Ruby 4.1.0dev (2026-01-07 revision 49ca241d6d5f589dec8f42fecdc8ecb96690b859)
complex.c (49ca241d6d5f589dec8f42fecdc8ecb96690b859)
1/*
2 complex.c: Coded by Tadayoshi Funaba 2008-2012
3
4 This implementation is based on Keiju Ishitsuka's Complex library
5 which is written in ruby.
6*/
7
8#include "ruby/internal/config.h"
9
10#if defined _MSC_VER
11/* Microsoft Visual C does not define M_PI and others by default */
12# define _USE_MATH_DEFINES 1
13#endif
14
15#include <ctype.h>
16#include <math.h>
17
18#include "id.h"
19#include "internal.h"
20#include "internal/array.h"
21#include "internal/class.h"
22#include "internal/complex.h"
23#include "internal/math.h"
24#include "internal/numeric.h"
25#include "internal/object.h"
26#include "internal/rational.h"
27#include "internal/string.h"
28#include "ruby_assert.h"
29
30#define ZERO INT2FIX(0)
31#define ONE INT2FIX(1)
32#define TWO INT2FIX(2)
33#if USE_FLONUM
34#define RFLOAT_0 DBL2NUM(0)
35#else
36static VALUE RFLOAT_0;
37#endif
38
40
41static ID id_abs, id_arg,
42 id_denominator, id_numerator,
43 id_real_p, id_i_real, id_i_imag,
44 id_finite_p, id_infinite_p, id_rationalize,
45 id_PI;
46#define id_to_i idTo_i
47#define id_to_r idTo_r
48#define id_negate idUMinus
49#define id_expt idPow
50#define id_to_f idTo_f
51#define id_quo idQuo
52#define id_fdiv idFdiv
53
54#define fun1(n) \
55inline static VALUE \
56f_##n(VALUE x)\
57{\
58 return rb_funcall(x, id_##n, 0);\
59}
60
61#define fun2(n) \
62inline static VALUE \
63f_##n(VALUE x, VALUE y)\
64{\
65 return rb_funcall(x, id_##n, 1, y);\
66}
67
68#define PRESERVE_SIGNEDZERO
69
70inline static VALUE
71f_add(VALUE x, VALUE y)
72{
73 if (RB_INTEGER_TYPE_P(x) &&
74 LIKELY(rb_method_basic_definition_p(rb_cInteger, idPLUS))) {
75 if (FIXNUM_ZERO_P(x))
76 return y;
77 if (FIXNUM_ZERO_P(y))
78 return x;
79 return rb_int_plus(x, y);
80 }
81 else if (RB_FLOAT_TYPE_P(x) &&
82 LIKELY(rb_method_basic_definition_p(rb_cFloat, idPLUS))) {
83 if (FIXNUM_ZERO_P(y))
84 return x;
85 return rb_float_plus(x, y);
86 }
87 else if (RB_TYPE_P(x, T_RATIONAL) &&
88 LIKELY(rb_method_basic_definition_p(rb_cRational, idPLUS))) {
89 if (FIXNUM_ZERO_P(y))
90 return x;
91 return rb_rational_plus(x, y);
92 }
93
94 return rb_funcall(x, '+', 1, y);
95}
96
97inline static VALUE
98f_div(VALUE x, VALUE y)
99{
100 if (FIXNUM_P(y) && FIX2LONG(y) == 1)
101 return x;
102 return rb_funcall(x, '/', 1, y);
103}
104
105inline static int
106f_gt_p(VALUE x, VALUE y)
107{
108 if (RB_INTEGER_TYPE_P(x)) {
109 if (FIXNUM_P(x) && FIXNUM_P(y))
110 return (SIGNED_VALUE)x > (SIGNED_VALUE)y;
111 return RTEST(rb_int_gt(x, y));
112 }
113 else if (RB_FLOAT_TYPE_P(x))
114 return RTEST(rb_float_gt(x, y));
115 else if (RB_TYPE_P(x, T_RATIONAL)) {
116 int const cmp = rb_cmpint(rb_rational_cmp(x, y), x, y);
117 return cmp > 0;
118 }
119 return RTEST(rb_funcall(x, '>', 1, y));
120}
121
122inline static VALUE
123f_mul(VALUE x, VALUE y)
124{
125 if (RB_INTEGER_TYPE_P(x) &&
126 LIKELY(rb_method_basic_definition_p(rb_cInteger, idMULT))) {
127 if (FIXNUM_ZERO_P(y))
128 return ZERO;
129 if (FIXNUM_ZERO_P(x) && RB_INTEGER_TYPE_P(y))
130 return ZERO;
131 if (x == ONE) return y;
132 if (y == ONE) return x;
133 return rb_int_mul(x, y);
134 }
135 else if (RB_FLOAT_TYPE_P(x) &&
136 LIKELY(rb_method_basic_definition_p(rb_cFloat, idMULT))) {
137 if (y == ONE) return x;
138 return rb_float_mul(x, y);
139 }
140 else if (RB_TYPE_P(x, T_RATIONAL) &&
141 LIKELY(rb_method_basic_definition_p(rb_cRational, idMULT))) {
142 if (y == ONE) return x;
143 return rb_rational_mul(x, y);
144 }
145 else if (LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMULT))) {
146 if (y == ONE) return x;
147 }
148 return rb_funcall(x, '*', 1, y);
149}
150
151inline static VALUE
152f_sub(VALUE x, VALUE y)
153{
154 if (FIXNUM_ZERO_P(y) &&
155 LIKELY(rb_method_basic_definition_p(CLASS_OF(x), idMINUS))) {
156 return x;
157 }
158 return rb_funcall(x, '-', 1, y);
159}
160
161inline static VALUE
162f_abs(VALUE x)
163{
164 if (RB_INTEGER_TYPE_P(x)) {
165 return rb_int_abs(x);
166 }
167 else if (RB_FLOAT_TYPE_P(x)) {
168 return rb_float_abs(x);
169 }
170 else if (RB_TYPE_P(x, T_RATIONAL)) {
171 return rb_rational_abs(x);
172 }
173 else if (RB_TYPE_P(x, T_COMPLEX)) {
174 return rb_complex_abs(x);
175 }
176 return rb_funcall(x, id_abs, 0);
177}
178
179static VALUE numeric_arg(VALUE self);
180static VALUE float_arg(VALUE self);
181
182inline static VALUE
183f_arg(VALUE x)
184{
185 if (RB_INTEGER_TYPE_P(x)) {
186 return numeric_arg(x);
187 }
188 else if (RB_FLOAT_TYPE_P(x)) {
189 return float_arg(x);
190 }
191 else if (RB_TYPE_P(x, T_RATIONAL)) {
192 return numeric_arg(x);
193 }
194 else if (RB_TYPE_P(x, T_COMPLEX)) {
195 return rb_complex_arg(x);
196 }
197 return rb_funcall(x, id_arg, 0);
198}
199
200inline static VALUE
201f_numerator(VALUE x)
202{
203 if (RB_TYPE_P(x, T_RATIONAL)) {
204 return RRATIONAL(x)->num;
205 }
206 if (RB_FLOAT_TYPE_P(x)) {
207 return rb_float_numerator(x);
208 }
209 return x;
210}
211
212inline static VALUE
213f_denominator(VALUE x)
214{
215 if (RB_TYPE_P(x, T_RATIONAL)) {
216 return RRATIONAL(x)->den;
217 }
218 if (RB_FLOAT_TYPE_P(x)) {
219 return rb_float_denominator(x);
220 }
221 return INT2FIX(1);
222}
223
224inline static VALUE
225f_negate(VALUE x)
226{
227 if (RB_INTEGER_TYPE_P(x)) {
228 return rb_int_uminus(x);
229 }
230 else if (RB_FLOAT_TYPE_P(x)) {
231 return rb_float_uminus(x);
232 }
233 else if (RB_TYPE_P(x, T_RATIONAL)) {
234 return rb_rational_uminus(x);
235 }
236 else if (RB_TYPE_P(x, T_COMPLEX)) {
237 return rb_complex_uminus(x);
238 }
239 return rb_funcall(x, id_negate, 0);
240}
241
242static bool nucomp_real_p(VALUE self);
243
244static inline bool
245f_real_p(VALUE x)
246{
247 if (RB_INTEGER_TYPE_P(x)) {
248 return true;
249 }
250 else if (RB_FLOAT_TYPE_P(x)) {
251 return true;
252 }
253 else if (RB_TYPE_P(x, T_RATIONAL)) {
254 return true;
255 }
256 else if (RB_TYPE_P(x, T_COMPLEX)) {
257 return nucomp_real_p(x);
258 }
259 return rb_funcall(x, id_real_p, 0);
260}
261
262inline static VALUE
263f_to_i(VALUE x)
264{
265 if (RB_TYPE_P(x, T_STRING))
266 return rb_str_to_inum(x, 10, 0);
267 return rb_funcall(x, id_to_i, 0);
268}
269
270inline static VALUE
271f_to_f(VALUE x)
272{
273 if (RB_TYPE_P(x, T_STRING))
274 return DBL2NUM(rb_str_to_dbl(x, 0));
275 return rb_funcall(x, id_to_f, 0);
276}
277
278fun1(to_r)
279
280inline static int
281f_eqeq_p(VALUE x, VALUE y)
282{
283 if (FIXNUM_P(x) && FIXNUM_P(y))
284 return x == y;
285 else if (RB_FLOAT_TYPE_P(x) || RB_FLOAT_TYPE_P(y))
286 return NUM2DBL(x) == NUM2DBL(y);
287 return (int)rb_equal(x, y);
288}
289
290fun2(expt)
291fun2(fdiv)
292
293static VALUE
294f_quo(VALUE x, VALUE y)
295{
296 if (RB_INTEGER_TYPE_P(x))
297 return rb_numeric_quo(x, y);
298 if (RB_FLOAT_TYPE_P(x))
299 return rb_float_div(x, y);
300 if (RB_TYPE_P(x, T_RATIONAL))
301 return rb_numeric_quo(x, y);
302
303 return rb_funcallv(x, id_quo, 1, &y);
304}
305
306inline static int
307f_negative_p(VALUE x)
308{
309 if (RB_INTEGER_TYPE_P(x))
310 return INT_NEGATIVE_P(x);
311 else if (RB_FLOAT_TYPE_P(x))
312 return RFLOAT_VALUE(x) < 0.0;
313 else if (RB_TYPE_P(x, T_RATIONAL))
314 return INT_NEGATIVE_P(RRATIONAL(x)->num);
315 return rb_num_negative_p(x);
316}
317
318#define f_positive_p(x) (!f_negative_p(x))
319
320inline static bool
321f_zero_p(VALUE x)
322{
323 if (RB_FLOAT_TYPE_P(x)) {
324 return FLOAT_ZERO_P(x);
325 }
326 else if (RB_INTEGER_TYPE_P(x)) {
327 return FIXNUM_ZERO_P(x);
328 }
329 else if (RB_TYPE_P(x, T_RATIONAL)) {
330 const VALUE num = RRATIONAL(x)->num;
331 return FIXNUM_ZERO_P(num);
332 }
333 return rb_equal(x, ZERO) != 0;
334}
335
336#define f_nonzero_p(x) (!f_zero_p(x))
337
338static inline bool
339always_finite_type_p(VALUE x)
340{
341 if (FIXNUM_P(x)) return true;
342 if (FLONUM_P(x)) return true; /* Infinity can't be a flonum */
343 return (RB_INTEGER_TYPE_P(x) || RB_TYPE_P(x, T_RATIONAL));
344}
345
346inline static int
347f_finite_p(VALUE x)
348{
349 if (always_finite_type_p(x)) {
350 return TRUE;
351 }
352 else if (RB_FLOAT_TYPE_P(x)) {
353 return isfinite(RFLOAT_VALUE(x));
354 }
355 return RTEST(rb_funcallv(x, id_finite_p, 0, 0));
356}
357
358inline static int
359f_infinite_p(VALUE x)
360{
361 if (always_finite_type_p(x)) {
362 return FALSE;
363 }
364 else if (RB_FLOAT_TYPE_P(x)) {
365 return isinf(RFLOAT_VALUE(x));
366 }
367 return RTEST(rb_funcallv(x, id_infinite_p, 0, 0));
368}
369
370inline static int
371f_kind_of_p(VALUE x, VALUE c)
372{
373 return (int)rb_obj_is_kind_of(x, c);
374}
375
376inline static int
377k_numeric_p(VALUE x)
378{
379 return f_kind_of_p(x, rb_cNumeric);
380}
381
382#define k_exact_p(x) (!RB_FLOAT_TYPE_P(x))
383
384#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
385
386#define get_dat1(x) \
387 struct RComplex *dat = RCOMPLEX(x)
388
389#define get_dat2(x,y) \
390 struct RComplex *adat = RCOMPLEX(x), *bdat = RCOMPLEX(y)
391
392inline static VALUE
393nucomp_s_new_internal(VALUE klass, VALUE real, VALUE imag)
394{
395 NEWOBJ_OF(obj, struct RComplex, klass,
397
398 RCOMPLEX_SET_REAL(obj, real);
399 RCOMPLEX_SET_IMAG(obj, imag);
400 OBJ_FREEZE((VALUE)obj);
401
402 return (VALUE)obj;
403}
404
405static VALUE
406nucomp_s_alloc(VALUE klass)
407{
408 return nucomp_s_new_internal(klass, ZERO, ZERO);
409}
410
411inline static VALUE
412f_complex_new_bang1(VALUE klass, VALUE x)
413{
415 return nucomp_s_new_internal(klass, x, ZERO);
416}
417
418inline static VALUE
419f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
420{
423 return nucomp_s_new_internal(klass, x, y);
424}
425
426WARN_UNUSED_RESULT(inline static VALUE nucomp_real_check(VALUE num));
427inline static VALUE
428nucomp_real_check(VALUE num)
429{
430 if (!RB_INTEGER_TYPE_P(num) &&
431 !RB_FLOAT_TYPE_P(num) &&
432 !RB_TYPE_P(num, T_RATIONAL)) {
433 if (RB_TYPE_P(num, T_COMPLEX) && nucomp_real_p(num)) {
434 VALUE real = RCOMPLEX(num)->real;
436 return real;
437 }
438 if (!k_numeric_p(num) || !f_real_p(num))
439 rb_raise(rb_eTypeError, "not a real");
440 }
441 return num;
442}
443
444inline static VALUE
445nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE imag)
446{
447 int complex_r, complex_i;
448 complex_r = RB_TYPE_P(real, T_COMPLEX);
449 complex_i = RB_TYPE_P(imag, T_COMPLEX);
450 if (!complex_r && !complex_i) {
451 return nucomp_s_new_internal(klass, real, imag);
452 }
453 else if (!complex_r) {
454 get_dat1(imag);
455
456 return nucomp_s_new_internal(klass,
457 f_sub(real, dat->imag),
458 f_add(ZERO, dat->real));
459 }
460 else if (!complex_i) {
461 get_dat1(real);
462
463 return nucomp_s_new_internal(klass,
464 dat->real,
465 f_add(dat->imag, imag));
466 }
467 else {
468 get_dat2(real, imag);
469
470 return nucomp_s_new_internal(klass,
471 f_sub(adat->real, bdat->imag),
472 f_add(adat->imag, bdat->real));
473 }
474}
475
476/*
477 * call-seq:
478 * Complex.rect(real, imag = 0) -> complex
479 *
480 * Returns a new \Complex object formed from the arguments,
481 * each of which must be an instance of Numeric,
482 * or an instance of one of its subclasses:
483 * \Complex, Float, Integer, Rational;
484 * see {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
485 *
486 * Complex.rect(3) # => (3+0i)
487 * Complex.rect(3, Math::PI) # => (3+3.141592653589793i)
488 * Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
489 *
490 * \Complex.rectangular is an alias for \Complex.rect.
491 */
492static VALUE
493nucomp_s_new(int argc, VALUE *argv, VALUE klass)
494{
495 VALUE real, imag;
496
497 switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
498 case 1:
499 real = nucomp_real_check(real);
500 imag = ZERO;
501 break;
502 default:
503 real = nucomp_real_check(real);
504 imag = nucomp_real_check(imag);
505 break;
506 }
507
508 return nucomp_s_new_internal(klass, real, imag);
509}
510
511inline static VALUE
512f_complex_new2(VALUE klass, VALUE x, VALUE y)
513{
514 if (RB_TYPE_P(x, T_COMPLEX)) {
515 get_dat1(x);
516 x = dat->real;
517 y = f_add(dat->imag, y);
518 }
519 return nucomp_s_canonicalize_internal(klass, x, y);
520}
521
522static VALUE nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise);
523static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
524
525/*
526 * call-seq:
527 * Complex(real, imag = 0, exception: true) -> complex or nil
528 * Complex(s, exception: true) -> complex or nil
529 *
530 * Returns a new \Complex object if the arguments are valid;
531 * otherwise raises an exception if +exception+ is +true+;
532 * otherwise returns +nil+.
533 *
534 * With Numeric arguments +real+ and +imag+,
535 * returns <tt>Complex.rect(real, imag)</tt> if the arguments are valid.
536 *
537 * With string argument +s+, returns a new \Complex object if the argument is valid;
538 * the string may have:
539 *
540 * - One or two numeric substrings,
541 * each of which specifies a Complex, Float, Integer, Numeric, or Rational value,
542 * specifying {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates]:
543 *
544 * - Sign-separated real and imaginary numeric substrings
545 * (with trailing character <tt>'i'</tt>):
546 *
547 * Complex('1+2i') # => (1+2i)
548 * Complex('+1+2i') # => (1+2i)
549 * Complex('+1-2i') # => (1-2i)
550 * Complex('-1+2i') # => (-1+2i)
551 * Complex('-1-2i') # => (-1-2i)
552 *
553 * - Real-only numeric string (without trailing character <tt>'i'</tt>):
554 *
555 * Complex('1') # => (1+0i)
556 * Complex('+1') # => (1+0i)
557 * Complex('-1') # => (-1+0i)
558 *
559 * - Imaginary-only numeric string (with trailing character <tt>'i'</tt>):
560 *
561 * Complex('1i') # => (0+1i)
562 * Complex('+1i') # => (0+1i)
563 * Complex('-1i') # => (0-1i)
564 *
565 * - At-sign separated real and imaginary rational substrings,
566 * each of which specifies a Rational value,
567 * specifying {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
568 *
569 * Complex('1/2@3/4') # => (0.36584443443691045+0.34081938001166706i)
570 * Complex('+1/2@+3/4') # => (0.36584443443691045+0.34081938001166706i)
571 * Complex('+1/2@-3/4') # => (0.36584443443691045-0.34081938001166706i)
572 * Complex('-1/2@+3/4') # => (-0.36584443443691045-0.34081938001166706i)
573 * Complex('-1/2@-3/4') # => (-0.36584443443691045+0.34081938001166706i)
574 *
575 */
576static VALUE
577nucomp_f_complex(int argc, VALUE *argv, VALUE klass)
578{
579 VALUE a1, a2, opts = Qnil;
580 int raise = TRUE;
581
582 if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) {
583 a2 = Qundef;
584 }
585 if (!NIL_P(opts)) {
586 raise = rb_opts_exception_p(opts, raise);
587 }
588 if (argc > 0 && CLASS_OF(a1) == rb_cComplex && UNDEF_P(a2)) {
589 return a1;
590 }
591 return nucomp_convert(rb_cComplex, a1, a2, raise);
592}
593
594#define imp1(n) \
595inline static VALUE \
596m_##n##_bang(VALUE x)\
597{\
598 return rb_math_##n(x);\
599}
600
601imp1(cos)
602imp1(cosh)
603imp1(exp)
604
605static VALUE
606m_log_bang(VALUE x)
607{
608 return rb_math_log(1, &x);
609}
610
611imp1(sin)
612imp1(sinh)
613
614static VALUE
615m_cos(VALUE x)
616{
617 if (!RB_TYPE_P(x, T_COMPLEX))
618 return m_cos_bang(x);
619 {
620 get_dat1(x);
621 return f_complex_new2(rb_cComplex,
622 f_mul(m_cos_bang(dat->real),
623 m_cosh_bang(dat->imag)),
624 f_mul(f_negate(m_sin_bang(dat->real)),
625 m_sinh_bang(dat->imag)));
626 }
627}
628
629static VALUE
630m_sin(VALUE x)
631{
632 if (!RB_TYPE_P(x, T_COMPLEX))
633 return m_sin_bang(x);
634 {
635 get_dat1(x);
636 return f_complex_new2(rb_cComplex,
637 f_mul(m_sin_bang(dat->real),
638 m_cosh_bang(dat->imag)),
639 f_mul(m_cos_bang(dat->real),
640 m_sinh_bang(dat->imag)));
641 }
642}
643
644static VALUE
645f_complex_polar_real(VALUE klass, VALUE x, VALUE y)
646{
647 if (f_zero_p(x) || f_zero_p(y)) {
648 return nucomp_s_new_internal(klass, x, RFLOAT_0);
649 }
650 if (RB_FLOAT_TYPE_P(y)) {
651 const double arg = RFLOAT_VALUE(y);
652 if (arg == M_PI) {
653 x = f_negate(x);
654 y = RFLOAT_0;
655 }
656 else if (arg == M_PI_2) {
657 y = x;
658 x = RFLOAT_0;
659 }
660 else if (arg == M_PI_2+M_PI) {
661 y = f_negate(x);
662 x = RFLOAT_0;
663 }
664 else if (RB_FLOAT_TYPE_P(x)) {
665 const double abs = RFLOAT_VALUE(x);
666 const double real = abs * cos(arg), imag = abs * sin(arg);
667 x = DBL2NUM(real);
668 y = DBL2NUM(imag);
669 }
670 else {
671 const double ax = sin(arg), ay = cos(arg);
672 y = f_mul(x, DBL2NUM(ax));
673 x = f_mul(x, DBL2NUM(ay));
674 }
675 return nucomp_s_new_internal(klass, x, y);
676 }
677 return nucomp_s_canonicalize_internal(klass,
678 f_mul(x, m_cos(y)),
679 f_mul(x, m_sin(y)));
680}
681
682static VALUE
683f_complex_polar(VALUE klass, VALUE x, VALUE y)
684{
685 x = nucomp_real_check(x);
686 y = nucomp_real_check(y);
687 return f_complex_polar_real(klass, x, y);
688}
689
690#ifdef HAVE___COSPI
691# define cospi(x) __cospi(x)
692#else
693# define cospi(x) cos((x) * M_PI)
694#endif
695#ifdef HAVE___SINPI
696# define sinpi(x) __sinpi(x)
697#else
698# define sinpi(x) sin((x) * M_PI)
699#endif
700/* returns a Complex or Float of ang*PI-rotated abs */
701VALUE
702rb_dbl_complex_new_polar_pi(double abs, double ang)
703{
704 double fi;
705 const double fr = modf(ang, &fi);
706 int pos = fr == +0.5;
707
708 if (pos || fr == -0.5) {
709 if ((modf(fi / 2.0, &fi) != fr) ^ pos) abs = -abs;
710 return rb_complex_new(RFLOAT_0, DBL2NUM(abs));
711 }
712 else if (fr == 0.0) {
713 if (modf(fi / 2.0, &fi) != 0.0) abs = -abs;
714 return DBL2NUM(abs);
715 }
716 else {
717 const double real = abs * cospi(ang), imag = abs * sinpi(ang);
718 return rb_complex_new(DBL2NUM(real), DBL2NUM(imag));
719 }
720}
721
722/*
723 * call-seq:
724 * Complex.polar(abs, arg = 0) -> complex
725 *
726 * Returns a new \Complex object formed from the arguments,
727 * each of which must be an instance of Numeric,
728 * or an instance of one of its subclasses:
729 * \Complex, Float, Integer, Rational.
730 * Argument +arg+ is given in radians;
731 * see {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
732 *
733 * Complex.polar(3) # => (3+0i)
734 * Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i)
735 * Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
736 *
737 */
738static VALUE
739nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
740{
741 VALUE abs, arg;
742
743 argc = rb_scan_args(argc, argv, "11", &abs, &arg);
744 abs = nucomp_real_check(abs);
745 if (argc == 2) {
746 arg = nucomp_real_check(arg);
747 }
748 else {
749 arg = ZERO;
750 }
751 return f_complex_polar_real(klass, abs, arg);
752}
753
754/*
755 * call-seq:
756 * real -> numeric
757 *
758 * Returns the real value for +self+:
759 *
760 * Complex.rect(7).real # => 7
761 * Complex.rect(9, -4).real # => 9
762 *
763 * If +self+ was created with
764 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
765 * is computed, and may be inexact:
766 *
767 * Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
768 *
769 */
770VALUE
771rb_complex_real(VALUE self)
772{
773 get_dat1(self);
774 return dat->real;
775}
776
777/*
778 * call-seq:
779 * imag -> numeric
780 *
781 * Returns the imaginary value for +self+:
782 *
783 * Complex.rect(7).imag # => 0
784 * Complex.rect(9, -4).imag # => -4
785 *
786 * If +self+ was created with
787 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
788 * is computed, and may be inexact:
789 *
790 * Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
791 *
792 */
793VALUE
794rb_complex_imag(VALUE self)
795{
796 get_dat1(self);
797 return dat->imag;
798}
799
800/*
801 * call-seq:
802 * -self -> complex
803 *
804 * Returns +self+, negated, which is the negation of each of its parts:
805 *
806 * -Complex.rect(1, 2) # => (-1-2i)
807 * -Complex.rect(-1, -2) # => (1+2i)
808 *
809 */
810VALUE
811rb_complex_uminus(VALUE self)
812{
813 get_dat1(self);
814 return f_complex_new2(CLASS_OF(self),
815 f_negate(dat->real), f_negate(dat->imag));
816}
817
818/*
819 * call-seq:
820 * self + other -> numeric
821 *
822 * Returns the sum of +self+ and +other+:
823 *
824 * Complex(1, 2) + 0 # => (1+2i)
825 * Complex(1, 2) + 1 # => (2+2i)
826 * Complex(1, 2) + -1 # => (0+2i)
827 *
828 * Complex(1, 2) + 1.0 # => (2.0+2i)
829 *
830 * Complex(1, 2) + Complex(2, 1) # => (3+3i)
831 * Complex(1, 2) + Complex(2.0, 1.0) # => (3.0+3.0i)
832 *
833 * Complex(1, 2) + Rational(1, 1) # => ((2/1)+2i)
834 * Complex(1, 2) + Rational(1, 2) # => ((3/2)+2i)
835 *
836 * For a computation involving Floats, the result may be inexact (see Float#+):
837 *
838 * Complex(1, 2) + 3.14 # => (4.140000000000001+2i)
839 */
840VALUE
841rb_complex_plus(VALUE self, VALUE other)
842{
843 if (RB_TYPE_P(other, T_COMPLEX)) {
844 VALUE real, imag;
845
846 get_dat2(self, other);
847
848 real = f_add(adat->real, bdat->real);
849 imag = f_add(adat->imag, bdat->imag);
850
851 return f_complex_new2(CLASS_OF(self), real, imag);
852 }
853 if (k_numeric_p(other) && f_real_p(other)) {
854 get_dat1(self);
855
856 return f_complex_new2(CLASS_OF(self),
857 f_add(dat->real, other), dat->imag);
858 }
859 return rb_num_coerce_bin(self, other, '+');
860}
861
862/*
863 * call-seq:
864 * self - other -> complex
865 *
866 * Returns the difference of +self+ and +other+:
867 *
868 * Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i)
869 * Complex.rect(900) - Complex.rect(1) # => (899+0i)
870 * Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i)
871 * Complex.rect(9, 8) - 4 # => (5+8i)
872 * Complex.rect(20, 9) - 9.8 # => (10.2+9i)
873 *
874 */
875VALUE
876rb_complex_minus(VALUE self, VALUE other)
877{
878 if (RB_TYPE_P(other, T_COMPLEX)) {
879 VALUE real, imag;
880
881 get_dat2(self, other);
882
883 real = f_sub(adat->real, bdat->real);
884 imag = f_sub(adat->imag, bdat->imag);
885
886 return f_complex_new2(CLASS_OF(self), real, imag);
887 }
888 if (k_numeric_p(other) && f_real_p(other)) {
889 get_dat1(self);
890
891 return f_complex_new2(CLASS_OF(self),
892 f_sub(dat->real, other), dat->imag);
893 }
894 return rb_num_coerce_bin(self, other, '-');
895}
896
897static VALUE
898safe_mul(VALUE a, VALUE b, bool az, bool bz)
899{
900 double v;
901 if (!az && bz && RB_FLOAT_TYPE_P(a) && (v = RFLOAT_VALUE(a), !isnan(v))) {
902 a = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
903 }
904 if (!bz && az && RB_FLOAT_TYPE_P(b) && (v = RFLOAT_VALUE(b), !isnan(v))) {
905 b = signbit(v) ? DBL2NUM(-1.0) : DBL2NUM(1.0);
906 }
907 return f_mul(a, b);
908}
909
910static void
911comp_mul(VALUE areal, VALUE aimag, VALUE breal, VALUE bimag, VALUE *real, VALUE *imag)
912{
913 bool arzero = f_zero_p(areal);
914 bool aizero = f_zero_p(aimag);
915 bool brzero = f_zero_p(breal);
916 bool bizero = f_zero_p(bimag);
917 *real = f_sub(safe_mul(areal, breal, arzero, brzero),
918 safe_mul(aimag, bimag, aizero, bizero));
919 *imag = f_add(safe_mul(areal, bimag, arzero, bizero),
920 safe_mul(aimag, breal, aizero, brzero));
921}
922
923/*
924 * call-seq:
925 * self * other -> numeric
926 *
927 * Returns the numeric product of +self+ and +other+:
928 *
929 * Complex.rect(9, 8) * 4 # => (36+32i)
930 * Complex.rect(20, 9) * 9.8 # => (196.0+88.2i)
931 * Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i)
932 * Complex.rect(900) * Complex.rect(1) # => (900+0i)
933 * Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i)
934 * Complex.rect(9, 8) * Rational(2, 3) # => ((6/1)+(16/3)*i)
935 *
936 */
937VALUE
938rb_complex_mul(VALUE self, VALUE other)
939{
940 if (RB_TYPE_P(other, T_COMPLEX)) {
941 VALUE real, imag;
942 get_dat2(self, other);
943
944 comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
945
946 return f_complex_new2(CLASS_OF(self), real, imag);
947 }
948 if (k_numeric_p(other) && f_real_p(other)) {
949 get_dat1(self);
950
951 return f_complex_new2(CLASS_OF(self),
952 f_mul(dat->real, other),
953 f_mul(dat->imag, other));
954 }
955 return rb_num_coerce_bin(self, other, '*');
956}
957
958inline static VALUE
959f_divide(VALUE self, VALUE other,
960 VALUE (*func)(VALUE, VALUE), ID id)
961{
962 if (RB_TYPE_P(other, T_COMPLEX)) {
963 VALUE r, n, x, y;
964 int flo;
965 get_dat2(self, other);
966
967 flo = (RB_FLOAT_TYPE_P(adat->real) || RB_FLOAT_TYPE_P(adat->imag) ||
968 RB_FLOAT_TYPE_P(bdat->real) || RB_FLOAT_TYPE_P(bdat->imag));
969
970 if (f_gt_p(f_abs(bdat->real), f_abs(bdat->imag))) {
971 r = (*func)(bdat->imag, bdat->real);
972 n = f_mul(bdat->real, f_add(ONE, f_mul(r, r)));
973 x = (*func)(f_add(adat->real, f_mul(adat->imag, r)), n);
974 y = (*func)(f_sub(adat->imag, f_mul(adat->real, r)), n);
975 }
976 else {
977 r = (*func)(bdat->real, bdat->imag);
978 n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r)));
979 x = (*func)(f_add(f_mul(adat->real, r), adat->imag), n);
980 y = (*func)(f_sub(f_mul(adat->imag, r), adat->real), n);
981 }
982 if (!flo) {
983 x = rb_rational_canonicalize(x);
984 y = rb_rational_canonicalize(y);
985 }
986 return f_complex_new2(CLASS_OF(self), x, y);
987 }
988 if (k_numeric_p(other) && f_real_p(other)) {
989 VALUE x, y;
990 get_dat1(self);
991 x = rb_rational_canonicalize((*func)(dat->real, other));
992 y = rb_rational_canonicalize((*func)(dat->imag, other));
993 return f_complex_new2(CLASS_OF(self), x, y);
994 }
995 return rb_num_coerce_bin(self, other, id);
996}
997
998#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
999
1000/*
1001 * call-seq:
1002 * self / other -> complex
1003 *
1004 * Returns the quotient of +self+ and +other+:
1005 *
1006 * Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i)
1007 * Complex.rect(900) / Complex.rect(1) # => (900+0i)
1008 * Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i)
1009 * Complex.rect(9, 8) / 4 # => ((9/4)+2i)
1010 * Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
1011 *
1012 */
1013VALUE
1014rb_complex_div(VALUE self, VALUE other)
1015{
1016 return f_divide(self, other, f_quo, id_quo);
1017}
1018
1019#define nucomp_quo rb_complex_div
1020
1021/*
1022 * call-seq:
1023 * fdiv(numeric) -> new_complex
1024 *
1025 * Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>:
1026 *
1027 * Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
1028 *
1029 */
1030static VALUE
1031nucomp_fdiv(VALUE self, VALUE other)
1032{
1033 return f_divide(self, other, f_fdiv, id_fdiv);
1034}
1035
1036inline static VALUE
1037f_reciprocal(VALUE x)
1038{
1039 return f_quo(ONE, x);
1040}
1041
1042static VALUE
1043zero_for(VALUE x)
1044{
1045 if (RB_FLOAT_TYPE_P(x))
1046 return DBL2NUM(0);
1047 if (RB_TYPE_P(x, T_RATIONAL))
1048 return rb_rational_new(INT2FIX(0), INT2FIX(1));
1049
1050 return INT2FIX(0);
1051}
1052
1053static VALUE
1054complex_pow_for_special_angle(VALUE self, VALUE other)
1055{
1056 if (!rb_integer_type_p(other)) {
1057 return Qundef;
1058 }
1059
1060 get_dat1(self);
1061 VALUE x = Qundef;
1062 int dir;
1063 if (f_zero_p(dat->imag)) {
1064 x = dat->real;
1065 dir = 0;
1066 }
1067 else if (f_zero_p(dat->real)) {
1068 x = dat->imag;
1069 dir = 2;
1070 }
1071 else if (f_eqeq_p(dat->real, dat->imag)) {
1072 x = dat->real;
1073 dir = 1;
1074 }
1075 else if (f_eqeq_p(dat->real, f_negate(dat->imag))) {
1076 x = dat->imag;
1077 dir = 3;
1078 }
1079 else {
1080 dir = 0;
1081 }
1082
1083 if (UNDEF_P(x)) return x;
1084
1085 if (f_negative_p(x)) {
1086 x = f_negate(x);
1087 dir += 4;
1088 }
1089
1090 VALUE zx;
1091 if (dir % 2 == 0) {
1092 zx = rb_num_pow(x, other);
1093 }
1094 else {
1095 zx = rb_num_pow(
1096 rb_funcall(rb_int_mul(TWO, x), '*', 1, x),
1097 rb_int_div(other, TWO)
1098 );
1099 if (rb_int_odd_p(other)) {
1100 zx = rb_funcall(zx, '*', 1, x);
1101 }
1102 }
1103 static const int dirs[][2] = {
1104 {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, {0, -1}, {1, -1}
1105 };
1106 int z_dir = FIX2INT(rb_int_modulo(rb_int_mul(INT2FIX(dir), other), INT2FIX(8)));
1107
1108 VALUE zr = Qfalse, zi = Qfalse;
1109 switch (dirs[z_dir][0]) {
1110 case 0: zr = zero_for(zx); break;
1111 case 1: zr = zx; break;
1112 case -1: zr = f_negate(zx); break;
1113 }
1114 switch (dirs[z_dir][1]) {
1115 case 0: zi = zero_for(zx); break;
1116 case 1: zi = zx; break;
1117 case -1: zi = f_negate(zx); break;
1118 }
1119 return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
1120}
1121
1122
1123/*
1124 * call-seq:
1125 * self ** exponent -> complex
1126 *
1127 * Returns +self+ raised to the power +exponent+:
1128 *
1129 * Complex.rect(0, 1) ** 2 # => (-1+0i)
1130 * Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
1131 *
1132 */
1133VALUE
1134rb_complex_pow(VALUE self, VALUE other)
1135{
1136 if (k_numeric_p(other) && k_exact_zero_p(other))
1137 return f_complex_new_bang1(CLASS_OF(self), ONE);
1138
1139 if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
1140 other = RRATIONAL(other)->num; /* c14n */
1141
1142 if (RB_TYPE_P(other, T_COMPLEX)) {
1143 get_dat1(other);
1144
1145 if (k_exact_zero_p(dat->imag))
1146 other = dat->real; /* c14n */
1147 }
1148
1149 if (other == ONE) {
1150 get_dat1(self);
1151 return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
1152 }
1153
1154 VALUE result = complex_pow_for_special_angle(self, other);
1155 if (!UNDEF_P(result)) return result;
1156
1157 if (RB_TYPE_P(other, T_COMPLEX)) {
1158 VALUE r, theta, nr, ntheta;
1159
1160 get_dat1(other);
1161
1162 r = f_abs(self);
1163 theta = f_arg(self);
1164
1165 nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
1166 f_mul(dat->imag, theta)));
1167 ntheta = f_add(f_mul(theta, dat->real),
1168 f_mul(dat->imag, m_log_bang(r)));
1169 return f_complex_polar(CLASS_OF(self), nr, ntheta);
1170 }
1171 if (FIXNUM_P(other)) {
1172 long n = FIX2LONG(other);
1173 if (n == 0) {
1174 return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
1175 }
1176 if (n < 0) {
1177 self = f_reciprocal(self);
1178 other = rb_int_uminus(other);
1179 n = -n;
1180 }
1181 {
1182 get_dat1(self);
1183 VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
1184
1185 if (f_zero_p(xi)) {
1186 zr = rb_num_pow(zr, other);
1187 }
1188 else if (f_zero_p(xr)) {
1189 zi = rb_num_pow(zi, other);
1190 if (n & 2) zi = f_negate(zi);
1191 if (!(n & 1)) {
1192 VALUE tmp = zr;
1193 zr = zi;
1194 zi = tmp;
1195 }
1196 }
1197 else {
1198 while (--n) {
1199 long q, r;
1200
1201 for (; q = n / 2, r = n % 2, r == 0; n = q) {
1202 VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
1203 xi = f_mul(f_mul(TWO, xr), xi);
1204 xr = tmp;
1205 }
1206 comp_mul(zr, zi, xr, xi, &zr, &zi);
1207 }
1208 }
1209 return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
1210 }
1211 }
1212 if (k_numeric_p(other) && f_real_p(other)) {
1213 VALUE r, theta;
1214
1215 if (RB_BIGNUM_TYPE_P(other))
1216 rb_warn("in a**b, b may be too big");
1217
1218 r = f_abs(self);
1219 theta = f_arg(self);
1220
1221 return f_complex_polar(CLASS_OF(self), f_expt(r, other),
1222 f_mul(theta, other));
1223 }
1224 return rb_num_coerce_bin(self, other, id_expt);
1225}
1226
1227/*
1228 * call-seq:
1229 * complex == object -> true or false
1230 *
1231 * Returns +true+ if <tt>self.real == object.real</tt>
1232 * and <tt>self.imag == object.imag</tt>:
1233 *
1234 * Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true
1235 *
1236 */
1237static VALUE
1238nucomp_eqeq_p(VALUE self, VALUE other)
1239{
1240 if (RB_TYPE_P(other, T_COMPLEX)) {
1241 get_dat2(self, other);
1242
1243 return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
1244 f_eqeq_p(adat->imag, bdat->imag));
1245 }
1246 if (k_numeric_p(other) && f_real_p(other)) {
1247 get_dat1(self);
1248
1249 return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
1250 }
1251 return RBOOL(f_eqeq_p(other, self));
1252}
1253
1254static bool
1255nucomp_real_p(VALUE self)
1256{
1257 get_dat1(self);
1258 return f_zero_p(dat->imag);
1259}
1260
1261/*
1262 * call-seq:
1263 * self <=> other -> -1, 0, 1, or nil
1264 *
1265 * Compares +self+ and +other+.
1266 *
1267 * Returns:
1268 *
1269 * - <tt>self.real <=> other.real</tt> if both of the following are true:
1270 *
1271 * - <tt>self.imag == 0</tt>.
1272 * - <tt>other.imag == 0</tt> (always true if +other+ is numeric but not complex).
1273 *
1274 * - +nil+ otherwise.
1275 *
1276 * Examples:
1277 *
1278 * Complex.rect(2) <=> 3 # => -1
1279 * Complex.rect(2) <=> 2 # => 0
1280 * Complex.rect(2) <=> 1 # => 1
1281 * Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero.
1282 * Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero.
1283 * Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
1284 *
1285 * \Class \Complex includes module Comparable,
1286 * each of whose methods uses Complex#<=> for comparison.
1287 */
1288static VALUE
1289nucomp_cmp(VALUE self, VALUE other)
1290{
1291 if (!k_numeric_p(other)) {
1292 return rb_num_coerce_cmp(self, other, idCmp);
1293 }
1294 if (!nucomp_real_p(self)) {
1295 return Qnil;
1296 }
1297 if (RB_TYPE_P(other, T_COMPLEX)) {
1298 if (nucomp_real_p(other)) {
1299 get_dat2(self, other);
1300 return rb_funcall(adat->real, idCmp, 1, bdat->real);
1301 }
1302 }
1303 else {
1304 get_dat1(self);
1305 if (f_real_p(other)) {
1306 return rb_funcall(dat->real, idCmp, 1, other);
1307 }
1308 else {
1309 return rb_num_coerce_cmp(dat->real, other, idCmp);
1310 }
1311 }
1312 return Qnil;
1313}
1314
1315/* :nodoc: */
1316static VALUE
1317nucomp_coerce(VALUE self, VALUE other)
1318{
1319 if (RB_TYPE_P(other, T_COMPLEX))
1320 return rb_assoc_new(other, self);
1321 if (k_numeric_p(other) && f_real_p(other))
1322 return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
1323
1324 rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
1325 rb_obj_class(other), rb_obj_class(self));
1326 return Qnil;
1327}
1328
1329/*
1330 * call-seq:
1331 * abs -> float
1332 *
1333 * Returns the absolute value (magnitude) for +self+;
1334 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1335 *
1336 * Complex.polar(-1, 0).abs # => 1.0
1337 *
1338 * If +self+ was created with
1339 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1340 * is computed, and may be inexact:
1341 *
1342 * Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
1343 *
1344 */
1345VALUE
1346rb_complex_abs(VALUE self)
1347{
1348 get_dat1(self);
1349
1350 if (f_zero_p(dat->real)) {
1351 VALUE a = f_abs(dat->imag);
1352 if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
1353 a = f_to_f(a);
1354 return a;
1355 }
1356 if (f_zero_p(dat->imag)) {
1357 VALUE a = f_abs(dat->real);
1358 if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
1359 a = f_to_f(a);
1360 return a;
1361 }
1362 return rb_math_hypot(dat->real, dat->imag);
1363}
1364
1365/*
1366 * call-seq:
1367 * abs2 -> float
1368 *
1369 * Returns square of the absolute value (magnitude) for +self+;
1370 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1371 *
1372 * Complex.polar(2, 2).abs2 # => 4.0
1373 *
1374 * If +self+ was created with
1375 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1376 * is computed, and may be inexact:
1377 *
1378 * Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
1379 *
1380 */
1381static VALUE
1382nucomp_abs2(VALUE self)
1383{
1384 get_dat1(self);
1385 return f_add(f_mul(dat->real, dat->real),
1386 f_mul(dat->imag, dat->imag));
1387}
1388
1389/*
1390 * call-seq:
1391 * arg -> float
1392 *
1393 * Returns the argument (angle) for +self+ in radians;
1394 * see {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates]:
1395 *
1396 * Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
1397 *
1398 * If +self+ was created with
1399 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1400 * is computed, and may be inexact:
1401 *
1402 * Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
1403 *
1404 */
1405VALUE
1406rb_complex_arg(VALUE self)
1407{
1408 get_dat1(self);
1409 return rb_math_atan2(dat->imag, dat->real);
1410}
1411
1412/*
1413 * call-seq:
1414 * rect -> array
1415 *
1416 * Returns the array <tt>[self.real, self.imag]</tt>:
1417 *
1418 * Complex.rect(1, 2).rect # => [1, 2]
1419 *
1420 * See {Rectangular Coordinates}[rdoc-ref:Complex@Rectangular+Coordinates].
1421 *
1422 * If +self+ was created with
1423 * {polar coordinates}[rdoc-ref:Complex@Polar+Coordinates], the returned value
1424 * is computed, and may be inexact:
1425 *
1426 * Complex.polar(1.0, 1.0).rect # => [0.5403023058681398, 0.8414709848078965]
1427 *
1428 *
1429 * Complex#rectangular is an alias for Complex#rect.
1430 */
1431static VALUE
1432nucomp_rect(VALUE self)
1433{
1434 get_dat1(self);
1435 return rb_assoc_new(dat->real, dat->imag);
1436}
1437
1438/*
1439 * call-seq:
1440 * polar -> array
1441 *
1442 * Returns the array <tt>[self.abs, self.arg]</tt>:
1443 *
1444 * Complex.polar(1, 2).polar # => [1.0, 2.0]
1445 *
1446 * See {Polar Coordinates}[rdoc-ref:Complex@Polar+Coordinates].
1447 *
1448 * If +self+ was created with
1449 * {rectangular coordinates}[rdoc-ref:Complex@Rectangular+Coordinates], the returned value
1450 * is computed, and may be inexact:
1451 *
1452 * Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
1453 *
1454 */
1455static VALUE
1456nucomp_polar(VALUE self)
1457{
1458 return rb_assoc_new(f_abs(self), f_arg(self));
1459}
1460
1461/*
1462 * call-seq:
1463 * conj -> complex
1464 *
1465 * Returns the conjugate of +self+, <tt>Complex.rect(self.imag, self.real)</tt>:
1466 *
1467 * Complex.rect(1, 2).conj # => (1-2i)
1468 *
1469 */
1470VALUE
1471rb_complex_conjugate(VALUE self)
1472{
1473 get_dat1(self);
1474 return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->imag));
1475}
1476
1477/*
1478 * call-seq:
1479 * real? -> false
1480 *
1481 * Returns +false+; for compatibility with Numeric#real?.
1482 */
1483static VALUE
1484nucomp_real_p_m(VALUE self)
1485{
1486 return Qfalse;
1487}
1488
1489/*
1490 * call-seq:
1491 * denominator -> integer
1492 *
1493 * Returns the denominator of +self+, which is
1494 * the {least common multiple}[https://en.wikipedia.org/wiki/Least_common_multiple]
1495 * of <tt>self.real.denominator</tt> and <tt>self.imag.denominator</tt>:
1496 *
1497 * Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
1498 *
1499 * Note that <tt>n.denominator</tt> of a non-rational numeric is +1+.
1500 *
1501 * Related: Complex#numerator.
1502 */
1503static VALUE
1504nucomp_denominator(VALUE self)
1505{
1506 get_dat1(self);
1507 return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
1508}
1509
1510/*
1511 * call-seq:
1512 * numerator -> new_complex
1513 *
1514 * Returns the \Complex object created from the numerators
1515 * of the real and imaginary parts of +self+,
1516 * after converting each part to the
1517 * {lowest common denominator}[https://en.wikipedia.org/wiki/Lowest_common_denominator]
1518 * of the two:
1519 *
1520 * c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i)
1521 * c.numerator # => (8+9i)
1522 *
1523 * In this example, the lowest common denominator of the two parts is 12;
1524 * the two converted parts may be thought of as \Rational(8, 12) and \Rational(9, 12),
1525 * whose numerators, respectively, are 8 and 9;
1526 * so the returned value of <tt>c.numerator</tt> is <tt>Complex.rect(8, 9)</tt>.
1527 *
1528 * Related: Complex#denominator.
1529 */
1530static VALUE
1531nucomp_numerator(VALUE self)
1532{
1533 VALUE cd;
1534
1535 get_dat1(self);
1536
1537 cd = nucomp_denominator(self);
1538 return f_complex_new2(CLASS_OF(self),
1539 f_mul(f_numerator(dat->real),
1540 f_div(cd, f_denominator(dat->real))),
1541 f_mul(f_numerator(dat->imag),
1542 f_div(cd, f_denominator(dat->imag))));
1543}
1544
1545/* :nodoc: */
1546st_index_t
1547rb_complex_hash(VALUE self)
1548{
1549 st_index_t v, h[2];
1550 VALUE n;
1551
1552 get_dat1(self);
1553 n = rb_hash(dat->real);
1554 h[0] = NUM2LONG(n);
1555 n = rb_hash(dat->imag);
1556 h[1] = NUM2LONG(n);
1557 v = rb_memhash(h, sizeof(h));
1558 return v;
1559}
1560
1561/*
1562 * :call-seq:
1563 * hash -> integer
1564 *
1565 * Returns the integer hash value for +self+.
1566 *
1567 * Two \Complex objects created from the same values will have the same hash value
1568 * (and will compare using #eql?):
1569 *
1570 * Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true
1571 *
1572 */
1573static VALUE
1574nucomp_hash(VALUE self)
1575{
1576 return ST2FIX(rb_complex_hash(self));
1577}
1578
1579/* :nodoc: */
1580static VALUE
1581nucomp_eql_p(VALUE self, VALUE other)
1582{
1583 if (RB_TYPE_P(other, T_COMPLEX)) {
1584 get_dat2(self, other);
1585
1586 return RBOOL((CLASS_OF(adat->real) == CLASS_OF(bdat->real)) &&
1587 (CLASS_OF(adat->imag) == CLASS_OF(bdat->imag)) &&
1588 f_eqeq_p(self, other));
1589
1590 }
1591 return Qfalse;
1592}
1593
1594inline static int
1595f_signbit(VALUE x)
1596{
1597 if (RB_FLOAT_TYPE_P(x)) {
1598 double f = RFLOAT_VALUE(x);
1599 return !isnan(f) && signbit(f);
1600 }
1601 return f_negative_p(x);
1602}
1603
1604inline static int
1605f_tpositive_p(VALUE x)
1606{
1607 return !f_signbit(x);
1608}
1609
1610static VALUE
1611f_format(VALUE self, VALUE s, VALUE (*func)(VALUE))
1612{
1613 int impos;
1614
1615 get_dat1(self);
1616
1617 impos = f_tpositive_p(dat->imag);
1618
1619 rb_str_concat(s, (*func)(dat->real));
1620 rb_str_cat2(s, !impos ? "-" : "+");
1621
1622 rb_str_concat(s, (*func)(f_abs(dat->imag)));
1623 if (!rb_isdigit(RSTRING_PTR(s)[RSTRING_LEN(s) - 1]))
1624 rb_str_cat2(s, "*");
1625 rb_str_cat2(s, "i");
1626
1627 return s;
1628}
1629
1630/*
1631 * call-seq:
1632 * to_s -> string
1633 *
1634 * Returns a string representation of +self+:
1635 *
1636 * Complex.rect(2).to_s # => "2+0i"
1637 * Complex.rect(-8, 6).to_s # => "-8+6i"
1638 * Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i"
1639 * Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i"
1640 * Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
1641 *
1642 */
1643static VALUE
1644nucomp_to_s(VALUE self)
1645{
1646 return f_format(self, rb_usascii_str_new2(""), rb_String);
1647}
1648
1649/*
1650 * call-seq:
1651 * inspect -> string
1652 *
1653 * Returns a string representation of +self+:
1654 *
1655 * Complex.rect(2).inspect # => "(2+0i)"
1656 * Complex.rect(-8, 6).inspect # => "(-8+6i)"
1657 * Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)"
1658 * Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)"
1659 * Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
1660 *
1661 */
1662static VALUE
1663nucomp_inspect(VALUE self)
1664{
1665 VALUE s;
1666
1667 s = rb_usascii_str_new2("(");
1668 f_format(self, s, rb_inspect);
1669 rb_str_cat2(s, ")");
1670
1671 return s;
1672}
1673
1674#define FINITE_TYPE_P(v) (RB_INTEGER_TYPE_P(v) || RB_TYPE_P(v, T_RATIONAL))
1675
1676/*
1677 * call-seq:
1678 * finite? -> true or false
1679 *
1680 * Returns +true+ if both <tt>self.real.finite?</tt> and <tt>self.imag.finite?</tt>
1681 * are true, +false+ otherwise:
1682 *
1683 * Complex.rect(1, 1).finite? # => true
1684 * Complex.rect(Float::INFINITY, 0).finite? # => false
1685 *
1686 * Related: Numeric#finite?, Float#finite?.
1687 */
1688static VALUE
1689rb_complex_finite_p(VALUE self)
1690{
1691 get_dat1(self);
1692
1693 return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
1694}
1695
1696/*
1697 * call-seq:
1698 * infinite? -> 1 or nil
1699 *
1700 * Returns +1+ if either <tt>self.real.infinite?</tt> or <tt>self.imag.infinite?</tt>
1701 * is true, +nil+ otherwise:
1702 *
1703 * Complex.rect(Float::INFINITY, 0).infinite? # => 1
1704 * Complex.rect(1, 1).infinite? # => nil
1705 *
1706 * Related: Numeric#infinite?, Float#infinite?.
1707 */
1708static VALUE
1709rb_complex_infinite_p(VALUE self)
1710{
1711 get_dat1(self);
1712
1713 if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
1714 return Qnil;
1715 }
1716 return ONE;
1717}
1718
1719/* :nodoc: */
1720static VALUE
1721nucomp_dumper(VALUE self)
1722{
1723 return self;
1724}
1725
1726/* :nodoc: */
1727static VALUE
1728nucomp_loader(VALUE self, VALUE a)
1729{
1730 get_dat1(self);
1731
1732 RCOMPLEX_SET_REAL(dat, rb_ivar_get(a, id_i_real));
1733 RCOMPLEX_SET_IMAG(dat, rb_ivar_get(a, id_i_imag));
1734 OBJ_FREEZE(self);
1735
1736 return self;
1737}
1738
1739/* :nodoc: */
1740static VALUE
1741nucomp_marshal_dump(VALUE self)
1742{
1743 VALUE a;
1744 get_dat1(self);
1745
1746 a = rb_assoc_new(dat->real, dat->imag);
1747 rb_copy_generic_ivar(a, self);
1748 return a;
1749}
1750
1751/* :nodoc: */
1752static VALUE
1753nucomp_marshal_load(VALUE self, VALUE a)
1754{
1755 Check_Type(a, T_ARRAY);
1756 if (RARRAY_LEN(a) != 2)
1757 rb_raise(rb_eArgError, "marshaled complex must have an array whose length is 2 but %ld", RARRAY_LEN(a));
1758 rb_ivar_set(self, id_i_real, RARRAY_AREF(a, 0));
1759 rb_ivar_set(self, id_i_imag, RARRAY_AREF(a, 1));
1760 return self;
1761}
1762
1763VALUE
1764rb_complex_raw(VALUE x, VALUE y)
1765{
1766 return nucomp_s_new_internal(rb_cComplex, x, y);
1767}
1768
1769VALUE
1770rb_complex_new(VALUE x, VALUE y)
1771{
1772 return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
1773}
1774
1775VALUE
1776rb_complex_new_polar(VALUE x, VALUE y)
1777{
1778 return f_complex_polar(rb_cComplex, x, y);
1779}
1780
1781VALUE
1782rb_Complex(VALUE x, VALUE y)
1783{
1784 VALUE a[2];
1785 a[0] = x;
1786 a[1] = y;
1787 return nucomp_s_convert(2, a, rb_cComplex);
1788}
1789
1790VALUE
1791rb_dbl_complex_new(double real, double imag)
1792{
1793 return rb_complex_raw(DBL2NUM(real), DBL2NUM(imag));
1794}
1795
1796/*
1797 * call-seq:
1798 * to_i -> integer
1799 *
1800 * Returns the value of <tt>self.real</tt> as an Integer, if possible:
1801 *
1802 * Complex.rect(1, 0).to_i # => 1
1803 * Complex.rect(1, Rational(0, 1)).to_i # => 1
1804 *
1805 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1806 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>).
1807 */
1808static VALUE
1809nucomp_to_i(VALUE self)
1810{
1811 get_dat1(self);
1812
1813 if (!k_exact_zero_p(dat->imag)) {
1814 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
1815 self);
1816 }
1817 return f_to_i(dat->real);
1818}
1819
1820/*
1821 * call-seq:
1822 * to_f -> float
1823 *
1824 * Returns the value of <tt>self.real</tt> as a Float, if possible:
1825 *
1826 * Complex.rect(1, 0).to_f # => 1.0
1827 * Complex.rect(1, Rational(0, 1)).to_f # => 1.0
1828 *
1829 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1830 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>).
1831 */
1832static VALUE
1833nucomp_to_f(VALUE self)
1834{
1835 get_dat1(self);
1836
1837 if (!k_exact_zero_p(dat->imag)) {
1838 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
1839 self);
1840 }
1841 return f_to_f(dat->real);
1842}
1843
1844/*
1845 * call-seq:
1846 * to_r -> rational
1847 *
1848 * Returns the value of <tt>self.real</tt> as a Rational, if possible:
1849 *
1850 * Complex.rect(1, 0).to_r # => (1/1)
1851 * Complex.rect(1, Rational(0, 1)).to_r # => (1/1)
1852 * Complex.rect(1, 0.0).to_r # => (1/1)
1853 *
1854 * Raises RangeError if <tt>self.imag</tt> is not exactly zero
1855 * (either <tt>Integer(0)</tt> or <tt>Rational(0, _n_)</tt>)
1856 * and <tt>self.imag.to_r</tt> is not exactly zero.
1857 *
1858 * Related: Complex#rationalize.
1859 */
1860static VALUE
1861nucomp_to_r(VALUE self)
1862{
1863 get_dat1(self);
1864
1865 if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
1866 /* Do nothing here */
1867 }
1868 else if (!k_exact_zero_p(dat->imag)) {
1869 VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
1870 if (NIL_P(imag) || !k_exact_zero_p(imag)) {
1871 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
1872 self);
1873 }
1874 }
1875 return f_to_r(dat->real);
1876}
1877
1878/*
1879 * call-seq:
1880 * rationalize(epsilon = nil) -> rational
1881 *
1882 * Returns a Rational object whose value is exactly or approximately
1883 * equivalent to that of <tt>self.real</tt>.
1884 *
1885 * With no argument +epsilon+ given, returns a \Rational object
1886 * whose value is exactly equal to that of <tt>self.real.rationalize</tt>:
1887 *
1888 * Complex.rect(1, 0).rationalize # => (1/1)
1889 * Complex.rect(1, Rational(0, 1)).rationalize # => (1/1)
1890 * Complex.rect(3.14159, 0).rationalize # => (314159/100000)
1891 *
1892 * With argument +epsilon+ given, returns a \Rational object
1893 * whose value is exactly or approximately equal to that of <tt>self.real</tt>
1894 * to the given precision:
1895 *
1896 * Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5)
1897 * Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7)
1898 * Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64)
1899 * Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106)
1900 * Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113)
1901 * Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366)
1902 * Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931)
1903 * Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107)
1904 * Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239)
1905 * Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000)
1906 * Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
1907 *
1908 * Related: Complex#to_r.
1909 */
1910static VALUE
1911nucomp_rationalize(int argc, VALUE *argv, VALUE self)
1912{
1913 get_dat1(self);
1914
1915 rb_check_arity(argc, 0, 1);
1916
1917 if (!k_exact_zero_p(dat->imag)) {
1918 rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
1919 self);
1920 }
1921 return rb_funcallv(dat->real, id_rationalize, argc, argv);
1922}
1923
1924/*
1925 * call-seq:
1926 * to_c -> self
1927 *
1928 * Returns +self+.
1929 */
1930static VALUE
1931nucomp_to_c(VALUE self)
1932{
1933 return self;
1934}
1935
1936/*
1937 * call-seq:
1938 * to_c -> complex
1939 *
1940 * Returns +self+ as a Complex object.
1941 */
1942static VALUE
1943numeric_to_c(VALUE self)
1944{
1945 return rb_complex_new1(self);
1946}
1947
1948inline static int
1949issign(int c)
1950{
1951 return (c == '-' || c == '+');
1952}
1953
1954static int
1955read_sign(const char **s,
1956 char **b)
1957{
1958 int sign = '?';
1959
1960 if (issign(**s)) {
1961 sign = **b = **s;
1962 (*s)++;
1963 (*b)++;
1964 }
1965 return sign;
1966}
1967
1968inline static int
1969isdecimal(int c)
1970{
1971 return isdigit((unsigned char)c);
1972}
1973
1974static int
1975read_digits(const char **s, int strict,
1976 char **b)
1977{
1978 int us = 1;
1979
1980 if (!isdecimal(**s))
1981 return 0;
1982
1983 while (isdecimal(**s) || **s == '_') {
1984 if (**s == '_') {
1985 if (us) {
1986 if (strict) return 0;
1987 break;
1988 }
1989 us = 1;
1990 }
1991 else {
1992 **b = **s;
1993 (*b)++;
1994 us = 0;
1995 }
1996 (*s)++;
1997 }
1998 if (us)
1999 do {
2000 (*s)--;
2001 } while (**s == '_');
2002 return 1;
2003}
2004
2005inline static int
2006islettere(int c)
2007{
2008 return (c == 'e' || c == 'E');
2009}
2010
2011static int
2012read_num(const char **s, int strict,
2013 char **b)
2014{
2015 if (**s != '.') {
2016 if (!read_digits(s, strict, b))
2017 return 0;
2018 }
2019
2020 if (**s == '.') {
2021 **b = **s;
2022 (*s)++;
2023 (*b)++;
2024 if (!read_digits(s, strict, b)) {
2025 (*b)--;
2026 return 0;
2027 }
2028 }
2029
2030 if (islettere(**s)) {
2031 **b = **s;
2032 (*s)++;
2033 (*b)++;
2034 read_sign(s, b);
2035 if (!read_digits(s, strict, b)) {
2036 (*b)--;
2037 return 0;
2038 }
2039 }
2040 return 1;
2041}
2042
2043inline static int
2044read_den(const char **s, int strict,
2045 char **b)
2046{
2047 if (!read_digits(s, strict, b))
2048 return 0;
2049 return 1;
2050}
2051
2052static int
2053read_rat_nos(const char **s, int strict,
2054 char **b)
2055{
2056 if (!read_num(s, strict, b))
2057 return 0;
2058 if (**s == '/') {
2059 **b = **s;
2060 (*s)++;
2061 (*b)++;
2062 if (!read_den(s, strict, b)) {
2063 (*b)--;
2064 return 0;
2065 }
2066 }
2067 return 1;
2068}
2069
2070static int
2071read_rat(const char **s, int strict,
2072 char **b)
2073{
2074 read_sign(s, b);
2075 if (!read_rat_nos(s, strict, b))
2076 return 0;
2077 return 1;
2078}
2079
2080inline static int
2081isimagunit(int c)
2082{
2083 return (c == 'i' || c == 'I' ||
2084 c == 'j' || c == 'J');
2085}
2086
2087static VALUE
2088str2num(char *s)
2089{
2090 if (strchr(s, '/'))
2091 return rb_cstr_to_rat(s, 0);
2092 if (strpbrk(s, ".eE"))
2093 return DBL2NUM(rb_cstr_to_dbl(s, 0));
2094 return rb_cstr_to_inum(s, 10, 0);
2095}
2096
2097static int
2098read_comp(const char **s, int strict,
2099 VALUE *ret, char **b)
2100{
2101 char *bb;
2102 int sign;
2103 VALUE num, num2;
2104
2105 bb = *b;
2106
2107 sign = read_sign(s, b);
2108
2109 if (isimagunit(**s)) {
2110 (*s)++;
2111 num = INT2FIX((sign == '-') ? -1 : + 1);
2112 *ret = rb_complex_new2(ZERO, num);
2113 return 1; /* e.g. "i" */
2114 }
2115
2116 if (!read_rat_nos(s, strict, b)) {
2117 **b = '\0';
2118 num = str2num(bb);
2119 *ret = rb_complex_new2(num, ZERO);
2120 return 0; /* e.g. "-" */
2121 }
2122 **b = '\0';
2123 num = str2num(bb);
2124
2125 if (isimagunit(**s)) {
2126 (*s)++;
2127 *ret = rb_complex_new2(ZERO, num);
2128 return 1; /* e.g. "3i" */
2129 }
2130
2131 if (**s == '@') {
2132 int st;
2133
2134 (*s)++;
2135 bb = *b;
2136 st = read_rat(s, strict, b);
2137 **b = '\0';
2138 if (strlen(bb) < 1 ||
2139 !isdecimal(*(bb + strlen(bb) - 1))) {
2140 *ret = rb_complex_new2(num, ZERO);
2141 return 0; /* e.g. "1@-" */
2142 }
2143 num2 = str2num(bb);
2144 *ret = rb_complex_new_polar(num, num2);
2145 if (!st)
2146 return 0; /* e.g. "1@2." */
2147 else
2148 return 1; /* e.g. "1@2" */
2149 }
2150
2151 if (issign(**s)) {
2152 bb = *b;
2153 sign = read_sign(s, b);
2154 if (isimagunit(**s))
2155 num2 = INT2FIX((sign == '-') ? -1 : + 1);
2156 else {
2157 if (!read_rat_nos(s, strict, b)) {
2158 *ret = rb_complex_new2(num, ZERO);
2159 return 0; /* e.g. "1+xi" */
2160 }
2161 **b = '\0';
2162 num2 = str2num(bb);
2163 }
2164 if (!isimagunit(**s)) {
2165 *ret = rb_complex_new2(num, ZERO);
2166 return 0; /* e.g. "1+3x" */
2167 }
2168 (*s)++;
2169 *ret = rb_complex_new2(num, num2);
2170 return 1; /* e.g. "1+2i" */
2171 }
2172 /* !(@, - or +) */
2173 {
2174 *ret = rb_complex_new2(num, ZERO);
2175 return 1; /* e.g. "3" */
2176 }
2177}
2178
2179inline static void
2180skip_ws(const char **s)
2181{
2182 while (isspace((unsigned char)**s))
2183 (*s)++;
2184}
2185
2186static int
2187parse_comp(const char *s, int strict, VALUE *num)
2188{
2189 char *buf, *b;
2190 VALUE tmp;
2191 int ret = 1;
2192
2193 buf = ALLOCV_N(char, tmp, strlen(s) + 1);
2194 b = buf;
2195
2196 skip_ws(&s);
2197 if (!read_comp(&s, strict, num, &b)) {
2198 ret = 0;
2199 }
2200 else {
2201 skip_ws(&s);
2202
2203 if (strict)
2204 if (*s != '\0')
2205 ret = 0;
2206 }
2207 ALLOCV_END(tmp);
2208
2209 return ret;
2210}
2211
2212static VALUE
2213string_to_c_strict(VALUE self, int raise)
2214{
2215 char *s;
2216 VALUE num;
2217
2218 rb_must_asciicompat(self);
2219
2220 if (raise) {
2221 s = StringValueCStr(self);
2222 }
2223 else if (!(s = rb_str_to_cstr(self))) {
2224 return Qnil;
2225 }
2226
2227 if (!parse_comp(s, TRUE, &num)) {
2228 if (!raise) return Qnil;
2229 rb_raise(rb_eArgError, "invalid value for convert(): %+"PRIsVALUE,
2230 self);
2231 }
2232
2233 return num;
2234}
2235
2236/*
2237 * call-seq:
2238 * to_c -> complex
2239 *
2240 * Returns a Complex object:
2241 * parses the leading substring of +self+
2242 * to extract two numeric values that become the coordinates of the complex object.
2243 *
2244 * The substring is interpreted as containing
2245 * either rectangular coordinates (real and imaginary parts)
2246 * or polar coordinates (magnitude and angle parts),
2247 * depending on an included or implied "separator" character:
2248 *
2249 * - <tt>'+'</tt>, <tt>'-'</tt>, or no separator: rectangular coordinates.
2250 * - <tt>'@'</tt>: polar coordinates.
2251 *
2252 * <b>In Brief</b>
2253 *
2254 * In these examples, we use method Complex#rect to display rectangular coordinates,
2255 * and method Complex#polar to display polar coordinates.
2256 *
2257 * # Rectangular coordinates.
2258 *
2259 * # Real-only: no separator; imaginary part is zero.
2260 * '9'.to_c.rect # => [9, 0] # Integer.
2261 * '-9'.to_c.rect # => [-9, 0] # Integer (negative).
2262 * '2.5'.to_c.rect # => [2.5, 0] # Float.
2263 * '1.23e-14'.to_c.rect # => [1.23e-14, 0] # Float with exponent.
2264 * '2.5/1'.to_c.rect # => [(5/2), 0] # Rational.
2265 *
2266 * # Some things are ignored.
2267 * 'foo1'.to_c.rect # => [0, 0] # Unparsed entire substring.
2268 * '1foo'.to_c.rect # => [1, 0] # Unparsed trailing substring.
2269 * ' 1 '.to_c.rect # => [1, 0] # Leading and trailing whitespace.
2270 * *
2271 * # Imaginary only: trailing 'i' required; real part is zero.
2272 * '9i'.to_c.rect # => [0, 9]
2273 * '-9i'.to_c.rect # => [0, -9]
2274 * '2.5i'.to_c.rect # => [0, 2.5]
2275 * '1.23e-14i'.to_c.rect # => [0, 1.23e-14]
2276 * '2.5/1i'.to_c.rect # => [0, (5/2)]
2277 *
2278 * # Real and imaginary; '+' or '-' separator; trailing 'i' required.
2279 * '2+3i'.to_c.rect # => [2, 3]
2280 * '-2-3i'.to_c.rect # => [-2, -3]
2281 * '2.5+3i'.to_c.rect # => [2.5, 3]
2282 * '2.5+3/2i'.to_c.rect # => [2.5, (3/2)]
2283 *
2284 * # Polar coordinates; '@' separator; magnitude required.
2285 * '1.0@0'.to_c.polar # => [1.0, 0.0]
2286 * '1.0@'.to_c.polar # => [1.0, 0.0]
2287 * "1.0@#{Math::PI}".to_c.polar # => [1.0, 3.141592653589793]
2288 * "1.0@#{Math::PI/2}".to_c.polar # => [1.0, 1.5707963267948966]
2289 *
2290 * <b>Parsed Values</b>
2291 *
2292 * The parsing may be thought of as searching for numeric literals
2293 * embedded in the substring.
2294 *
2295 * This section shows how the method parses numeric values from leading substrings.
2296 * The examples show real-only or imaginary-only parsing;
2297 * the parsing is the same for each part.
2298 *
2299 * '1foo'.to_c # => (1+0i) # Ignores trailing unparsed characters.
2300 * ' 1 '.to_c # => (1+0i) # Ignores leading and trailing whitespace.
2301 * 'x1'.to_c # => (0+0i) # Finds no leading numeric.
2302 *
2303 * # Integer literal embedded in the substring.
2304 * '1'.to_c # => (1+0i)
2305 * '-1'.to_c # => (-1+0i)
2306 * '1i'.to_c # => (0+1i)
2307 *
2308 * # Integer literals that don't work.
2309 * '0b100'.to_c # => (0+0i) # Not parsed as binary.
2310 * '0o100'.to_c # => (0+0i) # Not parsed as octal.
2311 * '0d100'.to_c # => (0+0i) # Not parsed as decimal.
2312 * '0x100'.to_c # => (0+0i) # Not parsed as hexadecimal.
2313 * '010'.to_c # => (10+0i) # Not parsed as octal.
2314 *
2315 * # Float literals:
2316 * '3.14'.to_c # => (3.14+0i)
2317 * '3.14i'.to_c # => (0+3.14i)
2318 * '1.23e4'.to_c # => (12300.0+0i)
2319 * '1.23e+4'.to_c # => (12300.0+0i)
2320 * '1.23e-4'.to_c # => (0.000123+0i)
2321 *
2322 * # Rational literals:
2323 * '1/2'.to_c # => ((1/2)+0i)
2324 * '-1/2'.to_c # => ((-1/2)+0i)
2325 * '1/2r'.to_c # => ((1/2)+0i)
2326 * '-1/2r'.to_c # => ((-1/2)+0i)
2327 *
2328 * <b>Rectangular Coordinates</b>
2329 *
2330 * With separator <tt>'+'</tt> or <tt>'-'</tt>,
2331 * or with no separator,
2332 * interprets the values as rectangular coordinates: real and imaginary.
2333 *
2334 * With no separator, assigns a single value to either the real or the imaginary part:
2335 *
2336 * ''.to_c # => (0+0i) # Defaults to zero.
2337 * '1'.to_c # => (1+0i) # Real (no trailing 'i').
2338 * '1i'.to_c # => (0+1i) # Imaginary (trailing 'i').
2339 * 'i'.to_c # => (0+1i) # Special case (imaginary 1).
2340 *
2341 * With separator <tt>'+'</tt>, both parts positive (or zero):
2342 *
2343 * # Without trailing 'i'.
2344 * '+'.to_c # => (0+0i) # No values: defaults to zero.
2345 * '+1'.to_c # => (1+0i) # Value after '+': real only.
2346 * '1+'.to_c # => (1+0i) # Value before '+': real only.
2347 * '2+1'.to_c # => (2+0i) # Values before and after '+': real and imaginary.
2348 * # With trailing 'i'.
2349 * '+1i'.to_c # => (0+1i) # Value after '+': imaginary only.
2350 * '2+i'.to_c # => (2+1i) # Value before '+': real and imaginary 1.
2351 * '2+1i'.to_c # => (2+1i) # Values before and after '+': real and imaginary.
2352 *
2353 * With separator <tt>'-'</tt>, negative imaginary part:
2354 *
2355 * # Without trailing 'i'.
2356 * '-'.to_c # => (0+0i) # No values: defaults to zero.
2357 * '-1'.to_c # => (-1+0i) # Value after '-': negative real, zero imaginary.
2358 * '1-'.to_c # => (1+0i) # Value before '-': positive real, zero imaginary.
2359 * '2-1'.to_c # => (2+0i) # Values before and after '-': positive real, zero imaginary.
2360 * # With trailing 'i'.
2361 * '-1i'.to_c # => (0-1i) # Value after '-': negative real, zero imaginary.
2362 * '2-i'.to_c # => (2-1i) # Value before '-': positive real, negative imaginary.
2363 * '2-1i'.to_c # => (2-1i) # Values before and after '-': positive real, negative imaginary.
2364 *
2365 * Note that the suffixed character <tt>'i'</tt>
2366 * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, or <tt>'J'</tt>,
2367 * with the same effect.
2368 *
2369 * <b>Polar Coordinates</b>
2370 *
2371 * With separator <tt>'@'</tt>)
2372 * interprets the values as polar coordinates: magnitude and angle.
2373 *
2374 * '2@'.to_c.polar # => [2, 0.0] # Value before '@': magnitude only.
2375 * # Values before and after '@': magnitude and angle.
2376 * '2@1'.to_c.polar # => [2.0, 1.0]
2377 * "1.0@#{Math::PI/2}".to_c # => (0.0+1i)
2378 * "1.0@#{Math::PI}".to_c # => (-1+0.0i)
2379 * # Magnitude not given: defaults to zero.
2380 * '@'.to_c.polar # => [0, 0.0]
2381 * '@1'.to_c.polar # => [0, 0.0]
2382 *
2383 * '1.0@0'.to_c # => (1+0.0i)
2384 *
2385 * Note that in all cases, the suffixed character <tt>'i'</tt>
2386 * may instead be one of <tt>'I'</tt>, <tt>'j'</tt>, <tt>'J'</tt>,
2387 * with the same effect.
2388 *
2389 * See {Converting to Non-String}[rdoc-ref:String@Converting+to+Non--5CString].
2390 */
2391static VALUE
2392string_to_c(VALUE self)
2393{
2394 VALUE num;
2395
2396 rb_must_asciicompat(self);
2397
2398 (void)parse_comp(rb_str_fill_terminator(self, 1), FALSE, &num);
2399
2400 return num;
2401}
2402
2403static VALUE
2404to_complex(VALUE val)
2405{
2406 return rb_convert_type(val, T_COMPLEX, "Complex", "to_c");
2407}
2408
2409static VALUE
2410nucomp_convert(VALUE klass, VALUE a1, VALUE a2, int raise)
2411{
2412 if (NIL_P(a1) || NIL_P(a2)) {
2413 if (!raise) return Qnil;
2414 rb_raise(rb_eTypeError, "can't convert nil into Complex");
2415 }
2416
2417 if (RB_TYPE_P(a1, T_STRING)) {
2418 a1 = string_to_c_strict(a1, raise);
2419 if (NIL_P(a1)) return Qnil;
2420 }
2421
2422 if (RB_TYPE_P(a2, T_STRING)) {
2423 a2 = string_to_c_strict(a2, raise);
2424 if (NIL_P(a2)) return Qnil;
2425 }
2426
2427 if (RB_TYPE_P(a1, T_COMPLEX)) {
2428 {
2429 get_dat1(a1);
2430
2431 if (k_exact_zero_p(dat->imag))
2432 a1 = dat->real;
2433 }
2434 }
2435
2436 if (RB_TYPE_P(a2, T_COMPLEX)) {
2437 {
2438 get_dat1(a2);
2439
2440 if (k_exact_zero_p(dat->imag))
2441 a2 = dat->real;
2442 }
2443 }
2444
2445 if (RB_TYPE_P(a1, T_COMPLEX)) {
2446 if (UNDEF_P(a2) || (k_exact_zero_p(a2)))
2447 return a1;
2448 }
2449
2450 if (UNDEF_P(a2)) {
2451 if (k_numeric_p(a1) && !f_real_p(a1))
2452 return a1;
2453 /* should raise exception for consistency */
2454 if (!k_numeric_p(a1)) {
2455 if (!raise) {
2456 a1 = rb_protect(to_complex, a1, NULL);
2457 rb_set_errinfo(Qnil);
2458 return a1;
2459 }
2460 return to_complex(a1);
2461 }
2462 }
2463 else {
2464 if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
2465 (!f_real_p(a1) || !f_real_p(a2)))
2466 return f_add(a1,
2467 f_mul(a2,
2468 f_complex_new_bang2(rb_cComplex, ZERO, ONE)));
2469 }
2470
2471 {
2472 int argc;
2473 VALUE argv2[2];
2474 argv2[0] = a1;
2475 if (UNDEF_P(a2)) {
2476 argv2[1] = Qnil;
2477 argc = 1;
2478 }
2479 else {
2480 if (!raise && !RB_INTEGER_TYPE_P(a2) && !RB_FLOAT_TYPE_P(a2) && !RB_TYPE_P(a2, T_RATIONAL))
2481 return Qnil;
2482 argv2[1] = a2;
2483 argc = 2;
2484 }
2485 return nucomp_s_new(argc, argv2, klass);
2486 }
2487}
2488
2489static VALUE
2490nucomp_s_convert(int argc, VALUE *argv, VALUE klass)
2491{
2492 VALUE a1, a2;
2493
2494 if (rb_scan_args(argc, argv, "11", &a1, &a2) == 1) {
2495 a2 = Qundef;
2496 }
2497
2498 return nucomp_convert(klass, a1, a2, TRUE);
2499}
2500
2501/*
2502 * call-seq:
2503 * abs2 -> real
2504 *
2505 * Returns the square of +self+.
2506 */
2507static VALUE
2508numeric_abs2(VALUE self)
2509{
2510 return f_mul(self, self);
2511}
2512
2513/*
2514 * call-seq:
2515 * arg -> 0 or Math::PI
2516 *
2517 * Returns zero if +self+ is positive, Math::PI otherwise.
2518 */
2519static VALUE
2520numeric_arg(VALUE self)
2521{
2522 if (f_positive_p(self))
2523 return INT2FIX(0);
2524 return DBL2NUM(M_PI);
2525}
2526
2527/*
2528 * call-seq:
2529 * rect -> array
2530 *
2531 * Returns array <tt>[self, 0]</tt>.
2532 */
2533static VALUE
2534numeric_rect(VALUE self)
2535{
2536 return rb_assoc_new(self, INT2FIX(0));
2537}
2538
2539/*
2540 * call-seq:
2541 * polar -> array
2542 *
2543 * Returns array <tt>[self.abs, self.arg]</tt>.
2544 */
2545static VALUE
2546numeric_polar(VALUE self)
2547{
2548 VALUE abs, arg;
2549
2550 if (RB_INTEGER_TYPE_P(self)) {
2551 abs = rb_int_abs(self);
2552 arg = numeric_arg(self);
2553 }
2554 else if (RB_FLOAT_TYPE_P(self)) {
2555 abs = rb_float_abs(self);
2556 arg = float_arg(self);
2557 }
2558 else if (RB_TYPE_P(self, T_RATIONAL)) {
2559 abs = rb_rational_abs(self);
2560 arg = numeric_arg(self);
2561 }
2562 else {
2563 abs = f_abs(self);
2564 arg = f_arg(self);
2565 }
2566 return rb_assoc_new(abs, arg);
2567}
2568
2569/*
2570 * call-seq:
2571 * arg -> 0 or Math::PI
2572 *
2573 * Returns 0 if +self+ is positive, Math::PI otherwise.
2574 */
2575static VALUE
2576float_arg(VALUE self)
2577{
2578 if (isnan(RFLOAT_VALUE(self)))
2579 return self;
2580 if (f_tpositive_p(self))
2581 return INT2FIX(0);
2582 return rb_const_get(rb_mMath, id_PI);
2583}
2584
2585/*
2586 * A \Complex object houses a pair of values,
2587 * given when the object is created as either <i>rectangular coordinates</i>
2588 * or <i>polar coordinates</i>.
2589 *
2590 * == Rectangular Coordinates
2591 *
2592 * The rectangular coordinates of a complex number
2593 * are called the _real_ and _imaginary_ parts;
2594 * see {Complex number definition}[https://en.wikipedia.org/wiki/Complex_number#Definition_and_basic_operations].
2595 *
2596 * You can create a \Complex object from rectangular coordinates with:
2597 *
2598 * - A {complex literal}[rdoc-ref:syntax/literals.rdoc@Complex+Literals].
2599 * - Method Complex.rect.
2600 * - Method Kernel#Complex, either with numeric arguments or with certain string arguments.
2601 * - Method String#to_c, for certain strings.
2602 *
2603 * Note that each of the stored parts may be a an instance one of the classes
2604 * Complex, Float, Integer, or Rational;
2605 * they may be retrieved:
2606 *
2607 * - Separately, with methods Complex#real and Complex#imaginary.
2608 * - Together, with method Complex#rect.
2609 *
2610 * The corresponding (computed) polar values may be retrieved:
2611 *
2612 * - Separately, with methods Complex#abs and Complex#arg.
2613 * - Together, with method Complex#polar.
2614 *
2615 * == Polar Coordinates
2616 *
2617 * The polar coordinates of a complex number
2618 * are called the _absolute_ and _argument_ parts;
2619 * see {Complex polar plane}[https://en.wikipedia.org/wiki/Complex_number#Polar_form].
2620 *
2621 * In this class, the argument part
2622 * in expressed {radians}[https://en.wikipedia.org/wiki/Radian]
2623 * (not {degrees}[https://en.wikipedia.org/wiki/Degree_(angle)]).
2624 *
2625 * You can create a \Complex object from polar coordinates with:
2626 *
2627 * - Method Complex.polar.
2628 * - Method Kernel#Complex, with certain string arguments.
2629 * - Method String#to_c, for certain strings.
2630 *
2631 * Note that each of the stored parts may be a an instance one of the classes
2632 * Complex, Float, Integer, or Rational;
2633 * they may be retrieved:
2634 *
2635 * - Separately, with methods Complex#abs and Complex#arg.
2636 * - Together, with method Complex#polar.
2637 *
2638 * The corresponding (computed) rectangular values may be retrieved:
2639 *
2640 * - Separately, with methods Complex#real and Complex#imag.
2641 * - Together, with method Complex#rect.
2642 *
2643 * == What's Here
2644 *
2645 * First, what's elsewhere:
2646 *
2647 * - Class \Complex inherits (directly or indirectly)
2648 * from classes {Numeric}[rdoc-ref:Numeric@What-27s+Here]
2649 * and {Object}[rdoc-ref:Object@What-27s+Here].
2650 * - Includes (indirectly) module {Comparable}[rdoc-ref:Comparable@What-27s+Here].
2651 *
2652 * Here, class \Complex has methods for:
2653 *
2654 * === Creating \Complex Objects
2655 *
2656 * - ::polar: Returns a new \Complex object based on given polar coordinates.
2657 * - ::rect (and its alias ::rectangular):
2658 * Returns a new \Complex object based on given rectangular coordinates.
2659 *
2660 * === Querying
2661 *
2662 * - #abs (and its alias #magnitude): Returns the absolute value for +self+.
2663 * - #arg (and its aliases #angle and #phase):
2664 * Returns the argument (angle) for +self+ in radians.
2665 * - #denominator: Returns the denominator of +self+.
2666 * - #finite?: Returns whether both +self.real+ and +self.image+ are finite.
2667 * - #hash: Returns the integer hash value for +self+.
2668 * - #imag (and its alias #imaginary): Returns the imaginary value for +self+.
2669 * - #infinite?: Returns whether +self.real+ or +self.image+ is infinite.
2670 * - #numerator: Returns the numerator of +self+.
2671 * - #polar: Returns the array <tt>[self.abs, self.arg]</tt>.
2672 * - #inspect: Returns a string representation of +self+.
2673 * - #real: Returns the real value for +self+.
2674 * - #real?: Returns +false+; for compatibility with Numeric#real?.
2675 * - #rect (and its alias #rectangular):
2676 * Returns the array <tt>[self.real, self.imag]</tt>.
2677 *
2678 * === Comparing
2679 *
2680 * - #<=>: Returns whether +self+ is less than, equal to, or greater than the given argument.
2681 * - #==: Returns whether +self+ is equal to the given argument.
2682 *
2683 * === Converting
2684 *
2685 * - #rationalize: Returns a Rational object whose value is exactly
2686 * or approximately equivalent to that of <tt>self.real</tt>.
2687 * - #to_c: Returns +self+.
2688 * - #to_d: Returns the value as a BigDecimal object.
2689 * - #to_f: Returns the value of <tt>self.real</tt> as a Float, if possible.
2690 * - #to_i: Returns the value of <tt>self.real</tt> as an Integer, if possible.
2691 * - #to_r: Returns the value of <tt>self.real</tt> as a Rational, if possible.
2692 * - #to_s: Returns a string representation of +self+.
2693 *
2694 * === Performing Complex Arithmetic
2695 *
2696 * - #*: Returns the product of +self+ and the given numeric.
2697 * - #**: Returns +self+ raised to power of the given numeric.
2698 * - #+: Returns the sum of +self+ and the given numeric.
2699 * - #-: Returns the difference of +self+ and the given numeric.
2700 * - #-@: Returns the negation of +self+.
2701 * - #/: Returns the quotient of +self+ and the given numeric.
2702 * - #abs2: Returns square of the absolute value (magnitude) for +self+.
2703 * - #conj (and its alias #conjugate): Returns the conjugate of +self+.
2704 * - #fdiv: Returns <tt>Complex.rect(self.real/numeric, self.imag/numeric)</tt>.
2705 *
2706 * === Working with JSON
2707 *
2708 * - ::json_create: Returns a new \Complex object,
2709 * deserialized from the given serialized hash.
2710 * - #as_json: Returns a serialized hash constructed from +self+.
2711 * - #to_json: Returns a JSON string representing +self+.
2712 *
2713 * These methods are provided by the {JSON gem}[https://github.com/ruby/json]. To make these methods available:
2714 *
2715 * require 'json/add/complex'
2716 *
2717 */
2718void
2719Init_Complex(void)
2720{
2721 VALUE compat;
2722 id_abs = rb_intern_const("abs");
2723 id_arg = rb_intern_const("arg");
2724 id_denominator = rb_intern_const("denominator");
2725 id_numerator = rb_intern_const("numerator");
2726 id_real_p = rb_intern_const("real?");
2727 id_i_real = rb_intern_const("@real");
2728 id_i_imag = rb_intern_const("@image"); /* @image, not @imag */
2729 id_finite_p = rb_intern_const("finite?");
2730 id_infinite_p = rb_intern_const("infinite?");
2731 id_rationalize = rb_intern_const("rationalize");
2732 id_PI = rb_intern_const("PI");
2733
2735
2736 rb_define_alloc_func(rb_cComplex, nucomp_s_alloc);
2737 rb_undef_method(CLASS_OF(rb_cComplex), "allocate");
2738
2740
2741 rb_define_singleton_method(rb_cComplex, "rectangular", nucomp_s_new, -1);
2742 rb_define_singleton_method(rb_cComplex, "rect", nucomp_s_new, -1);
2743 rb_define_singleton_method(rb_cComplex, "polar", nucomp_s_polar, -1);
2744
2745 rb_define_global_function("Complex", nucomp_f_complex, -1);
2746
2747 rb_undef_methods_from(rb_cComplex, RCLASS_ORIGIN(rb_mComparable));
2750 rb_undef_method(rb_cComplex, "divmod");
2751 rb_undef_method(rb_cComplex, "floor");
2753 rb_undef_method(rb_cComplex, "modulo");
2754 rb_undef_method(rb_cComplex, "remainder");
2755 rb_undef_method(rb_cComplex, "round");
2757 rb_undef_method(rb_cComplex, "truncate");
2759
2760 rb_define_method(rb_cComplex, "real", rb_complex_real, 0);
2761 rb_define_method(rb_cComplex, "imaginary", rb_complex_imag, 0);
2762 rb_define_method(rb_cComplex, "imag", rb_complex_imag, 0);
2763
2764 rb_define_method(rb_cComplex, "-@", rb_complex_uminus, 0);
2765 rb_define_method(rb_cComplex, "+", rb_complex_plus, 1);
2766 rb_define_method(rb_cComplex, "-", rb_complex_minus, 1);
2767 rb_define_method(rb_cComplex, "*", rb_complex_mul, 1);
2768 rb_define_method(rb_cComplex, "/", rb_complex_div, 1);
2769 rb_define_method(rb_cComplex, "quo", nucomp_quo, 1);
2770 rb_define_method(rb_cComplex, "fdiv", nucomp_fdiv, 1);
2771 rb_define_method(rb_cComplex, "**", rb_complex_pow, 1);
2772
2773 rb_define_method(rb_cComplex, "==", nucomp_eqeq_p, 1);
2774 rb_define_method(rb_cComplex, "<=>", nucomp_cmp, 1);
2775 rb_define_method(rb_cComplex, "coerce", nucomp_coerce, 1);
2776
2777 rb_define_method(rb_cComplex, "abs", rb_complex_abs, 0);
2778 rb_define_method(rb_cComplex, "magnitude", rb_complex_abs, 0);
2779 rb_define_method(rb_cComplex, "abs2", nucomp_abs2, 0);
2780 rb_define_method(rb_cComplex, "arg", rb_complex_arg, 0);
2781 rb_define_method(rb_cComplex, "angle", rb_complex_arg, 0);
2782 rb_define_method(rb_cComplex, "phase", rb_complex_arg, 0);
2783 rb_define_method(rb_cComplex, "rectangular", nucomp_rect, 0);
2784 rb_define_method(rb_cComplex, "rect", nucomp_rect, 0);
2785 rb_define_method(rb_cComplex, "polar", nucomp_polar, 0);
2786 rb_define_method(rb_cComplex, "conjugate", rb_complex_conjugate, 0);
2787 rb_define_method(rb_cComplex, "conj", rb_complex_conjugate, 0);
2788
2789 rb_define_method(rb_cComplex, "real?", nucomp_real_p_m, 0);
2790
2791 rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
2792 rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
2793
2794 rb_define_method(rb_cComplex, "hash", nucomp_hash, 0);
2795 rb_define_method(rb_cComplex, "eql?", nucomp_eql_p, 1);
2796
2797 rb_define_method(rb_cComplex, "to_s", nucomp_to_s, 0);
2798 rb_define_method(rb_cComplex, "inspect", nucomp_inspect, 0);
2799
2800 rb_undef_method(rb_cComplex, "positive?");
2801 rb_undef_method(rb_cComplex, "negative?");
2802
2803 rb_define_method(rb_cComplex, "finite?", rb_complex_finite_p, 0);
2804 rb_define_method(rb_cComplex, "infinite?", rb_complex_infinite_p, 0);
2805
2806 rb_define_private_method(rb_cComplex, "marshal_dump", nucomp_marshal_dump, 0);
2807 /* :nodoc: */
2808 compat = rb_define_class_under(rb_cComplex, "compatible", rb_cObject);
2809 rb_define_private_method(compat, "marshal_load", nucomp_marshal_load, 1);
2810 rb_marshal_define_compat(rb_cComplex, compat, nucomp_dumper, nucomp_loader);
2811
2812 rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
2813 rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
2814 rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
2815 rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
2816 rb_define_method(rb_cComplex, "to_c", nucomp_to_c, 0);
2817 rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
2818
2819 rb_define_method(rb_cString, "to_c", string_to_c, 0);
2820
2821 rb_define_private_method(CLASS_OF(rb_cComplex), "convert", nucomp_s_convert, -1);
2822
2823 rb_define_method(rb_cNumeric, "abs2", numeric_abs2, 0);
2824 rb_define_method(rb_cNumeric, "arg", numeric_arg, 0);
2825 rb_define_method(rb_cNumeric, "angle", numeric_arg, 0);
2826 rb_define_method(rb_cNumeric, "phase", numeric_arg, 0);
2827 rb_define_method(rb_cNumeric, "rectangular", numeric_rect, 0);
2828 rb_define_method(rb_cNumeric, "rect", numeric_rect, 0);
2829 rb_define_method(rb_cNumeric, "polar", numeric_polar, 0);
2830
2831 rb_define_method(rb_cFloat, "arg", float_arg, 0);
2832 rb_define_method(rb_cFloat, "angle", float_arg, 0);
2833 rb_define_method(rb_cFloat, "phase", float_arg, 0);
2834
2835 /*
2836 * Equivalent
2837 * to <tt>Complex.rect(0, 1)</tt>:
2838 *
2839 * Complex::I # => (0+1i)
2840 *
2841 */
2842 rb_define_const(rb_cComplex, "I",
2843 f_complex_new_bang2(rb_cComplex, ZERO, ONE));
2844
2845#if !USE_FLONUM
2846 rb_vm_register_global_object(RFLOAT_0 = DBL2NUM(0.0));
2847#endif
2848
2849 rb_provide("complex.so"); /* for backward compatibility */
2850}
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
static int rb_isdigit(int c)
Our own locale-insensitive version of isdigit(3).
Definition ctype.h:302
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_singleton_method(klass, mid, func, arity)
Defines klass.mid.
#define rb_define_private_method(klass, mid, func, arity)
Defines klass#mid and makes it private.
#define rb_define_global_function(mid, func, arity)
Defines rb_mKernel #mid.
VALUE rb_define_class(const char *name, VALUE super)
Defines a top-level class.
Definition class.c:1591
VALUE rb_define_class_under(VALUE outer, const char *name, VALUE super)
Defines a class under the namespace of outer.
Definition class.c:1622
void rb_undef_method(VALUE klass, const char *name)
Defines an undef of a method.
Definition class.c:2770
int rb_scan_args(int argc, const VALUE *argv, const char *fmt,...)
Retrieves argument from argc and argv to given VALUE references according to the format string.
Definition class.c:3248
#define T_COMPLEX
Old name of RUBY_T_COMPLEX.
Definition value_type.h:59
#define RB_INTEGER_TYPE_P
Old name of rb_integer_type_p.
Definition value_type.h:87
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition double.h:28
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define rb_str_cat2
Old name of rb_str_cat_cstr.
Definition string.h:1682
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:133
#define CLASS_OF
Old name of rb_class_of.
Definition globals.h:205
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define T_RATIONAL
Old name of RUBY_T_RATIONAL.
Definition value_type.h:76
#define NUM2DBL
Old name of rb_num2dbl.
Definition double.h:27
#define rb_usascii_str_new2
Old name of rb_usascii_str_new_cstr.
Definition string.h:1679
#define FLONUM_P
Old name of RB_FLONUM_P.
#define ST2FIX
Old name of RB_ST2FIX.
Definition st_data_t.h:33
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define FIX2LONG
Old name of RB_FIX2LONG.
Definition long.h:46
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define ALLOCV_N
Old name of RB_ALLOCV_N.
Definition memory.h:405
#define FL_WB_PROTECTED
Old name of RUBY_FL_WB_PROTECTED.
Definition fl_type.h:59
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition long.h:51
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define ALLOCV_END
Old name of RB_ALLOCV_END.
Definition memory.h:406
VALUE rb_eRangeError
RangeError exception.
Definition error.c:1422
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1418
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
VALUE rb_cRational
Rational class.
Definition rational.c:53
VALUE rb_convert_type(VALUE val, int type, const char *name, const char *mid)
Converts an object into another type.
Definition object.c:3207
VALUE rb_cComplex
Complex class.
Definition complex.c:39
VALUE rb_cObject
Object class.
Definition object.c:61
VALUE rb_mMath
Math module.
Definition math.c:28
VALUE rb_cInteger
Module class.
Definition numeric.c:198
double rb_str_to_dbl(VALUE str, int mode)
Identical to rb_cstr_to_dbl(), except it accepts a Ruby's string instead of C's.
Definition object.c:3623
VALUE rb_cNumeric
Numeric class.
Definition numeric.c:196
VALUE rb_obj_class(VALUE obj)
Queries the class of an object.
Definition object.c:264
VALUE rb_inspect(VALUE obj)
Generates a human-readable textual representation of the given object.
Definition object.c:686
VALUE rb_equal(VALUE lhs, VALUE rhs)
This function is an optimised version of calling #==.
Definition object.c:176
VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)
Queries if the given object is an instance (of possibly descendants) of the given class.
Definition object.c:923
double rb_cstr_to_dbl(const char *str, int mode)
Converts a textual representation of a real number into a numeric, which is the nearest value that th...
Definition object.c:3579
VALUE rb_mComparable
Comparable module.
Definition compar.c:19
VALUE rb_cFloat
Float class.
Definition numeric.c:197
VALUE rb_String(VALUE val)
This is the logic behind Kernel#String.
Definition object.c:3862
VALUE rb_cString
String class.
Definition string.c:84
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1117
#define RGENGC_WB_PROTECTED_COMPLEX
This is a compile-time flag to enable/disable write barrier for struct RComplex.
Definition gc.h:545
VALUE rb_assoc_new(VALUE car, VALUE cdr)
Identical to rb_ary_new_from_values(), except it expects exactly two parameters.
#define rb_complex_new2(x, y)
Just another name of rb_complex_new.
Definition complex.h:77
#define rb_complex_new1(x)
Shorthand of x+0i.
Definition complex.h:74
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
void rb_provide(const char *feature)
Declares that the given feature is already provided by someone else.
Definition load.c:695
VALUE rb_num_coerce_cmp(VALUE lhs, VALUE rhs, ID op)
Identical to rb_num_coerce_bin(), except for return values.
Definition numeric.c:484
VALUE rb_num_coerce_bin(VALUE lhs, VALUE rhs, ID op)
Coerced binary operation.
Definition numeric.c:477
VALUE rb_rational_new(VALUE num, VALUE den)
Constructs a Rational, with reduction.
Definition rational.c:2000
st_index_t rb_memhash(const void *ptr, long len)
This is a universal hash function.
Definition random.c:1783
void rb_must_asciicompat(VALUE obj)
Asserts that the given string's encoding is (Ruby's definition of) ASCII compatible.
Definition string.c:2791
VALUE rb_str_concat(VALUE dst, VALUE src)
Identical to rb_str_append(), except it also accepts an integer as a codepoint.
Definition string.c:4035
VALUE rb_const_get(VALUE space, ID name)
Identical to rb_const_defined(), except it returns the actual defined value.
Definition variable.c:3448
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:2017
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1492
void rb_define_alloc_func(VALUE klass, rb_alloc_func_t func)
Sets the allocator function of a class.
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:285
void rb_marshal_define_compat(VALUE newclass, VALUE oldclass, VALUE(*dumper)(VALUE), VALUE(*loader)(VALUE, VALUE))
Marshal format compatibility layer.
Definition marshal.c:137
void rb_copy_generic_ivar(VALUE clone, VALUE obj)
Copies the list of instance variables.
Definition variable.c:2219
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define StringValueCStr(v)
Identical to StringValuePtr, except it additionally checks for the contents for viability as a C stri...
Definition rstring.h:89
#define RTEST
This is an old name of RB_TEST.
Internal header for Complex.
Definition complex.h:13
intptr_t SIGNED_VALUE
A signed integer type that has the same width with VALUE.
Definition value.h:63
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_FLOAT_TYPE_P(VALUE obj)
Queries if the object is an instance of rb_cFloat.
Definition value_type.h:264
static void Check_Type(VALUE v, enum ruby_value_type t)
Identical to RB_TYPE_P(), except it raises exceptions on predication failure.
Definition value_type.h:433
static bool rb_integer_type_p(VALUE obj)
Queries if the object is an instance of rb_cInteger.
Definition value_type.h:204
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376