Ruby  3.1.0dev(2021-09-10revisionb76ad15ed0da636161de0243c547ee1e6fc95681)
Macros | Functions | Variables
rational.c File Reference

(b76ad15ed0da636161de0243c547ee1e6fc95681)

#include "ruby/internal/config.h"
#include <ctype.h>
#include <float.h>
#include <math.h>
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/complex.h"
#include "internal/gc.h"
#include "internal/numeric.h"
#include "internal/object.h"
#include "internal/rational.h"
#include "ruby_assert.h"
Include dependency graph for rational.c:

Go to the source code of this file.

Macros

#define ZERO   INT2FIX(0)
 
#define ONE   INT2FIX(1)
 
#define TWO   INT2FIX(2)
 
#define GMP_GCD_DIGITS   1
 
#define INT_ZERO_P(x)   (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))
 
#define id_idiv   idDiv
 
#define id_to_i   idTo_i
 
#define f_inspect   rb_inspect
 
#define f_to_s   rb_obj_as_string
 
#define f_expt10(x)   rb_int_pow(INT2FIX(10), x)
 
#define f_nonzero_p(x)   (!f_zero_p(x))
 
#define k_exact_p(x)   (!k_float_p(x))
 
#define k_inexact_p(x)   k_float_p(x)
 
#define k_exact_zero_p(x)   (k_exact_p(x) && f_zero_p(x))
 
#define k_exact_one_p(x)   (k_exact_p(x) && f_one_p(x))
 
#define get_dat1(x)   struct RRational *dat = RRATIONAL(x)
 
#define get_dat2(x, y)   struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)
 
#define nurat_expt   rb_rational_pow
 
#define id_ceil   rb_intern("ceil")
 
#define id_quo   idQuo
 
#define f_reciprocal(x)   f_quo(ONE, (x))
 
#define id_numerator   rb_intern("numerator")
 
#define f_numerator(x)   rb_funcall((x), id_numerator, 0)
 
#define id_denominator   rb_intern("denominator")
 
#define f_denominator(x)   rb_funcall((x), id_denominator, 0)
 
#define id_to_r   idTo_r
 
#define f_to_r(x)   rb_funcall((x), id_to_r, 0)
 

Functions

VALUE rb_gcd_normal (VALUE x, VALUE y)
 
VALUE rb_rational_uminus (VALUE self)
 
VALUE rb_rational_plus (VALUE self, VALUE other)
 
VALUE rb_rational_minus (VALUE self, VALUE other)
 
VALUE rb_rational_mul (VALUE self, VALUE other)
 
VALUE rb_rational_div (VALUE self, VALUE other)
 
VALUE rb_rational_pow (VALUE self, VALUE other)
 
VALUE rb_rational_cmp (VALUE self, VALUE other)
 
VALUE rb_rational_abs (VALUE self)
 
VALUE rb_rational_floor (VALUE self, int ndigits)
 
VALUE rb_flo_round_by_rational (int argc, VALUE *argv, VALUE num)
 
st_index_t rb_rational_hash (VALUE self)
 
VALUE rb_rational_reciprocal (VALUE x)
 
VALUE rb_gcd (VALUE self, VALUE other)
 
VALUE rb_lcm (VALUE self, VALUE other)
 
VALUE rb_gcdlcm (VALUE self, VALUE other)
 
VALUE rb_rational_raw (VALUE x, VALUE y)
 
VALUE rb_rational_new (VALUE x, VALUE y)
 
VALUE rb_Rational (VALUE x, VALUE y)
 
VALUE rb_rational_num (VALUE rat)
 
VALUE rb_rational_den (VALUE rat)
 
VALUE rb_numeric_quo (VALUE x, VALUE y)
 
VALUE rb_rational_canonicalize (VALUE x)
 
VALUE rb_float_numerator (VALUE self)
 
VALUE rb_float_denominator (VALUE self)
 
VALUE rb_flt_rationalize_with_prec (VALUE flt, VALUE prec)
 
VALUE rb_flt_rationalize (VALUE flt)
 
VALUE rb_cstr_to_rat (const char *s, int strict)
 
void Init_Rational (void)
 

Variables

VALUE rb_cRational
 

Macro Definition Documentation

◆ f_denominator

#define f_denominator (   x)    rb_funcall((x), id_denominator, 0)

Definition at line 1993 of file rational.c.

◆ f_expt10

#define f_expt10 (   x)    rb_int_pow(INT2FIX(10), x)

Definition at line 163 of file rational.c.

◆ f_inspect

#define f_inspect   rb_inspect

Definition at line 49 of file rational.c.

◆ f_nonzero_p

#define f_nonzero_p (   x)    (!f_zero_p(x))

Definition at line 179 of file rational.c.

◆ f_numerator

#define f_numerator (   x)    rb_funcall((x), id_numerator, 0)

Definition at line 1990 of file rational.c.

◆ f_reciprocal

#define f_reciprocal (   x)    f_quo(ONE, (x))

Definition at line 1614 of file rational.c.

◆ f_to_r

#define f_to_r (   x)    rb_funcall((x), id_to_r, 0)

Definition at line 1996 of file rational.c.

◆ f_to_s

#define f_to_s   rb_obj_as_string

Definition at line 50 of file rational.c.

◆ get_dat1

#define get_dat1 (   x)    struct RRational *dat = RRATIONAL(x)

Definition at line 401 of file rational.c.

◆ get_dat2

#define get_dat2 (   x,
  y 
)    struct RRational *adat = RRATIONAL(x), *bdat = RRATIONAL(y)

Definition at line 404 of file rational.c.

◆ GMP_GCD_DIGITS

#define GMP_GCD_DIGITS   1

Definition at line 37 of file rational.c.

◆ id_ceil

#define id_ceil   rb_intern("ceil")

Definition at line 1590 of file rational.c.

◆ id_denominator

#define id_denominator   rb_intern("denominator")

Definition at line 1992 of file rational.c.

◆ id_idiv

#define id_idiv   idDiv

Definition at line 46 of file rational.c.

◆ id_numerator

#define id_numerator   rb_intern("numerator")

Definition at line 1989 of file rational.c.

◆ id_quo

#define id_quo   idQuo

Definition at line 1602 of file rational.c.

◆ id_to_i

#define id_to_i   idTo_i

Definition at line 47 of file rational.c.

◆ id_to_r

#define id_to_r   idTo_r

Definition at line 1995 of file rational.c.

◆ INT_ZERO_P

#define INT_ZERO_P (   x)    (FIXNUM_P(x) ? FIXNUM_ZERO_P(x) : rb_bigzero_p(x))

Definition at line 39 of file rational.c.

◆ k_exact_one_p

#define k_exact_one_p (   x)    (k_exact_p(x) && f_one_p(x))

Definition at line 248 of file rational.c.

◆ k_exact_p

#define k_exact_p (   x)    (!k_float_p(x))

Definition at line 244 of file rational.c.

◆ k_exact_zero_p

#define k_exact_zero_p (   x)    (k_exact_p(x) && f_zero_p(x))

Definition at line 247 of file rational.c.

◆ k_inexact_p

#define k_inexact_p (   x)    k_float_p(x)

Definition at line 245 of file rational.c.

◆ nurat_expt

#define nurat_expt   rb_rational_pow

Definition at line 1048 of file rational.c.

◆ ONE

#define ONE   INT2FIX(1)

Definition at line 34 of file rational.c.

◆ TWO

#define TWO   INT2FIX(2)

Definition at line 35 of file rational.c.

◆ ZERO

#define ZERO   INT2FIX(0)

Definition at line 33 of file rational.c.

Function Documentation

◆ Init_Rational()

void Init_Rational ( void  )

Definition at line 2756 of file rational.c.

◆ rb_cstr_to_rat()

VALUE rb_cstr_to_rat ( const char *  s,
int  strict 
)

Definition at line 2550 of file rational.c.

◆ rb_flo_round_by_rational()

VALUE rb_flo_round_by_rational ( int  argc,
VALUE argv,
VALUE  num 
)

Definition at line 1543 of file rational.c.

◆ rb_float_denominator()

VALUE rb_float_denominator ( VALUE  self)

Definition at line 2113 of file rational.c.

References INT2FIX, isfinite, and RFLOAT_VALUE.

◆ rb_float_numerator()

VALUE rb_float_numerator ( VALUE  self)

Definition at line 2093 of file rational.c.

References isfinite, and RFLOAT_VALUE.

◆ rb_flt_rationalize()

VALUE rb_flt_rationalize ( VALUE  flt)

Definition at line 2248 of file rational.c.

References f.

◆ rb_flt_rationalize_with_prec()

VALUE rb_flt_rationalize_with_prec ( VALUE  flt,
VALUE  prec 
)

Definition at line 2232 of file rational.c.

References f_abs.

◆ rb_gcd()

VALUE rb_gcd ( VALUE  self,
VALUE  other 
)

Definition at line 1904 of file rational.c.

◆ rb_gcd_normal()

VALUE rb_gcd_normal ( VALUE  x,
VALUE  y 
)

Definition at line 359 of file rational.c.

◆ rb_gcdlcm()

VALUE rb_gcdlcm ( VALUE  self,
VALUE  other 
)

Definition at line 1942 of file rational.c.

◆ rb_lcm()

VALUE rb_lcm ( VALUE  self,
VALUE  other 
)

Definition at line 1923 of file rational.c.

◆ rb_numeric_quo()

VALUE rb_numeric_quo ( VALUE  x,
VALUE  y 
)

Definition at line 2032 of file rational.c.

Referenced by fun2().

◆ rb_Rational()

VALUE rb_Rational ( VALUE  x,
VALUE  y 
)

Definition at line 1969 of file rational.c.

References y.

◆ rb_rational_abs()

VALUE rb_rational_abs ( VALUE  self)

Definition at line 1233 of file rational.c.

References get_dat1.

◆ rb_rational_canonicalize()

VALUE rb_rational_canonicalize ( VALUE  x)

Definition at line 2047 of file rational.c.

◆ rb_rational_cmp()

VALUE rb_rational_cmp ( VALUE  self,
VALUE  other 
)

Definition at line 1068 of file rational.c.

References get_dat1, LONG2FIX, rb_int_cmp(), T_BIGNUM, T_FIXNUM, and TYPE.

◆ rb_rational_den()

VALUE rb_rational_den ( VALUE  rat)

Definition at line 1984 of file rational.c.

◆ rb_rational_div()

VALUE rb_rational_div ( VALUE  self,
VALUE  other 
)

Definition at line 896 of file rational.c.

References RB_INTEGER_TYPE_P.

◆ rb_rational_floor()

VALUE rb_rational_floor ( VALUE  self,
int  ndigits 
)

Definition at line 1393 of file rational.c.

◆ rb_rational_hash()

st_index_t rb_rational_hash ( VALUE  self)

Definition at line 1751 of file rational.c.

References get_dat1, NUM2LONG, rb_hash(), and rb_memhash().

Referenced by rb_iseq_cdhash_hash().

◆ rb_rational_minus()

VALUE rb_rational_minus ( VALUE  self,
VALUE  other 
)

Definition at line 758 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_mul()

VALUE rb_rational_mul ( VALUE  self,
VALUE  other 
)

Definition at line 854 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_new()

VALUE rb_rational_new ( VALUE  x,
VALUE  y 
)

Definition at line 1963 of file rational.c.

◆ rb_rational_num()

VALUE rb_rational_num ( VALUE  rat)

Definition at line 1978 of file rational.c.

◆ rb_rational_plus()

VALUE rb_rational_plus ( VALUE  self,
VALUE  other 
)

Definition at line 717 of file rational.c.

References get_dat1, and RB_INTEGER_TYPE_P.

◆ rb_rational_pow()

VALUE rb_rational_pow ( VALUE  self,
VALUE  other 
)

Definition at line 973 of file rational.c.

◆ rb_rational_raw()

VALUE rb_rational_raw ( VALUE  x,
VALUE  y 
)

Definition at line 1949 of file rational.c.

References RB_INTEGER_TYPE_P, rb_to_int(), and y.

◆ rb_rational_reciprocal()

VALUE rb_rational_reciprocal ( VALUE  x)

Definition at line 1885 of file rational.c.

References get_dat1.

◆ rb_rational_uminus()

VALUE rb_rational_uminus ( VALUE  self)

Definition at line 604 of file rational.c.

References assert.

Variable Documentation

◆ rb_cRational

VALUE rb_cRational

Definition at line 41 of file rational.c.