Ruby 1.8.7 リファレンスマニュアル > ライブラリ一覧 > matrixライブラリ > Matrixクラス

class Matrix

クラスの継承リスト: Matrix < Object < Kernel

要約

Numericを要素とする行列を扱うクラスです。

行列

m * n 個の数a(i,j)を

[ a(0,0) a(0,1) a(0,2)  a(0,3) ... a(0,n-1)   ]
[ a(1,0) a(1,1) a(1,2)  a(1,3) ... a(1,n-1)   ]
[ a(2,0) a(2,1) a(2,2)  a(2,3) ... a(2,n-1)   ]
[                                             ]
[ a(m-1,0)                         a(m-1,n-1) ]

のように、縦横の表にあらわしたものを(m,n)型の行列といいます。 m=nの行列をm次の正方行列(square matrix)といいます。 インデックスは 0 から始まることに注意してください。

上からi番目の横の数の並びを第i行(the i-th row)、 左からj番目の縦の数の並びを第j列(the j-th column)といいます。

(m,n)型行列は、 大きさnの行(横)ベクトルをm個縦に並べたものとみなすこともできますし、 大きさmの列(縦)ベクトルをn個横に並べたものとみなすこともできます。

第i行、第j列にある数a(i,j)を(i,j)要素(the (i,j)-th element)といいます。

i=jの要素a(i,j)を対角要素(diagonal element)、 それ以外の要素を非対角要素(nondiagonal element)といいます。

Complex クラスとの併用

require 'complex'することによって、 Matrixオブジェクトの要素はComplexクラスに拡張されます。 多くのメソッドは、この拡張されたMatrixクラスでも、期待通りに動作します。

次の例は、各要素を共役複素数に置換するメソッド Matrix#conjugate です。

require 'matrix'
require 'complex'

class Matrix
  def conjugate
    collect{|e| e.conjugate }
  end
end

目次

特異メソッド
I identity unit [] column_vector columns diagonal row_vector rows scalar zero
インスタンスメソッド
* ** + - / == eql? [] clone coerce collect map column column_size column_vectors compare_by_row_vectors det determinant hash inspect inv inverse minor rank regular? row row_size row_vectors singular? square? t transpose to_a to_s tr trace

特異メソッド

identity(n) -> Matrix[permalink][rdoc]
unit(n) -> Matrix
I(n) -> Matrix

n次の単位行列を生成します。

[PARAM] n:
単位行列の次元

単位行列とは、対角要素が全て1で非対角要素が全て0であるような行列のことです。

self[*rows] -> Matrix[permalink][rdoc]

rows[i] を第 i 行とする行列を生成します。

[PARAM] rows:
行列の要素を数の配列の配列として渡します。

例:

m = Matrix[[11, 12], [21, 22]]
p m  #=> Matrix[[11, 12], [21, 22]]
     #   [11, 12]
     #   [21, 22]
column_vector(column) -> Matrix[permalink][rdoc]

要素がcolumnの(n,1)型の行列(列ベクトル)を生成します。

[PARAM] column:
(n,1)型の行列として生成するVector Array オブジェクト
columns(columns) -> Matrix[permalink][rdoc]

引数 columns を列ベクトルの集合とする行列を生成します。

[PARAM] columns:
配列の配列を渡します。
注意

Matrix.rows との違いは引数として渡す配列の配列を列ベクトルの配列とみなして行列を生成します。

例:

require 'matrix'

a1 = [1, 2, 3]
a2 = [4, 5, 6]
a3 = [-1, -2, -3]

# 配列を行ベクトルとして生成
m = Matrix.rows([a1, a2, a3], true)
p m #=> Matrix[[1, 2, 3], [4, 5, 6], [-1, -2, -3]]
    # 行列としてのイメージ =>  [ 1,  2,  3]
    #                          [ 4,  5,  6]
    #                          [-1, -2, -3]

# 配列を列ベクトルとして生成
m = Matrix.columns([a1, a2, a3])
p m #=> Matrix[[1, 4, -1], [2, 5, -2], [3, 6, -3]]
    # 行列としてのイメージ =>  [1, 4, -1]
    #                          [2, 5, -2]
    #                          [3, 6, -3]
diagonal(*values) -> Matrix[permalink][rdoc]

対角要素がvaluesで、非対角要素が全て0であるような 正方行列を生成します。

[PARAM] values:
行列の対角要素
注意

valuesに一次元Arrayを1個指定すると、そのArrayを唯一の要素とした1×1の行列が生成されます。

例:

require 'matrix'

m = Matrix.diagonal(1, 2, 3)
p m # => Matrix[[1, 0, 0], [0, 2, 0], [0, 0, 3]]
a = [1,2,3]
m = Matrix.diagonal(a)
p m # => Matrix[[[1, 2, 3]]]
row_vector(row) -> Matrix[permalink][rdoc]

要素がrowの(1,n)型の行列(行ベクトル)を生成します。

[PARAM] row:
(1,n)型の行列として生成するVector Array オブジェクト
rows(rows, copy = true) -> Matrix[permalink][rdoc]

引数 rows を行ベクトルの列とする行列を生成します。

引数 copy が偽(false)ならば、rows の複製を行いません。

例:

require 'matrix'

a1 = [1, 2, 3]
a2 = [10, 15, 20]

m = Matrix.rows([a1, a2], false) # 配列を複製せずに行列を生成
p m #=> Matrix[[1, 2, 3], [10, 15, 20]]
a2[1] = 1000 # 配列のデータを変更
p m #=> Matrix[[1, 2, 3], [10, 1000, 20]]
[PARAM] rows:
配列の配列
[PARAM] copy:
配列を複製するかどうかを真偽値で指定
scalar(n, value) -> Matrix[permalink][rdoc]

対角要素が全てvalue(数)で、非対角要素が全て0であるようなn次の正方行列を生成します。

[PARAM] n:
生成する行列の次元
[PARAM] value:
生成する行列の対角要素の値

例:

require 'matrix'

m = Matrix.scalar(3, 2.5)
p m # => Matrix[[2.5, 0, 0], [0, 2.5, 0], [0, 0, 2.5]]
zero(n) -> Matrix[permalink][rdoc]

n × n の零行列(要素が全て 0 の行列)を生成して返します。

[PARAM] n:
生成する正方零行列の次数

インスタンスメソッド

self * m -> Matrix | Vector[permalink][rdoc]

self に行列またはベクトル m を右から乗じた行列を返します。

m が Vector オブジェクトなら返り値も Vector オブジェクトになります。

[PARAM] m:
右からの乗算が定義可能な行列やベクトルを指定します。
[EXCEPTION] ExceptionForMatrix::ErrDimensionMismatch:
次元が合わない場合に発生します
self * other -> Matrix[permalink][rdoc]

self の各成分に数 other を掛けた行列を返します。

[PARAM] other:
self の各成分に掛ける Numeric オブジェクトを指定します。
self ** n -> Matrix[permalink][rdoc]

self の n 乗を返します。

[PARAM] n:
べき数の指定
[EXCEPTION] ExceptionForMatrix::ErrNotRegular:
n が 0 以下で、行列が正則でない場合に発生します
self + m -> Matrix[permalink][rdoc]

self に行列 m を加算した行列を返します。 self の column_size が 1 なら Vector オブジェクトも指定出来ます。

[PARAM] m:
加算する行列。加算可能な行列やベクトルを指定します。
[EXCEPTION] ExceptionForMatrix::ErrDimensionMismatch:
次元が合わない場合に発生します
self - m -> Matrix[permalink][rdoc]

self から行列mを減算した行列を返します。 self の column_size が 1 なら Vector オブジェクトも指定出来ます。

[PARAM] m:
減算する行列。減算可能な行列やベクトルを指定します。
[EXCEPTION] ExceptionForMatrix::ErrDimensionMismatch:
次元が合わない場合に発生します
self / m -> Matrix[permalink][rdoc]

self に行列 m の逆行列を右から乗じた行列を返します。

[PARAM] m:
逆行列を右から乗算する行列。可逆行列でselfと乗算可能な行列を指定します。
[EXCEPTION] ExceptionForMatrix::ErrDimensionMismatch:
次元が合わない場合に発生します
[EXCEPTION] ExceptionForMatrix::ErrNotRegular:
m が正則でない場合に発生します
self / other -> Matrix[permalink][rdoc]

self の各成分を数 other で割った行列を返します。

[PARAM] other:
self の各成分を割る Numeric オブジェクトを指定します。
self == other -> bool[permalink][rdoc]
eql?(other) -> bool

自分自身と other を比較し、同値であれば真(true)を返します。

[PARAM] other:
比較対称のオブジェクト
self[i, j] -> ()[permalink][rdoc]

(i,j)要素を返します。

[PARAM] i:
要素の行成分を0オリジンで指定します。
[PARAM] j:
要素の列成分を0オリジンで指定します。
注意

行成分にMatrix#row_sizeより大きな値を指定した場合には例外が発生します。 列成分にMatrix#column_sizeより大きな値を指定した場合にはnilを返します。

例:

a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, 2, 1.5]
m = Matrix[a1, a2, a3]

p m[0, 0] #=> 1
p m[1, 1] #=> 15
p m[1, 2] #=> 20
p m[1, 3] #=> nil
clone -> Matrix[permalink][rdoc]

自分自身のコピーを返します。

coerce(other) -> Array[permalink][rdoc]

他の数値オブジェクトとの変換を行います。

他の数値オブジェクトをMatrix::Scalarのオブジェクトに変換し、selfとの組を配列として返します。

[PARAM] other:
変換する数値オブジェクト

例:

a1 = [1, 2]
a2 = [-1.25, 2.2]
m = Matrix[a1, a2]
r = Rational(1, 2)
p m.coerce(r) #=> [#<Matrix::Scalar:0x832df18 @value=(1/2)>, Matrix[[1, 2], [-1.25, 2.2]]]
collect {|x| ... } -> Matrix[permalink][rdoc]
map {|x| ... } -> Matrix

行列の各要素に対してブロックの適用を繰り返した結果を、要素として持つ行列を生成します。

例:

a1 = [ 1,  2,   3]
a2 = [10, 15,  20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

# 行列mのすべての要素に100を加える。
p m.collect { |x|
  x + 100
} #=> Matrix[[101, 102, 103], [110, 115, 120], [99, 98, 101.5]]
column(j) -> Vector[permalink][rdoc]
column(j) {|x| ... } -> ()

j 番目の列を Vector オブジェクトで返します。 j 番目の列が存在しない場合は Vector[nil] を返します。 ブロックが与えられた場合はその列の各要素についてブロックを繰り返します。

[PARAM] j:
列の位置を指定します。 先頭の列が 0 番目になります。j の値が負の時には末尾から のインデックスと見倣します。末尾の列が -1 番目になります。

例:

a1 = [ 1,  2,   3]
a2 = [10, 15,  20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

p m.column(1) #=> Vector[2, 15, -2]

cnt = 0
m.column(0) { |x|
  cnt = cnt + x
}
p cnt #=> 24.5
column_size -> Fixnum[permalink][rdoc]

行列の列数を返します。

column_vectors -> [Vector][permalink][rdoc]

自分自身を列ベクトルの配列として返します。

例:

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

p m.row_vectors #=> [Vector[1, 10, -1], Vector[2, 15, -2], Vector[3, 20, 1.5]]
compare_by_row_vectors(rows) -> bool[permalink][rdoc]

自分自身(Matrix)を配列の配列(Array)とみなして引数rowsと比較します。

[PARAM] rows:
比較対象の配列の配列
[RETURN]
selfを配列の配列とみなしたときに引数rowと等しい時にtrue, それ以外にはfalseを返します。

例:

a1 = [1, 2]
a2 = [-1.25, 2.2]
m = Matrix[a1, a2] # 行列
rows = Array[a1, a2] # 配列の配列
p m.compare_by_row_vectors(rows) #=> true
determinant -> Fixnum | Float[permalink][rdoc]
det -> Fixnum | Float

行列式 (determinant) の値を返します。

self が正方行列ではない場合は0を返します。

注意

要素に整数を含む場合、正しい答を返さないかも知れません。

p Matrix[[2, 1], [-1, 2]].det #=> 6

p Matrix[[2.0, 1.0], [-1.0, 2.0]].det #=> 5.0
hash -> Fixnum[permalink][rdoc]

行列のHash値を返します。

inspect -> String[permalink][rdoc]

自分自身を見やすい形式に文字列化し、その文字列を返します。

例:

a1 = [1, 2]
a2 = [3, 4.5]
m = Matrix[a1, a2]

p m.to_s #=> "Matrix[[1, 2], [3, 4.5]]"
inverse -> Matrix[permalink][rdoc]
inv -> Matrix

逆行列を返します。

注意

要素に整数を含む場合、正しい答を返さないかも知れません。

p Matrix[[2, 1], [3, 2]].inv         #=> Matrix[[0, 0], [1, 0]]

p Matrix[[2.0, 1.0], [3.0, 2.0]].inv #=> Matrix[[2.0, -1.0], [-3.0, 2.0]]
minor(from_row, row_size, from_col, col_size) -> Matrix[permalink][rdoc]
minor(from_row..to_row, from_col..to_col) -> Matrix

selfの部分行列を返します。

自分自身の部分行列を返します。 ただし、パラメータは次の方法で指定します。

  1. 開始行番号, 行の大きさ, 開始列番号, 列の大きさ
  2. 開始行番号..終了行番号, 開始列番号..終了列番号
[PARAM] from_row:
部分行列の開始行(0オリジンで指定)
[PARAM] row_size:
部分行列の行サイズ
[PARAM] from_col:
部分行列の開始列(0オリジンで指定)
[PARAM] col_size:
部分行列の列サイズ

例:

a1 = [ 1,  2,  3,  4,  5]
a2 = [11, 12, 13, 14, 15]
a3 = [21, 22, 23, 24, 25]
a4 = [31, 32, 33, 34, 35]
a5 = [51, 52, 53, 54, 55]
m = Matrix[a1, a2, a3, a4, a5]

p m.minor(0, 2, 1, 2) #=> Matrix[[2, 3], [12, 13]]
rank -> Fixnum[permalink][rdoc]

階数 (rank) を返します。

selfの行列の階数(rank)を返します。 行列の成分がFloatの場合は正しい値を返さない場合があります。 その場合は行列成分に Rational を使用してください。

行列の成分が Integer の場合も正しく動作しない場合があります。

require 'matrix'
m=Matrix[[2, 6], [1, 3]]
m.rank # => 2
regular? -> bool[permalink][rdoc]

行列が正方で正則なら真を、特異なら偽を返します。

行列が正則であるとは、正方行列であり、かつ、その逆行列が存在することです。 行列式が0でないことと同値です。

正方行列でない場合には偽を返します。

例:

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]
p m.regular? #=> true

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, -3]
m = Matrix[a1, a2, a3]
p m.regular? #=> false

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
a4 = [1, 1, 1]
m = Matrix[a1, a2, a3, a4]
p m.regular? #=> false
row(i) -> Vector[permalink][rdoc]
row(i) {|x| ... } -> ()

i 番目の行を Vector オブジェクトで返します。 i 番目の行が存在しない場合は例外 TypeError が発生します。 ブロックが与えられた場合はその行の各要素についてブロックを繰り返します。

Vector オブジェクトは Matrix オブジェクトとの演算の際には列ベクトルとして扱われることに注意してください。

[PARAM] i:
行の位置を指定します。 先頭の行が 0 番目になります。i の値が負の時には末尾から のインデックスと見倣します。末尾の行が -1 番目になります。

例:

a1 = [1, 2, 3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

p m.row(1) #=> Vector[10, 15, 20]

cnt = 0
m.row(0) { |x|
  cnt = cnt + x
}
p cnt #=> 6
row_size -> Fixnum[permalink][rdoc]

行列の行数を返します。

row_vectors -> [Vector][permalink][rdoc]

自分自身を行ベクトルの配列として返します。

例:

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

p m.row_vectors #=> [Vector[1, 2, 3], Vector[10, 15, 20], Vector[-1, -2, 1.5]]
singular? -> bool[permalink][rdoc]

行列が正方で特異なら真を/正則なら偽を返します。

行列が特異(singular)であるとは、正則でないことです。 行列式が0であること同値です。

正方行列でない場合には真を返します。

square? -> bool[permalink][rdoc]

正方行列であるなら、真を返します。

transpose -> Matrix[permalink][rdoc]
t -> Matrix

転置行列 (transpose matrix) を返します。

self をMatrixのオブジェクトで、(m,n)型行列としたとき a(j,i) を (i,j) 要素とする (n,m) 型行列を返します。

to_a -> Array[permalink][rdoc]

自分自身をArrayに変換したものを返します。

行ベクトルを配列(Array)としたものの配列(つまり配列の配列)として返します。

例:

a1 = [ 1,  2,  3]
a2 = [10, 15, 20]
a3 = [-1, -2, 1.5]
m = Matrix[a1, a2, a3]

p m.to_a #=> [[1, 2, 3], [10, 15, 20], [-1, -2, 1.5]]
to_s -> String[permalink][rdoc]

行列を文字列化し、その文字列を返します。

例:

a1 = [1, 2]
a2 = [3, 4.5]
m = Matrix[a1, a2]

p m.to_s #=> "Matrix[[1, 2], [3, 4.5]]"
trace -> Fixnum | Float | Rational[permalink][rdoc]
tr -> Fixnum | Float | Rational

トレース (trace) を返します。

行列のトレース (trace) とは、対角要素の和です。

例:

Matrix[[7,6], [3,9]].trace #=> 16

trace は正方行列でのみ定義されます。