Ruby 3.5.0dev (2025-05-16 revision 04f538c1441e65def90d5b4224010e7d4f4ffab3)
signal.c (04f538c1441e65def90d5b4224010e7d4f4ffab3)
1/**********************************************************************
2
3 signal.c -
4
5 $Author$
6 created at: Tue Dec 20 10:13:44 JST 1994
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9 Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
10 Copyright (C) 2000 Information-technology Promotion Agency, Japan
11
12**********************************************************************/
13
14#include "ruby/internal/config.h"
15
16#include <errno.h>
17#include <signal.h>
18#include <stdio.h>
19
20#ifdef HAVE_UNISTD_H
21# include <unistd.h>
22#endif
23
24#ifdef HAVE_SYS_UIO_H
25# include <sys/uio.h>
26#endif
27
28#ifdef HAVE_UCONTEXT_H
29# include <ucontext.h>
30#endif
31
32#ifdef HAVE_PTHREAD_H
33# include <pthread.h>
34#endif
35
36#include "debug_counter.h"
37#include "eval_intern.h"
38#include "internal.h"
39#include "internal/error.h"
40#include "internal/eval.h"
41#include "internal/sanitizers.h"
42#include "internal/signal.h"
43#include "internal/string.h"
44#include "internal/thread.h"
45#include "ruby_atomic.h"
46#include "vm_core.h"
47#include "ractor_core.h"
49
50#ifdef NEED_RUBY_ATOMIC_OPS
52ruby_atomic_exchange(rb_atomic_t *ptr, rb_atomic_t val)
53{
54 rb_atomic_t old = *ptr;
55 *ptr = val;
56 return old;
57}
58
60ruby_atomic_compare_and_swap(rb_atomic_t *ptr, rb_atomic_t cmp,
61 rb_atomic_t newval)
62{
63 rb_atomic_t old = *ptr;
64 if (old == cmp) {
65 *ptr = newval;
66 }
67 return old;
68}
69#endif
70
71#define FOREACH_SIGNAL(sig, offset) \
72 for (sig = siglist + (offset); sig < siglist + numberof(siglist); ++sig)
73enum { LONGEST_SIGNAME = 7 }; /* MIGRATE and RETRACT */
74static const struct signals {
75 char signm[LONGEST_SIGNAME + 1];
76 int signo;
77} siglist [] = {
78 {"EXIT", 0},
79#ifdef SIGHUP
80 {"HUP", SIGHUP},
81#endif
82 {"INT", SIGINT},
83#ifdef SIGQUIT
84 {"QUIT", SIGQUIT},
85#endif
86#ifdef SIGILL
87 {"ILL", SIGILL},
88#endif
89#ifdef SIGTRAP
90 {"TRAP", SIGTRAP},
91#endif
92#ifdef SIGABRT
93 {"ABRT", SIGABRT},
94#endif
95#ifdef SIGIOT
96 {"IOT", SIGIOT},
97#endif
98#ifdef SIGEMT
99 {"EMT", SIGEMT},
100#endif
101#ifdef SIGFPE
102 {"FPE", SIGFPE},
103#endif
104#ifdef SIGKILL
105 {"KILL", SIGKILL},
106#endif
107#ifdef SIGBUS
108 {"BUS", SIGBUS},
109#endif
110#ifdef SIGSEGV
111 {"SEGV", SIGSEGV},
112#endif
113#ifdef SIGSYS
114 {"SYS", SIGSYS},
115#endif
116#ifdef SIGPIPE
117 {"PIPE", SIGPIPE},
118#endif
119#ifdef SIGALRM
120 {"ALRM", SIGALRM},
121#endif
122#ifdef SIGTERM
123 {"TERM", SIGTERM},
124#endif
125#ifdef SIGURG
126 {"URG", SIGURG},
127#endif
128#ifdef SIGSTOP
129 {"STOP", SIGSTOP},
130#endif
131#ifdef SIGTSTP
132 {"TSTP", SIGTSTP},
133#endif
134#ifdef SIGCONT
135 {"CONT", SIGCONT},
136#endif
137#ifdef RUBY_SIGCHLD
138 {"CHLD", RUBY_SIGCHLD },
139 {"CLD", RUBY_SIGCHLD },
140#endif
141#ifdef SIGTTIN
142 {"TTIN", SIGTTIN},
143#endif
144#ifdef SIGTTOU
145 {"TTOU", SIGTTOU},
146#endif
147#ifdef SIGIO
148 {"IO", SIGIO},
149#endif
150#ifdef SIGXCPU
151 {"XCPU", SIGXCPU},
152#endif
153#ifdef SIGXFSZ
154 {"XFSZ", SIGXFSZ},
155#endif
156#ifdef SIGVTALRM
157 {"VTALRM", SIGVTALRM},
158#endif
159#ifdef SIGPROF
160 {"PROF", SIGPROF},
161#endif
162#ifdef SIGWINCH
163 {"WINCH", SIGWINCH},
164#endif
165#ifdef SIGUSR1
166 {"USR1", SIGUSR1},
167#endif
168#ifdef SIGUSR2
169 {"USR2", SIGUSR2},
170#endif
171#ifdef SIGLOST
172 {"LOST", SIGLOST},
173#endif
174#ifdef SIGMSG
175 {"MSG", SIGMSG},
176#endif
177#ifdef SIGPWR
178 {"PWR", SIGPWR},
179#endif
180#ifdef SIGPOLL
181 {"POLL", SIGPOLL},
182#endif
183#ifdef SIGDANGER
184 {"DANGER", SIGDANGER},
185#endif
186#ifdef SIGMIGRATE
187 {"MIGRATE", SIGMIGRATE},
188#endif
189#ifdef SIGPRE
190 {"PRE", SIGPRE},
191#endif
192#ifdef SIGGRANT
193 {"GRANT", SIGGRANT},
194#endif
195#ifdef SIGRETRACT
196 {"RETRACT", SIGRETRACT},
197#endif
198#ifdef SIGSOUND
199 {"SOUND", SIGSOUND},
200#endif
201#ifdef SIGINFO
202 {"INFO", SIGINFO},
203#endif
204};
205
206static const char signame_prefix[] = "SIG";
207static const int signame_prefix_len = 3;
208
209static int
210signm2signo(VALUE *sig_ptr, int negative, int exit, int *prefix_ptr)
211{
212 const struct signals *sigs;
213 VALUE vsig = *sig_ptr;
214 const char *nm;
215 long len, nmlen;
216 int prefix = 0;
217
218 if (RB_SYMBOL_P(vsig)) {
219 *sig_ptr = vsig = rb_sym2str(vsig);
220 }
221 else if (!RB_TYPE_P(vsig, T_STRING)) {
222 VALUE str = rb_check_string_type(vsig);
223 if (NIL_P(str)) {
224 rb_raise(rb_eArgError, "bad signal type %s",
225 rb_obj_classname(vsig));
226 }
227 *sig_ptr = vsig = str;
228 }
229
231 RSTRING_GETMEM(vsig, nm, len);
232 if (memchr(nm, '\0', len)) {
233 rb_raise(rb_eArgError, "signal name with null byte");
234 }
235
236 if (len > 0 && nm[0] == '-') {
237 if (!negative)
238 rb_raise(rb_eArgError, "negative signal name: % "PRIsVALUE, vsig);
239 prefix = 1;
240 }
241 else {
242 negative = 0;
243 }
244 if (len >= prefix + signame_prefix_len) {
245 if (memcmp(nm + prefix, signame_prefix, signame_prefix_len) == 0)
246 prefix += signame_prefix_len;
247 }
248 if (len <= (long)prefix) {
249 goto unsupported;
250 }
251
252 if (prefix_ptr) *prefix_ptr = prefix;
253 nmlen = len - prefix;
254 nm += prefix;
255 if (nmlen > LONGEST_SIGNAME) goto unsupported;
256 FOREACH_SIGNAL(sigs, !exit) {
257 if (memcmp(sigs->signm, nm, nmlen) == 0 &&
258 sigs->signm[nmlen] == '\0') {
259 return negative ? -sigs->signo : sigs->signo;
260 }
261 }
262
263 unsupported:
264 if (prefix == signame_prefix_len) {
265 prefix = 0;
266 }
267 else if (prefix > signame_prefix_len) {
268 prefix -= signame_prefix_len;
269 len -= prefix;
270 vsig = rb_str_subseq(vsig, prefix, len);
271 prefix = 0;
272 }
273 else {
274 len -= prefix;
275 vsig = rb_str_subseq(vsig, prefix, len);
276 prefix = signame_prefix_len;
277 }
278 rb_raise(rb_eArgError, "unsupported signal '%.*s%"PRIsVALUE"'",
279 prefix, signame_prefix, vsig);
281}
282
283static const char*
284signo2signm(int no)
285{
286 const struct signals *sigs;
287
288 FOREACH_SIGNAL(sigs, 0) {
289 if (sigs->signo == no)
290 return sigs->signm;
291 }
292 return 0;
293}
294
295/*
296 * call-seq:
297 * Signal.signame(signo) -> string or nil
298 *
299 * Convert signal number to signal name.
300 * Returns +nil+ if the signo is an invalid signal number.
301 *
302 * Signal.trap("INT") { |signo| puts Signal.signame(signo) }
303 * Process.kill("INT", 0)
304 *
305 * <em>produces:</em>
306 *
307 * INT
308 */
309static VALUE
310sig_signame(VALUE recv, VALUE signo)
311{
312 const char *signame = signo2signm(NUM2INT(signo));
313 if (!signame) return Qnil;
314 return rb_str_new_cstr(signame);
315}
316
317const char *
319{
320 return signo2signm(no);
321}
322
323static VALUE
324rb_signo2signm(int signo)
325{
326 const char *const signm = signo2signm(signo);
327 if (signm) {
328 return rb_sprintf("SIG%s", signm);
329 }
330 else {
331 return rb_sprintf("SIG%u", signo);
332 }
333}
334
335/*
336 * call-seq:
337 * SignalException.new(sig_name) -> signal_exception
338 * SignalException.new(sig_number [, name]) -> signal_exception
339 *
340 * Construct a new SignalException object. +sig_name+ should be a known
341 * signal name.
342 */
343
344static VALUE
345esignal_init(int argc, VALUE *argv, VALUE self)
346{
347 int argnum = 1;
348 VALUE sig = Qnil;
349 int signo;
350
351 if (argc > 0) {
352 sig = rb_check_to_integer(argv[0], "to_int");
353 if (!NIL_P(sig)) argnum = 2;
354 else sig = argv[0];
355 }
356 rb_check_arity(argc, 1, argnum);
357 if (argnum == 2) {
358 signo = NUM2INT(sig);
359 if (signo < 0 || signo > NSIG) {
360 rb_raise(rb_eArgError, "invalid signal number (%d)", signo);
361 }
362 if (argc > 1) {
363 sig = argv[1];
364 }
365 else {
366 sig = rb_signo2signm(signo);
367 }
368 }
369 else {
370 int prefix;
371 signo = signm2signo(&sig, FALSE, FALSE, &prefix);
372 if (prefix != signame_prefix_len) {
373 sig = rb_str_append(rb_str_new_cstr("SIG"), sig);
374 }
375 }
376 rb_call_super(1, &sig);
377 rb_ivar_set(self, id_signo, INT2NUM(signo));
378
379 return self;
380}
381
382/*
383 * call-seq:
384 * signal_exception.signo -> num
385 *
386 * Returns a signal number.
387 */
388
389static VALUE
390esignal_signo(VALUE self)
391{
392 return rb_ivar_get(self, id_signo);
393}
394
395/* :nodoc: */
396static VALUE
397interrupt_init(int argc, VALUE *argv, VALUE self)
398{
399 VALUE args[2];
400
401 args[0] = INT2FIX(SIGINT);
402 args[1] = rb_check_arity(argc, 0, 1) ? argv[0] : Qnil;
403 return rb_call_super(2, args);
404}
405
406void rb_malloc_info_show_results(void); /* gc.c */
407#if defined(USE_SIGALTSTACK) || defined(_WIN32)
408static void reset_sigmask(int sig);
409#endif
410
411void
413{
414#if USE_DEBUG_COUNTER
415 rb_debug_counter_show_results("killed by signal.");
416#endif
417 rb_malloc_info_show_results();
418
419 signal(sig, SIG_DFL);
420#if defined(USE_SIGALTSTACK) || defined(_WIN32)
421 reset_sigmask(sig);
422#endif
423 raise(sig);
424}
425
426static void sighandler(int sig);
427static int signal_ignored(int sig);
428static void signal_enque(int sig);
429
430VALUE
431rb_f_kill(int argc, const VALUE *argv)
432{
433#ifndef HAVE_KILLPG
434#define killpg(pg, sig) kill(-(pg), (sig))
435#endif
436 int sig;
437 int i;
438 VALUE str;
439
441
442 if (FIXNUM_P(argv[0])) {
443 sig = FIX2INT(argv[0]);
444 }
445 else {
446 str = argv[0];
447 sig = signm2signo(&str, TRUE, FALSE, NULL);
448 }
449
450 if (argc <= 1) return INT2FIX(0);
451
452 if (sig < 0) {
453 sig = -sig;
454 for (i=1; i<argc; i++) {
455 if (killpg(NUM2PIDT(argv[i]), sig) < 0)
456 rb_sys_fail(0);
457 }
458 }
459 else {
460 const rb_pid_t self = (GET_THREAD() == GET_VM()->ractor.main_thread) ? getpid() : -1;
461 int wakeup = 0;
462
463 for (i=1; i<argc; i++) {
464 rb_pid_t pid = NUM2PIDT(argv[i]);
465
466 if ((sig != 0) && (self != -1) && (pid == self)) {
467 int t;
468 /*
469 * When target pid is self, many caller assume signal will be
470 * delivered immediately and synchronously.
471 */
472 switch (sig) {
473 case SIGSEGV:
474#ifdef SIGBUS
475 case SIGBUS:
476#endif
477#ifdef SIGKILL
478 case SIGKILL:
479#endif
480#ifdef SIGILL
481 case SIGILL:
482#endif
483#ifdef SIGFPE
484 case SIGFPE:
485#endif
486#ifdef SIGSTOP
487 case SIGSTOP:
488#endif
489 kill(pid, sig);
490 break;
491 default:
492 t = signal_ignored(sig);
493 if (t) {
494 if (t < 0 && kill(pid, sig))
495 rb_sys_fail(0);
496 break;
497 }
498 signal_enque(sig);
499 wakeup = 1;
500 }
501 }
502 else if (kill(pid, sig) < 0) {
503 rb_sys_fail(0);
504 }
505 }
506 if (wakeup) {
507 rb_threadptr_check_signal(GET_VM()->ractor.main_thread);
508 }
509 }
510 rb_thread_execute_interrupts(rb_thread_current());
511
512 return INT2FIX(i-1);
513}
514
515static struct {
516 rb_atomic_t cnt[RUBY_NSIG];
517 rb_atomic_t size;
518} signal_buff;
519
520#define sighandler_t ruby_sighandler_t
521
522#ifdef USE_SIGALTSTACK
523typedef void ruby_sigaction_t(int, siginfo_t*, void*);
524#define SIGINFO_ARG , siginfo_t *info, void *ctx
525#define SIGINFO_CTX ctx
526#else
527typedef void ruby_sigaction_t(int);
528#define SIGINFO_ARG
529#define SIGINFO_CTX 0
530#endif
531
532#ifdef USE_SIGALTSTACK
533/* XXX: BSD_vfprintf() uses >1500B stack and x86-64 need >5KiB stack. */
534#define RUBY_SIGALTSTACK_SIZE (16*1024)
535
536static int
537rb_sigaltstack_size(void)
538{
539 int size = RUBY_SIGALTSTACK_SIZE;
540
541#ifdef MINSIGSTKSZ
542 {
543 int minsigstksz = (int)MINSIGSTKSZ;
544 if (size < minsigstksz)
545 size = minsigstksz;
546 }
547#endif
548#if defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE)
549 {
550 int pagesize;
551 pagesize = (int)sysconf(_SC_PAGE_SIZE);
552 if (size < pagesize)
553 size = pagesize;
554 }
555#endif
556
557 return size;
558}
559
560static int rb_sigaltstack_size_value = 0;
561
562void *
563rb_allocate_sigaltstack(void)
564{
565 void *altstack;
566 if (!rb_sigaltstack_size_value) {
567 rb_sigaltstack_size_value = rb_sigaltstack_size();
568 }
569 altstack = malloc(rb_sigaltstack_size_value);
570 if (!altstack) rb_memerror();
571 return altstack;
572}
573
574/* alternate stack for SIGSEGV */
575void *
576rb_register_sigaltstack(void *altstack)
577{
578 stack_t newSS, oldSS;
579
580 newSS.ss_size = rb_sigaltstack_size_value;
581 newSS.ss_sp = altstack;
582 newSS.ss_flags = 0;
583
584 sigaltstack(&newSS, &oldSS); /* ignore error. */
585
586 return newSS.ss_sp;
587}
588#endif /* USE_SIGALTSTACK */
589
590#ifdef POSIX_SIGNAL
591static sighandler_t
592ruby_signal(int signum, sighandler_t handler)
593{
594 struct sigaction sigact, old;
595
596#if 0
597 rb_trap_accept_nativethreads[signum] = 0;
598#endif
599
600 sigemptyset(&sigact.sa_mask);
601#if defined(USE_SIGALTSTACK) && !defined(__wasm__)
602 if (handler == SIG_IGN || handler == SIG_DFL) {
603 sigact.sa_handler = handler;
604 sigact.sa_flags = 0;
605 }
606 else {
607 sigact.sa_sigaction = (ruby_sigaction_t*)handler;
608 sigact.sa_flags = SA_SIGINFO;
609 }
610#else
611 sigact.sa_handler = handler;
612 sigact.sa_flags = 0;
613#endif
614
615 switch (signum) {
616#if defined(SA_ONSTACK) && defined(USE_SIGALTSTACK)
617 case SIGSEGV:
618#ifdef SIGBUS
619 case SIGBUS:
620#endif
621 sigact.sa_flags |= SA_ONSTACK;
622 break;
623#endif
624 }
625 (void)VALGRIND_MAKE_MEM_DEFINED(&old, sizeof(old));
626 if (sigaction(signum, &sigact, &old) < 0) {
627 return SIG_ERR;
628 }
629 if (old.sa_flags & SA_SIGINFO)
630 handler = (sighandler_t)old.sa_sigaction;
631 else
632 handler = old.sa_handler;
633 ASSUME(handler != SIG_ERR);
634 return handler;
635}
636
637sighandler_t
638ruby_posix_signal(int signum, sighandler_t handler)
639{
640 return ruby_signal(signum, handler);
641}
642
643#elif defined _WIN32
644static inline sighandler_t
645ruby_signal(int signum, sighandler_t handler)
646{
647 if (signum == SIGKILL) {
648 errno = EINVAL;
649 return SIG_ERR;
650 }
651 return signal(signum, handler);
652}
653
654#else /* !POSIX_SIGNAL */
655#define ruby_signal(sig,handler) (/* rb_trap_accept_nativethreads[(sig)] = 0,*/ signal((sig),(handler)))
656#if 0 /* def HAVE_NATIVETHREAD */
657static sighandler_t
658ruby_nativethread_signal(int signum, sighandler_t handler)
659{
660 sighandler_t old;
661
662 old = signal(signum, handler);
663 rb_trap_accept_nativethreads[signum] = 1;
664 return old;
665}
666#endif
667#endif
668
669static int
670signal_ignored(int sig)
671{
672 sighandler_t func;
673#ifdef POSIX_SIGNAL
674 struct sigaction old;
675 (void)VALGRIND_MAKE_MEM_DEFINED(&old, sizeof(old));
676 if (sigaction(sig, NULL, &old) < 0) return FALSE;
677 func = old.sa_handler;
678#else
679 // TODO: this is not a thread-safe way to do it. Needs lock.
680 sighandler_t old = signal(sig, SIG_DFL);
681 signal(sig, old);
682 func = old;
683#endif
684 if (func == SIG_IGN) return 1;
685 return func == sighandler ? 0 : -1;
686}
687
688static void
689signal_enque(int sig)
690{
691 ATOMIC_INC(signal_buff.cnt[sig]);
692 ATOMIC_INC(signal_buff.size);
693}
694
695static void
696sighandler(int sig)
697{
698 int old_errnum = errno;
699
700 signal_enque(sig);
701 rb_thread_wakeup_timer_thread(sig);
702
703#if !defined(BSD_SIGNAL) && !defined(POSIX_SIGNAL)
704 ruby_signal(sig, sighandler);
705#endif
706
707 errno = old_errnum;
708}
709
710int
711rb_signal_buff_size(void)
712{
713 return signal_buff.size;
714}
715
716static void
717rb_disable_interrupt(void)
718{
719#ifdef HAVE_PTHREAD_SIGMASK
720 sigset_t mask;
721 sigfillset(&mask);
722 pthread_sigmask(SIG_SETMASK, &mask, NULL);
723#endif
724}
725
726static void
727rb_enable_interrupt(void)
728{
729#ifdef HAVE_PTHREAD_SIGMASK
730 sigset_t mask;
731 sigemptyset(&mask);
732 pthread_sigmask(SIG_SETMASK, &mask, NULL);
733#endif
734}
735
736int
737rb_get_next_signal(void)
738{
739 int i, sig = 0;
740
741 if (signal_buff.size != 0) {
742 for (i=1; i<RUBY_NSIG; i++) {
743 if (signal_buff.cnt[i] > 0) {
744 ATOMIC_DEC(signal_buff.cnt[i]);
745 ATOMIC_DEC(signal_buff.size);
746 sig = i;
747 break;
748 }
749 }
750 }
751 return sig;
752}
753
754#if defined SIGSEGV || defined SIGBUS || defined SIGILL || defined SIGFPE
755static const char *received_signal;
756# define clear_received_signal() do { \
757 if (GET_VM() != NULL) rb_gc_enable(); \
758 received_signal = 0; \
759} while (0)
760#else
761# define clear_received_signal() ((void)0)
762#endif
763
764#if defined(USE_SIGALTSTACK) || defined(_WIN32)
765NORETURN(void rb_ec_stack_overflow(rb_execution_context_t *ec, int crit));
766# if defined __HAIKU__
767# define USE_UCONTEXT_REG 1
768# elif !(defined(HAVE_UCONTEXT_H) && (defined __i386__ || defined __x86_64__ || defined __amd64__))
769# elif defined __linux__
770# define USE_UCONTEXT_REG 1
771# elif defined __APPLE__
772# define USE_UCONTEXT_REG 1
773# elif defined __FreeBSD__
774# define USE_UCONTEXT_REG 1
775# endif
776#if defined(HAVE_PTHREAD_SIGMASK)
777# define ruby_sigunmask pthread_sigmask
778#elif defined(HAVE_SIGPROCMASK)
779# define ruby_sigunmask sigprocmask
780#endif
781static void
782reset_sigmask(int sig)
783{
784#if defined(ruby_sigunmask)
785 sigset_t mask;
786#endif
787 clear_received_signal();
788#if defined(ruby_sigunmask)
789 sigemptyset(&mask);
790 sigaddset(&mask, sig);
791 if (ruby_sigunmask(SIG_UNBLOCK, &mask, NULL)) {
792 rb_bug_errno(STRINGIZE(ruby_sigunmask)":unblock", errno);
793 }
794#endif
795}
796
797# ifdef USE_UCONTEXT_REG
798static void
799check_stack_overflow(int sig, const uintptr_t addr, const ucontext_t *ctx)
800{
801 const DEFINE_MCONTEXT_PTR(mctx, ctx);
802# if defined __linux__
803# if defined REG_RSP
804 const greg_t sp = mctx->gregs[REG_RSP];
805 const greg_t bp = mctx->gregs[REG_RBP];
806# else
807 const greg_t sp = mctx->gregs[REG_ESP];
808 const greg_t bp = mctx->gregs[REG_EBP];
809# endif
810# elif defined __APPLE__
811# include <AvailabilityMacros.h>
812# if defined(MAC_OS_X_VERSION_10_5) && MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5
813# define MCTX_SS_REG(reg) __ss.__##reg
814# else
815# define MCTX_SS_REG(reg) ss.reg
816# endif
817# if defined(__LP64__)
818 const uintptr_t sp = mctx->MCTX_SS_REG(rsp);
819 const uintptr_t bp = mctx->MCTX_SS_REG(rbp);
820# else
821 const uintptr_t sp = mctx->MCTX_SS_REG(esp);
822 const uintptr_t bp = mctx->MCTX_SS_REG(ebp);
823# endif
824# elif defined __FreeBSD__
825# if defined(__amd64__)
826 const __register_t sp = mctx->mc_rsp;
827 const __register_t bp = mctx->mc_rbp;
828# else
829 const __register_t sp = mctx->mc_esp;
830 const __register_t bp = mctx->mc_ebp;
831# endif
832# elif defined __HAIKU__
833# if defined(__amd64__)
834 const unsigned long sp = mctx->rsp;
835 const unsigned long bp = mctx->rbp;
836# else
837 const unsigned long sp = mctx->esp;
838 const unsigned long bp = mctx->ebp;
839# endif
840# endif
841 enum {pagesize = 4096};
842 const uintptr_t sp_page = (uintptr_t)sp / pagesize;
843 const uintptr_t bp_page = (uintptr_t)bp / pagesize;
844 const uintptr_t fault_page = addr / pagesize;
845
846 /* SP in ucontext is not decremented yet when `push` failed, so
847 * the fault page can be the next. */
848 if (sp_page == fault_page || sp_page == fault_page + 1 ||
849 (sp_page <= fault_page && fault_page <= bp_page)) {
850 rb_execution_context_t *ec = GET_EC();
851 int crit = FALSE;
852 int uplevel = roomof(pagesize, sizeof(*ec->tag)) / 2; /* XXX: heuristic */
853 while ((uintptr_t)ec->tag->buf / pagesize <= fault_page + 1) {
854 /* drop the last tag if it is close to the fault,
855 * otherwise it can cause stack overflow again at the same
856 * place. */
857 if ((crit = (!ec->tag->prev || !--uplevel)) != FALSE) break;
858 rb_vm_tag_jmpbuf_deinit(&ec->tag->buf);
859 ec->tag = ec->tag->prev;
860 }
861 reset_sigmask(sig);
862 rb_ec_stack_overflow(ec, crit + 1);
863 }
864}
865# else
866static void
867check_stack_overflow(int sig, const void *addr)
868{
869 int ruby_stack_overflowed_p(const rb_thread_t *, const void *);
870 rb_thread_t *th = GET_THREAD();
871 if (ruby_stack_overflowed_p(th, addr)) {
872 reset_sigmask(sig);
873 rb_ec_stack_overflow(th->ec, 1);
874 }
875}
876# endif
877
878# ifdef _WIN32
879# define CHECK_STACK_OVERFLOW() check_stack_overflow(sig, 0)
880# else
881# define FAULT_ADDRESS info->si_addr
882# ifdef USE_UCONTEXT_REG
883# define CHECK_STACK_OVERFLOW_() check_stack_overflow(sig, (uintptr_t)FAULT_ADDRESS, ctx)
884# else
885# define CHECK_STACK_OVERFLOW_() check_stack_overflow(sig, FAULT_ADDRESS)
886# endif
887# define MESSAGE_FAULT_ADDRESS " at %p", FAULT_ADDRESS
888# define SIGNAL_FROM_USER_P() ((info)->si_code == SI_USER)
889# define CHECK_STACK_OVERFLOW() (SIGNAL_FROM_USER_P() ? (void)0 : CHECK_STACK_OVERFLOW_())
890# endif
891#else
892# define CHECK_STACK_OVERFLOW() (void)0
893#endif
894#ifndef MESSAGE_FAULT_ADDRESS
895# define MESSAGE_FAULT_ADDRESS
896#endif
897
898#if defined SIGSEGV || defined SIGBUS || defined SIGILL || defined SIGFPE
899NOINLINE(static void check_reserved_signal_(const char *name, size_t name_len, int signo));
900/* noinine to reduce stack usage in signal handers */
901
902#define check_reserved_signal(name) check_reserved_signal_(name, sizeof(name)-1, sig)
903
904#ifdef SIGBUS
905
906static sighandler_t default_sigbus_handler;
907NORETURN(static ruby_sigaction_t sigbus);
908
909static void
910sigbus(int sig SIGINFO_ARG)
911{
912 check_reserved_signal("BUS");
913/*
914 * Mac OS X makes KERN_PROTECTION_FAILURE when thread touch guard page.
915 * and it's delivered as SIGBUS instead of SIGSEGV to userland. It's crazy
916 * wrong IMHO. but anyway we have to care it. Sigh.
917 */
918 /* Seems Linux also delivers SIGBUS. */
919#if defined __APPLE__ || defined __linux__
920 CHECK_STACK_OVERFLOW();
921#endif
922 rb_bug_for_fatal_signal(default_sigbus_handler, sig, SIGINFO_CTX, "Bus Error" MESSAGE_FAULT_ADDRESS);
923}
924#endif
925
926#ifdef SIGSEGV
927
928static sighandler_t default_sigsegv_handler;
929NORETURN(static ruby_sigaction_t sigsegv);
930
931static void
932sigsegv(int sig SIGINFO_ARG)
933{
934 check_reserved_signal("SEGV");
935 CHECK_STACK_OVERFLOW();
936 rb_bug_for_fatal_signal(default_sigsegv_handler, sig, SIGINFO_CTX, "Segmentation fault" MESSAGE_FAULT_ADDRESS);
937}
938#endif
939
940#ifdef SIGILL
941
942static sighandler_t default_sigill_handler;
943NORETURN(static ruby_sigaction_t sigill);
944
945static void
946sigill(int sig SIGINFO_ARG)
947{
948 check_reserved_signal("ILL");
949#if defined __APPLE__ || defined __linux__
950 CHECK_STACK_OVERFLOW();
951#endif
952 rb_bug_for_fatal_signal(default_sigill_handler, sig, SIGINFO_CTX, "Illegal instruction" MESSAGE_FAULT_ADDRESS);
953}
954#endif
955
956#ifndef __sun
957NORETURN(static void ruby_abort(void));
958#endif
959
960static void
961ruby_abort(void)
962{
963#ifdef __sun
964 /* Solaris's abort() is async signal unsafe. Of course, it is not
965 * POSIX compliant.
966 */
967 raise(SIGABRT);
968#else
969 abort();
970#endif
971}
972
973static void
974check_reserved_signal_(const char *name, size_t name_len, int signo)
975{
976 const char *prev = ATOMIC_PTR_EXCHANGE(received_signal, name);
977
978 if (prev) {
979 ssize_t RB_UNUSED_VAR(err);
980 static const int stderr_fd = 2;
981#define NOZ(name, str) RBIMPL_ATTR_NONSTRING() name[sizeof(str)-1] = str
982 static const char NOZ(msg1, " received in ");
983 static const char NOZ(msg2, " handler\n");
984
985#ifdef HAVE_WRITEV
986 struct iovec iov[4];
987 int i = 0;
988# define W(str, len) \
989 iov[i++] = (struct iovec){.iov_base = (void *)(str), .iov_len = (len)}
990#else
991# define W(str, len) err = write(stderr_fd, (str), (len))
992#endif
993
994#if __has_feature(address_sanitizer) || \
995 __has_feature(memory_sanitizer) || \
996 defined(HAVE_VALGRIND_MEMCHECK_H)
997 ruby_posix_signal(signo, SIG_DFL);
998#endif
999 W(name, name_len);
1000 W(msg1, sizeof(msg1));
1001 W(prev, strlen(prev));
1002 W(msg2, sizeof(msg2));
1003# undef W
1004#ifdef HAVE_WRITEV
1005 err = writev(stderr_fd, iov, i);
1006#endif
1007 ruby_abort();
1008 }
1009
1010 if (GET_VM() != NULL) {
1011 rb_gc_disable_no_rest();
1012 }
1013}
1014#endif
1015
1016#if defined SIGPIPE || defined SIGSYS
1017static void
1018sig_do_nothing(int sig)
1019{
1020}
1021#endif
1022
1023static int
1024signal_exec(VALUE cmd, int sig)
1025{
1026 rb_execution_context_t *ec = GET_EC();
1027 volatile rb_atomic_t old_interrupt_mask = ec->interrupt_mask;
1028 enum ruby_tag_type state;
1029
1030 /*
1031 * workaround the following race:
1032 * 1. signal_enque queues signal for execution
1033 * 2. user calls trap(sig, "IGNORE"), setting SIG_IGN
1034 * 3. rb_signal_exec runs on queued signal
1035 */
1036 if (IMMEDIATE_P(cmd))
1037 return FALSE;
1038
1039 ec->interrupt_mask |= TRAP_INTERRUPT_MASK;
1040 EC_PUSH_TAG(ec);
1041 if ((state = EC_EXEC_TAG()) == TAG_NONE) {
1042 VALUE signum = INT2NUM(sig);
1043 rb_eval_cmd_kw(cmd, rb_ary_new3(1, signum), RB_NO_KEYWORDS);
1044 }
1045 EC_POP_TAG();
1046 ec = GET_EC();
1047 ec->interrupt_mask = old_interrupt_mask;
1048
1049 if (state) {
1050 /* XXX: should be replaced with rb_threadptr_pending_interrupt_enque() */
1051 EC_JUMP_TAG(ec, state);
1052 }
1053 return TRUE;
1054}
1055
1056void
1057rb_vm_trap_exit(rb_vm_t *vm)
1058{
1059 VALUE trap_exit = vm->trap_list.cmd[0];
1060
1061 if (trap_exit) {
1062 vm->trap_list.cmd[0] = 0;
1063 signal_exec(trap_exit, 0);
1064 }
1065}
1066
1067/* returns true if a trap handler was run, false otherwise */
1068int
1069rb_signal_exec(rb_thread_t *th, int sig)
1070{
1071 rb_vm_t *vm = GET_VM();
1072 VALUE cmd = vm->trap_list.cmd[sig];
1073
1074 if (cmd == 0) {
1075 switch (sig) {
1076 case SIGINT:
1077 rb_interrupt();
1078 break;
1079#ifdef SIGHUP
1080 case SIGHUP:
1081#endif
1082#ifdef SIGQUIT
1083 case SIGQUIT:
1084#endif
1085#ifdef SIGTERM
1086 case SIGTERM:
1087#endif
1088#ifdef SIGALRM
1089 case SIGALRM:
1090#endif
1091#ifdef SIGUSR1
1092 case SIGUSR1:
1093#endif
1094#ifdef SIGUSR2
1095 case SIGUSR2:
1096#endif
1097 rb_threadptr_signal_raise(th, sig);
1098 break;
1099 }
1100 }
1101 else if (UNDEF_P(cmd)) {
1102 rb_threadptr_signal_exit(th);
1103 }
1104 else {
1105 return signal_exec(cmd, sig);
1106 }
1107 return FALSE;
1108}
1109
1110static sighandler_t
1111default_handler(int sig)
1112{
1113 sighandler_t func;
1114 switch (sig) {
1115 case SIGINT:
1116#ifdef SIGHUP
1117 case SIGHUP:
1118#endif
1119#ifdef SIGQUIT
1120 case SIGQUIT:
1121#endif
1122#ifdef SIGTERM
1123 case SIGTERM:
1124#endif
1125#ifdef SIGALRM
1126 case SIGALRM:
1127#endif
1128#ifdef SIGUSR1
1129 case SIGUSR1:
1130#endif
1131#ifdef SIGUSR2
1132 case SIGUSR2:
1133#endif
1134#ifdef RUBY_SIGCHLD
1135 case RUBY_SIGCHLD:
1136#endif
1137 func = sighandler;
1138 break;
1139#ifdef SIGBUS
1140 case SIGBUS:
1141 func = (sighandler_t)sigbus;
1142 break;
1143#endif
1144#ifdef SIGSEGV
1145 case SIGSEGV:
1146 func = (sighandler_t)sigsegv;
1147 break;
1148#endif
1149#ifdef SIGPIPE
1150 case SIGPIPE:
1151 func = sig_do_nothing;
1152 break;
1153#endif
1154#ifdef SIGSYS
1155 case SIGSYS:
1156 func = sig_do_nothing;
1157 break;
1158#endif
1159 default:
1160 func = SIG_DFL;
1161 break;
1162 }
1163
1164 return func;
1165}
1166
1167static sighandler_t
1168trap_handler(VALUE *cmd, int sig)
1169{
1170 sighandler_t func = sighandler;
1171 VALUE command;
1172
1173 if (NIL_P(*cmd)) {
1174 func = SIG_IGN;
1175 }
1176 else {
1177 command = rb_check_string_type(*cmd);
1178 if (NIL_P(command) && SYMBOL_P(*cmd)) {
1179 command = rb_sym2str(*cmd);
1180 if (!command) rb_raise(rb_eArgError, "bad handler");
1181 }
1182 if (!NIL_P(command)) {
1183 const char *cptr;
1184 long len;
1185 StringValue(command);
1186 *cmd = command;
1187 RSTRING_GETMEM(command, cptr, len);
1188 switch (len) {
1189 sig_ign:
1190 func = SIG_IGN;
1191 *cmd = Qtrue;
1192 break;
1193 sig_dfl:
1194 func = default_handler(sig);
1195 *cmd = 0;
1196 break;
1197 case 0:
1198 goto sig_ign;
1199 break;
1200 case 14:
1201 if (memcmp(cptr, "SYSTEM_DEFAULT", 14) == 0) {
1202 func = SIG_DFL;
1203 *cmd = 0;
1204 }
1205 break;
1206 case 7:
1207 if (memcmp(cptr, "SIG_IGN", 7) == 0) {
1208 goto sig_ign;
1209 }
1210 else if (memcmp(cptr, "SIG_DFL", 7) == 0) {
1211 goto sig_dfl;
1212 }
1213 else if (memcmp(cptr, "DEFAULT", 7) == 0) {
1214 goto sig_dfl;
1215 }
1216 break;
1217 case 6:
1218 if (memcmp(cptr, "IGNORE", 6) == 0) {
1219 goto sig_ign;
1220 }
1221 break;
1222 case 4:
1223 if (memcmp(cptr, "EXIT", 4) == 0) {
1224 *cmd = Qundef;
1225 }
1226 break;
1227 }
1228 }
1229 else {
1230 rb_proc_t *proc;
1231 GetProcPtr(*cmd, proc);
1232 (void)proc;
1233 }
1234 }
1235
1236 return func;
1237}
1238
1239static int
1240trap_signm(VALUE vsig)
1241{
1242 int sig = -1;
1243
1244 if (FIXNUM_P(vsig)) {
1245 sig = FIX2INT(vsig);
1246 if (sig < 0 || sig >= NSIG) {
1247 rb_raise(rb_eArgError, "invalid signal number (%d)", sig);
1248 }
1249 }
1250 else {
1251 sig = signm2signo(&vsig, FALSE, TRUE, NULL);
1252 }
1253 return sig;
1254}
1255
1256static VALUE
1257trap(int sig, sighandler_t func, VALUE command)
1258{
1259 sighandler_t oldfunc;
1260 VALUE oldcmd;
1261 rb_vm_t *vm = GET_VM();
1262
1263 /*
1264 * Be careful. ruby_signal() and trap_list.cmd[sig] must be changed
1265 * atomically. In current implementation, we only need to don't call
1266 * RUBY_VM_CHECK_INTS().
1267 */
1268 if (sig == 0) {
1269 oldfunc = SIG_ERR;
1270 }
1271 else {
1272 oldfunc = ruby_signal(sig, func);
1273 if (oldfunc == SIG_ERR) rb_sys_fail_str(rb_signo2signm(sig));
1274 }
1275 oldcmd = vm->trap_list.cmd[sig];
1276 switch (oldcmd) {
1277 case 0:
1278 case Qtrue:
1279 if (oldfunc == SIG_IGN) oldcmd = rb_str_new2("IGNORE");
1280 else if (oldfunc == SIG_DFL) oldcmd = rb_str_new2("SYSTEM_DEFAULT");
1281 else if (oldfunc == sighandler) oldcmd = rb_str_new2("DEFAULT");
1282 else oldcmd = Qnil;
1283 break;
1284 case Qnil:
1285 break;
1286 case Qundef:
1287 oldcmd = rb_str_new2("EXIT");
1288 break;
1289 }
1290
1291 ACCESS_ONCE(VALUE, vm->trap_list.cmd[sig]) = command;
1292
1293 return oldcmd;
1294}
1295
1296static int
1297reserved_signal_p(int signo)
1298{
1299/* Synchronous signal can't deliver to main thread */
1300#ifdef SIGSEGV
1301 if (signo == SIGSEGV)
1302 return 1;
1303#endif
1304#ifdef SIGBUS
1305 if (signo == SIGBUS)
1306 return 1;
1307#endif
1308#ifdef SIGILL
1309 if (signo == SIGILL)
1310 return 1;
1311#endif
1312#ifdef SIGFPE
1313 if (signo == SIGFPE)
1314 return 1;
1315#endif
1316
1317/* used ubf internal see thread_pthread.c. */
1318#ifdef SIGVTALRM
1319 if (signo == SIGVTALRM)
1320 return 1;
1321#endif
1322
1323 return 0;
1324}
1325
1326/*
1327 * call-seq:
1328 * Signal.trap( signal, command ) -> obj
1329 * Signal.trap( signal ) {| | block } -> obj
1330 *
1331 * Specifies the handling of signals. The first parameter is a signal
1332 * name (a string such as ``SIGALRM'', ``SIGUSR1'', and so on) or a
1333 * signal number. The characters ``SIG'' may be omitted from the
1334 * signal name. The command or block specifies code to be run when the
1335 * signal is raised.
1336 * If the command is the string ``IGNORE'' or ``SIG_IGN'', the signal
1337 * will be ignored.
1338 * If the command is ``DEFAULT'' or ``SIG_DFL'', the Ruby's default handler
1339 * will be invoked.
1340 * If the command is ``EXIT'', the script will be terminated by the signal.
1341 * If the command is ``SYSTEM_DEFAULT'', the operating system's default
1342 * handler will be invoked.
1343 * Otherwise, the given command or block will be run.
1344 * The special signal name ``EXIT'' or signal number zero will be
1345 * invoked just prior to program termination.
1346 * trap returns the previous handler for the given signal.
1347 *
1348 * Signal.trap(0, proc { puts "Terminating: #{$$}" })
1349 * Signal.trap("CLD") { puts "Child died" }
1350 * fork && Process.wait
1351 *
1352 * <em>produces:</em>
1353 * Terminating: 27461
1354 * Child died
1355 * Terminating: 27460
1356 */
1357static VALUE
1358sig_trap(int argc, VALUE *argv, VALUE _)
1359{
1360 int sig;
1361 sighandler_t func;
1362 VALUE cmd;
1363
1364 rb_check_arity(argc, 1, 2);
1365
1366 sig = trap_signm(argv[0]);
1367 if (reserved_signal_p(sig)) {
1368 const char *name = signo2signm(sig);
1369 if (name)
1370 rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name);
1371 else
1372 rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig);
1373 }
1374
1375 if (argc == 1) {
1376 cmd = rb_block_proc();
1377 func = sighandler;
1378 }
1379 else {
1380 cmd = argv[1];
1381 func = trap_handler(&cmd, sig);
1382 }
1383
1384 if (rb_obj_is_proc(cmd) &&
1385 !rb_ractor_main_p() && !rb_ractor_shareable_p(cmd)) {
1386 cmd = rb_proc_isolate(cmd);
1387 }
1388
1389 return trap(sig, func, cmd);
1390}
1391
1392/*
1393 * call-seq:
1394 * Signal.list -> a_hash
1395 *
1396 * Returns a list of signal names mapped to the corresponding
1397 * underlying signal numbers.
1398 *
1399 * Signal.list #=> {"EXIT"=>0, "HUP"=>1, "INT"=>2, "QUIT"=>3, "ILL"=>4, "TRAP"=>5, "IOT"=>6, "ABRT"=>6, "FPE"=>8, "KILL"=>9, "BUS"=>7, "SEGV"=>11, "SYS"=>31, "PIPE"=>13, "ALRM"=>14, "TERM"=>15, "URG"=>23, "STOP"=>19, "TSTP"=>20, "CONT"=>18, "CHLD"=>17, "CLD"=>17, "TTIN"=>21, "TTOU"=>22, "IO"=>29, "XCPU"=>24, "XFSZ"=>25, "VTALRM"=>26, "PROF"=>27, "WINCH"=>28, "USR1"=>10, "USR2"=>12, "PWR"=>30, "POLL"=>29}
1400 */
1401static VALUE
1402sig_list(VALUE _)
1403{
1404 VALUE h = rb_hash_new();
1405 const struct signals *sigs;
1406
1407 FOREACH_SIGNAL(sigs, 0) {
1408 rb_hash_aset(h, rb_fstring_cstr(sigs->signm), INT2FIX(sigs->signo));
1409 }
1410 return h;
1411}
1412
1413#define INSTALL_SIGHANDLER(cond, signame, signum) do { \
1414 static const char failed[] = "failed to install "signame" handler"; \
1415 if (!(cond)) break; \
1416 if (reserved_signal_p(signum)) rb_bug(failed); \
1417 perror(failed); \
1418 } while (0)
1419
1420static int
1421install_sighandler_core(int signum, sighandler_t handler, sighandler_t *old_handler)
1422{
1423 sighandler_t old;
1424
1425 old = ruby_signal(signum, handler);
1426 if (old == SIG_ERR) return -1;
1427 if (old_handler) {
1428 *old_handler = (old == SIG_DFL || old == SIG_IGN) ? 0 : old;
1429 }
1430 else {
1431 /* signal handler should be inherited during exec. */
1432 if (old != SIG_DFL) {
1433 ruby_signal(signum, old);
1434 }
1435 }
1436 return 0;
1437}
1438
1439# define install_sighandler(signum, handler) \
1440 INSTALL_SIGHANDLER(install_sighandler_core(signum, handler, NULL), #signum, signum)
1441# define force_install_sighandler(signum, handler, old_handler) \
1442 INSTALL_SIGHANDLER(install_sighandler_core(signum, handler, old_handler), #signum, signum)
1443
1444void
1446{
1447 sighandler_t oldfunc;
1448
1449 oldfunc = ruby_signal(SIGINT, SIG_IGN);
1450 if (oldfunc == sighandler) {
1451 ruby_signal(SIGINT, SIG_DFL);
1452 }
1453}
1454
1455int ruby_enable_coredump = 0;
1456
1457/*
1458 * Many operating systems allow signals to be sent to running
1459 * processes. Some signals have a defined effect on the process, while
1460 * others may be trapped at the code level and acted upon. For
1461 * example, your process may trap the USR1 signal and use it to toggle
1462 * debugging, and may use TERM to initiate a controlled shutdown.
1463 *
1464 * pid = fork do
1465 * Signal.trap("USR1") do
1466 * $debug = !$debug
1467 * puts "Debug now: #$debug"
1468 * end
1469 * Signal.trap("TERM") do
1470 * puts "Terminating..."
1471 * shutdown()
1472 * end
1473 * # . . . do some work . . .
1474 * end
1475 *
1476 * Process.detach(pid)
1477 *
1478 * # Controlling program:
1479 * Process.kill("USR1", pid)
1480 * # ...
1481 * Process.kill("USR1", pid)
1482 * # ...
1483 * Process.kill("TERM", pid)
1484 *
1485 * <em>produces:</em>
1486 * Debug now: true
1487 * Debug now: false
1488 * Terminating...
1489 *
1490 * The list of available signal names and their interpretation is
1491 * system dependent. Signal delivery semantics may also vary between
1492 * systems; in particular signal delivery may not always be reliable.
1493 */
1494void
1495Init_signal(void)
1496{
1497 VALUE mSignal = rb_define_module("Signal");
1498
1499 rb_define_global_function("trap", sig_trap, -1);
1500 rb_define_module_function(mSignal, "trap", sig_trap, -1);
1501 rb_define_module_function(mSignal, "list", sig_list, 0);
1502 rb_define_module_function(mSignal, "signame", sig_signame, 1);
1503
1504 rb_define_method(rb_eSignal, "initialize", esignal_init, -1);
1505 rb_define_method(rb_eSignal, "signo", esignal_signo, 0);
1506 rb_alias(rb_eSignal, rb_intern_const("signm"), rb_intern_const("message"));
1507 rb_define_method(rb_eInterrupt, "initialize", interrupt_init, -1);
1508
1509 // It should be ready to call rb_signal_exec()
1510 VM_ASSERT(GET_THREAD()->pending_interrupt_queue);
1511
1512 /* At this time, there is no subthread. Then sigmask guarantee atomics. */
1513 rb_disable_interrupt();
1514
1515 install_sighandler(SIGINT, sighandler);
1516#ifdef SIGHUP
1517 install_sighandler(SIGHUP, sighandler);
1518#endif
1519#ifdef SIGQUIT
1520 install_sighandler(SIGQUIT, sighandler);
1521#endif
1522#ifdef SIGTERM
1523 install_sighandler(SIGTERM, sighandler);
1524#endif
1525#ifdef SIGALRM
1526 install_sighandler(SIGALRM, sighandler);
1527#endif
1528#ifdef SIGUSR1
1529 install_sighandler(SIGUSR1, sighandler);
1530#endif
1531#ifdef SIGUSR2
1532 install_sighandler(SIGUSR2, sighandler);
1533#endif
1534
1535 if (!ruby_enable_coredump) {
1536#ifdef SIGBUS
1537 force_install_sighandler(SIGBUS, (sighandler_t)sigbus, &default_sigbus_handler);
1538#endif
1539#ifdef SIGILL
1540 force_install_sighandler(SIGILL, (sighandler_t)sigill, &default_sigill_handler);
1541#endif
1542#ifdef SIGSEGV
1543 RB_ALTSTACK_INIT(GET_VM()->main_altstack, rb_allocate_sigaltstack());
1544 force_install_sighandler(SIGSEGV, (sighandler_t)sigsegv, &default_sigsegv_handler);
1545#endif
1546 }
1547#ifdef SIGPIPE
1548 install_sighandler(SIGPIPE, sig_do_nothing);
1549#endif
1550#ifdef SIGSYS
1551 install_sighandler(SIGSYS, sig_do_nothing);
1552#endif
1553
1554#ifdef RUBY_SIGCHLD
1555 install_sighandler(RUBY_SIGCHLD, sighandler);
1556#endif
1557
1558 rb_enable_interrupt();
1559}
std::atomic< unsigned > rb_atomic_t
Type that is eligible for atomic operations.
Definition atomic.h:69
#define rb_define_method(klass, mid, func, arity)
Defines klass#mid.
#define rb_define_module_function(klass, mid, func, arity)
Defines klass#mid and makes it a module function.
#define rb_define_global_function(mid, func, arity)
Defines rb_mKernel #mid.
VALUE rb_define_module(const char *name)
Defines a top-level module.
Definition class.c:1598
#define rb_str_new2
Old name of rb_str_new_cstr.
Definition string.h:1675
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define UNREACHABLE_RETURN
Old name of RBIMPL_UNREACHABLE_RETURN.
Definition assume.h:29
#define FIX2INT
Old name of RB_FIX2INT.
Definition int.h:41
#define ASSUME
Old name of RBIMPL_ASSUME.
Definition assume.h:27
#define rb_ary_new3
Old name of rb_ary_new_from_args.
Definition array.h:658
#define Qtrue
Old name of RUBY_Qtrue.
#define NUM2INT
Old name of RB_NUM2INT.
Definition int.h:44
#define INT2NUM
Old name of RB_INT2NUM.
Definition int.h:43
#define Qnil
Old name of RUBY_Qnil.
#define NIL_P
Old name of RB_NIL_P.
#define IMMEDIATE_P
Old name of RB_IMMEDIATE_P.
#define FIXNUM_P
Old name of RB_FIXNUM_P.
#define SYMBOL_P
Old name of RB_SYMBOL_P.
Definition value_type.h:88
void ruby_sig_finalize(void)
Clear signal handlers.
Definition signal.c:1445
VALUE rb_eInterrupt
Interrupt exception.
Definition error.c:1424
void rb_bug_errno(const char *mesg, int errno_arg)
This is a wrapper of rb_bug() which automatically constructs appropriate message from the passed errn...
Definition error.c:1140
VALUE rb_eSignal
SignalException exception.
Definition error.c:1425
VALUE rb_check_to_integer(VALUE val, const char *mid)
Identical to rb_check_convert_type(), except the return value type is fixed to rb_cInteger.
Definition object.c:3209
VALUE rb_call_super(int argc, const VALUE *argv)
This resembles ruby's super.
Definition vm_eval.c:362
#define UNLIMITED_ARGUMENTS
This macro is used in conjunction with rb_check_arity().
Definition error.h:35
static int rb_check_arity(int argc, int min, int max)
Ensures that the passed integer is in the passed range.
Definition error.h:284
VALUE rb_block_proc(void)
Constructs a Proc object from implicitly passed components.
Definition proc.c:842
VALUE rb_obj_is_proc(VALUE recv)
Queries if the given object is a proc.
Definition proc.c:119
void ruby_default_signal(int sig)
Pretends as if there was no custom signal handler.
Definition signal.c:412
const char * ruby_signal_name(int signo)
Queries the name of the signal.
Definition signal.c:318
VALUE rb_f_kill(int argc, const VALUE *argv)
Sends a signal ("kills") to processes.
Definition signal.c:431
VALUE rb_str_append(VALUE dst, VALUE src)
Identical to rb_str_buf_append(), except it converts the right hand side before concatenating.
Definition string.c:4102
VALUE rb_str_subseq(VALUE str, long beg, long len)
Identical to rb_str_substr(), except the numbers are interpreted as byte offsets instead of character...
Definition string.c:3460
void rb_must_asciicompat(VALUE obj)
Asserts that the given string's encoding is (Ruby's definition of) ASCII compatible.
Definition string.c:3097
VALUE rb_check_string_type(VALUE obj)
Try converting an object to its stringised representation using its to_str method,...
Definition string.c:3257
#define rb_str_new_cstr(str)
Identical to rb_str_new, except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1514
VALUE rb_thread_current(void)
Obtains the "current" thread.
Definition thread.c:3019
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:2125
VALUE rb_ivar_get(VALUE obj, ID name)
Identical to rb_iv_get(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1518
void rb_alias(VALUE klass, ID dst, ID src)
Resembles alias.
Definition vm_method.c:2393
VALUE rb_eval_cmd_kw(VALUE cmd, VALUE arg, int kw_splat)
This API is practically a variant of rb_proc_call_kw() now.
Definition vm_eval.c:2148
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
VALUE rb_sym2str(VALUE symbol)
Obtain a frozen string representation of a symbol (not including the leading colon).
Definition symbol.c:987
int len
Length of the buffer.
Definition io.h:8
static bool rb_ractor_shareable_p(VALUE obj)
Queries if multiple Ractors can share the passed object or not.
Definition ractor.h:249
Defines RBIMPL_ATTR_NONSTRING.
#define NUM2PIDT
Converts an instance of rb_cNumeric into C's pid_t.
Definition pid_t.h:33
#define StringValue(v)
Ensures that the parameter object is a String.
Definition rstring.h:66
#define RSTRING_GETMEM(str, ptrvar, lenvar)
Convenient macro to obtain the contents and length at once.
Definition rstring.h:488
const char * rb_obj_classname(VALUE obj)
Queries the name of the class of the passed object.
Definition variable.c:512
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
#define RB_NO_KEYWORDS
Do not pass keywords.
Definition scan_args.h:69
#define _(args)
This was a transition path from K&R to ANSI.
Definition stdarg.h:35
Definition win32.h:226
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_SYMBOL_P(VALUE obj)
Queries if the object is an instance of rb_cSymbol.
Definition value_type.h:307
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376