Ruby 3.5.0dev (2025-02-19 revision 27ba268b75bbe461460b31426e377b42d4935f70)
complex.c (27ba268b75bbe461460b31426e377b42d4935f70)
1/*
2 complex.c: Coded by Tadayoshi Funaba 2008-2012
3
4 This implementation is based on Keiju Ishitsuka's Complex library
5 which is written in ruby.
6*/
7
8#include "ruby/internal/config.h"
9
10#if defined _MSC_VER
11/* Microsoft Visual C does not define M_PI and others by default */
12# define _USE_MATH_DEFINES 1
13#endif
14
15#include <ctype.h>
16#include <math.h>
17
18#include "id.h"
19#include "internal.h"
20#include "internal/array.h"
21#include "internal/class.h"
22#include "internal/complex.h"
23#include "internal/math.h"
24#include "internal/numeric.h"
25#include "internal/object.h"
26#include "internal/rational.h"
27#include "internal/string.h"
28#include "ruby_assert.h"
29
30#define ZERO INT2FIX(0)
31#define ONE INT2FIX(1)
32#define TWO INT2FIX(2)
33#if USE_FLONUM
34#define RFLOAT_0 DBL2NUM(0)
35#else
36static VALUE RFLOAT_0;
37#endif
38
40
41static ID id_abs, id_arg,
42 id_denominator, id_numerator,
43 id_real_p, id_i_real, id_i_imag,
44 id_finite_p, id_infinite_p, id_rationalize,
45 id_PI;
46#define id_to_i idTo_i
47#define id_to_r idTo_r
48#define id_negate idUMinus
49#define id_expt idPow
50#define id_to_f idTo_f
51#define id_quo idQuo
52#define id_fdiv idFdiv
53
54#define fun1(n) \
55inline static VALUE \
56f_##n(VALUE x)\
57{\
58 return rb_funcall(x, id_##n, 0);\
59}
60
61#define fun2(n) \
62inline static VALUE \
63f_##n(VALUE x, VALUE y)\
64{\
65 return rb_funcall(x, id_##n, 1, y);\
66}
67
68#define PRESERVE_SIGNEDZERO
69
70inline static VALUE
71f_add(VALUE x, VALUE y)
72{
73 if (RB_INTEGER_TYPE_P(x) &&
74 LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) {
75 if (FIXNUM_ZERO_P(x))
76 return y;
77 if (FIXNUM_ZERO_P(y))
78 return x;
79 return rb_int_plus(x, y);
80 }
81 else if (RB_FLOAT_TYPE_P(x) &&
82 LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) {
83 if (FIXNUM_ZERO_P(y))
84 return x;
85 return rb_float_plus(x, y);
86 }
87 else if (RB_TYPE_P(x, T_RATIONAL) &&
88 LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) {
89 if (FIXNUM_ZERO_P(y))
90 return x;
91 return rb_rational_plus(x, y);
92 }
93
94 return rb_funcall(x, '+', 1, y);
95}
96
97inline static VALUE
98f_div(VALUE x, VALUE y)
99{
100 if (FIXNUM_P(y) && FIX2LONG(y) == 1)
101 return x;
102 return rb_funcall(x, '/', 1, y);
103}
104
105inline static int
106f_gt_p(VALUE x, VALUE y)
107{
108 if (RB_INTEGER_TYPE_P(x)) {
109 if (FIXNUM_P(x) && FIXNUM_P(y))
110 return (SIGNED_VALUE)x > (SIGNED_VALUE)y;
111 return RTEST(rb_int_gt(x, y));
112 }
113 else if (RB_FLOAT_TYPE_P(x))
114 return RTEST(rb_float_gt(x, y));
115 else if (RB_TYPE_P(x, T_RATIONAL)) {
116 int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y);
117 return cmp > 0;
118 }
119 return RTEST(rb_funcall(x, '>', 1, y));
120}
121
122inline static VALUE
123f_mul(VALUE x, VALUE y)
124{
125 if (RB_INTEGER_TYPE_P(x) &&
126 LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) {
127 if (FIXNUM_ZERO_P(y))
128 return ZERO;
129 if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
130 return ZERO;
131 if (x == ONE) return y;
132 if (y == ONE) return x;
133 return rb_int_mul(x, y);
134 }
135 else if (RB_FLOAT_TYPE_P(x) &&
136 LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) {
137 if (y == ONE) return x;
138 return rb_float_mul(x, y);
139 }
140 else if (RB_TYPE_P(x, T_RATIONAL) &&
141 LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) {
142 if (y == ONE) return x;
143 return rb_rational_mul(x, y);
144 }
145 else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) {
146 if (y == ONE) return x;
147 }
148 return rb_funcall(x, '*', 1, y);
149}
150
151inline static VALUE
152f_sub(VALUE x, VALUE y)
153{
154 if (FIXNUM_ZERO_P(y) &&
155 LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) {
156 return x;
157 }
158 return rb_funcall(x, '-', 1, y);
159}
160
161inline static VALUE
162f_abs(VALUE x)
163{
164 if (RB_INTEGER_TYPE_P(x)) {
165 return rb_int_abs(x);
166 }
167 else if (RB_FLOAT_TYPE_P(x)) {
168 return rb_float_abs(x);
169 }
170 else if (RB_TYPE_P(x, T_RATIONAL)) {
171 return rb_rational_abs(x);
172 }
173 else if (RB_TYPE_P(x, T_COMPLEX)) {
174 return rb_complex_abs(x);
175 }
176 return rb_funcall(x, id_abs, 0);
177}
178
179static VALUE numeric_arg(VALUE self);
180static VALUE float_arg(VALUE self);
181
182inline static VALUE
183f_arg(VALUE x)
184{
185 if (RB_INTEGER_TYPE_P(x)) {
186 return numeric_arg(x);
187 }
188 else if (RB_FLOAT_TYPE_P(x)) {
189 return float_arg(x);
190 }
191 else if (RB_TYPE_P(x, T_RATIONAL)) {
192 return numeric_arg(x);
193 }
194 else if (RB_TYPE_P(x, T_COMPLEX)) {
195 return rb_complex_arg(x);
196 }
197 return rb_funcall(x, id_arg, 0);
198}
199
200inline static VALUE
201f_numerator(VALUE x)
202{
203 if (RB_TYPE_P(x, T_RATIONAL)) {
204 return RRATIONAL(x)->num;
205 }
206 if (RB_FLOAT_TYPE_P(x)) {
207 return rb_float_numerator(x);
208 }
209 return x;
210}
211
212inline static VALUE
213f_denominator(VALUE x)
214{
215 if (RB_TYPE_P(x, T_RATIONAL)) {
216 return RRATIONAL(x)->den;
217 }
218 if (RB_FLOAT_TYPE_P(x)) {
219 return rb_float_denominator(x);
220 }
221 return INT2FIX(1);
222}
223
224inline static VALUE
225f_negate(VALUE x)
226{
227 if (RB_INTEGER_TYPE_P(x)) {
228 return rb_int_uminus(x);
229 }
230 else if (RB_FLOAT_TYPE_P(x)) {
231 return rb_float_uminus(x);
232 }
233 else if (RB_TYPE_P(x, T_RATIONAL)) {
234 return rb_rational_uminus(x);
235 }
236 else if (RB_TYPE_P(x, T_COMPLEX)) {
237 return rb_complex_uminus(x);
238 }
239 return rb_funcall(x, id_negate, 0);
240}
241
242static bool nucomp_real_p(VALUE self);
243
244static inline bool
245f_real_p(VALUE x)
246{
247 if (RB_INTEGER_TYPE_P(x)) {
248 return true;
249 }
250 else if (RB_FLOAT_TYPE_P(x)) {
251 return true;
252 }
253 else if (RB_TYPE_P(x, T_RATIONAL)) {
254 return true;
255 }
256 else if (RB_TYPE_P(x, T_COMPLEX)) {
257 return nucomp_real_p(x);
258 }
259 return rb_funcall(x, id_real_p, 0);
260}
261
262inline static VALUE
263f_to_i(VALUE x)
264{
265 if (RB_TYPE_P(x, T_STRING))
266 return rb_str_to_inum(x, 10, 0);
267 return rb_funcall(x, id_to_i, 0);
268}
269
270inline static VALUE
271f_to_f(VALUE x)
272{
273 if (RB_TYPE_P(x, T_STRING))
274 return DBL2NUM(rb_str_to_dbl(x, 0));
275 return rb_funcall(x, id_to_f, 0);
276}
277
278fun1(to_r)
279
280inline static int
281f_eqeq_p(VALUE x, VALUE y)
282{
283 if (FIXNUM_P(x) && FIXNUM_P(y))
284 return x == y;
285 else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y))
286 return NUM2DBL(x) == NUM2DBL(y);
287 return (int)rb_equal(x, y);
288}
289
290fun2(expt)
291fun2(fdiv)
292
293static VALUE
294f_quo(VALUE x, VALUE y)
295{
296 if (RB_INTEGER_TYPE_P(x))
297 return rb_numeric_quo(x, y);
298 if (RB_FLOAT_TYPE_P(x))
299 return rb_float_div(x, y);
300 if (RB_TYPE_P(x, T_RATIONAL))
301 return rb_numeric_quo(x, y);
302
303 return rb_funcallv(x, id_quo, 1, &y);
304}
305
306inline static int
307f_negative_p(VALUE x)
308{
309 if (RB_INTEGER_TYPE_P(x))
310 return INT_NEGATIVE_P(x);
311 else if (RB_FLOAT_TYPE_P(x))
312 return RFLOAT_VALUE(x) < 0.0;
313 else if (RB_TYPE_P(x, T_RATIONAL))
314 return INT_NEGATIVE_P(RRATIONAL(x)->num);
315 return rb_num_negative_p(x);
316}
317
318#define f_positive_p(x) (!f_negative_p(x))
319
320inline static bool
321f_zero_p(VALUE x)
322{
323 if (RB_FLOAT_TYPE_P(x)) {
324 return FLOAT_ZERO_P(x);
325 }
326 else if (RB_INTEGER_TYPE_P(x)) {
327 return FIXNUM_ZERO_P(x);
328 }
329 else if (RB_TYPE_P(x, T_RATIONAL)) {
330 const VALUE num = RRATIONAL(x)->num;
331 return FIXNUM_ZERO_P(num);
332 }
333 return rb_equal(x, ZERO) != 0;
334}
335
336#define f_nonzero_p(x) (!f_zero_p(x))
337
338static inline bool
339always_finite_type_p(VALUE x)
340{
341 if (FIXNUM_P(x)) return true;
342 if (FLONUM_P(x)) return true; /* Infinity can't be a flonum */
343 return (RB_INTEGER_TYPE_P(x) || RB_TYPE_P(x, T_RATIONAL));
344}
345
346inline static int
347f_finite_p(VALUE x)
348{
349 if (always_finite_type_p(x)) {
350 return TRUE;
351 }
352 else if (RB_FLOAT_TYPE_P(x)) {
353 return isfinite(RFLOAT_VALUE(x));
354 }
355 return RTEST(rb_funcallv(x, id_finite_p, 0, 0));
356}
357
358inline static int
359f_infinite_p(VALUE x)
360{
361 if (always_finite_type_p(x)) {
362 return FALSE;
363 }
364 else if (RB_FLOAT_TYPE_P(x)) {
365 return isinf(RFLOAT_VALUE(x));
366 }
367 return RTEST(rb_funcallv(x, id_infinite_p, 0, 0));
368}
369
370inline static int
371f_kind_of_p(VALUE x, VALUE c)
372{
373 return (int)rb_obj_is_kind_of(x, c);
374}
375
376inline static int
377k_numeric_p(VALUE x)
378{
379 return f_kind_of_p(x, rb_cNumeric);
380}
381
382#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x))
383
384#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
385
386#define get_dat1(x) \
387 struct RComplex *dat = RCOMPLEX(x)
388
389#define get_dat2(x,y) \
390 struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y)
391
392inline static VALUE
393nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
394{
395 NEWOBJ_OF(obj, struct RComplex, klass,
397
398 RCOMPLEX_SET_REAL(obj, real);
399 RCOMPLEX_SET_IMAG(obj, imag);
400 OBJ_FREEZE((VALUE)obj);
401
402 return (VALUE)obj;
403}
404
405static VALUE
406nucomp_s_alloc(VALUE klass)
407{
408 return nucomp_s_new_internal(klass, ZERO, ZERO);
409}
410
411inline static VALUE
412f_complex_new_bang1(VALUE klass, VALUE x)
413{
415 return nucomp_s_new_internal(klass, x, ZERO);
416}
417
418inline static VALUE
419f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
420{
423 return nucomp_s_new_internal(klass, x, y);
424}
425
426WARN_UNUSED_RESULT(inline static VALUE nucomp_real_check(VALUE num));
427inline static VALUE
428nucomp_real_check(VALUE num)
429{
430 if (!RB_INTEGER_TYPE_P(num) &&
431 !RB_FLOAT_TYPE_P(num) &&
432 !RB_TYPE_P(num, T_RATIONAL)) {
433 if (RB_TYPE_P(num, T_COMPLEX) && nucomp_real_p(num)) {
434 VALUE real = RCOMPLEX(num)->real;
436 return real;
437 }
438 if (!k_numeric_p(num) || !f_real_p(num))
439 rb_raise(rb_eTypeError, "not a real");
440 }
441 return num;
442}
443
444inline static VALUE
445nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
446{
447 int complex_r, complex_i;
448 complex_r = RB_TYPE_P(real, T_COMPLEX);
449 complex_i = RB_TYPE_P(imag, T_COMPLEX);
450 if (!complex_r && !complex_i) {
451 return nucomp_s_new_internal(klass, real, imag);
452 }
453 else if (!complex_r) {
454 get_dat1(imag);
455
456 return nucomp_s_new_internal(klass,
457 f_sub(real, dat->imag),
458 f_add(ZERO, dat->real));
459 }
460 else if (!complex_i) {
461 get_dat1(real);
462
463 return nucomp_s_new_internal(klass,
464 dat->real,
465 f_add(dat->imag, imag));
466 }
467 else {
468 get_dat2(real, imag);
469
470 return nucomp_s_new_internal(klass,
471 f_sub(adat->real, bdat->imag),
472 f_add(adat->imag, bdat->real));
473 }
474}
475
476/*
477 * call-seq:
478 * Complex.rect(real, imag = 0) -> complex
479 *
480 * Returns a new \Complex object formed from the arguments,
481 * each of which must be an instance of Numeric,
482 * or an instance of one of its subclasses:
483 * \Complex, Float, Integer, Rational;
484 * see {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
485 *
486 * Complex.rect(3) # => (3+0i)
487 * Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
488 * Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
489 *
490 * \Complex.rectangular is an alias for \Complex.rect.
491 */
492static VALUE
493nucomp_s_new(int argc, VALUE *argv, VALUE klass)
494{
495 VALUE real, imag;
496
497 switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
498 case 1:
499 real = nucomp_real_check(real);
500 imag = ZERO;
501 break;
502 default:
503 real = nucomp_real_check(real);
504 imag = nucomp_real_check(imag);
505 break;
506 }
507
508 return nucomp_s_new_internal(klass, real, imag);
509}
510
511inline static VALUE
512f_complex_new2(VALUE klass, VALUE x, VALUE y)
513{
514 if (RB_TYPE_P(x, T_COMPLEX)) {
515 get_dat1(x);
516 x = dat->real;
517 y = f_add(dat->imag, y);
518 }
519 return nucomp_s_canonicalize_internal(klass, x, y);
520}
521
522static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise);
523static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
524
525/*
526 * call-seq:
527 * Complex(real, imag = 0, exception: true) -> complex or nil
528 * Complex(s, exception: true) -> complex or nil
529 *
530 * Returns a new \Complex object if the arguments are valid;
531 * otherwise raises an exception if +exception+ is +true+;
532 * otherwise returns +nil+.
533 *
534 * With Numeric arguments +real+ and +imag+,
535 * returns <tt>Complex.rect(real, imag)</tt> if the arguments are valid.
536 *
537 * With string argument +s+, returns a new \Complex object if the argument is valid;
538 * the string may have:
539 *
540 * - One or two numeric substrings,
541 * each of which specifies a Complex, Float, Integer, Numeric, or Rational value,
542 * specifying {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
543 *
544 * - Sign-separated real and imaginary numeric substrings
545 * (with trailing character <tt>'i'</tt>):
546 *
547 * Complex('1+2i') # => (1+2i)
548 * Complex('+1+2i') # => (1+2i)
549 * Complex('+1-2i') # => (1-2i)
550 * Complex('-1+2i') # => (-1+2i)
551 * Complex('-1-2i') # => (-1-2i)
552 *
553 * - Real-only numeric string (without trailing character <tt>'i'</tt>):
554 *
555 * Complex('1') # => (1+0i)
556 * Complex('+1') # => (1+0i)
557 * Complex('-1') # => (-1+0i)
558 *
559 * - Imaginary-only numeric string (with trailing character <tt>'i'</tt>):
560 *
561 * Complex('1i') # => (0+1i)
562 * Complex('+1i') # => (0+1i)
563 * Complex('-1i') # => (0-1i)
564 *
565 * - At-sign separated real and imaginary rational substrings,
566 * each of which specifies a Rational value,
567 * specifying {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
568 *
569 * Complex('1/2@3/4') # => (0.36584443443691045+0.34081938001166706i)
570 * Complex('+1/2@+3/4') # => (0.36584443443691045+0.34081938001166706i)
571 * Complex('+1/2@-3/4') # => (0.36584443443691045-0.34081938001166706i)
572 * Complex('-1/2@+3/4') # => (-0.36584443443691045-0.34081938001166706i)
573 * Complex('-1/2@-3/4') # => (-0.36584443443691045+0.34081938001166706i)
574 *
575 */
576static VALUE
577nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
578{
579 VALUE a1, a2, opts = Qnil;
580 int raise = TRUE;
581
582 if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
583 a2 = Qundef;
584 }
585 if (!NIL_P(opts)) {
586 raise = rb_opts_exception_p(opts, raise);
587 }
588 if (argc > 0 && CLASS_OF(a1) == rb_cComplex && UNDEF_P(a2)) {
589 return a1;
590 }
591 return nucomp_convert(rb_cComplex, a1, a2, raise);
592}
593
594#define imp1(n) \
595inline static VALUE \
596m_##n##_bang(VALUE x)\
597{\
598 return rb_math_##n(x);\
599}
600
601imp1(cos)
602imp1(cosh)
603imp1(exp)
604
605static VALUE
606m_log_bang(VALUE x)
607{
608 return rb_math_log(1, &x);
609}
610
611imp1(sin)
612imp1(sinh)
613
614static VALUE
615m_cos(VALUE x)
616{
617 if (!RB_TYPE_P(x, T_COMPLEX))
618 return m_cos_bang(x);
619 {
620 get_dat1(x);
621 return f_complex_new2(rb_cComplex,
622 f_mul(m_cos_bang(dat->real),
623 m_cosh_bang(dat->imag)),
624 f_mul(f_negate(m_sin_bang(dat->real)),
625 m_sinh_bang(dat->imag)));
626 }
627}
628
629static VALUE
630m_sin(VALUE x)
631{
632 if (!RB_TYPE_P(x, T_COMPLEX))
633 return m_sin_bang(x);
634 {
635 get_dat1(x);
636 return f_complex_new2(rb_cComplex,
637 f_mul(m_sin_bang(dat->real),
638 m_cosh_bang(dat->imag)),
639 f_mul(m_cos_bang(dat->real),
640 m_sinh_bang(dat->imag)));
641 }
642}
643
644static VALUE
645f_complex_polar_real(VALUE klass, VALUE x, VALUE y)
646{
647 if (f_zero_p(x) || f_zero_p(y)) {
648 return nucomp_s_new_internal(klass, x, RFLOAT_0);
649 }
650 if (RB_FLOAT_TYPE_P(y)) {
651 const double arg = RFLOAT_VALUE(y);
652 if (arg == M_PI) {
653 x = f_negate(x);
654 y = RFLOAT_0;
655 }
656 else if (arg == M_PI_2) {
657 y = x;
658 x = RFLOAT_0;
659 }
660 else if (arg == M_PI_2+M_PI) {
661 y = f_negate(x);
662 x = RFLOAT_0;
663 }
664 else if (RB_FLOAT_TYPE_P(x)) {
665 const double abs = RFLOAT_VALUE(x);
666 const double real = abs * cos(arg), imag = abs * sin(arg);
667 x = DBL2NUM(real);
668 y = DBL2NUM(imag);
669 }
670 else {
671 const double ax = sin(arg), ay = cos(arg);
672 y = f_mul(x, DBL2NUM(ax));
673 x = f_mul(x, DBL2NUM(ay));
674 }
675 return nucomp_s_new_internal(klass, x, y);
676 }
677 return nucomp_s_canonicalize_internal(klass,
678 f_mul(x, m_cos(y)),
679 f_mul(x, m_sin(y)));
680}
681
682static VALUE
683f_complex_polar(VALUE klass, VALUE x, VALUE y)
684{
685 x = nucomp_real_check(x);
686 y = nucomp_real_check(y);
687 return f_complex_polar_real(klass, x, y);
688}
689
690#ifdef HAVE___COSPI
691# define cospi(x) __cospi(x)
692#else
693# define cospi(x) cos((x) * M_PI)
694#endif
695#ifdef HAVE___SINPI
696# define sinpi(x) __sinpi(x)
697#else
698# define sinpi(x) sin((x) * M_PI)
699#endif
700/* returns a Complex or Float of ang*PI-rotated abs */
701VALUE
702rb_dbl_complex_new_polar_pi(double abs, double ang)
703{
704 double fi;
705 const double fr = modf(ang, &fi);
706 int pos = fr == +0.5;
707
708 if (pos || fr == -0.5) {
709 if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs;
710 return rb_complex_new(RFLOAT_0, DBL2NUM(abs));
711 }
712 else if (fr == 0.0) {
713 if (modf(fi / 2.0, &fi) != 0.0) abs = -abs;
714 return DBL2NUM(abs);
715 }
716 else {
717 const double real = abs * cospi(ang), imag = abs * sinpi(ang);
718 return rb_complex_new(DBL2NUM(real), DBL2NUM(imag));
719 }
720}
721
722/*
723 * call-seq:
724 * Complex.polar(abs, arg = 0) -> complex
725 *
726 * Returns a new \Complex object formed from the arguments,
727 * each of which must be an instance of Numeric,
728 * or an instance of one of its subclasses:
729 * \Complex, Float, Integer, Rational.
730 * Argument +arg+ is given in radians;
731 * see {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
732 *
733 * Complex.polar(3) # => (3+0i)
734 * Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
735 * Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
736 *
737 */
738static VALUE
739nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
740{
741 VALUE abs, arg;
742
743 argc = rb_scan_args(argc, argv, "11", &abs, &arg);
744 abs = nucomp_real_check(abs);
745 if (argc == 2) {
746 arg = nucomp_real_check(arg);
747 }
748 else {
749 arg = ZERO;
750 }
751 return f_complex_polar_real(klass, abs, arg);
752}
753
754/*
755 * call-seq:
756 * real -> numeric
757 *
758 * Returns the real value for +self+:
759 *
760 * Complex.rect(7).real # => 7
761 * Complex.rect(9, -4).real # => 9
762 *
763 * If +self+ was created with
764 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
765 * is computed, and may be inexact:
766 *
767 * Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
768 *
769 */
770VALUE
771rb_complex_real(VALUE self)
772{
773 get_dat1(self);
774 return dat->real;
775}
776
777/*
778 * call-seq:
779 * imag -> numeric
780 *
781 * Returns the imaginary value for +self+:
782 *
783 * Complex.rect(7).imag # => 0
784 * Complex.rect(9, -4).imag # => -4
785 *
786 * If +self+ was created with
787 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
788 * is computed, and may be inexact:
789 *
790 * Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
791 *
792 */
793VALUE
794rb_complex_imag(VALUE self)
795{
796 get_dat1(self);
797 return dat->imag;
798}
799
800/*
801 * call-seq:
802 * -complex -> new_complex
803 *
804 * Returns the negation of +self+, which is the negation of each of its parts:
805 *
806 * -Complex.rect(1, 2) # => (-1-2i)
807 * -Complex.rect(-1, -2) # => (1+2i)
808 *
809 */
810VALUE
811rb_complex_uminus(VALUE self)
812{
813 get_dat1(self);
814 return f_complex_new2(CLASS_OF(self),
815 f_negate(dat->real), f_negate(dat->imag));
816}
817
818/*
819 * call-seq:
820 * complex + numeric -> new_complex
821 *
822 * Returns the sum of +self+ and +numeric+:
823 *
824 * Complex.rect(2, 3) + Complex.rect(2, 3) # => (4+6i)
825 * Complex.rect(900) + Complex.rect(1) # => (901+0i)
826 * Complex.rect(-2, 9) + Complex.rect(-9, 2) # => (-11+11i)
827 * Complex.rect(9, 8) + 4 # => (13+8i)
828 * Complex.rect(20, 9) + 9.8 # => (29.8+9i)
829 *
830 */
831VALUE
832rb_complex_plus(VALUE self, VALUE other)
833{
834 if (RB_TYPE_P(other, T_COMPLEX)) {
835 VALUE real, imag;
836
837 get_dat2(self, other);
838
839 real = f_add(adat->real, bdat->real);
840 imag = f_add(adat->imag, bdat->imag);
841
842 return f_complex_new2(CLASS_OF(self), real, imag);
843 }
844 if (k_numeric_p(other) && f_real_p(other)) {
845 get_dat1(self);
846
847 return f_complex_new2(CLASS_OF(self),
848 f_add(dat->real, other), dat->imag);
849 }
850 return rb_num_coerce_bin(self, other, '+');
851}
852
853/*
854 * call-seq:
855 * complex - numeric -> new_complex
856 *
857 * Returns the difference of +self+ and +numeric+:
858 *
859 * Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i)
860 * Complex.rect(900) - Complex.rect(1) # => (899+0i)
861 * Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i)
862 * Complex.rect(9, 8) - 4 # => (5+8i)
863 * Complex.rect(20, 9) - 9.8 # => (10.2+9i)
864 *
865 */
866VALUE
867rb_complex_minus(VALUE self, VALUE other)
868{
869 if (RB_TYPE_P(other, T_COMPLEX)) {
870 VALUE real, imag;
871
872 get_dat2(self, other);
873
874 real = f_sub(adat->real, bdat->real);
875 imag = f_sub(adat->imag, bdat->imag);
876
877 return f_complex_new2(CLASS_OF(self), real, imag);
878 }
879 if (k_numeric_p(other) && f_real_p(other)) {
880 get_dat1(self);
881
882 return f_complex_new2(CLASS_OF(self),
883 f_sub(dat->real, other), dat->imag);
884 }
885 return rb_num_coerce_bin(self, other, '-');
886}
887
888static VALUE
889safe_mul(VALUE a, VALUE b, bool az, bool bz)
890{
891 double v;
892 if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) {
893 a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
894 }
895 if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) {
896 b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
897 }
898 return f_mul(a, b);
899}
900
901static void
902comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag)
903{
904 bool arzero = f_zero_p(areal);
905 bool aizero = f_zero_p(aimag);
906 bool brzero = f_zero_p(breal);
907 bool bizero = f_zero_p(bimag);
908 *real = f_sub(safe_mul(areal, breal, arzero, brzero),
909 safe_mul(aimag, bimag, aizero, bizero));
910 *imag = f_add(safe_mul(areal, bimag, arzero, bizero),
911 safe_mul(aimag, breal, aizero, brzero));
912}
913
914/*
915 * call-seq:
916 * complex * numeric -> new_complex
917 *
918 * Returns the product of +self+ and +numeric+:
919 *
920 * Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i)
921 * Complex.rect(900) * Complex.rect(1) # => (900+0i)
922 * Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i)
923 * Complex.rect(9, 8) * 4 # => (36+32i)
924 * Complex.rect(20, 9) * 9.8 # => (196.0+88.2i)
925 *
926 */
927VALUE
928rb_complex_mul(VALUE self, VALUE other)
929{
930 if (RB_TYPE_P(other, T_COMPLEX)) {
931 VALUE real, imag;
932 get_dat2(self, other);
933
934 comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
935
936 return f_complex_new2(CLASS_OF(self), real, imag);
937 }
938 if (k_numeric_p(other) && f_real_p(other)) {
939 get_dat1(self);
940
941 return f_complex_new2(CLASS_OF(self),
942 f_mul(dat->real, other),
943 f_mul(dat->imag, other));
944 }
945 return rb_num_coerce_bin(self, other, '*');
946}
947
948inline static VALUE
949f_divide(VALUE self, VALUE other,
950 VALUE (*func)(VALUE, VALUE), ID id)
951{
952 if (RB_TYPE_P(other, T_COMPLEX)) {
953 VALUE r, n, x, y;
954 int flo;
955 get_dat2(self, other);
956
957 flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) ||
958 RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag));
959
960 if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
961 r = (*func)(bdat->imag, bdat->real);
962 n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
963 x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n);
964 y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n);
965 }
966 else {
967 r = (*func)(bdat->real, bdat->imag);
968 n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
969 x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n);
970 y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n);
971 }
972 if (!flo) {
973 x = rb_rational_canonicalize(x);
974 y = rb_rational_canonicalize(y);
975 }
976 return f_complex_new2(CLASS_OF(self), x, y);
977 }
978 if (k_numeric_p(other) && f_real_p(other)) {
979 VALUE x, y;
980 get_dat1(self);
981 x = rb_rational_canonicalize((*func)(dat->real, other));
982 y = rb_rational_canonicalize((*func)(dat->imag, other));
983 return f_complex_new2(CLASS_OF(self), x, y);
984 }
985 return rb_num_coerce_bin(self, other, id);
986}
987
988#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
989
990/*
991 * call-seq:
992 * complex / numeric -> new_complex
993 *
994 * Returns the quotient of +self+ and +numeric+:
995 *
996 * Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i)
997 * Complex.rect(900) / Complex.rect(1) # => (900+0i)
998 * Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
999 * Complex.rect(9, 8) / 4 # => ((9/4)+2i)
1000 * Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
1001 *
1002 */
1003VALUE
1004rb_complex_div(VALUE self, VALUE other)
1005{
1006 return f_divide(self, other, f_quo, id_quo);
1007}
1008
1009#define nucomp_quo rb_complex_div
1010
1011/*
1012 * call-seq:
1013 * fdiv(numeric) -> new_complex
1014 *
1015 * Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>:
1016 *
1017 * Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
1018 *
1019 */
1020static VALUE
1021nucomp_fdiv(VALUE self, VALUE other)
1022{
1023 return f_divide(self, other, f_fdiv, id_fdiv);
1024}
1025
1026inline static VALUE
1027f_reciprocal(VALUE x)
1028{
1029 return f_quo(ONE, x);
1030}
1031
1032static VALUE
1033zero_for(VALUE x)
1034{
1035 if (RB_FLOAT_TYPE_P(x))
1036 return DBL2NUM(0);
1037 if (RB_TYPE_P(x, T_RATIONAL))
1038 return rb_rational_new(INT2FIX(0), INT2FIX(1));
1039
1040 return INT2FIX(0);
1041}
1042
1043static VALUE
1044complex_pow_for_special_angle(VALUE self, VALUE other)
1045{
1046 if (!rb_integer_type_p(other)) {
1047 return Qundef;
1048 }
1049
1050 get_dat1(self);
1051 VALUE x = Qundef;
1052 int dir;
1053 if (f_zero_p(dat->imag)) {
1054 x = dat->real;
1055 dir = 0;
1056 }
1057 else if (f_zero_p(dat->real)) {
1058 x = dat->imag;
1059 dir = 2;
1060 }
1061 else if (f_eqeq_p(dat->real, dat->imag)) {
1062 x = dat->real;
1063 dir = 1;
1064 }
1065 else if (f_eqeq_p(dat->real, f_negate(dat->imag))) {
1066 x = dat->imag;
1067 dir = 3;
1068 } else {
1069 dir = 0;
1070 }
1071
1072 if (UNDEF_P(x)) return x;
1073
1074 if (f_negative_p(x)) {
1075 x = f_negate(x);
1076 dir += 4;
1077 }
1078
1079 VALUE zx;
1080 if (dir % 2 == 0) {
1081 zx = rb_num_pow(x, other);
1082 }
1083 else {
1084 zx = rb_num_pow(
1085 rb_funcall(rb_int_mul(TWO, x), '*', 1, x),
1086 rb_int_div(other, TWO)
1087 );
1088 if (rb_int_odd_p(other)) {
1089 zx = rb_funcall(zx, '*', 1, x);
1090 }
1091 }
1092 static const int dirs[][2] = {
1093 {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}
1094 };
1095 int z_dir = FIX2INT(rb_int_modulo(rb_int_mul(INT2FIX(dir), other), INT2FIX(8)));
1096
1097 VALUE zr = Qfalse, zi = Qfalse;
1098 switch (dirs[z_dir][0]) {
1099 case 0: zr = zero_for(zx); break;
1100 case 1: zr = zx; break;
1101 case -1: zr = f_negate(zx); break;
1102 }
1103 switch (dirs[z_dir][1]) {
1104 case 0: zi = zero_for(zx); break;
1105 case 1: zi = zx; break;
1106 case -1: zi = f_negate(zx); break;
1107 }
1108 return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
1109}
1110
1111
1112/*
1113 * call-seq:
1114 * complex ** numeric -> new_complex
1115 *
1116 * Returns +self+ raised to power +numeric+:
1117 *
1118 * Complex.rect(0, 1) ** 2 # => (-1+0i)
1119 * Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
1120 *
1121 */
1122VALUE
1123rb_complex_pow(VALUE self, VALUE other)
1124{
1125 if (k_numeric_p(other) && k_exact_zero_p(other))
1126 return f_complex_new_bang1(CLASS_OF(self), ONE);
1127
1128 if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
1129 other = RRATIONAL(other)->num; /* c14n */
1130
1131 if (RB_TYPE_P(other, T_COMPLEX)) {
1132 get_dat1(other);
1133
1134 if (k_exact_zero_p(dat->imag))
1135 other = dat->real; /* c14n */
1136 }
1137
1138 if (other == ONE) {
1139 get_dat1(self);
1140 return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
1141 }
1142
1143 VALUE result = complex_pow_for_special_angle(self, other);
1144 if (!UNDEF_P(result)) return result;
1145
1146 if (RB_TYPE_P(other, T_COMPLEX)) {
1147 VALUE r, theta, nr, ntheta;
1148
1149 get_dat1(other);
1150
1151 r = f_abs(self);
1152 theta = f_arg(self);
1153
1154 nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
1155 f_mul(dat->imag, theta)));
1156 ntheta = f_add(f_mul(theta, dat->real),
1157 f_mul(dat->imag, m_log_bang(r)));
1158 return f_complex_polar(CLASS_OF(self), nr, ntheta);
1159 }
1160 if (FIXNUM_P(other)) {
1161 long n = FIX2LONG(other);
1162 if (n == 0) {
1163 return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
1164 }
1165 if (n < 0) {
1166 self = f_reciprocal(self);
1167 other = rb_int_uminus(other);
1168 n = -n;
1169 }
1170 {
1171 get_dat1(self);
1172 VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
1173
1174 if (f_zero_p(xi)) {
1175 zr = rb_num_pow(zr, other);
1176 }
1177 else if (f_zero_p(xr)) {
1178 zi = rb_num_pow(zi, other);
1179 if (n & 2) zi = f_negate(zi);
1180 if (!(n & 1)) {
1181 VALUE tmp = zr;
1182 zr = zi;
1183 zi = tmp;
1184 }
1185 }
1186 else {
1187 while (--n) {
1188 long q, r;
1189
1190 for (; q = n / 2, r = n % 2, r == 0; n = q) {
1191 VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
1192 xi = f_mul(f_mul(TWO, xr), xi);
1193 xr = tmp;
1194 }
1195 comp_mul(zr, zi, xr, xi, &zr, &zi);
1196 }
1197 }
1198 return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
1199 }
1200 }
1201 if (k_numeric_p(other) && f_real_p(other)) {
1202 VALUE r, theta;
1203
1204 if (RB_BIGNUM_TYPE_P(other))
1205 rb_warn("in a**b, b may be too big");
1206
1207 r = f_abs(self);
1208 theta = f_arg(self);
1209
1210 return f_complex_polar(CLASS_OF(self), f_expt(r, other),
1211 f_mul(theta, other));
1212 }
1213 return rb_num_coerce_bin(self, other, id_expt);
1214}
1215
1216/*
1217 * call-seq:
1218 * complex == object -> true or false
1219 *
1220 * Returns +true+ if <tt>self.real == object.real</tt>
1221 * and <tt>self.imag == object.imag</tt>:
1222 *
1223 * Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true
1224 *
1225 */
1226static VALUE
1227nucomp_eqeq_p(VALUE self, VALUE other)
1228{
1229 if (RB_TYPE_P(other, T_COMPLEX)) {
1230 get_dat2(self, other);
1231
1232 return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
1233 f_eqeq_p(adat->imag, bdat->imag));
1234 }
1235 if (k_numeric_p(other) && f_real_p(other)) {
1236 get_dat1(self);
1237
1238 return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
1239 }
1240 return RBOOL(f_eqeq_p(other, self));
1241}
1242
1243static bool
1244nucomp_real_p(VALUE self)
1245{
1246 get_dat1(self);
1247 return f_zero_p(dat->imag);
1248}
1249
1250/*
1251 * call-seq:
1252 * complex <=> object -> -1, 0, 1, or nil
1253 *
1254 * Returns:
1255 *
1256 * - <tt>self.real <=> object.real</tt> if both of the following are true:
1257 *
1258 * - <tt>self.imag == 0</tt>.
1259 * - <tt>object.imag == 0</tt>. # Always true if object is numeric but not complex.
1260 *
1261 * - +nil+ otherwise.
1262 *
1263 * Examples:
1264 *
1265 * Complex.rect(2) <=> 3 # => -1
1266 * Complex.rect(2) <=> 2 # => 0
1267 * Complex.rect(2) <=> 1 # => 1
1268 * Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero.
1269 * Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
1270 * Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
1271 *
1272 */
1273static VALUE
1274nucomp_cmp(VALUE self, VALUE other)
1275{
1276 if (!k_numeric_p(other)) {
1277 return rb_num_coerce_cmp(self, other, idCmp);
1278 }
1279 if (!nucomp_real_p(self)) {
1280 return Qnil;
1281 }
1282 if (RB_TYPE_P(other, T_COMPLEX)) {
1283 if (nucomp_real_p(other)) {
1284 get_dat2(self, other);
1285 return rb_funcall(adat->real, idCmp, 1, bdat->real);
1286 }
1287 }
1288 else {
1289 get_dat1(self);
1290 if (f_real_p(other)) {
1291 return rb_funcall(dat->real, idCmp, 1, other);
1292 }
1293 else {
1294 return rb_num_coerce_cmp(dat->real, other, idCmp);
1295 }
1296 }
1297 return Qnil;
1298}
1299
1300/* :nodoc: */
1301static VALUE
1302nucomp_coerce(VALUE self, VALUE other)
1303{
1304 if (RB_TYPE_P(other, T_COMPLEX))
1305 return rb_assoc_new(other, self);
1306 if (k_numeric_p(other) && f_real_p(other))
1307 return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
1308
1309 rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
1310 rb_obj_class(other), rb_obj_class(self));
1311 return Qnil;
1312}
1313
1314/*
1315 * call-seq:
1316 * abs -> float
1317 *
1318 * Returns the absolute value (magnitude) for +self+;
1319 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1320 *
1321 * Complex.polar(-1, 0).abs # => 1.0
1322 *
1323 * If +self+ was created with
1324 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1325 * is computed, and may be inexact:
1326 *
1327 * Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
1328 *
1329 */
1330VALUE
1331rb_complex_abs(VALUE self)
1332{
1333 get_dat1(self);
1334
1335 if (f_zero_p(dat->real)) {
1336 VALUE a = f_abs(dat->imag);
1337 if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
1338 a = f_to_f(a);
1339 return a;
1340 }
1341 if (f_zero_p(dat->imag)) {
1342 VALUE a = f_abs(dat->real);
1343 if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
1344 a = f_to_f(a);
1345 return a;
1346 }
1347 return rb_math_hypot(dat->real, dat->imag);
1348}
1349
1350/*
1351 * call-seq:
1352 * abs2 -> float
1353 *
1354 * Returns square of the absolute value (magnitude) for +self+;
1355 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1356 *
1357 * Complex.polar(2, 2).abs2 # => 4.0
1358 *
1359 * If +self+ was created with
1360 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1361 * is computed, and may be inexact:
1362 *
1363 * Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
1364 *
1365 */
1366static VALUE
1367nucomp_abs2(VALUE self)
1368{
1369 get_dat1(self);
1370 return f_add(f_mul(dat->real, dat->real),
1371 f_mul(dat->imag, dat->imag));
1372}
1373
1374/*
1375 * call-seq:
1376 * arg -> float
1377 *
1378 * Returns the argument (angle) for +self+ in radians;
1379 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1380 *
1381 * Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
1382 *
1383 * If +self+ was created with
1384 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1385 * is computed, and may be inexact:
1386 *
1387 * Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
1388 *
1389 */
1390VALUE
1391rb_complex_arg(VALUE self)
1392{
1393 get_dat1(self);
1394 return rb_math_atan2(dat->imag, dat->real);
1395}
1396
1397/*
1398 * call-seq:
1399 * rect -> array
1400 *
1401 * Returns the array <tt>[self.real, self.imag]</tt>:
1402 *
1403 * Complex.rect(1, 2).rect # => [1, 2]
1404 *
1405 * See {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates].
1406 *
1407 * If +self+ was created with
1408 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
1409 * is computed, and may be inexact:
1410 *
1411 * Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
1412 *
1413 *
1414 * Complex#rectangular is an alias for Complex#rect.
1415 */
1416static VALUE
1417nucomp_rect(VALUE self)
1418{
1419 get_dat1(self);
1420 return rb_assoc_new(dat->real, dat->imag);
1421}
1422
1423/*
1424 * call-seq:
1425 * polar -> array
1426 *
1427 * Returns the array <tt>[self.abs, self.arg]</tt>:
1428 *
1429 * Complex.polar(1, 2).polar # => [1.0, 2.0]
1430 *
1431 * See {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates].
1432 *
1433 * If +self+ was created with
1434 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1435 * is computed, and may be inexact:
1436 *
1437 * Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
1438 *
1439 */
1440static VALUE
1441nucomp_polar(VALUE self)
1442{
1443 return rb_assoc_new(f_abs(self), f_arg(self));
1444}
1445
1446/*
1447 * call-seq:
1448 * conj -> complex
1449 *
1450 * Returns the conjugate of +self+, <tt>Complex.rect(self.imag, self.real)</tt>:
1451 *
1452 * Complex.rect(1, 2).conj # => (1-2i)
1453 *
1454 */
1455VALUE
1456rb_complex_conjugate(VALUE self)
1457{
1458 get_dat1(self);
1459 return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
1460}
1461
1462/*
1463 * call-seq:
1464 * real? -> false
1465 *
1466 * Returns +false+; for compatibility with Numeric#real?.
1467 */
1468static VALUE
1469nucomp_real_p_m(VALUE self)
1470{
1471 return Qfalse;
1472}
1473
1474/*
1475 * call-seq:
1476 * denominator -> integer
1477 *
1478 * Returns the denominator of +self+, which is
1479 * the {least common multiple}[https://en.wikipedia.org/wiki/Least_common_multiple]
1480 * of <tt>self.real.denominator</tt> and <tt>self.imag.denominator</tt>:
1481 *
1482 * Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
1483 *
1484 * Note that <tt>n.denominator</tt> of a non-rational numeric is +1+.
1485 *
1486 * Related: Complex#numerator.
1487 */
1488static VALUE
1489nucomp_denominator(VALUE self)
1490{
1491 get_dat1(self);
1492 return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
1493}
1494
1495/*
1496 * call-seq:
1497 * numerator -> new_complex
1498 *
1499 * Returns the \Complex object created from the numerators
1500 * of the real and imaginary parts of +self+,
1501 * after converting each part to the
1502 * {lowest common denominator}[https://en.wikipedia.org/wiki/Lowest_common_denominator]
1503 * of the two:
1504 *
1505 * c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
1506 * c.numerator # => (8+9i)
1507 *
1508 * In this example, the lowest common denominator of the two parts is 12;
1509 * the two converted parts may be thought of as \Rational(8, 12) and \Rational(9, 12),
1510 * whose numerators, respectively, are 8 and 9;
1511 * so the returned value of <tt>c.numerator</tt> is <tt>Complex.rect(8, 9)</tt>.
1512 *
1513 * Related: Complex#denominator.
1514 */
1515static VALUE
1516nucomp_numerator(VALUE self)
1517{
1518 VALUE cd;
1519
1520 get_dat1(self);
1521
1522 cd = nucomp_denominator(self);
1523 return f_complex_new2(CLASS_OF(self),
1524 f_mul(f_numerator(dat->real),
1525 f_div(cd, f_denominator(dat->real))),
1526 f_mul(f_numerator(dat->imag),
1527 f_div(cd, f_denominator(dat->imag))));
1528}
1529
1530/* :nodoc: */
1531st_index_t
1532rb_complex_hash(VALUE self)
1533{
1534 st_index_t v, h[2];
1535 VALUE n;
1536
1537 get_dat1(self);
1538 n = rb_hash(dat->real);
1539 h[0] = NUM2LONG(n);
1540 n = rb_hash(dat->imag);
1541 h[1] = NUM2LONG(n);
1542 v = rb_memhash(h, sizeof(h));
1543 return v;
1544}
1545
1546/*
1547 * :call-seq:
1548 * hash -> integer
1549 *
1550 * Returns the integer hash value for +self+.
1551 *
1552 * Two \Complex objects created from the same values will have the same hash value
1553 * (and will compare using #eql?):
1554 *
1555 * Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true
1556 *
1557 */
1558static VALUE
1559nucomp_hash(VALUE self)
1560{
1561 return ST2FIX(rb_complex_hash(self));
1562}
1563
1564/* :nodoc: */
1565static VALUE
1566nucomp_eql_p(VALUE self, VALUE other)
1567{
1568 if (RB_TYPE_P(other, T_COMPLEX)) {
1569 get_dat2(self, other);
1570
1571 return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
1572 (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
1573 f_eqeq_p(self, other));
1574
1575 }
1576 return Qfalse;
1577}
1578
1579inline static int
1580f_signbit(VALUE x)
1581{
1582 if (RB_FLOAT_TYPE_P(x)) {
1583 double f = RFLOAT_VALUE(x);
1584 return !isnan(f) && signbit(f);
1585 }
1586 return f_negative_p(x);
1587}
1588
1589inline static int
1590f_tpositive_p(VALUE x)
1591{
1592 return !f_signbit(x);
1593}
1594
1595static VALUE
1596f_format(VALUE self, VALUE s, VALUE (*func)(VALUE))
1597{
1598 int impos;
1599
1600 get_dat1(self);
1601
1602 impos = f_tpositive_p(dat->imag);
1603
1604 rb_str_concat(s, (*func)(dat->real));
1605 rb_str_cat2(s, !impos ? "-" : "+");
1606
1607 rb_str_concat(s, (*func)(f_abs(dat->imag)));
1608 if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
1609 rb_str_cat2(s, "*");
1610 rb_str_cat2(s, "i");
1611
1612 return s;
1613}
1614
1615/*
1616 * call-seq:
1617 * to_s -> string
1618 *
1619 * Returns a string representation of +self+:
1620 *
1621 * Complex.rect(2).to_s # => "2+0i"
1622 * Complex.rect(-8, 6).to_s # => "-8+6i"
1623 * Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i"
1624 * Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i"
1625 * Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
1626 *
1627 */
1628static VALUE
1629nucomp_to_s(VALUE self)
1630{
1631 return f_format(self, rb_usascii_str_new2(""), rb_String);
1632}
1633
1634/*
1635 * call-seq:
1636 * inspect -> string
1637 *
1638 * Returns a string representation of +self+:
1639 *
1640 * Complex.rect(2).inspect # => "(2+0i)"
1641 * Complex.rect(-8, 6).inspect # => "(-8+6i)"
1642 * Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)"
1643 * Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)"
1644 * Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
1645 *
1646 */
1647static VALUE
1648nucomp_inspect(VALUE self)
1649{
1650 VALUE s;
1651
1652 s = rb_usascii_str_new2("(");
1653 f_format(self, s, rb_inspect);
1654 rb_str_cat2(s, ")");
1655
1656 return s;
1657}
1658
1659#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL))
1660
1661/*
1662 * call-seq:
1663 * finite? -> true or false
1664 *
1665 * Returns +true+ if both <tt>self.real.finite?</tt> and <tt>self.imag.finite?</tt>
1666 * are true, +false+ otherwise:
1667 *
1668 * Complex.rect(1, 1).finite? # => true
1669 * Complex.rect(Float::INFINITY, 0).finite? # => false
1670 *
1671 * Related: Numeric#finite?, Float#finite?.
1672 */
1673static VALUE
1674rb_complex_finite_p(VALUE self)
1675{
1676 get_dat1(self);
1677
1678 return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
1679}
1680
1681/*
1682 * call-seq:
1683 * infinite? -> 1 or nil
1684 *
1685 * Returns +1+ if either <tt>self.real.infinite?</tt> or <tt>self.imag.infinite?</tt>
1686 * is true, +nil+ otherwise:
1687 *
1688 * Complex.rect(Float::INFINITY, 0).infinite? # => 1
1689 * Complex.rect(1, 1).infinite? # => nil
1690 *
1691 * Related: Numeric#infinite?, Float#infinite?.
1692 */
1693static VALUE
1694rb_complex_infinite_p(VALUE self)
1695{
1696 get_dat1(self);
1697
1698 if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
1699 return Qnil;
1700 }
1701 return ONE;
1702}
1703
1704/* :nodoc: */
1705static VALUE
1706nucomp_dumper(VALUE self)
1707{
1708 return self;
1709}
1710
1711/* :nodoc: */
1712static VALUE
1713nucomp_loader(VALUE self, VALUE a)
1714{
1715 get_dat1(self);
1716
1717 RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
1718 RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
1719 OBJ_FREEZE(self);
1720
1721 return self;
1722}
1723
1724/* :nodoc: */
1725static VALUE
1726nucomp_marshal_dump(VALUE self)
1727{
1728 VALUE a;
1729 get_dat1(self);
1730
1731 a = rb_assoc_new(dat->real, dat->imag);
1732 rb_copy_generic_ivar(a, self);
1733 return a;
1734}
1735
1736/* :nodoc: */
1737static VALUE
1738nucomp_marshal_load(VALUE self, VALUE a)
1739{
1740 Check_Type(a, T_ARRAY);
1741 if (RARRAY_LEN(a) != 2)
1742 rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
1743 rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
1744 rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
1745 return self;
1746}
1747
1748VALUE
1749rb_complex_raw(VALUE x, VALUE y)
1750{
1751 return nucomp_s_new_internal(rb_cComplex, x, y);
1752}
1753
1754VALUE
1755rb_complex_new(VALUE x, VALUE y)
1756{
1757 return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
1758}
1759
1760VALUE
1761rb_complex_new_polar(VALUE x, VALUE y)
1762{
1763 return f_complex_polar(rb_cComplex, x, y);
1764}
1765
1766VALUE
1768{
1769 return rb_complex_new_polar(x, y);
1770}
1771
1772VALUE
1773rb_Complex(VALUE x, VALUE y)
1774{
1775 VALUE a[2];
1776 a[0] = x;
1777 a[1] = y;
1778 return nucomp_s_convert(2, a, rb_cComplex);
1779}
1780
1781VALUE
1782rb_dbl_complex_new(double real, double imag)
1783{
1784 return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag));
1785}
1786
1787/*
1788 * call-seq:
1789 * to_i -> integer
1790 *
1791 * Returns the value of <tt>self.real</tt> as an Integer, if possible:
1792 *
1793 * Complex.rect(1, 0).to_i # => 1
1794 * Complex.rect(1, Rational(0, 1)).to_i # => 1
1795 *
1796 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1797 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>).
1798 */
1799static VALUE
1800nucomp_to_i(VALUE self)
1801{
1802 get_dat1(self);
1803
1804 if (!k_exact_zero_p(dat->imag)) {
1805 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
1806 self);
1807 }
1808 return f_to_i(dat->real);
1809}
1810
1811/*
1812 * call-seq:
1813 * to_f -> float
1814 *
1815 * Returns the value of <tt>self.real</tt> as a Float, if possible:
1816 *
1817 * Complex.rect(1, 0).to_f # => 1.0
1818 * Complex.rect(1, Rational(0, 1)).to_f # => 1.0
1819 *
1820 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1821 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>).
1822 */
1823static VALUE
1824nucomp_to_f(VALUE self)
1825{
1826 get_dat1(self);
1827
1828 if (!k_exact_zero_p(dat->imag)) {
1829 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
1830 self);
1831 }
1832 return f_to_f(dat->real);
1833}
1834
1835/*
1836 * call-seq:
1837 * to_r -> rational
1838 *
1839 * Returns the value of <tt>self.real</tt> as a Rational, if possible:
1840 *
1841 * Complex.rect(1, 0).to_r # => (1/1)
1842 * Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
1843 * Complex.rect(1, 0.0).to_r # => (1/1)
1844 *
1845 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1846 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>)
1847 * and <tt>self.imag.to_r</tt> is not exactly zero.
1848 *
1849 * Related: Complex#rationalize.
1850 */
1851static VALUE
1852nucomp_to_r(VALUE self)
1853{
1854 get_dat1(self);
1855
1856 if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
1857 /* Do nothing here */
1858 }
1859 else if (!k_exact_zero_p(dat->imag)) {
1860 VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
1861 if (NIL_P(imag) || !k_exact_zero_p(imag)) {
1862 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
1863 self);
1864 }
1865 }
1866 return f_to_r(dat->real);
1867}
1868
1869/*
1870 * call-seq:
1871 * rationalize(epsilon = nil) -> rational
1872 *
1873 * Returns a Rational object whose value is exactly or approximately
1874 * equivalent to that of <tt>self.real</tt>.
1875 *
1876 * With no argument +epsilon+ given, returns a \Rational object
1877 * whose value is exactly equal to that of <tt>self.real.rationalize</tt>:
1878 *
1879 * Complex.rect(1, 0).rationalize # => (1/1)
1880 * Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
1881 * Complex.rect(3.14159, 0).rationalize # => (314159/100000)
1882 *
1883 * With argument +epsilon+ given, returns a \Rational object
1884 * whose value is exactly or approximately equal to that of <tt>self.real</tt>
1885 * to the given precision:
1886 *
1887 * Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5)
1888 * Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7)
1889 * Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64)
1890 * Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106)
1891 * Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113)
1892 * Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366)
1893 * Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
1894 * Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
1895 * Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
1896 * Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
1897 * Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
1898 *
1899 * Related: Complex#to_r.
1900 */
1901static VALUE
1902nucomp_rationalize(int argc, VALUE *argv, VALUE self)
1903{
1904 get_dat1(self);
1905
1906 rb_check_arity(argc, 0, 1);
1907
1908 if (!k_exact_zero_p(dat->imag)) {
1909 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
1910 self);
1911 }
1912 return rb_funcallv(dat->real, id_rationalize, argc, argv);
1913}
1914
1915/*
1916 * call-seq:
1917 * to_c -> self
1918 *
1919 * Returns +self+.
1920 */
1921static VALUE
1922nucomp_to_c(VALUE self)
1923{
1924 return self;
1925}
1926
1927/*
1928 * call-seq:
1929 * to_c -> (0+0i)
1930 *
1931 * Returns zero as a Complex:
1932 *
1933 * nil.to_c # => (0+0i)
1934 *
1935 */
1936static VALUE
1937nilclass_to_c(VALUE self)
1938{
1939 return rb_complex_new1(INT2FIX(0));
1940}
1941
1942/*
1943 * call-seq:
1944 * to_c -> complex
1945 *
1946 * Returns +self+ as a Complex object.
1947 */
1948static VALUE
1949numeric_to_c(VALUE self)
1950{
1951 return rb_complex_new1(self);
1952}
1953
1954inline static int
1955issign(int c)
1956{
1957 return (c == '-' || c == '+');
1958}
1959
1960static int
1961read_sign(const char **s,
1962 char **b)
1963{
1964 int sign = '?';
1965
1966 if (issign(**s)) {
1967 sign = **b = **s;
1968 (*s)++;
1969 (*b)++;
1970 }
1971 return sign;
1972}
1973
1974inline static int
1975isdecimal(int c)
1976{
1977 return isdigit((unsigned char)c);
1978}
1979
1980static int
1981read_digits(const char **s, int strict,
1982 char **b)
1983{
1984 int us = 1;
1985
1986 if (!isdecimal(**s))
1987 return 0;
1988
1989 while (isdecimal(**s) || **s == '_') {
1990 if (**s == '_') {
1991 if (us) {
1992 if (strict) return 0;
1993 break;
1994 }
1995 us = 1;
1996 }
1997 else {
1998 **b = **s;
1999 (*b)++;
2000 us = 0;
2001 }
2002 (*s)++;
2003 }
2004 if (us)
2005 do {
2006 (*s)--;
2007 } while (**s == '_');
2008 return 1;
2009}
2010
2011inline static int
2012islettere(int c)
2013{
2014 return (c == 'e' || c == 'E');
2015}
2016
2017static int
2018read_num(const char **s, int strict,
2019 char **b)
2020{
2021 if (**s != '.') {
2022 if (!read_digits(s, strict, b))
2023 return 0;
2024 }
2025
2026 if (**s == '.') {
2027 **b = **s;
2028 (*s)++;
2029 (*b)++;
2030 if (!read_digits(s, strict, b)) {
2031 (*b)--;
2032 return 0;
2033 }
2034 }
2035
2036 if (islettere(**s)) {
2037 **b = **s;
2038 (*s)++;
2039 (*b)++;
2040 read_sign(s, b);
2041 if (!read_digits(s, strict, b)) {
2042 (*b)--;
2043 return 0;
2044 }
2045 }
2046 return 1;
2047}
2048
2049inline static int
2050read_den(const char **s, int strict,
2051 char **b)
2052{
2053 if (!read_digits(s, strict, b))
2054 return 0;
2055 return 1;
2056}
2057
2058static int
2059read_rat_nos(const char **s, int strict,
2060 char **b)
2061{
2062 if (!read_num(s, strict, b))
2063 return 0;
2064 if (**s == '/') {
2065 **b = **s;
2066 (*s)++;
2067 (*b)++;
2068 if (!read_den(s, strict, b)) {
2069 (*b)--;
2070 return 0;
2071 }
2072 }
2073 return 1;
2074}
2075
2076static int
2077read_rat(const char **s, int strict,
2078 char **b)
2079{
2080 read_sign(s, b);
2081 if (!read_rat_nos(s, strict, b))
2082 return 0;
2083 return 1;
2084}
2085
2086inline static int
2087isimagunit(int c)
2088{
2089 return (c == 'i' || c == 'I' ||
2090 c == 'j' || c == 'J');
2091}
2092
2093static VALUE
2094str2num(char *s)
2095{
2096 if (strchr(s, '/'))
2097 return rb_cstr_to_rat(s, 0);
2098 if (strpbrk(s, ".eE"))
2099 return DBL2NUM(rb_cstr_to_dbl(s, 0));
2100 return rb_cstr_to_inum(s, 10, 0);
2101}
2102
2103static int
2104read_comp(const char **s, int strict,
2105 VALUE *ret, char **b)
2106{
2107 char *bb;
2108 int sign;
2109 VALUE num, num2;
2110
2111 bb = *b;
2112
2113 sign = read_sign(s, b);
2114
2115 if (isimagunit(**s)) {
2116 (*s)++;
2117 num = INT2FIX((sign == '-') ? -1 : + 1);
2118 *ret = rb_complex_new2(ZERO, num);
2119 return 1; /* e.g. "i" */
2120 }
2121
2122 if (!read_rat_nos(s, strict, b)) {
2123 **b = '\0';
2124 num = str2num(bb);
2125 *ret = rb_complex_new2(num, ZERO);
2126 return 0; /* e.g. "-" */
2127 }
2128 **b = '\0';
2129 num = str2num(bb);
2130
2131 if (isimagunit(**s)) {
2132 (*s)++;
2133 *ret = rb_complex_new2(ZERO, num);
2134 return 1; /* e.g. "3i" */
2135 }
2136
2137 if (**s == '@') {
2138 int st;
2139
2140 (*s)++;
2141 bb = *b;
2142 st = read_rat(s, strict, b);
2143 **b = '\0';
2144 if (strlen(bb) < 1 ||
2145 !isdecimal(*(bb + strlen(bb) - 1))) {
2146 *ret = rb_complex_new2(num, ZERO);
2147 return 0; /* e.g. "1@-" */
2148 }
2149 num2 = str2num(bb);
2150 *ret = rb_complex_new_polar(num, num2);
2151 if (!st)
2152 return 0; /* e.g. "1@2." */
2153 else
2154 return 1; /* e.g. "1@2" */
2155 }
2156
2157 if (issign(**s)) {
2158 bb = *b;
2159 sign = read_sign(s, b);
2160 if (isimagunit(**s))
2161 num2 = INT2FIX((sign == '-') ? -1 : + 1);
2162 else {
2163 if (!read_rat_nos(s, strict, b)) {
2164 *ret = rb_complex_new2(num, ZERO);
2165 return 0; /* e.g. "1+xi" */
2166 }
2167 **b = '\0';
2168 num2 = str2num(bb);
2169 }
2170 if (!isimagunit(**s)) {
2171 *ret = rb_complex_new2(num, ZERO);
2172 return 0; /* e.g. "1+3x" */
2173 }
2174 (*s)++;
2175 *ret = rb_complex_new2(num, num2);
2176 return 1; /* e.g. "1+2i" */
2177 }
2178 /* !(@, - or +) */
2179 {
2180 *ret = rb_complex_new2(num, ZERO);
2181 return 1; /* e.g. "3" */
2182 }
2183}
2184
2185inline static void
2186skip_ws(const char **s)
2187{
2188 while (isspace((unsigned char)**s))
2189 (*s)++;
2190}
2191
2192static int
2193parse_comp(const char *s, int strict, VALUE *num)
2194{
2195 char *buf, *b;
2196 VALUE tmp;
2197 int ret = 1;
2198
2199 buf = ALLOCV_N(char, tmp, strlen(s) + 1);
2200 b = buf;
2201
2202 skip_ws(&s);
2203 if (!read_comp(&s, strict, num, &b)) {
2204 ret = 0;
2205 }
2206 else {
2207 skip_ws(&s);
2208
2209 if (strict)
2210 if (*s != '\0')
2211 ret = 0;
2212 }
2213 ALLOCV_END(tmp);
2214
2215 return ret;
2216}
2217
2218static VALUE
2219string_to_c_strict(VALUE self, int raise)
2220{
2221 char *s;
2222 VALUE num;
2223
2224 rb_must_asciicompat(self);
2225
2226 if (raise) {
2227 s = StringValueCStr(self);
2228 }
2229 else if (!(s = rb_str_to_cstr(self))) {
2230 return Qnil;
2231 }
2232
2233 if (!parse_comp(s, TRUE, &num)) {
2234 if (!raise) return Qnil;
2235 rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
2236 self);
2237 }
2238
2239 return num;
2240}
2241
2242/*
2243 * call-seq:
2244 * to_c -> complex
2245 *
2246 * Returns +self+ interpreted as a Complex object;
2247 * leading whitespace and trailing garbage are ignored:
2248 *
2249 * '9'.to_c # => (9+0i)
2250 * '2.5'.to_c # => (2.5+0i)
2251 * '2.5/1'.to_c # => ((5/2)+0i)
2252 * '-3/2'.to_c # => ((-3/2)+0i)
2253 * '-i'.to_c # => (0-1i)
2254 * '45i'.to_c # => (0+45i)
2255 * '3-4i'.to_c # => (3-4i)
2256 * '-4e2-4e-2i'.to_c # => (-400.0-0.04i)
2257 * '-0.0-0.0i'.to_c # => (-0.0-0.0i)
2258 * '1/2+3/4i'.to_c # => ((1/2)+(3/4)*i)
2259 * '1.0@0'.to_c # => (1+0.0i)
2260 * "1.0@#{Math::PI/2}".to_c # => (0.0+1i)
2261 * "1.0@#{Math::PI}".to_c # => (-1+0.0i)
2262 *
2263 * Returns \Complex zero if the string cannot be converted:
2264 *
2265 * 'ruby'.to_c # => (0+0i)
2266 *
2267 * See Kernel#Complex.
2268 */
2269static VALUE
2270string_to_c(VALUE self)
2271{
2272 VALUE num;
2273
2274 rb_must_asciicompat(self);
2275
2276 (void)parse_comp(rb_str_fill_terminator(self, 1), FALSE, &num);
2277
2278 return num;
2279}
2280
2281static VALUE
2282to_complex(VALUE val)
2283{
2284 return rb_convert_type(val, T_COMPLEX, "Complex", "to_c");
2285}
2286
2287static VALUE
2288nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
2289{
2290 if (NIL_P(a1) || NIL_P(a2)) {
2291 if (!raise) return Qnil;
2292 rb_raise(rb_eTypeError, "can't convert nil into Complex");
2293 }
2294
2295 if (RB_TYPE_P(a1, T_STRING)) {
2296 a1 = string_to_c_strict(a1, raise);
2297 if (NIL_P(a1)) return Qnil;
2298 }
2299
2300 if (RB_TYPE_P(a2, T_STRING)) {
2301 a2 = string_to_c_strict(a2, raise);
2302 if (NIL_P(a2)) return Qnil;
2303 }
2304
2305 if (RB_TYPE_P(a1, T_COMPLEX)) {
2306 {
2307 get_dat1(a1);
2308
2309 if (k_exact_zero_p(dat->imag))
2310 a1 = dat->real;
2311 }
2312 }
2313
2314 if (RB_TYPE_P(a2, T_COMPLEX)) {
2315 {
2316 get_dat1(a2);
2317
2318 if (k_exact_zero_p(dat->imag))
2319 a2 = dat->real;
2320 }
2321 }
2322
2323 if (RB_TYPE_P(a1, T_COMPLEX)) {
2324 if (UNDEF_P(a2) || (k_exact_zero_p(a2)))
2325 return a1;
2326 }
2327
2328 if (UNDEF_P(a2)) {
2329 if (k_numeric_p(a1) && !f_real_p(a1))
2330 return a1;
2331 /* should raise exception for consistency */
2332 if (!k_numeric_p(a1)) {
2333 if (!raise) {
2334 a1 = rb_protect(to_complex, a1, NULL);
2335 rb_set_errinfo(Qnil);
2336 return a1;
2337 }
2338 return to_complex(a1);
2339 }
2340 }
2341 else {
2342 if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
2343 (!f_real_p(a1) || !f_real_p(a2)))
2344 return f_add(a1,
2345 f_mul(a2,
2346 f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
2347 }
2348
2349 {
2350 int argc;
2351 VALUE argv2[2];
2352 argv2[0] = a1;
2353 if (UNDEF_P(a2)) {
2354 argv2[1] = Qnil;
2355 argc = 1;
2356 }
2357 else {
2358 if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL))
2359 return Qnil;
2360 argv2[1] = a2;
2361 argc = 2;
2362 }
2363 return nucomp_s_new(argc, argv2, klass);
2364 }
2365}
2366
2367static VALUE
2368nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
2369{
2370 VALUE a1, a2;
2371
2372 if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
2373 a2 = Qundef;
2374 }
2375
2376 return nucomp_convert(klass, a1, a2, TRUE);
2377}
2378
2379/*
2380 * call-seq:
2381 * abs2 -> real
2382 *
2383 * Returns the square of +self+.
2384 */
2385static VALUE
2386numeric_abs2(VALUE self)
2387{
2388 return f_mul(self, self);
2389}
2390
2391/*
2392 * call-seq:
2393 * arg -> 0 or Math::PI
2394 *
2395 * Returns zero if +self+ is positive, Math::PI otherwise.
2396 */
2397static VALUE
2398numeric_arg(VALUE self)
2399{
2400 if (f_positive_p(self))
2401 return INT2FIX(0);
2402 return DBL2NUM(M_PI);
2403}
2404
2405/*
2406 * call-seq:
2407 * rect -> array
2408 *
2409 * Returns array <tt>[self, 0]</tt>.
2410 */
2411static VALUE
2412numeric_rect(VALUE self)
2413{
2414 return rb_assoc_new(self, INT2FIX(0));
2415}
2416
2417/*
2418 * call-seq:
2419 * polar -> array
2420 *
2421 * Returns array <tt>[self.abs, self.arg]</tt>.
2422 */
2423static VALUE
2424numeric_polar(VALUE self)
2425{
2426 VALUE abs, arg;
2427
2428 if (RB_INTEGER_TYPE_P(self)) {
2429 abs = rb_int_abs(self);
2430 arg = numeric_arg(self);
2431 }
2432 else if (RB_FLOAT_TYPE_P(self)) {
2433 abs = rb_float_abs(self);
2434 arg = float_arg(self);
2435 }
2436 else if (RB_TYPE_P(self, T_RATIONAL)) {
2437 abs = rb_rational_abs(self);
2438 arg = numeric_arg(self);
2439 }
2440 else {
2441 abs = f_abs(self);
2442 arg = f_arg(self);
2443 }
2444 return rb_assoc_new(abs, arg);
2445}
2446
2447/*
2448 * call-seq:
2449 * arg -> 0 or Math::PI
2450 *
2451 * Returns 0 if +self+ is positive, Math::PI otherwise.
2452 */
2453static VALUE
2454float_arg(VALUE self)
2455{
2456 if (isnan(RFLOAT_VALUE(self)))
2457 return self;
2458 if (f_tpositive_p(self))
2459 return INT2FIX(0);
2460 return rb_const_get(rb_mMath, id_PI);
2461}
2462
2463/*
2464 * A \Complex object houses a pair of values,
2465 * given when the object is created as either <i>rectangular coordinates</i>
2466 * or <i>polar coordinates</i>.
2467 *
2468 * == Rectangular Coordinates
2469 *
2470 * The rectangular coordinates of a complex number
2471 * are called the _real_ and _imaginary_ parts;
2472 * see {Complex number definition}[https://en.wikipedia.org/wiki/Complex_number#Definition_and_basic_operations].
2473 *
2474 * You can create a \Complex object from rectangular coordinates with:
2475 *
2476 * - A {complex literal}[rdoc-ref:syntax/literals.rdoc@Complex+Literals].
2477 * - Method Complex.rect.
2478 * - Method Kernel#Complex, either with numeric arguments or with certain string arguments.
2479 * - Method String#to_c, for certain strings.
2480 *
2481 * Note that each of the stored parts may be a an instance one of the classes
2482 * Complex, Float, Integer, or Rational;
2483 * they may be retrieved:
2484 *
2485 * - Separately, with methods Complex#real and Complex#imaginary.
2486 * - Together, with method Complex#rect.
2487 *
2488 * The corresponding (computed) polar values may be retrieved:
2489 *
2490 * - Separately, with methods Complex#abs and Complex#arg.
2491 * - Together, with method Complex#polar.
2492 *
2493 * == Polar Coordinates
2494 *
2495 * The polar coordinates of a complex number
2496 * are called the _absolute_ and _argument_ parts;
2497 * see {Complex polar plane}[https://en.wikipedia.org/wiki/Complex_number#Polar_form].
2498 *
2499 * In this class, the argument part
2500 * in expressed {radians}[https://en.wikipedia.org/wiki/Radian]
2501 * (not {degrees}[https://en.wikipedia.org/wiki/Degree_(angle)]).
2502 *
2503 * You can create a \Complex object from polar coordinates with:
2504 *
2505 * - Method Complex.polar.
2506 * - Method Kernel#Complex, with certain string arguments.
2507 * - Method String#to_c, for certain strings.
2508 *
2509 * Note that each of the stored parts may be a an instance one of the classes
2510 * Complex, Float, Integer, or Rational;
2511 * they may be retrieved:
2512 *
2513 * - Separately, with methods Complex#abs and Complex#arg.
2514 * - Together, with method Complex#polar.
2515 *
2516 * The corresponding (computed) rectangular values may be retrieved:
2517 *
2518 * - Separately, with methods Complex#real and Complex#imag.
2519 * - Together, with method Complex#rect.
2520 *
2521 * == What's Here
2522 *
2523 * First, what's elsewhere:
2524 *
2525 * - Class \Complex inherits (directly or indirectly)
2526 * from classes {Numeric}[rdoc-ref:Numeric@What-27s+Here]
2527 * and {Object}[rdoc-ref:Object@What-27s+Here].
2528 * - Includes (indirectly) module {Comparable}[rdoc-ref:Comparable@What-27s+Here].
2529 *
2530 * Here, class \Complex has methods for:
2531 *
2532 * === Creating \Complex Objects
2533 *
2534 * - ::polar: Returns a new \Complex object based on given polar coordinates.
2535 * - ::rect (and its alias ::rectangular):
2536 * Returns a new \Complex object based on given rectangular coordinates.
2537 *
2538 * === Querying
2539 *
2540 * - #abs (and its alias #magnitude): Returns the absolute value for +self+.
2541 * - #arg (and its aliases #angle and #phase):
2542 * Returns the argument (angle) for +self+ in radians.
2543 * - #denominator: Returns the denominator of +self+.
2544 * - #finite?: Returns whether both +self.real+ and +self.image+ are finite.
2545 * - #hash: Returns the integer hash value for +self+.
2546 * - #imag (and its alias #imaginary): Returns the imaginary value for +self+.
2547 * - #infinite?: Returns whether +self.real+ or +self.image+ is infinite.
2548 * - #numerator: Returns the numerator of +self+.
2549 * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
2550 * - #inspect: Returns a string representation of +self+.
2551 * - #real: Returns the real value for +self+.
2552 * - #real?: Returns +false+; for compatibility with Numeric#real?.
2553 * - #rect (and its alias #rectangular):
2554 * Returns the array <tt>[self.real, self.imag]</tt>.
2555 *
2556 * === Comparing
2557 *
2558 * - #<=>: Returns whether +self+ is less than, equal to, or greater than the given argument.
2559 * - #==: Returns whether +self+ is equal to the given argument.
2560 *
2561 * === Converting
2562 *
2563 * - #rationalize: Returns a Rational object whose value is exactly
2564 * or approximately equivalent to that of <tt>self.real</tt>.
2565 * - #to_c: Returns +self+.
2566 * - #to_d: Returns the value as a BigDecimal object.
2567 * - #to_f: Returns the value of <tt>self.real</tt> as a Float, if possible.
2568 * - #to_i: Returns the value of <tt>self.real</tt> as an Integer, if possible.
2569 * - #to_r: Returns the value of <tt>self.real</tt> as a Rational, if possible.
2570 * - #to_s: Returns a string representation of +self+.
2571 *
2572 * === Performing Complex Arithmetic
2573 *
2574 * - #*: Returns the product of +self+ and the given numeric.
2575 * - #**: Returns +self+ raised to power of the given numeric.
2576 * - #+: Returns the sum of +self+ and the given numeric.
2577 * - #-: Returns the difference of +self+ and the given numeric.
2578 * - #-@: Returns the negation of +self+.
2579 * - #/: Returns the quotient of +self+ and the given numeric.
2580 * - #abs2: Returns square of the absolute value (magnitude) for +self+.
2581 * - #conj (and its alias #conjugate): Returns the conjugate of +self+.
2582 * - #fdiv: Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>.
2583 *
2584 * === Working with JSON
2585 *
2586 * - ::json_create: Returns a new \Complex object,
2587 * deserialized from the given serialized hash.
2588 * - #as_json: Returns a serialized hash constructed from +self+.
2589 * - #to_json: Returns a JSON string representing +self+.
2590 *
2591 * These methods are provided by the {JSON gem}[https://github.com/ruby/json]. To make these methods available:
2592 *
2593 * require 'json/add/complex'
2594 *
2595 */
2596void
2597Init_Complex(void)
2598{
2599 VALUE compat;
2600 id_abs = rb_intern_const("abs");
2601 id_arg = rb_intern_const("arg");
2602 id_denominator = rb_intern_const("denominator");
2603 id_numerator = rb_intern_const("numerator");
2604 id_real_p = rb_intern_const("real?");
2605 id_i_real = rb_intern_const("@real");
2606 id_i_imag = rb_intern_const("@image"); /* @image, not @imag */
2607 id_finite_p = rb_intern_const("finite?");
2608 id_infinite_p = rb_intern_const("infinite?");
2609 id_rationalize = rb_intern_const("rationalize");
2610 id_PI = rb_intern_const("PI");
2611
2613
2614 rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
2615 rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
2616
2618
2619 rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
2620 rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
2621 rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
2622
2623 rb_define_global_function("Complex", nucomp_f_complex, -1);
2624
2625 rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable));
2628 rb_undef_method(rb_cComplex, "divmod");
2629 rb_undef_method(rb_cComplex, "floor");
2631 rb_undef_method(rb_cComplex, "modulo");
2632 rb_undef_method(rb_cComplex, "remainder");
2633 rb_undef_method(rb_cComplex, "round");
2635 rb_undef_method(rb_cComplex, "truncate");
2637
2638 rb_define_method(rb_cComplex, "real", rb_complex_real, 0);
2639 rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0);
2640 rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0);
2641
2642 rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0);
2643 rb_define_method(rb_cComplex, "+", rb_complex_plus, 1);
2644 rb_define_method(rb_cComplex, "-", rb_complex_minus, 1);
2645 rb_define_method(rb_cComplex, "*", rb_complex_mul, 1);
2646 rb_define_method(rb_cComplex, "/", rb_complex_div, 1);
2647 rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
2648 rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
2649 rb_define_method(rb_cComplex, "**", rb_complex_pow, 1);
2650
2651 rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
2652 rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1);
2653 rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
2654
2655 rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0);
2656 rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0);
2657 rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
2658 rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0);
2659 rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0);
2660 rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0);
2661 rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
2662 rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
2663 rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
2664 rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0);
2665 rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0);
2666
2667 rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0);
2668
2669 rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
2670 rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
2671
2672 rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
2673 rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
2674
2675 rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
2676 rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
2677
2678 rb_undef_method(rb_cComplex, "positive?");
2679 rb_undef_method(rb_cComplex, "negative?");
2680
2681 rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0);
2682 rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0);
2683
2684 rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
2685 /* :nodoc: */
2686 compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
2687 rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
2688 rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
2689
2690 rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
2691 rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
2692 rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
2693 rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
2694 rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
2695 rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
2696 rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
2697
2698 rb_define_method(rb_cString, "to_c", string_to_c, 0);
2699
2700 rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
2701
2702 rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
2703 rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
2704 rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
2705 rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
2706 rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
2707 rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
2708 rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
2709
2710 rb_define_method(rb_cFloat, "arg", float_arg, 0);
2711 rb_define_method(rb_cFloat, "angle", float_arg, 0);
2712 rb_define_method(rb_cFloat, "phase", float_arg, 0);
2713
2714 /*
2715 * Equivalent
2716 * to <tt>Complex.rect(0, 1)</tt>:
2717 *
2718 * Complex::I # => (0+1i)
2719 *
2720 */
2721 rb_define_const(rb_cComplex, "I",
2722 f_complex_new_bang2(rb_cComplex, ZERO, ONE));
2723
2724#if !USE_FLONUM
2725 rb_vm_register_global_object(RFLOAT_0 = DBL2NUM(0.0));
2726#endif
2727
2728 rb_provide("complex.so"); /* for backward compatibility */
2729}
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
static int rb_isdigit(int c)
Our own locale-insensitive version of isdigit(3).
Definition ctype.h:302
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
#define rb_define_private_method(klass, mid, func, arity)
Defines klass#mid and makes it private.
#define rb_define_global_function(mid, func, arity)
Defines rb_mKernel #mid.
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition class.c:980
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition class.c:1012
void rb_undef_method(VALUE klass, const char *name)
Defines an undef of a method.
Definition class.c:2166
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:2635
#define T_COMPLEX
Old name of RUBY_T_COMPLEX.
Definition value_type.h:59
#define RB_INTEGER_TYPE_P
Old name of rb_integer_type_p.
Definition value_type.h:87
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition double.h:28
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define rb_str_cat2
Old name of rb_str_cat_cstr.
Definition string.h:1683
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:135
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:203
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define NUM2DBL
Old name of rb_num2dbl.
Definition double.h:27
VALUE rb_complex_polar(VALUE x, VALUE y)
Old name of rb_complex_new_polar.
Definition complex.c:1767
#define rb_usascii_str_new2
Old name of rb_usascii_str_new_cstr.
Definition string.h:1680
#define FLONUM_P
Old name of RB_FLONUM_P.
#define ST2FIX
Old name of RB_ST2FIX.
Definition st_data_t.h:33
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define ALLOCV_N
Old name of RB_ALLOCV_N.
Definition memory.h:405
#define FL_WB_PROTECTED
Old name of RUBY_FL_WB_PROTECTED.
Definition fl_type.h:59
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition long.h:51
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define ALLOCV_END
Old name of RB_ALLOCV_END.
Definition memory.h:406
VALUE rb_eRangeError
RangeError exception.
Definition error.c:1434
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
VALUE rb_cRational
Rational class.
Definition rational.c:53
VALUE rb_convert_type(VALUE val, int type, const char *name, const char *mid)
Converts an object into another type.
Definition object.c:3092
VALUE rb_cComplex
Complex class.
Definition complex.c:39
VALUE rb_mMath
Math module.
Definition math.c:29
VALUE rb_cInteger
Module class.
Definition numeric.c:198
VALUE rb_cNilClass
NilClass class.
Definition object.c:71
double rb_str_to_dbl(VALUE str, int mode)
Identical to rb_cstr_to_dbl(), except it accepts a Ruby's string instead of C's.
Definition object.c:3483
VALUE rb_cNumeric
Numeric class.
Definition numeric.c:196
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:247
VALUE rb_inspect(VALUE obj)
Generates a human-readable textual representation of the given object.
Definition object.c:680
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition object.c:179
VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)
Queries if the given object is an instance (of possibly descendants) of the given class.
Definition object.c:865
double rb_cstr_to_dbl(const char *str, int mode)
Converts a textual representation of a real number into a numeric, which is the nearest value that th...
Definition object.c:3439
VALUE rb_mComparable
Comparable module.
Definition compar.c:19
VALUE rb_cFloat
Float class.
Definition numeric.c:197
VALUE rb_String(VALUE val)
This is the logic behind Kernel#String.
Definition object.c:3722
VALUE rb_cString
String class.
Definition string.c:79
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1099
#define RGENGC_WB_PROTECTED_COMPLEX
This is a compile-time flag to enable/disable write barrier for struct RComplex.
Definition gc.h:545
#define rb_complex_new2(x, y)
Just another name of rb_complex_new.
Definition complex.h:77
#define rb_complex_new1(x)
Shorthand of x+0i.
Definition complex.h:74
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
void rb_provide(const char *feature)
Declares that the given feature is already provided by someone else.
Definition load.c:715
VALUE rb_num_coerce_cmp(VALUE lhs, VALUE rhs, ID op)
Identical to rb_num_coerce_bin(), except for return values.
Definition numeric.c:484
VALUE rb_num_coerce_bin(VALUE lhs, VALUE rhs, ID op)
Coerced binary operation.
Definition numeric.c:477
VALUE rb_rational_new(VALUE num, VALUE den)
Constructs a Rational, with reduction.
Definition rational.c:1974
st_index_t rb_memhash(const void *ptr, long len)
This is a universal hash function.
Definition random.c:1752
void rb_must_asciicompat(VALUE obj)
Asserts that the given string's encoding is (Ruby's definition of) ASCII compatible.
Definition string.c:2693
VALUE rb_str_concat(VALUE dst, VALUE src)
Identical to rb_str_append(), except it also accepts an integer as a codepoint.
Definition string.c:3919
VALUE rb_const_get(VALUE space, ID name)
Identical to rb_const_defined(), except it returns the actual defined value.
Definition variable.c:3135
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1844
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1335
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
void rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE(*dumper)(VALUE), VALUE(*loader)(VALUE, VALUE))
Marshal format compatibility layer.
Definition marshal.c:134
void rb_copy_generic_ivar(VALUE clone, VALUE obj)
Copies the list of instance variables.
Definition variable.c:2020
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define StringValueCStr(v)
Identical to StringValuePtr, except it additionally checks for the contents for viability as a C stri...
Definition rstring.h:89
#define RTEST
This is an old name of RB_TEST.
Internal header for Complex.
Definition complex.h:13
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
Definition value.h:63
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
Definition value_type.h:264
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition value_type.h:433
static bool rb_integer_type_p(VALUE obj)
Queries if the object is an instance of rb_cInteger.
Definition value_type.h:204
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376