, phase
as_json(*) click to toggle source

Methods Complex#as_json and Complex.json_create may be used to serialize and deserialize a Complex object; see Marshal.

Method Complex#as_json serializes self, returning a 2-element hash representing self:

require 'json/add/complex'
x = Complex(2).as_json      # => {"json_class"=>"Complex", "r"=>2, "i"=>0}
y = Complex(2.0, 4).as_json # => {"json_class"=>"Complex", "r"=>2.0, "i"=>4}

Method JSON.create deserializes such a hash, returning a Complex object:

Complex.json_create(x) # => (2+0i)
Complex.json_create(y) # => (2.0+4i)
# File ext/json/lib/json/add/complex.rb, line 29
def as_json(*)
  {
    JSON.create_id => self.class.name,
    'r'            => real,
    'i'            => imag,
  }
end
conj → complex

Returns the conjugate of self, Complex.rect(self.imag, self.real):

Complex.rect(1, 2).conj # => (1-2i)
Alias for: conjugate
conjugate
Also aliased as: conj
denominator → integer click to toggle source

Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:

Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6

Note that n.denominator of a non-rational numeric is 1.

Related: Complex#numerator.

static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
fdiv(numeric) → new_complex click to toggle source

Returns Complex(self.real/numeric, self.imag/numeric):

Complex(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}
finite? → true or false click to toggle source

Returns true if both self.real.finite? and self.imag.finite? are true, false otherwise:

Complex(1, 1).finite?               # => true
Complex(Float::INFINITY, 0).finite? # => false

Related: Numeric#finite?, Float#finite?.

static VALUE
rb_complex_finite_p(VALUE self)
{
    get_dat1(self);

    return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
}
hash → integer click to toggle source

Returns the integer hash value for self.

Two Complex objects created from the same values will have the same hash value (and will compare using eql?):

Complex(1, 2).hash == Complex(1, 2).hash # => true
static VALUE
nucomp_hash(VALUE self)
{
    return ST2FIX(rb_complex_hash(self));
}
imag → numeric

Returns the imaginary value for self:

Complex(7).imaginary      #=> 0
Complex(9, -4).imaginary  #=> -4

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
Alias for: imaginary
imaginary
Also aliased as: imag
infinite? → 1 or nil click to toggle source

Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:

Complex(Float::INFINITY, 0).infinite? # => 1
Complex(1, 1).infinite?               # => nil

Related: Numeric#infinite?, Float#infinite?.

static VALUE
rb_complex_infinite_p(VALUE self)
{
    get_dat1(self);

    if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
        return Qnil;
    }
    return ONE;
}
inspect → string click to toggle source

Returns a string representation of self:

Complex(2).inspect                      # => "(2+0i)"
Complex('-8/6').inspect                 # => "((-4/3)+0i)"
Complex('1/2i').inspect                 # => "(0+(1/2)*i)"
Complex(0, Float::INFINITY).inspect     # => "(0+Infinity*i)"
Complex(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;

    s = rb_usascii_str_new2("(");
    rb_str_concat(s, f_format(self, rb_inspect));
    rb_str_cat2(s, ")");

    return s;
}
magnitude
Alias for: abs
numerator → new_complex click to toggle source

Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:

c = Complex(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
c.numerator                                 # => (8+9i)

In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex(8, 9).

Related: Complex#denominator.

static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;

    get_dat1(self);

    cd = nucomp_denominator(self);
    return f_complex_new2(CLASS_OF(self),
                          f_mul(f_numerator(dat->real),
                                f_div(cd, f_denominator(dat->real))),
                          f_mul(f_numerator(dat->imag),
                                f_div(cd, f_denominator(dat->imag))));
}
phase
Alias for: arg
polar → array click to toggle source

Returns the array [self.abs, self.arg]:

Complex.polar(1, 2).polar # => [1.0, 2.0]

See Polar Coordinates.

If self was created with rectangular coordinates, the returned value is computed, and may be inexact:

Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}
complex / numeric → new_complex click to toggle source

Returns the quotient of self and numeric:

Complex(2, 3)  / Complex(2, 3)  # => ((1/1)+(0/1)*i)
Complex(900)   / Complex(1)     # => ((900/1)+(0/1)*i)
Complex(-2, 9) / Complex(-9, 2) # => ((36/85)-(77/85)*i)
Complex(9, 8)  / 4              # => ((9/4)+(2/1)*i)
Complex(20, 9) / 9.8            # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
rationalize(epsilon = nil) → rational click to toggle source

Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.

With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:

Complex(1, 0).rationalize              # => (1/1)
Complex(1, Rational(0, 1)).rationalize # => (1/1)
Complex(3.14159, 0).rationalize        # => (314159/100000)

With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:

Complex(3.14159, 0).rationalize(0.1)          # => (16/5)
Complex(3.14159, 0).rationalize(0.01)         # => (22/7)
Complex(3.14159, 0).rationalize(0.001)        # => (201/64)
Complex(3.14159, 0).rationalize(0.0001)       # => (333/106)
Complex(3.14159, 0).rationalize(0.00001)      # => (355/113)
Complex(3.14159, 0).rationalize(0.000001)     # => (7433/2366)
Complex(3.14159, 0).rationalize(0.0000001)    # => (9208/2931)
Complex(3.14159, 0).rationalize(0.00000001)   # => (47460/15107)
Complex(3.14159, 0).rationalize(0.000000001)  # => (76149/24239)
Complex(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
Complex(3.14159, 0).rationalize(0.0)          # => (3537115888337719/1125899906842624)

Related: Complex#to_r.

static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
    get_dat1(self);

    rb_check_arity(argc, 0, 1);

    if (!k_exact_zero_p(dat->imag)) {
       rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                self);
    }
    return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
real → numeric click to toggle source

Returns the real value for self:

Complex(7).real      #=> 7
Complex(9, -4).real  #=> 9

If self was created with polar coordinates, the returned value is computed, and may be inexact:

Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
VALUE
rb_complex_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}
real? → false click to toggle source

Returns false; for compatibility with Numeric#real?.

static VALUE
nucomp_real_p_m(VALUE self)
{
    return Qfalse;
}
rect → array

Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:

Complex.rect(3)             # => (3+0i)
Complex.rect(3, Math::PI)   # => (3+3.141592653589793i)
Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)

Complex.rectangular is an alias for Complex.rect.

Alias for: rectangular
rectangular
Also aliased as: rect, rect
to_c → self click to toggle source

Returns self.

static VALUE
nucomp_to_c(VALUE self)
{
    return self;
}
to_d → bigdecimal click to toggle source
to_d(precision) → bigdecimal

Returns the value as a BigDecimal.

The precision parameter is required for a rational complex number. This parameter is used to determine the number of significant digits for the result.

require 'bigdecimal'
require 'bigdecimal/util'

Complex(0.1234567, 0).to_d(4)   # => 0.1235e0
Complex(Rational(22, 7), 0).to_d(3)   # => 0.314e1

See also Kernel.BigDecimal.

# File ext/bigdecimal/lib/bigdecimal/util.rb, line 157
def to_d(*args)
  BigDecimal(self) unless self.imag.zero? # to raise eerror

  if args.length == 0
    case self.real
    when Rational
      BigDecimal(self.real) # to raise error
    end
  end
  self.real.to_d(*args)
end
to_f → float click to toggle source

Returns the value of self.real as a Float, if possible:

Complex(1, 0).to_f              # => 1.0
Complex(1, Rational(0, 1)).to_f # => 1.0

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).

static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
                 self);
    }
    return f_to_f(dat->real);
}
to_i → integer click to toggle source

Returns the value of self.real as an Integer, if possible:

Complex(1, 0).to_i              # => 1
Complex(1, Rational(0, 1)).to_i # => 1

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).

static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
                 self);
    }
    return f_to_i(dat->real);
}
to_json(*args) click to toggle source

Returns a JSON string representing self:

require 'json/add/complex'
puts Complex(2).to_json
puts Complex(2.0, 4).to_json

Output:

{"json_class":"Complex","r":2,"i":0}
{"json_class":"Complex","r":2.0,"i":4}
# File ext/json/lib/json/add/complex.rb, line 48
def to_json(*args)
  as_json.to_json(*args)
end
to_r → rational click to toggle source

Returns the value of self.real as a Rational, if possible:

Complex(1, 0).to_r              # => (1/1)
Complex(1, Rational(0, 1)).to_r # => (1/1)

Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).

Related: Complex#rationalize.

static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                 self);
    }
    return f_to_r(dat->real);
}
to_s → string click to toggle source

Returns a string representation of self:

Complex(2).to_s                      # => "2+0i"
Complex('-8/6').to_s                 # => "-4/3+0i"
Complex('1/2i').to_s                 # => "0+1/2i"
Complex(0, Float::INFINITY).to_s     # => "0+Infinity*i"
Complex(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, rb_String);
}