class Proc
A Proc
object is an encapsulation of a block of code, which can be stored in a local variable, passed to a method or another Proc
, and can be called. Proc
is an essential concept in Ruby and a core of its functional programming features.
square = Proc.new {|x| x**2 } square.call(3) #=> 9 # shorthands: square.(3) #=> 9 square[3] #=> 9
Proc
objects are closures, meaning they remember and can use the entire context in which they were created.
def gen_times(factor) Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation end times3 = gen_times(3) times5 = gen_times(5) times3.call(12) #=> 36 times5.call(5) #=> 25 times3.call(times5.call(4)) #=> 60
Creation¶ ↑
There are several methods to create a Proc
-
Use the
Proc
class constructor:proc1 = Proc.new {|x| x**2 }
-
Use the
Kernel#proc
method as a shorthand ofProc.new
:proc2 = proc {|x| x**2 }
-
Receiving a block of code into proc argument (note the
&
):def make_proc(&block) block end proc3 = make_proc {|x| x**2 }
-
Construct a proc with lambda semantics using the
Kernel#lambda
method (see below for explanations about lambdas):lambda1 = lambda {|x| x**2 }
-
Use the Lambda proc literal syntax (also constructs a proc with lambda semantics):
lambda2 = ->(x) { x**2 }
Lambda and non-lambda semantics¶ ↑
Procs are coming in two flavors: lambda and non-lambda (regular procs). Differences are:
-
In lambdas,
return
andbreak
means exit from this lambda; -
In non-lambda procs,
return
means exit from embracing method (and will throwLocalJumpError
if invoked outside the method); -
In non-lambda procs,
break
means exit from the method which the block given for. (and will throwLocalJumpError
if invoked after the method returns); -
In lambdas, arguments are treated in the same way as in methods: strict, with
ArgumentError
for mismatching argument number, and no additional argument processing; -
Regular procs accept arguments more generously: missing arguments are filled with
nil
, singleArray
arguments are deconstructed if the proc has multiple arguments, and there is no error raised on extra arguments.
Examples:
# +return+ in non-lambda proc, +b+, exits +m2+. # (The block +{ return }+ is given for +m1+ and embraced by +m2+.) $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a #=> [] # +break+ in non-lambda proc, +b+, exits +m1+. # (The block +{ break }+ is given for +m1+ and embraced by +m2+.) $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a #=> [:m2] # +next+ in non-lambda proc, +b+, exits the block. # (The block +{ next }+ is given for +m1+ and embraced by +m2+.) $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a #=> [:m1, :m2] # Using +proc+ method changes the behavior as follows because # The block is given for +proc+ method and embraced by +m2+. $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a #=> [] $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a # break from proc-closure (LocalJumpError) $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a #=> [:m1, :m2] # +return+, +break+ and +next+ in the stubby lambda exits the block. # (+lambda+ method behaves same.) # (The block is given for stubby lambda syntax and embraced by +m2+.) $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a #=> [:m1, :m2] $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a #=> [:m1, :m2] $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a #=> [:m1, :m2] p = proc {|x, y| "x=#{x}, y=#{y}" } p.call(1, 2) #=> "x=1, y=2" p.call([1, 2]) #=> "x=1, y=2", array deconstructed p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded p.call(1) #=> "x=1, y=", nil substituted instead of error l = lambda {|x, y| "x=#{x}, y=#{y}" } l.call(1, 2) #=> "x=1, y=2" l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2) l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2) l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) def test_return -> { return 3 }.call # just returns from lambda into method body proc { return 4 }.call # returns from method return 5 end test_return # => 4, return from proc
Lambdas are useful as self-sufficient functions, in particular useful as arguments to higher-order functions, behaving exactly like Ruby methods.
Procs are useful for implementing iterators:
def test [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 } # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ end
Inside map
, the block of code is treated as a regular (non-lambda) proc, which means that the internal arrays will be deconstructed to pairs of arguments, and return
will exit from the method test
. That would not be possible with a stricter lambda.
You can tell a lambda from a regular proc by using the lambda?
instance method.
Lambda semantics is typically preserved during the proc lifetime, including &
-deconstruction to a block of code:
p = proc {|x, y| x } l = lambda {|x, y| x } [[1, 2], [3, 4]].map(&p) #=> [1, 3] [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2)
The only exception is dynamic method definition: even if defined by passing a non-lambda proc, methods still have normal semantics of argument checking.
class C define_method(:e, &proc {}) end C.new.e(1,2) #=> ArgumentError C.new.method(:e).to_proc.lambda? #=> true
This exception ensures that methods never have unusual argument passing conventions, and makes it easy to have wrappers defining methods that behave as usual.
class C def self.def2(name, &body) define_method(name, &body) end def2(:f) {} end C.new.f(1,2) #=> ArgumentError
The wrapper def2
receives body as a non-lambda proc, yet defines a method which has normal semantics.
Conversion of other objects to procs¶ ↑
Any object that implements the to_proc
method can be converted into a proc by the &
operator, and therefore can be consumed by iterators.
class Greeter def initialize(greeting) @greeting = greeting end def to_proc proc {|name| "#{@greeting}, #{name}!" } end end hi = Greeter.new("Hi") hey = Greeter.new("Hey") ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"] ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"]
Of the Ruby core classes, this method is implemented by Symbol
, Method
, and Hash
.
:to_s.to_proc.call(1) #=> "1" [1, 2].map(&:to_s) #=> ["1", "2"] method(:puts).to_proc.call(1) # prints 1 [1, 2].each(&method(:puts)) # prints 1, 2 {test: 1}.to_proc.call(:test) #=> 1 %i[test many keys].map(&{test: 1}) #=> [1, nil, nil]
Orphaned Proc
¶ ↑
return
and break
in a block exit a method. If a Proc
object is generated from the block and the Proc
object survives until the method is returned, return
and break
cannot work. In such case, return
and break
raises LocalJumpError
. A Proc
object in such situation is called as orphaned Proc
object.
Note that the method to exit is different for return
and break
. There is a situation that orphaned for break
but not orphaned for return
.
def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError
Since return
and break
exits the block itself in lambdas, lambdas cannot be orphaned.
Numbered parameters¶ ↑
Numbered parameters are implicitly defined block parameters intended to simplify writing short blocks:
# Explicit parameter: %w[test me please].each { |str| puts str.upcase } # prints TEST, ME, PLEASE (1..5).map { |i| i**2 } # => [1, 4, 9, 16, 25] # Implicit parameter: %w[test me please].each { puts _1.upcase } # prints TEST, ME, PLEASE (1..5).map { _1**2 } # => [1, 4, 9, 16, 25]
Parameter names from _1
to _9
are supported:
[10, 20, 30].zip([40, 50, 60], [70, 80, 90]).map { _1 + _2 + _3 } # => [120, 150, 180]
Though, it is advised to resort to them wisely, probably limiting yourself to _1
and _2
, and to one-line blocks.
Numbered parameters can’t be used together with explicitly named ones:
[10, 20, 30].map { |x| _1**2 } # SyntaxError (ordinary parameter is defined)
To avoid conflicts, naming local variables or method arguments _1
, _2
and so on, causes a warning.
_1 = 'test' # warning: `_1' is reserved as numbered parameter
Using implicit numbered parameters affects block’s arity:
p = proc { _1 + _2 } l = lambda { _1 + _2 } p.parameters # => [[:opt, :_1], [:opt, :_2]] p.arity # => 2 l.parameters # => [[:req, :_1], [:req, :_2]] l.arity # => 2
Blocks with numbered parameters can’t be nested:
%w[test me].each { _1.each_char { p _1 } } # SyntaxError (numbered parameter is already used in outer block here) # %w[test me].each { _1.each_char { p _1 } } # ^~
Numbered parameters were introduced in Ruby 2.7.
Public Class Methods
Creates a new Proc
object, bound to the current context.
proc = Proc.new { "hello" } proc.call #=> "hello"
Raises ArgumentError
if called without a block.
Proc.new #=> ArgumentError
static VALUE rb_proc_s_new(int argc, VALUE *argv, VALUE klass) { VALUE block = proc_new(klass, FALSE); rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS); return block; }
Public Instance Methods
Returns a proc that is the composition of this proc and the given g. The returned proc takes a variable number of arguments, calls g with them then calls this proc with the result.
f = proc {|x| x * x } g = proc {|x| x + x } p (f << g).call(2) #=> 16
See Proc#>>
for detailed explanations.
static VALUE proc_compose_to_left(VALUE self, VALUE g) { return rb_proc_compose_to_left(self, to_callable(g)); }
Two procs are the same if, and only if, they were created from the same code block.
def return_block(&block) block end def pass_block_twice(&block) [return_block(&block), return_block(&block)] end block1, block2 = pass_block_twice { puts 'test' } # Blocks might be instantiated into Proc's lazily, so they may, or may not, # be the same object. # But they are produced from the same code block, so they are equal block1 == block2 #=> true # Another Proc will never be equal, even if the code is the "same" block1 == proc { puts 'test' } #=> false
static VALUE proc_eq(VALUE self, VALUE other) { const rb_proc_t *self_proc, *other_proc; const struct rb_block *self_block, *other_block; if (rb_obj_class(self) != rb_obj_class(other)) { return Qfalse; } GetProcPtr(self, self_proc); GetProcPtr(other, other_proc); if (self_proc->is_from_method != other_proc->is_from_method || self_proc->is_lambda != other_proc->is_lambda) { return Qfalse; } self_block = &self_proc->block; other_block = &other_proc->block; if (vm_block_type(self_block) != vm_block_type(other_block)) { return Qfalse; } switch (vm_block_type(self_block)) { case block_type_iseq: if (self_block->as.captured.ep != \ other_block->as.captured.ep || self_block->as.captured.code.iseq != \ other_block->as.captured.code.iseq) { return Qfalse; } break; case block_type_ifunc: if (self_block->as.captured.code.ifunc != \ other_block->as.captured.code.ifunc) { return Qfalse; } if (memcmp( ((cfunc_proc_t *)self_proc)->env, ((cfunc_proc_t *)other_proc)->env, sizeof(((cfunc_proc_t *)self_proc)->env))) { return Qfalse; } break; case block_type_proc: if (self_block->as.proc != other_block->as.proc) { return Qfalse; } break; case block_type_symbol: if (self_block->as.symbol != other_block->as.symbol) { return Qfalse; } break; } return Qtrue; }
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Returns the value of the last expression evaluated in the block.
a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] a_proc[9, 1, 2, 3] #=> [9, 18, 27] a_proc.(9, 1, 2, 3) #=> [9, 18, 27] a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
Note that prc.()
invokes prc.call()
with the parameters given. It’s syntactic sugar to hide “call”.
For procs created using lambda
or ->()
an error is generated if the wrong number of parameters are passed to the proc. For procs created using Proc.new
or Kernel.proc
, extra parameters are silently discarded and missing parameters are set to nil
.
a_proc = proc {|a,b| [a,b] } a_proc.call(1) #=> [1, nil] a_proc = lambda {|a,b| [a,b] } a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
See also Proc#lambda?
.
Returns a proc that is the composition of this proc and the given g. The returned proc takes a variable number of arguments, calls this proc with them then calls g with the result.
f = proc {|x| x * x } g = proc {|x| x + x } p (f >> g).call(2) #=> 8
g could be other Proc
, or Method
, or any other object responding to call
method:
class Parser def self.call(text) # ...some complicated parsing logic... end end pipeline = File.method(:read) >> Parser >> proc { |data| puts "data size: #{data.count}" } pipeline.call('data.json')
See also Method#>>
and Method#<<
.
static VALUE proc_compose_to_right(VALUE self, VALUE g) { return rb_proc_compose_to_right(self, to_callable(g)); }
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Returns the value of the last expression evaluated in the block.
a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] a_proc[9, 1, 2, 3] #=> [9, 18, 27] a_proc.(9, 1, 2, 3) #=> [9, 18, 27] a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
Note that prc.()
invokes prc.call()
with the parameters given. It’s syntactic sugar to hide “call”.
For procs created using lambda
or ->()
an error is generated if the wrong number of parameters are passed to the proc. For procs created using Proc.new
or Kernel.proc
, extra parameters are silently discarded and missing parameters are set to nil
.
a_proc = proc {|a,b| [a,b] } a_proc.call(1) #=> [1, nil] a_proc = lambda {|a,b| [a,b] } a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
See also Proc#lambda?
.
Returns the number of mandatory arguments. If the block is declared to take no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If the block has optional arguments, returns -n-1, where n is the number of mandatory arguments, with the exception for blocks that are not lambdas and have only a finite number of optional arguments; in this latter case, returns n. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. A proc
with no argument declarations is the same as a block declaring ||
as its arguments.
proc {}.arity #=> 0 proc { || }.arity #=> 0 proc { |a| }.arity #=> 1 proc { |a, b| }.arity #=> 2 proc { |a, b, c| }.arity #=> 3 proc { |*a| }.arity #=> -1 proc { |a, *b| }.arity #=> -2 proc { |a, *b, c| }.arity #=> -3 proc { |x:, y:, z:0| }.arity #=> 1 proc { |*a, x:, y:0| }.arity #=> -2 proc { |a=0| }.arity #=> 0 lambda { |a=0| }.arity #=> -1 proc { |a=0, b| }.arity #=> 1 lambda { |a=0, b| }.arity #=> -2 proc { |a=0, b=0| }.arity #=> 0 lambda { |a=0, b=0| }.arity #=> -1 proc { |a, b=0| }.arity #=> 1 lambda { |a, b=0| }.arity #=> -2 proc { |(a, b), c=0| }.arity #=> 1 lambda { |(a, b), c=0| }.arity #=> -2 proc { |a, x:0, y:0| }.arity #=> 1 lambda { |a, x:0, y:0| }.arity #=> -2
static VALUE proc_arity(VALUE self) { int arity = rb_proc_arity(self); return INT2FIX(arity); }
Returns the binding associated with prc.
def fred(param) proc {} end b = fred(99) eval("param", b.binding) #=> 99
static VALUE proc_binding(VALUE self) { VALUE bindval, binding_self = Qundef; rb_binding_t *bind; const rb_proc_t *proc; const rb_iseq_t *iseq = NULL; const struct rb_block *block; const rb_env_t *env = NULL; GetProcPtr(self, proc); block = &proc->block; if (proc->is_isolated) rb_raise(rb_eArgError, "Can't create Binding from isolated Proc"); again: switch (vm_block_type(block)) { case block_type_iseq: iseq = block->as.captured.code.iseq; binding_self = block->as.captured.self; env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); break; case block_type_proc: GetProcPtr(block->as.proc, proc); block = &proc->block; goto again; case block_type_ifunc: { const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; if (IS_METHOD_PROC_IFUNC(ifunc)) { VALUE method = (VALUE)ifunc->data; VALUE name = rb_fstring_lit("<empty_iseq>"); rb_iseq_t *empty; binding_self = method_receiver(method); iseq = rb_method_iseq(method); env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); env = env_clone(env, method_cref(method)); /* set empty iseq */ empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP); RB_OBJ_WRITE(env, &env->iseq, empty); break; } } /* FALLTHROUGH */ case block_type_symbol: rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); UNREACHABLE_RETURN(Qnil); } bindval = rb_binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self); RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); rb_vm_block_ep_update(bindval, &bind->block, env->ep); RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep)); if (iseq) { rb_iseq_check(iseq); RB_OBJ_WRITE(bindval, &bind->pathobj, ISEQ_BODY(iseq)->location.pathobj); bind->first_lineno = ISEQ_BODY(iseq)->location.first_lineno; } else { RB_OBJ_WRITE(bindval, &bind->pathobj, rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil)); bind->first_lineno = 1; } return bindval; }
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Returns the value of the last expression evaluated in the block.
a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] a_proc[9, 1, 2, 3] #=> [9, 18, 27] a_proc.(9, 1, 2, 3) #=> [9, 18, 27] a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
Note that prc.()
invokes prc.call()
with the parameters given. It’s syntactic sugar to hide “call”.
For procs created using lambda
or ->()
an error is generated if the wrong number of parameters are passed to the proc. For procs created using Proc.new
or Kernel.proc
, extra parameters are silently discarded and missing parameters are set to nil
.
a_proc = proc {|a,b| [a,b] } a_proc.call(1) #=> [1, nil] a_proc = lambda {|a,b| [a,b] } a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
See also Proc#lambda?
.
0 static VALUE proc_call(int argc, VALUE *argv, VALUE procval) { /* removed */ }
Returns a curried proc. If the optional arity argument is given, it determines the number of arguments. A curried proc receives some arguments. If a sufficient number of arguments are supplied, it passes the supplied arguments to the original proc and returns the result. Otherwise, returns another curried proc that takes the rest of arguments.
The optional arity argument should be supplied when currying procs with variable arguments to determine how many arguments are needed before the proc is called.
b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } p b.curry[1][2][3] #=> 6 p b.curry[1, 2][3, 4] #=> 6 p b.curry(5)[1][2][3][4][5] #=> 6 p b.curry(5)[1, 2][3, 4][5] #=> 6 p b.curry(1)[1] #=> 1 b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } p b.curry[1][2][3] #=> 6 p b.curry[1, 2][3, 4] #=> 10 p b.curry(5)[1][2][3][4][5] #=> 15 p b.curry(5)[1, 2][3, 4][5] #=> 15 p b.curry(1)[1] #=> 1 b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } p b.curry[1][2][3] #=> 6 p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3) p b.curry(5) #=> wrong number of arguments (given 5, expected 3) p b.curry(1) #=> wrong number of arguments (given 1, expected 3) b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } p b.curry[1][2][3] #=> 6 p b.curry[1, 2][3, 4] #=> 10 p b.curry(5)[1][2][3][4][5] #=> 15 p b.curry(5)[1, 2][3, 4][5] #=> 15 p b.curry(1) #=> wrong number of arguments (given 1, expected 3) b = proc { :foo } p b.curry[] #=> :foo
static VALUE proc_curry(int argc, const VALUE *argv, VALUE self) { int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity); VALUE arity; if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) { arity = INT2FIX(min_arity); } else { sarity = FIX2INT(arity); if (rb_proc_lambda_p(self)) { rb_check_arity(sarity, min_arity, max_arity); } } return make_curry_proc(self, rb_ary_new(), arity); }
Two procs are the same if, and only if, they were created from the same code block.
def return_block(&block) block end def pass_block_twice(&block) [return_block(&block), return_block(&block)] end block1, block2 = pass_block_twice { puts 'test' } # Blocks might be instantiated into Proc's lazily, so they may, or may not, # be the same object. # But they are produced from the same code block, so they are equal block1 == block2 #=> true # Another Proc will never be equal, even if the code is the "same" block1 == proc { puts 'test' } #=> false
Returns a hash value corresponding to proc body.
See also Object#hash
.
static VALUE proc_hash(VALUE self) { st_index_t hash; hash = rb_hash_start(0); hash = rb_hash_proc(hash, self); hash = rb_hash_end(hash); return ST2FIX(hash); }
Returns true
if a Proc
object is lambda. false
if non-lambda.
The lambda-ness affects argument handling and the behavior of return
and break
.
A Proc
object generated by proc
ignores extra arguments.
proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
It provides nil
for missing arguments.
proc {|a,b| [a,b] }.call(1) #=> [1,nil]
It expands a single array argument.
proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
A Proc
object generated by lambda
doesn’t have such tricks.
lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError lambda {|a,b| [a,b] }.call(1) #=> ArgumentError lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
Proc#lambda?
is a predicate for the tricks. It returns true
if no tricks apply.
lambda {}.lambda? #=> true proc {}.lambda? #=> false
Proc.new
is the same as proc
.
Proc.new {}.lambda? #=> false
lambda
, proc
and Proc.new
preserve the tricks of a Proc
object given by &
argument.
lambda(&lambda {}).lambda? #=> true proc(&lambda {}).lambda? #=> true Proc.new(&lambda {}).lambda? #=> true lambda(&proc {}).lambda? #=> false proc(&proc {}).lambda? #=> false Proc.new(&proc {}).lambda? #=> false
A Proc
object generated by &
argument has the tricks
def n(&b) b.lambda? end n {} #=> false
The &
argument preserves the tricks if a Proc
object is given by &
argument.
n(&lambda {}) #=> true n(&proc {}) #=> false n(&Proc.new {}) #=> false
A Proc
object converted from a method has no tricks.
def m() end method(:m).to_proc.lambda? #=> true n(&method(:m)) #=> true n(&method(:m).to_proc) #=> true
define_method
is treated the same as method definition. The defined method has no tricks.
class C define_method(:d) {} end C.new.d(1,2) #=> ArgumentError C.new.method(:d).to_proc.lambda? #=> true
define_method
always defines a method without the tricks, even if a non-lambda Proc
object is given. This is the only exception for which the tricks are not preserved.
class C define_method(:e, &proc {}) end C.new.e(1,2) #=> ArgumentError C.new.method(:e).to_proc.lambda? #=> true
This exception ensures that methods never have tricks and makes it easy to have wrappers to define methods that behave as usual.
class C def self.def2(name, &body) define_method(name, &body) end def2(:f) {} end C.new.f(1,2) #=> ArgumentError
The wrapper def2 defines a method which has no tricks.
VALUE rb_proc_lambda_p(VALUE procval) { rb_proc_t *proc; GetProcPtr(procval, proc); return RBOOL(proc->is_lambda); }
Returns the parameter information of this proc. If the lambda keyword is provided and not nil, treats the proc as a lambda if true and as a non-lambda if false.
prc = proc{|x, y=42, *other|} prc.parameters #=> [[:opt, :x], [:opt, :y], [:rest, :other]] prc = lambda{|x, y=42, *other|} prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] prc = proc{|x, y=42, *other|} prc.parameters(lambda: true) #=> [[:req, :x], [:opt, :y], [:rest, :other]] prc = lambda{|x, y=42, *other|} prc.parameters(lambda: false) #=> [[:opt, :x], [:opt, :y], [:rest, :other]]
static VALUE rb_proc_parameters(int argc, VALUE *argv, VALUE self) { static ID keyword_ids[1]; VALUE opt, lambda; VALUE kwargs[1]; int is_proc ; const rb_iseq_t *iseq; iseq = rb_proc_get_iseq(self, &is_proc); if (!keyword_ids[0]) { CONST_ID(keyword_ids[0], "lambda"); } rb_scan_args(argc, argv, "0:", &opt); if (!NIL_P(opt)) { rb_get_kwargs(opt, keyword_ids, 0, 1, kwargs); lambda = kwargs[0]; if (!NIL_P(lambda)) { is_proc = !RTEST(lambda); } } if (!iseq) { return rb_unnamed_parameters(rb_proc_arity(self)); } return rb_iseq_parameters(iseq, is_proc); }
Marks the proc as passing keywords through a normal argument splat. This should only be called on procs that accept an argument splat (*args
) but not explicit keywords or a keyword splat. It marks the proc such that if the proc is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the proc to other methods.
This should only be used for procs that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 2.7.
This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the proc responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the proc will change so that it does not pass through keywords.
module Mod foo = ->(meth, *args, &block) do send(:"do_#{meth}", *args, &block) end foo.ruby2_keywords if foo.respond_to?(:ruby2_keywords) end
static VALUE proc_ruby2_keywords(VALUE procval) { rb_proc_t *proc; GetProcPtr(procval, proc); rb_check_frozen(procval); if (proc->is_from_method) { rb_warn("Skipping set of ruby2_keywords flag for proc (proc created from method)"); return procval; } switch (proc->block.type) { case block_type_iseq: if (ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_rest && !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kw && !ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.has_kwrest) { ISEQ_BODY(proc->block.as.captured.code.iseq)->param.flags.ruby2_keywords = 1; } else { rb_warn("Skipping set of ruby2_keywords flag for proc (proc accepts keywords or proc does not accept argument splat)"); } break; default: rb_warn("Skipping set of ruby2_keywords flag for proc (proc not defined in Ruby)"); break; } return procval; }
Returns the Ruby source filename and line number containing this proc or nil
if this proc was not defined in Ruby (i.e. native).
VALUE rb_proc_location(VALUE self) { return iseq_location(rb_proc_get_iseq(self, 0)); }
Returns the unique identifier for this proc, along with an indication of where the proc was defined.
static VALUE proc_to_s(VALUE self) { const rb_proc_t *proc; GetProcPtr(self, proc); return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL); }
Invokes the block, setting the block’s parameters to the values in params using something close to method calling semantics. Returns the value of the last expression evaluated in the block.
a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] a_proc[9, 1, 2, 3] #=> [9, 18, 27] a_proc.(9, 1, 2, 3) #=> [9, 18, 27] a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27]
Note that prc.()
invokes prc.call()
with the parameters given. It’s syntactic sugar to hide “call”.
For procs created using lambda
or ->()
an error is generated if the wrong number of parameters are passed to the proc. For procs created using Proc.new
or Kernel.proc
, extra parameters are silently discarded and missing parameters are set to nil
.
a_proc = proc {|a,b| [a,b] } a_proc.call(1) #=> [1, nil] a_proc = lambda {|a,b| [a,b] } a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2)
See also Proc#lambda?
.