Ruby 3.5.0dev (2025-04-04 revision 6b5e187d0eb07994fee7b5f0336da388a793dcbb)
prism_compile.c (6b5e187d0eb07994fee7b5f0336da388a793dcbb)
1#include "prism.h"
2
8typedef struct {
10 int32_t line;
11
13 uint32_t node_id;
15
16/******************************************************************************/
17/* These macros operate on pm_node_location_t structs as opposed to NODE*s. */
18/******************************************************************************/
19
20#define PUSH_ADJUST(seq, location, label) \
21 ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), (int) (location).line))
22
23#define PUSH_ADJUST_RESTORE(seq, label) \
24 ADD_ELEM((seq), (LINK_ELEMENT *) new_adjust_body(iseq, (label), -1))
25
26#define PUSH_INSN(seq, location, insn) \
27 ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 0))
28
29#define PUSH_INSN1(seq, location, insn, op1) \
30 ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 1, (VALUE)(op1)))
31
32#define PUSH_INSN2(seq, location, insn, op1, op2) \
33 ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 2, (VALUE)(op1), (VALUE)(op2)))
34
35#define PUSH_INSN3(seq, location, insn, op1, op2, op3) \
36 ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_body(iseq, (int) (location).line, (int) (location).node_id, BIN(insn), 3, (VALUE)(op1), (VALUE)(op2), (VALUE)(op3)))
37
38#define PUSH_INSNL(seq, location, insn, label) \
39 (PUSH_INSN1(seq, location, insn, label), LABEL_REF(label))
40
41#define PUSH_LABEL(seq, label) \
42 ADD_ELEM((seq), (LINK_ELEMENT *) (label))
43
44#define PUSH_SEND_R(seq, location, id, argc, block, flag, keywords) \
45 ADD_ELEM((seq), (LINK_ELEMENT *) new_insn_send(iseq, (int) (location).line, (int) (location).node_id, (id), (VALUE)(argc), (block), (VALUE)(flag), (keywords)))
46
47#define PUSH_SEND(seq, location, id, argc) \
48 PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(0), NULL)
49
50#define PUSH_SEND_WITH_FLAG(seq, location, id, argc, flag) \
51 PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)(flag), NULL)
52
53#define PUSH_SEND_WITH_BLOCK(seq, location, id, argc, block) \
54 PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(0), NULL)
55
56#define PUSH_CALL(seq, location, id, argc) \
57 PUSH_SEND_R((seq), location, (id), (argc), NULL, (VALUE)INT2FIX(VM_CALL_FCALL), NULL)
58
59#define PUSH_CALL_WITH_BLOCK(seq, location, id, argc, block) \
60 PUSH_SEND_R((seq), location, (id), (argc), (block), (VALUE)INT2FIX(VM_CALL_FCALL), NULL)
61
62#define PUSH_TRACE(seq, event) \
63 ADD_ELEM((seq), (LINK_ELEMENT *) new_trace_body(iseq, (event), 0))
64
65#define PUSH_CATCH_ENTRY(type, ls, le, iseqv, lc) \
66 ADD_CATCH_ENTRY((type), (ls), (le), (iseqv), (lc))
67
68#define PUSH_SEQ(seq1, seq2) \
69 APPEND_LIST((seq1), (seq2))
70
71#define PUSH_SYNTHETIC_PUTNIL(seq, iseq) \
72 do { \
73 int lineno = ISEQ_COMPILE_DATA(iseq)->last_line; \
74 if (lineno == 0) lineno = FIX2INT(rb_iseq_first_lineno(iseq)); \
75 ADD_SYNTHETIC_INSN(seq, lineno, -1, putnil); \
76 } while (0)
77
78/******************************************************************************/
79/* These functions compile getlocal/setlocal instructions but operate on */
80/* prism locations instead of NODEs. */
81/******************************************************************************/
82
83static void
84pm_iseq_add_getlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level)
85{
86 if (iseq_local_block_param_p(iseq, idx, level)) {
87 ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
88 }
89 else {
90 ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(getlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
91 }
92 if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qfalse);
93}
94
95static void
96pm_iseq_add_setlocal(rb_iseq_t *iseq, LINK_ANCHOR *const seq, int line, int node_id, int idx, int level)
97{
98 if (iseq_local_block_param_p(iseq, idx, level)) {
99 ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setblockparam), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
100 }
101 else {
102 ADD_ELEM(seq, (LINK_ELEMENT *) new_insn_body(iseq, line, node_id, BIN(setlocal), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
103 }
104 if (level > 0) access_outer_variables(iseq, level, iseq_lvar_id(iseq, idx, level), Qtrue);
105}
106
107#define PUSH_GETLOCAL(seq, location, idx, level) \
108 pm_iseq_add_getlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level))
109
110#define PUSH_SETLOCAL(seq, location, idx, level) \
111 pm_iseq_add_setlocal(iseq, (seq), (int) (location).line, (int) (location).node_id, (idx), (level))
112
113/******************************************************************************/
114/* These are helper macros for the compiler. */
115/******************************************************************************/
116
117#define OLD_ISEQ NEW_ISEQ
118#undef NEW_ISEQ
119
120#define NEW_ISEQ(node, name, type, line_no) \
121 pm_new_child_iseq(iseq, (node), rb_fstring(name), 0, (type), (line_no))
122
123#define OLD_CHILD_ISEQ NEW_CHILD_ISEQ
124#undef NEW_CHILD_ISEQ
125
126#define NEW_CHILD_ISEQ(node, name, type, line_no) \
127 pm_new_child_iseq(iseq, (node), rb_fstring(name), iseq, (type), (line_no))
128
129#define PM_COMPILE(node) \
130 pm_compile_node(iseq, (node), ret, popped, scope_node)
131
132#define PM_COMPILE_INTO_ANCHOR(_ret, node) \
133 pm_compile_node(iseq, (node), _ret, popped, scope_node)
134
135#define PM_COMPILE_POPPED(node) \
136 pm_compile_node(iseq, (node), ret, true, scope_node)
137
138#define PM_COMPILE_NOT_POPPED(node) \
139 pm_compile_node(iseq, (node), ret, false, scope_node)
140
141#define PM_NODE_START_LOCATION(parser, node) \
142 ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id })
143
144#define PM_NODE_END_LOCATION(parser, node) \
145 ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line), .node_id = ((const pm_node_t *) (node))->node_id })
146
147#define PM_LOCATION_START_LOCATION(parser, location, id) \
148 ((pm_node_location_t) { .line = pm_newline_list_line(&(parser)->newline_list, (location)->start, (parser)->start_line), .node_id = id })
149
150#define PM_NODE_START_LINE_COLUMN(parser, node) \
151 pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.start, (parser)->start_line)
152
153#define PM_NODE_END_LINE_COLUMN(parser, node) \
154 pm_newline_list_line_column(&(parser)->newline_list, ((const pm_node_t *) (node))->location.end, (parser)->start_line)
155
156#define PM_LOCATION_START_LINE_COLUMN(parser, location) \
157 pm_newline_list_line_column(&(parser)->newline_list, (location)->start, (parser)->start_line)
158
159static int
160pm_node_line_number(const pm_parser_t *parser, const pm_node_t *node)
161{
162 return (int) pm_newline_list_line(&parser->newline_list, node->location.start, parser->start_line);
163}
164
165static int
166pm_location_line_number(const pm_parser_t *parser, const pm_location_t *location) {
167 return (int) pm_newline_list_line(&parser->newline_list, location->start, parser->start_line);
168}
169
173static VALUE
174parse_integer_value(const pm_integer_t *integer)
175{
176 VALUE result;
177
178 if (integer->values == NULL) {
179 result = UINT2NUM(integer->value);
180 }
181 else {
182 VALUE string = rb_str_new(NULL, integer->length * 8);
183 unsigned char *bytes = (unsigned char *) RSTRING_PTR(string);
184
185 size_t offset = integer->length * 8;
186 for (size_t value_index = 0; value_index < integer->length; value_index++) {
187 uint32_t value = integer->values[value_index];
188
189 for (int index = 0; index < 8; index++) {
190 int byte = (value >> (4 * index)) & 0xf;
191 bytes[--offset] = byte < 10 ? byte + '0' : byte - 10 + 'a';
192 }
193 }
194
195 result = rb_funcall(string, rb_intern("to_i"), 1, UINT2NUM(16));
196 }
197
198 if (integer->negative) {
199 result = rb_funcall(result, rb_intern("-@"), 0);
200 }
201
202 return result;
203}
204
208static inline VALUE
209parse_integer(const pm_integer_node_t *node)
210{
211 return parse_integer_value(&node->value);
212}
213
217static VALUE
218parse_float(const pm_float_node_t *node)
219{
220 return DBL2NUM(node->value);
221}
222
229static VALUE
230parse_rational(const pm_rational_node_t *node)
231{
232 VALUE numerator = parse_integer_value(&node->numerator);
233 VALUE denominator = parse_integer_value(&node->denominator);
234 return rb_rational_new(numerator, denominator);
235}
236
243static VALUE
244parse_imaginary(const pm_imaginary_node_t *node)
245{
246 VALUE imaginary_part;
247 switch (PM_NODE_TYPE(node->numeric)) {
248 case PM_FLOAT_NODE: {
249 imaginary_part = parse_float((const pm_float_node_t *) node->numeric);
250 break;
251 }
252 case PM_INTEGER_NODE: {
253 imaginary_part = parse_integer((const pm_integer_node_t *) node->numeric);
254 break;
255 }
256 case PM_RATIONAL_NODE: {
257 imaginary_part = parse_rational((const pm_rational_node_t *) node->numeric);
258 break;
259 }
260 default:
261 rb_bug("Unexpected numeric type on imaginary number %s\n", pm_node_type_to_str(PM_NODE_TYPE(node->numeric)));
262 }
263
264 return rb_complex_raw(INT2FIX(0), imaginary_part);
265}
266
267static inline VALUE
268parse_string(const pm_scope_node_t *scope_node, const pm_string_t *string)
269{
270 return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), scope_node->encoding);
271}
272
278static inline VALUE
279parse_string_encoded(const pm_node_t *node, const pm_string_t *string, rb_encoding *default_encoding)
280{
281 rb_encoding *encoding;
282
284 encoding = rb_ascii8bit_encoding();
285 }
287 encoding = rb_utf8_encoding();
288 }
289 else {
290 encoding = default_encoding;
291 }
292
293 return rb_enc_str_new((const char *) pm_string_source(string), pm_string_length(string), encoding);
294}
295
296static inline VALUE
297parse_static_literal_string(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *string)
298{
299 rb_encoding *encoding;
300
302 encoding = rb_ascii8bit_encoding();
303 }
305 encoding = rb_utf8_encoding();
306 }
307 else {
308 encoding = scope_node->encoding;
309 }
310
311 VALUE value = rb_enc_literal_str((const char *) pm_string_source(string), pm_string_length(string), encoding);
313
314 if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) {
315 int line_number = pm_node_line_number(scope_node->parser, node);
316 value = rb_str_with_debug_created_info(value, rb_iseq_path(iseq), line_number);
317 }
318
319 return value;
320}
321
322static inline ID
323parse_string_symbol(const pm_scope_node_t *scope_node, const pm_symbol_node_t *symbol)
324{
325 rb_encoding *encoding;
327 encoding = rb_utf8_encoding();
328 }
330 encoding = rb_ascii8bit_encoding();
331 }
333 encoding = rb_usascii_encoding();
334 }
335 else {
336 encoding = scope_node->encoding;
337 }
338
339 return rb_intern3((const char *) pm_string_source(&symbol->unescaped), pm_string_length(&symbol->unescaped), encoding);
340}
341
342static int
343pm_optimizable_range_item_p(const pm_node_t *node)
344{
345 return (!node || PM_NODE_TYPE_P(node, PM_INTEGER_NODE) || PM_NODE_TYPE_P(node, PM_NIL_NODE));
346}
347
349static VALUE
350parse_regexp_error(rb_iseq_t *iseq, int32_t line_number, const char *fmt, ...)
351{
352 va_list args;
353 va_start(args, fmt);
354 VALUE error = rb_syntax_error_append(Qnil, rb_iseq_path(iseq), line_number, -1, NULL, "%" PRIsVALUE, args);
355 va_end(args);
356 rb_exc_raise(error);
357}
358
359static VALUE
360parse_regexp_string_part(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding)
361{
362 // If we were passed an explicit regexp encoding, then we need to double
363 // check that it's okay here for this fragment of the string.
364 rb_encoding *encoding;
365
366 if (explicit_regexp_encoding != NULL) {
367 encoding = explicit_regexp_encoding;
368 }
370 encoding = rb_ascii8bit_encoding();
371 }
373 encoding = rb_utf8_encoding();
374 }
375 else {
376 encoding = implicit_regexp_encoding;
377 }
378
379 VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), encoding);
380 VALUE error = rb_reg_check_preprocess(string);
381
382 if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, node), "%" PRIsVALUE, rb_obj_as_string(error));
383 return string;
384}
385
386static VALUE
387pm_static_literal_concat(rb_iseq_t *iseq, const pm_node_list_t *nodes, const pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding, bool top)
388{
389 VALUE current = Qnil;
390
391 for (size_t index = 0; index < nodes->size; index++) {
392 const pm_node_t *part = nodes->nodes[index];
393 VALUE string;
394
395 switch (PM_NODE_TYPE(part)) {
396 case PM_STRING_NODE:
397 if (implicit_regexp_encoding != NULL) {
398 if (top) {
399 string = parse_regexp_string_part(iseq, scope_node, part, &((const pm_string_node_t *) part)->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
400 }
401 else {
402 string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding);
403 VALUE error = rb_reg_check_preprocess(string);
404 if (error != Qnil) parse_regexp_error(iseq, pm_node_line_number(scope_node->parser, part), "%" PRIsVALUE, rb_obj_as_string(error));
405 }
406 }
407 else {
408 string = parse_string_encoded(part, &((const pm_string_node_t *) part)->unescaped, scope_node->encoding);
409 }
410 break;
412 string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) part)->parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
413 break;
416 string = pm_static_literal_concat(iseq, &cast->statements->body, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
417 break;
418 }
419 default:
420 RUBY_ASSERT(false && "unexpected node type in pm_static_literal_concat");
421 return Qnil;
422 }
423
424 if (current != Qnil) {
425 current = rb_str_concat(current, string);
426 }
427 else {
428 current = string;
429 }
430 }
431
432 return top ? rb_fstring(current) : current;
433}
434
435#define RE_OPTION_ENCODING_SHIFT 8
436#define RE_OPTION_ENCODING(encoding) (((encoding) & 0xFF) << RE_OPTION_ENCODING_SHIFT)
437#define ARG_ENCODING_NONE 32
438#define ARG_ENCODING_FIXED 16
439#define ENC_ASCII8BIT 1
440#define ENC_EUC_JP 2
441#define ENC_Windows_31J 3
442#define ENC_UTF8 4
443
448static int
449parse_regexp_flags(const pm_node_t *node)
450{
451 int flags = 0;
452
453 // Check "no encoding" first so that flags don't get clobbered
454 // We're calling `rb_char_to_option_kcode` in this case so that
455 // we don't need to have access to `ARG_ENCODING_NONE`
457 flags |= ARG_ENCODING_NONE;
458 }
459
461 flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_EUC_JP));
462 }
463
465 flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_Windows_31J));
466 }
467
469 flags |= (ARG_ENCODING_FIXED | RE_OPTION_ENCODING(ENC_UTF8));
470 }
471
473 flags |= ONIG_OPTION_IGNORECASE;
474 }
475
477 flags |= ONIG_OPTION_MULTILINE;
478 }
479
481 flags |= ONIG_OPTION_EXTEND;
482 }
483
484 return flags;
485}
486
487#undef RE_OPTION_ENCODING_SHIFT
488#undef RE_OPTION_ENCODING
489#undef ARG_ENCODING_FIXED
490#undef ARG_ENCODING_NONE
491#undef ENC_ASCII8BIT
492#undef ENC_EUC_JP
493#undef ENC_Windows_31J
494#undef ENC_UTF8
495
496static rb_encoding *
497parse_regexp_encoding(const pm_scope_node_t *scope_node, const pm_node_t *node)
498{
500 return rb_ascii8bit_encoding();
501 }
503 return rb_utf8_encoding();
504 }
506 return rb_enc_get_from_index(ENCINDEX_EUC_JP);
507 }
509 return rb_enc_get_from_index(ENCINDEX_Windows_31J);
510 }
511 else {
512 return NULL;
513 }
514}
515
516static VALUE
517parse_regexp(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, VALUE string)
518{
519 VALUE errinfo = rb_errinfo();
520
521 int32_t line_number = pm_node_line_number(scope_node->parser, node);
522 VALUE regexp = rb_reg_compile(string, parse_regexp_flags(node), (const char *) pm_string_source(&scope_node->parser->filepath), line_number);
523
524 if (NIL_P(regexp)) {
525 VALUE message = rb_attr_get(rb_errinfo(), idMesg);
526 rb_set_errinfo(errinfo);
527
528 parse_regexp_error(iseq, line_number, "%" PRIsVALUE, message);
529 return Qnil;
530 }
531
532 rb_obj_freeze(regexp);
533 return regexp;
534}
535
536static inline VALUE
537parse_regexp_literal(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_string_t *unescaped)
538{
539 rb_encoding *regexp_encoding = parse_regexp_encoding(scope_node, node);
540 if (regexp_encoding == NULL) regexp_encoding = scope_node->encoding;
541
542 VALUE string = rb_enc_str_new((const char *) pm_string_source(unescaped), pm_string_length(unescaped), regexp_encoding);
543 return parse_regexp(iseq, scope_node, node, string);
544}
545
546static inline VALUE
547parse_regexp_concat(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, const pm_node_list_t *parts)
548{
549 rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node);
550 rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding;
551
552 VALUE string = pm_static_literal_concat(iseq, parts, scope_node, implicit_regexp_encoding, explicit_regexp_encoding, false);
553 return parse_regexp(iseq, scope_node, node, string);
554}
555
556static void pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node);
557
558static int
559pm_interpolated_node_compile(rb_iseq_t *iseq, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, rb_encoding *implicit_regexp_encoding, rb_encoding *explicit_regexp_encoding)
560{
561 int stack_size = 0;
562 size_t parts_size = parts->size;
563 bool interpolated = false;
564
565 if (parts_size > 0) {
566 VALUE current_string = Qnil;
567 pm_node_location_t current_location = *node_location;
568
569 for (size_t index = 0; index < parts_size; index++) {
570 const pm_node_t *part = parts->nodes[index];
571
572 if (PM_NODE_TYPE_P(part, PM_STRING_NODE)) {
573 const pm_string_node_t *string_node = (const pm_string_node_t *) part;
574 VALUE string_value;
575
576 if (implicit_regexp_encoding == NULL) {
577 string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding);
578 }
579 else {
580 string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
581 }
582
583 if (RTEST(current_string)) {
584 current_string = rb_str_concat(current_string, string_value);
585 }
586 else {
587 current_string = string_value;
588 if (index != 0) current_location = PM_NODE_END_LOCATION(scope_node->parser, part);
589 }
590 }
591 else {
592 interpolated = true;
593
594 if (
596 ((const pm_embedded_statements_node_t *) part)->statements != NULL &&
597 ((const pm_embedded_statements_node_t *) part)->statements->body.size == 1 &&
598 PM_NODE_TYPE_P(((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0], PM_STRING_NODE)
599 ) {
600 const pm_string_node_t *string_node = (const pm_string_node_t *) ((const pm_embedded_statements_node_t *) part)->statements->body.nodes[0];
601 VALUE string_value;
602
603 if (implicit_regexp_encoding == NULL) {
604 string_value = parse_string_encoded(part, &string_node->unescaped, scope_node->encoding);
605 }
606 else {
607 string_value = parse_regexp_string_part(iseq, scope_node, (const pm_node_t *) string_node, &string_node->unescaped, implicit_regexp_encoding, explicit_regexp_encoding);
608 }
609
610 if (RTEST(current_string)) {
611 current_string = rb_str_concat(current_string, string_value);
612 }
613 else {
614 current_string = string_value;
615 current_location = PM_NODE_START_LOCATION(scope_node->parser, part);
616 }
617 }
618 else {
619 if (!RTEST(current_string)) {
620 rb_encoding *encoding;
621
622 if (implicit_regexp_encoding != NULL) {
623 if (explicit_regexp_encoding != NULL) {
624 encoding = explicit_regexp_encoding;
625 }
626 else if (scope_node->parser->encoding == PM_ENCODING_US_ASCII_ENTRY) {
627 encoding = rb_ascii8bit_encoding();
628 }
629 else {
630 encoding = implicit_regexp_encoding;
631 }
632 }
633 else {
634 encoding = scope_node->encoding;
635 }
636
637 if (parts_size == 1) {
638 current_string = rb_enc_str_new(NULL, 0, encoding);
639 }
640 }
641
642 if (RTEST(current_string)) {
643 VALUE operand = rb_fstring(current_string);
644 PUSH_INSN1(ret, current_location, putobject, operand);
645 stack_size++;
646 }
647
648 PM_COMPILE_NOT_POPPED(part);
649
650 const pm_node_location_t current_location = PM_NODE_START_LOCATION(scope_node->parser, part);
651 PUSH_INSN(ret, current_location, dup);
652
653 {
654 const struct rb_callinfo *callinfo = new_callinfo(iseq, idTo_s, 0, VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE, NULL, FALSE);
655 PUSH_INSN1(ret, current_location, objtostring, callinfo);
656 }
657
658 PUSH_INSN(ret, current_location, anytostring);
659
660 current_string = Qnil;
661 stack_size++;
662 }
663 }
664 }
665
666 if (RTEST(current_string)) {
667 current_string = rb_fstring(current_string);
668
669 if (stack_size == 0 && interpolated) {
670 PUSH_INSN1(ret, current_location, putstring, current_string);
671 }
672 else {
673 PUSH_INSN1(ret, current_location, putobject, current_string);
674 }
675
676 current_string = Qnil;
677 stack_size++;
678 }
679 }
680 else {
681 PUSH_INSN(ret, *node_location, putnil);
682 }
683
684 return stack_size;
685}
686
687static void
688pm_compile_regexp_dynamic(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *parts, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
689{
690 rb_encoding *explicit_regexp_encoding = parse_regexp_encoding(scope_node, node);
691 rb_encoding *implicit_regexp_encoding = explicit_regexp_encoding != NULL ? explicit_regexp_encoding : scope_node->encoding;
692
693 int length = pm_interpolated_node_compile(iseq, parts, node_location, ret, popped, scope_node, implicit_regexp_encoding, explicit_regexp_encoding);
694 PUSH_INSN2(ret, *node_location, toregexp, INT2FIX(parse_regexp_flags(node) & 0xFF), INT2FIX(length));
695}
696
697static VALUE
698pm_source_file_value(const pm_source_file_node_t *node, const pm_scope_node_t *scope_node)
699{
700 const pm_string_t *filepath = &node->filepath;
701 size_t length = pm_string_length(filepath);
702
703 if (length > 0) {
704 rb_encoding *filepath_encoding = scope_node->filepath_encoding != NULL ? scope_node->filepath_encoding : rb_utf8_encoding();
705 return rb_enc_interned_str((const char *) pm_string_source(filepath), length, filepath_encoding);
706 }
707 else {
708 return rb_fstring_lit("<compiled>");
709 }
710}
711
716static VALUE
717pm_static_literal_string(rb_iseq_t *iseq, VALUE string, int line_number)
718{
719 if (ISEQ_COMPILE_DATA(iseq)->option->debug_frozen_string_literal || RTEST(ruby_debug)) {
720 return rb_str_with_debug_created_info(string, rb_iseq_path(iseq), line_number);
721 }
722 else {
723 return rb_fstring(string);
724 }
725}
726
732static VALUE
733pm_static_literal_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node)
734{
735 // Every node that comes into this function should already be marked as
736 // static literal. If it's not, then we have a bug somewhere.
737 RUBY_ASSERT(PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL));
738
739 switch (PM_NODE_TYPE(node)) {
740 case PM_ARRAY_NODE: {
741 const pm_array_node_t *cast = (const pm_array_node_t *) node;
742 const pm_node_list_t *elements = &cast->elements;
743
744 VALUE value = rb_ary_hidden_new(elements->size);
745 for (size_t index = 0; index < elements->size; index++) {
746 rb_ary_push(value, pm_static_literal_value(iseq, elements->nodes[index], scope_node));
747 }
748
749 OBJ_FREEZE(value);
750 return value;
751 }
752 case PM_FALSE_NODE:
753 return Qfalse;
754 case PM_FLOAT_NODE:
755 return parse_float((const pm_float_node_t *) node);
756 case PM_HASH_NODE: {
757 const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
758 const pm_node_list_t *elements = &cast->elements;
759
760 VALUE array = rb_ary_hidden_new(elements->size * 2);
761 for (size_t index = 0; index < elements->size; index++) {
762 RUBY_ASSERT(PM_NODE_TYPE_P(elements->nodes[index], PM_ASSOC_NODE));
763 const pm_assoc_node_t *cast = (const pm_assoc_node_t *) elements->nodes[index];
764 VALUE pair[2] = { pm_static_literal_value(iseq, cast->key, scope_node), pm_static_literal_value(iseq, cast->value, scope_node) };
765 rb_ary_cat(array, pair, 2);
766 }
767
768 VALUE value = rb_hash_new_with_size(elements->size);
769 rb_hash_bulk_insert(RARRAY_LEN(array), RARRAY_CONST_PTR(array), value);
770
771 value = rb_obj_hide(value);
772 OBJ_FREEZE(value);
773 return value;
774 }
776 return parse_imaginary((const pm_imaginary_node_t *) node);
777 case PM_INTEGER_NODE:
778 return parse_integer((const pm_integer_node_t *) node);
781 return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts);
782 }
785 return parse_regexp_concat(iseq, scope_node, (const pm_node_t *) cast, &cast->parts);
786 }
788 VALUE string = pm_static_literal_concat(iseq, &((const pm_interpolated_string_node_t *) node)->parts, scope_node, NULL, NULL, false);
789 int line_number = pm_node_line_number(scope_node->parser, node);
790 return pm_static_literal_string(iseq, string, line_number);
791 }
794 VALUE string = pm_static_literal_concat(iseq, &cast->parts, scope_node, NULL, NULL, true);
795
796 return ID2SYM(rb_intern_str(string));
797 }
799 const pm_match_last_line_node_t *cast = (const pm_match_last_line_node_t *) node;
800 return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped);
801 }
802 case PM_NIL_NODE:
803 return Qnil;
804 case PM_RATIONAL_NODE:
805 return parse_rational((const pm_rational_node_t *) node);
808 return parse_regexp_literal(iseq, scope_node, (const pm_node_t *) cast, &cast->unescaped);
809 }
811 return rb_enc_from_encoding(scope_node->encoding);
812 case PM_SOURCE_FILE_NODE: {
813 const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node;
814 return pm_source_file_value(cast, scope_node);
815 }
817 return INT2FIX(pm_node_line_number(scope_node->parser, node));
818 case PM_STRING_NODE: {
819 const pm_string_node_t *cast = (const pm_string_node_t *) node;
820 return parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
821 }
822 case PM_SYMBOL_NODE:
823 return ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) node));
824 case PM_TRUE_NODE:
825 return Qtrue;
826 default:
827 rb_bug("Don't have a literal value for node type %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
828 return Qfalse;
829 }
830}
831
836pm_code_location(const pm_scope_node_t *scope_node, const pm_node_t *node)
837{
838 const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, node);
839 const pm_line_column_t end_location = PM_NODE_END_LINE_COLUMN(scope_node->parser, node);
840
841 return (rb_code_location_t) {
842 .beg_pos = { .lineno = start_location.line, .column = start_location.column },
843 .end_pos = { .lineno = end_location.line, .column = end_location.column }
844 };
845}
846
852#define PM_BRANCH_COVERAGE_P(iseq) (ISEQ_COVERAGE(iseq) && ISEQ_BRANCH_COVERAGE(iseq))
853
854static void
855pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond,
856 LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node);
857
858static void
859pm_compile_logical(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node)
860{
861 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond);
862
863 DECL_ANCHOR(seq);
864
865 LABEL *label = NEW_LABEL(location.line);
866 if (!then_label) then_label = label;
867 else if (!else_label) else_label = label;
868
869 pm_compile_branch_condition(iseq, seq, cond, then_label, else_label, popped, scope_node);
870
871 if (LIST_INSN_SIZE_ONE(seq)) {
872 INSN *insn = (INSN *) ELEM_FIRST_INSN(FIRST_ELEMENT(seq));
873 if (insn->insn_id == BIN(jump) && (LABEL *)(insn->operands[0]) == label) return;
874 }
875
876 if (!label->refcnt) {
877 if (popped) PUSH_INSN(ret, location, putnil);
878 }
879 else {
880 PUSH_LABEL(seq, label);
881 }
882
883 PUSH_SEQ(ret, seq);
884 return;
885}
886
887static void
888pm_compile_flip_flop_bound(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
889{
890 const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 };
891
892 if (PM_NODE_TYPE_P(node, PM_INTEGER_NODE)) {
893 PM_COMPILE_NOT_POPPED(node);
894
895 VALUE operand = ID2SYM(rb_intern("$."));
896 PUSH_INSN1(ret, location, getglobal, operand);
897
898 PUSH_SEND(ret, location, idEq, INT2FIX(1));
899 if (popped) PUSH_INSN(ret, location, pop);
900 }
901 else {
902 PM_COMPILE(node);
903 }
904}
905
906static void
907pm_compile_flip_flop(const pm_flip_flop_node_t *flip_flop_node, LABEL *else_label, LABEL *then_label, rb_iseq_t *iseq, const int lineno, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
908{
909 const pm_node_location_t location = { .line = ISEQ_BODY(iseq)->location.first_lineno, .node_id = -1 };
910 LABEL *lend = NEW_LABEL(location.line);
911
912 int again = !(flip_flop_node->base.flags & PM_RANGE_FLAGS_EXCLUDE_END);
913
914 rb_num_t count = ISEQ_FLIP_CNT_INCREMENT(ISEQ_BODY(iseq)->local_iseq) + VM_SVAR_FLIPFLOP_START;
915 VALUE key = INT2FIX(count);
916
917 PUSH_INSN2(ret, location, getspecial, key, INT2FIX(0));
918 PUSH_INSNL(ret, location, branchif, lend);
919
920 if (flip_flop_node->left) {
921 pm_compile_flip_flop_bound(iseq, flip_flop_node->left, ret, popped, scope_node);
922 }
923 else {
924 PUSH_INSN(ret, location, putnil);
925 }
926
927 PUSH_INSNL(ret, location, branchunless, else_label);
928 PUSH_INSN1(ret, location, putobject, Qtrue);
929 PUSH_INSN1(ret, location, setspecial, key);
930 if (!again) {
931 PUSH_INSNL(ret, location, jump, then_label);
932 }
933
934 PUSH_LABEL(ret, lend);
935 if (flip_flop_node->right) {
936 pm_compile_flip_flop_bound(iseq, flip_flop_node->right, ret, popped, scope_node);
937 }
938 else {
939 PUSH_INSN(ret, location, putnil);
940 }
941
942 PUSH_INSNL(ret, location, branchunless, then_label);
943 PUSH_INSN1(ret, location, putobject, Qfalse);
944 PUSH_INSN1(ret, location, setspecial, key);
945 PUSH_INSNL(ret, location, jump, then_label);
946}
947
948static void pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition);
949
950static void
951pm_compile_branch_condition(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_node_t *cond, LABEL *then_label, LABEL *else_label, bool popped, pm_scope_node_t *scope_node)
952{
953 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, cond);
954
955again:
956 switch (PM_NODE_TYPE(cond)) {
957 case PM_AND_NODE: {
958 const pm_and_node_t *cast = (const pm_and_node_t *) cond;
959 pm_compile_logical(iseq, ret, cast->left, NULL, else_label, popped, scope_node);
960
961 cond = cast->right;
962 goto again;
963 }
964 case PM_OR_NODE: {
965 const pm_or_node_t *cast = (const pm_or_node_t *) cond;
966 pm_compile_logical(iseq, ret, cast->left, then_label, NULL, popped, scope_node);
967
968 cond = cast->right;
969 goto again;
970 }
971 case PM_FALSE_NODE:
972 case PM_NIL_NODE:
973 PUSH_INSNL(ret, location, jump, else_label);
974 return;
975 case PM_FLOAT_NODE:
977 case PM_INTEGER_NODE:
978 case PM_LAMBDA_NODE:
979 case PM_RATIONAL_NODE:
981 case PM_STRING_NODE:
982 case PM_SYMBOL_NODE:
983 case PM_TRUE_NODE:
984 PUSH_INSNL(ret, location, jump, then_label);
985 return;
987 pm_compile_flip_flop((const pm_flip_flop_node_t *) cond, else_label, then_label, iseq, location.line, ret, popped, scope_node);
988 return;
989 case PM_DEFINED_NODE: {
990 const pm_defined_node_t *cast = (const pm_defined_node_t *) cond;
991 pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, true);
992 break;
993 }
994 default: {
995 DECL_ANCHOR(cond_seq);
996 pm_compile_node(iseq, cond, cond_seq, false, scope_node);
997
998 if (LIST_INSN_SIZE_ONE(cond_seq)) {
999 INSN *insn = (INSN *) ELEM_FIRST_INSN(FIRST_ELEMENT(cond_seq));
1000
1001 if (insn->insn_id == BIN(putobject)) {
1002 if (RTEST(insn->operands[0])) {
1003 PUSH_INSNL(ret, location, jump, then_label);
1004 // maybe unreachable
1005 return;
1006 }
1007 else {
1008 PUSH_INSNL(ret, location, jump, else_label);
1009 return;
1010 }
1011 }
1012 }
1013
1014 PUSH_SEQ(ret, cond_seq);
1015 break;
1016 }
1017 }
1018
1019 PUSH_INSNL(ret, location, branchunless, else_label);
1020 PUSH_INSNL(ret, location, jump, then_label);
1021}
1022
1026static void
1027pm_compile_conditional(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_type_t type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *subsequent, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
1028{
1029 const pm_node_location_t location = *node_location;
1030 LABEL *then_label = NEW_LABEL(location.line);
1031 LABEL *else_label = NEW_LABEL(location.line);
1032 LABEL *end_label = NULL;
1033
1034 DECL_ANCHOR(cond_seq);
1035 pm_compile_branch_condition(iseq, cond_seq, predicate, then_label, else_label, false, scope_node);
1036 PUSH_SEQ(ret, cond_seq);
1037
1038 rb_code_location_t conditional_location = { 0 };
1039 VALUE branches = Qfalse;
1040
1041 if (then_label->refcnt && else_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) {
1042 conditional_location = pm_code_location(scope_node, node);
1043 branches = decl_branch_base(iseq, PTR2NUM(node), &conditional_location, type == PM_IF_NODE ? "if" : "unless");
1044 }
1045
1046 if (then_label->refcnt) {
1047 PUSH_LABEL(ret, then_label);
1048
1049 DECL_ANCHOR(then_seq);
1050
1051 if (statements != NULL) {
1052 pm_compile_node(iseq, (const pm_node_t *) statements, then_seq, popped, scope_node);
1053 }
1054 else if (!popped) {
1055 PUSH_SYNTHETIC_PUTNIL(then_seq, iseq);
1056 }
1057
1058 if (else_label->refcnt) {
1059 // Establish branch coverage for the then block.
1060 if (PM_BRANCH_COVERAGE_P(iseq)) {
1061 rb_code_location_t branch_location;
1062
1063 if (statements != NULL) {
1064 branch_location = pm_code_location(scope_node, (const pm_node_t *) statements);
1065 } else if (type == PM_IF_NODE) {
1066 pm_line_column_t predicate_end = PM_NODE_END_LINE_COLUMN(scope_node->parser, predicate);
1067 branch_location = (rb_code_location_t) {
1068 .beg_pos = { .lineno = predicate_end.line, .column = predicate_end.column },
1069 .end_pos = { .lineno = predicate_end.line, .column = predicate_end.column }
1070 };
1071 } else {
1072 branch_location = conditional_location;
1073 }
1074
1075 add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, type == PM_IF_NODE ? "then" : "else", branches);
1076 }
1077
1078 end_label = NEW_LABEL(location.line);
1079 PUSH_INSNL(then_seq, location, jump, end_label);
1080 if (!popped) PUSH_INSN(then_seq, location, pop);
1081 }
1082
1083 PUSH_SEQ(ret, then_seq);
1084 }
1085
1086 if (else_label->refcnt) {
1087 PUSH_LABEL(ret, else_label);
1088
1089 DECL_ANCHOR(else_seq);
1090
1091 if (subsequent != NULL) {
1092 pm_compile_node(iseq, subsequent, else_seq, popped, scope_node);
1093 }
1094 else if (!popped) {
1095 PUSH_SYNTHETIC_PUTNIL(else_seq, iseq);
1096 }
1097
1098 // Establish branch coverage for the else block.
1099 if (then_label->refcnt && PM_BRANCH_COVERAGE_P(iseq)) {
1100 rb_code_location_t branch_location;
1101
1102 if (subsequent == NULL) {
1103 branch_location = conditional_location;
1104 } else if (PM_NODE_TYPE_P(subsequent, PM_ELSE_NODE)) {
1105 const pm_else_node_t *else_node = (const pm_else_node_t *) subsequent;
1106 branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : (const pm_node_t *) else_node);
1107 } else {
1108 branch_location = pm_code_location(scope_node, (const pm_node_t *) subsequent);
1109 }
1110
1111 add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 1, type == PM_IF_NODE ? "else" : "then", branches);
1112 }
1113
1114 PUSH_SEQ(ret, else_seq);
1115 }
1116
1117 if (end_label) {
1118 PUSH_LABEL(ret, end_label);
1119 }
1120
1121 return;
1122}
1123
1127static void
1128pm_compile_loop(rb_iseq_t *iseq, const pm_node_location_t *node_location, pm_node_flags_t flags, enum pm_node_type type, const pm_node_t *node, const pm_statements_node_t *statements, const pm_node_t *predicate, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
1129{
1130 const pm_node_location_t location = *node_location;
1131
1132 LABEL *prev_start_label = ISEQ_COMPILE_DATA(iseq)->start_label;
1133 LABEL *prev_end_label = ISEQ_COMPILE_DATA(iseq)->end_label;
1134 LABEL *prev_redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label;
1135
1136 LABEL *next_label = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(location.line); /* next */
1137 LABEL *redo_label = ISEQ_COMPILE_DATA(iseq)->redo_label = NEW_LABEL(location.line); /* redo */
1138 LABEL *break_label = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(location.line); /* break */
1139 LABEL *end_label = NEW_LABEL(location.line);
1140 LABEL *adjust_label = NEW_LABEL(location.line);
1141
1142 LABEL *next_catch_label = NEW_LABEL(location.line);
1143 LABEL *tmp_label = NULL;
1144
1145 // We're pushing onto the ensure stack because breaks need to break out of
1146 // this loop and not break into the ensure statements within the same
1147 // lexical scope.
1149 push_ensure_entry(iseq, &enl, NULL, NULL);
1150
1151 // begin; end while true
1152 if (flags & PM_LOOP_FLAGS_BEGIN_MODIFIER) {
1153 tmp_label = NEW_LABEL(location.line);
1154 PUSH_INSNL(ret, location, jump, tmp_label);
1155 }
1156 else {
1157 // while true; end
1158 PUSH_INSNL(ret, location, jump, next_label);
1159 }
1160
1161 PUSH_LABEL(ret, adjust_label);
1162 PUSH_INSN(ret, location, putnil);
1163 PUSH_LABEL(ret, next_catch_label);
1164 PUSH_INSN(ret, location, pop);
1165 PUSH_INSNL(ret, location, jump, next_label);
1166 if (tmp_label) PUSH_LABEL(ret, tmp_label);
1167
1168 PUSH_LABEL(ret, redo_label);
1169
1170 // Establish branch coverage for the loop.
1171 if (PM_BRANCH_COVERAGE_P(iseq)) {
1172 rb_code_location_t loop_location = pm_code_location(scope_node, node);
1173 VALUE branches = decl_branch_base(iseq, PTR2NUM(node), &loop_location, type == PM_WHILE_NODE ? "while" : "until");
1174
1175 rb_code_location_t branch_location = statements != NULL ? pm_code_location(scope_node, (const pm_node_t *) statements) : loop_location;
1176 add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, 0, "body", branches);
1177 }
1178
1179 if (statements != NULL) PM_COMPILE_POPPED((const pm_node_t *) statements);
1180 PUSH_LABEL(ret, next_label);
1181
1182 if (type == PM_WHILE_NODE) {
1183 pm_compile_branch_condition(iseq, ret, predicate, redo_label, end_label, popped, scope_node);
1184 }
1185 else if (type == PM_UNTIL_NODE) {
1186 pm_compile_branch_condition(iseq, ret, predicate, end_label, redo_label, popped, scope_node);
1187 }
1188
1189 PUSH_LABEL(ret, end_label);
1190 PUSH_ADJUST_RESTORE(ret, adjust_label);
1191 PUSH_INSN(ret, location, putnil);
1192
1193 PUSH_LABEL(ret, break_label);
1194 if (popped) PUSH_INSN(ret, location, pop);
1195
1196 PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, redo_label, break_label, NULL, break_label);
1197 PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, redo_label, break_label, NULL, next_catch_label);
1198 PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, redo_label, break_label, NULL, ISEQ_COMPILE_DATA(iseq)->redo_label);
1199
1200 ISEQ_COMPILE_DATA(iseq)->start_label = prev_start_label;
1201 ISEQ_COMPILE_DATA(iseq)->end_label = prev_end_label;
1202 ISEQ_COMPILE_DATA(iseq)->redo_label = prev_redo_label;
1203 ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->prev;
1204
1205 return;
1206}
1207
1208// This recurses through scopes and finds the local index at any scope level
1209// It also takes a pointer to depth, and increments depth appropriately
1210// according to the depth of the local.
1211static pm_local_index_t
1212pm_lookup_local_index(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, pm_constant_id_t constant_id, int start_depth)
1213{
1214 pm_local_index_t lindex = { 0 };
1215 st_data_t local_index;
1216
1217 int level;
1218 for (level = 0; level < start_depth; level++) {
1219 scope_node = scope_node->previous;
1220 }
1221
1222 while (!st_lookup(scope_node->index_lookup_table, constant_id, &local_index)) {
1223 level++;
1224
1225 if (scope_node->previous) {
1226 scope_node = scope_node->previous;
1227 }
1228 else {
1229 // We have recursed up all scope nodes
1230 // and have not found the local yet
1231 rb_bug("Local with constant_id %u does not exist", (unsigned int) constant_id);
1232 }
1233 }
1234
1235 lindex.level = level;
1236 lindex.index = scope_node->local_table_for_iseq_size - (int) local_index;
1237 return lindex;
1238}
1239
1240// This returns the CRuby ID which maps to the pm_constant_id_t
1241//
1242// Constant_ids in prism are indexes of the constants in prism's constant pool.
1243// We add a constants mapping on the scope_node which is a mapping from
1244// these constant_id indexes to the CRuby IDs that they represent.
1245// This helper method allows easy access to those IDs
1246static ID
1247pm_constant_id_lookup(const pm_scope_node_t *scope_node, pm_constant_id_t constant_id)
1248{
1249 if (constant_id < 1 || constant_id > scope_node->parser->constant_pool.size) {
1250 rb_bug("constant_id out of range: %u", (unsigned int)constant_id);
1251 }
1252 return scope_node->constants[constant_id - 1];
1253}
1254
1255static rb_iseq_t *
1256pm_new_child_iseq(rb_iseq_t *iseq, pm_scope_node_t *node, VALUE name, const rb_iseq_t *parent, enum rb_iseq_type type, int line_no)
1257{
1258 debugs("[new_child_iseq]> ---------------------------------------\n");
1259 int isolated_depth = ISEQ_COMPILE_DATA(iseq)->isolated_depth;
1260 int error_state;
1261 rb_iseq_t *ret_iseq = pm_iseq_new_with_opt(node, name,
1262 rb_iseq_path(iseq), rb_iseq_realpath(iseq),
1263 line_no, parent,
1264 isolated_depth ? isolated_depth + 1 : 0,
1265 type, ISEQ_COMPILE_DATA(iseq)->option, &error_state);
1266
1267 if (error_state) {
1268 RUBY_ASSERT(ret_iseq == NULL);
1269 rb_jump_tag(error_state);
1270 }
1271 debugs("[new_child_iseq]< ---------------------------------------\n");
1272 return ret_iseq;
1273}
1274
1275static int
1276pm_compile_class_path(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
1277{
1279 const pm_node_t *parent = ((const pm_constant_path_node_t *) node)->parent;
1280
1281 if (parent) {
1282 /* Bar::Foo */
1283 PM_COMPILE(parent);
1284 return VM_DEFINECLASS_FLAG_SCOPED;
1285 }
1286 else {
1287 /* toplevel class ::Foo */
1288 PUSH_INSN1(ret, *node_location, putobject, rb_cObject);
1289 return VM_DEFINECLASS_FLAG_SCOPED;
1290 }
1291 }
1292 else {
1293 /* class at cbase Foo */
1294 PUSH_INSN1(ret, *node_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
1295 return 0;
1296 }
1297}
1298
1303static void
1304pm_compile_call_and_or_write_node(rb_iseq_t *iseq, bool and_node, const pm_node_t *receiver, const pm_node_t *value, pm_constant_id_t write_name, pm_constant_id_t read_name, bool safe_nav, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
1305{
1306 const pm_node_location_t location = *node_location;
1307 LABEL *lfin = NEW_LABEL(location.line);
1308 LABEL *lcfin = NEW_LABEL(location.line);
1309 LABEL *lskip = NULL;
1310
1311 int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
1312 ID id_read_name = pm_constant_id_lookup(scope_node, read_name);
1313
1314 PM_COMPILE_NOT_POPPED(receiver);
1315 if (safe_nav) {
1316 lskip = NEW_LABEL(location.line);
1317 PUSH_INSN(ret, location, dup);
1318 PUSH_INSNL(ret, location, branchnil, lskip);
1319 }
1320
1321 PUSH_INSN(ret, location, dup);
1322 PUSH_SEND_WITH_FLAG(ret, location, id_read_name, INT2FIX(0), INT2FIX(flag));
1323 if (!popped) PUSH_INSN(ret, location, dup);
1324
1325 if (and_node) {
1326 PUSH_INSNL(ret, location, branchunless, lcfin);
1327 }
1328 else {
1329 PUSH_INSNL(ret, location, branchif, lcfin);
1330 }
1331
1332 if (!popped) PUSH_INSN(ret, location, pop);
1333 PM_COMPILE_NOT_POPPED(value);
1334
1335 if (!popped) {
1336 PUSH_INSN(ret, location, swap);
1337 PUSH_INSN1(ret, location, topn, INT2FIX(1));
1338 }
1339
1340 ID id_write_name = pm_constant_id_lookup(scope_node, write_name);
1341 PUSH_SEND_WITH_FLAG(ret, location, id_write_name, INT2FIX(1), INT2FIX(flag));
1342 PUSH_INSNL(ret, location, jump, lfin);
1343
1344 PUSH_LABEL(ret, lcfin);
1345 if (!popped) PUSH_INSN(ret, location, swap);
1346
1347 PUSH_LABEL(ret, lfin);
1348
1349 if (lskip && popped) PUSH_LABEL(ret, lskip);
1350 PUSH_INSN(ret, location, pop);
1351 if (lskip && !popped) PUSH_LABEL(ret, lskip);
1352}
1353
1354static void pm_compile_shareable_constant_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_flags_t shareability, VALUE path, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, bool top);
1355
1361static void
1362pm_compile_hash_elements(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *elements, const pm_node_flags_t shareability, VALUE path, bool argument, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node)
1363{
1364 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
1365
1366 // If this element is not popped, then we need to create the hash on the
1367 // stack. Neighboring plain assoc nodes should be grouped together (either
1368 // by newhash or hash merge). Double splat nodes should be merged using the
1369 // merge_kwd method call.
1370 const int max_stack_length = 0x100;
1371 const unsigned int min_tmp_hash_length = 0x800;
1372
1373 int stack_length = 0;
1374 bool first_chunk = true;
1375
1376 // This is an optimization wherein we keep track of whether or not the
1377 // previous element was a static literal. If it was, then we do not attempt
1378 // to check if we have a subhash that can be optimized. If it was not, then
1379 // we do check.
1380 bool static_literal = false;
1381
1382 DECL_ANCHOR(anchor);
1383
1384 // Convert pushed elements to a hash, and merge if needed.
1385#define FLUSH_CHUNK \
1386 if (stack_length) { \
1387 if (first_chunk) { \
1388 PUSH_SEQ(ret, anchor); \
1389 PUSH_INSN1(ret, location, newhash, INT2FIX(stack_length)); \
1390 first_chunk = false; \
1391 } \
1392 else { \
1393 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE)); \
1394 PUSH_INSN(ret, location, swap); \
1395 PUSH_SEQ(ret, anchor); \
1396 PUSH_SEND(ret, location, id_core_hash_merge_ptr, INT2FIX(stack_length + 1)); \
1397 } \
1398 INIT_ANCHOR(anchor); \
1399 stack_length = 0; \
1400 }
1401
1402 for (size_t index = 0; index < elements->size; index++) {
1403 const pm_node_t *element = elements->nodes[index];
1404
1405 switch (PM_NODE_TYPE(element)) {
1406 case PM_ASSOC_NODE: {
1407 // Pre-allocation check (this branch can be omitted).
1408 if (
1409 (shareability == 0) &&
1410 PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) && (
1411 (!static_literal && ((index + min_tmp_hash_length) < elements->size)) ||
1412 (first_chunk && stack_length == 0)
1413 )
1414 ) {
1415 // Count the elements that are statically-known.
1416 size_t count = 1;
1417 while (index + count < elements->size && PM_NODE_FLAG_P(elements->nodes[index + count], PM_NODE_FLAG_STATIC_LITERAL)) count++;
1418
1419 if ((first_chunk && stack_length == 0) || count >= min_tmp_hash_length) {
1420 // The subsequence of elements in this hash is long enough
1421 // to merit its own hash.
1422 VALUE ary = rb_ary_hidden_new(count);
1423
1424 // Create a hidden hash.
1425 for (size_t tmp_end = index + count; index < tmp_end; index++) {
1426 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[index];
1427
1428 VALUE elem[2] = {
1429 pm_static_literal_value(iseq, assoc->key, scope_node),
1430 pm_static_literal_value(iseq, assoc->value, scope_node)
1431 };
1432
1433 rb_ary_cat(ary, elem, 2);
1434 }
1435 index --;
1436
1437 VALUE hash = rb_hash_new_with_size(RARRAY_LEN(ary) / 2);
1438 rb_hash_bulk_insert(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary), hash);
1439 hash = rb_obj_hide(hash);
1440 OBJ_FREEZE(hash);
1441
1442 // Emit optimized code.
1443 FLUSH_CHUNK;
1444 if (first_chunk) {
1445 PUSH_INSN1(ret, location, duphash, hash);
1446 first_chunk = false;
1447 }
1448 else {
1449 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
1450 PUSH_INSN(ret, location, swap);
1451 PUSH_INSN1(ret, location, putobject, hash);
1452 PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
1453 }
1454
1455 break;
1456 }
1457 else {
1458 static_literal = true;
1459 }
1460 }
1461 else {
1462 static_literal = false;
1463 }
1464
1465 // If this is a plain assoc node, then we can compile it directly
1466 // and then add the total number of values on the stack.
1467 if (shareability == 0) {
1468 pm_compile_node(iseq, element, anchor, false, scope_node);
1469 }
1470 else {
1471 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
1472 pm_compile_shareable_constant_value(iseq, assoc->key, shareability, path, ret, scope_node, false);
1473 pm_compile_shareable_constant_value(iseq, assoc->value, shareability, path, ret, scope_node, false);
1474 }
1475
1476 if ((stack_length += 2) >= max_stack_length) FLUSH_CHUNK;
1477 break;
1478 }
1479 case PM_ASSOC_SPLAT_NODE: {
1480 FLUSH_CHUNK;
1481
1482 const pm_assoc_splat_node_t *assoc_splat = (const pm_assoc_splat_node_t *) element;
1483 bool empty_hash = assoc_splat->value != NULL && (
1484 (PM_NODE_TYPE_P(assoc_splat->value, PM_HASH_NODE) && ((const pm_hash_node_t *) assoc_splat->value)->elements.size == 0) ||
1485 PM_NODE_TYPE_P(assoc_splat->value, PM_NIL_NODE)
1486 );
1487
1488 bool first_element = first_chunk && stack_length == 0;
1489 bool last_element = index == elements->size - 1;
1490 bool only_element = first_element && last_element;
1491
1492 if (empty_hash) {
1493 if (only_element && argument) {
1494 // **{} appears at the only keyword argument in method call,
1495 // so it won't be modified.
1496 //
1497 // This is only done for method calls and not for literal
1498 // hashes, because literal hashes should always result in a
1499 // new hash.
1500 PUSH_INSN(ret, location, putnil);
1501 }
1502 else if (first_element) {
1503 // **{} appears as the first keyword argument, so it may be
1504 // modified. We need to create a fresh hash object.
1505 PUSH_INSN1(ret, location, newhash, INT2FIX(0));
1506 }
1507 // Any empty keyword splats that are not the first can be
1508 // ignored since merging an empty hash into the existing hash is
1509 // the same as not merging it.
1510 }
1511 else {
1512 if (only_element && argument) {
1513 // ** is only keyword argument in the method call. Use it
1514 // directly. This will be not be flagged as mutable. This is
1515 // only done for method calls and not for literal hashes,
1516 // because literal hashes should always result in a new
1517 // hash.
1518 if (shareability == 0) {
1519 PM_COMPILE_NOT_POPPED(element);
1520 }
1521 else {
1522 pm_compile_shareable_constant_value(iseq, element, shareability, path, ret, scope_node, false);
1523 }
1524 }
1525 else {
1526 // There is more than one keyword argument, or this is not a
1527 // method call. In that case, we need to add an empty hash
1528 // (if first keyword), or merge the hash to the accumulated
1529 // hash (if not the first keyword).
1530 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
1531
1532 if (first_element) {
1533 PUSH_INSN1(ret, location, newhash, INT2FIX(0));
1534 }
1535 else {
1536 PUSH_INSN(ret, location, swap);
1537 }
1538
1539 if (shareability == 0) {
1540 PM_COMPILE_NOT_POPPED(element);
1541 }
1542 else {
1543 pm_compile_shareable_constant_value(iseq, element, shareability, path, ret, scope_node, false);
1544 }
1545
1546 PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
1547 }
1548 }
1549
1550 first_chunk = false;
1551 static_literal = false;
1552 break;
1553 }
1554 default:
1555 RUBY_ASSERT("Invalid node type for hash" && false);
1556 break;
1557 }
1558 }
1559
1560 FLUSH_CHUNK;
1561#undef FLUSH_CHUNK
1562}
1563
1564#define SPLATARRAY_FALSE 0
1565#define SPLATARRAY_TRUE 1
1566#define DUP_SINGLE_KW_SPLAT 2
1567
1568// This is details. Users should call pm_setup_args() instead.
1569static int
1570pm_setup_args_core(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, const bool has_regular_blockarg, struct rb_callinfo_kwarg **kw_arg, int *dup_rest, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location)
1571{
1572 const pm_node_location_t location = *node_location;
1573
1574 int orig_argc = 0;
1575 bool has_splat = false;
1576 bool has_keyword_splat = false;
1577
1578 if (arguments_node == NULL) {
1579 if (*flags & VM_CALL_FCALL) {
1580 *flags |= VM_CALL_VCALL;
1581 }
1582 }
1583 else {
1584 const pm_node_list_t *arguments = &arguments_node->arguments;
1585 has_keyword_splat = PM_NODE_FLAG_P(arguments_node, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT);
1586
1587 // We count the number of elements post the splat node that are not keyword elements to
1588 // eventually pass as an argument to newarray
1589 int post_splat_counter = 0;
1590 const pm_node_t *argument;
1591
1592 PM_NODE_LIST_FOREACH(arguments, index, argument) {
1593 switch (PM_NODE_TYPE(argument)) {
1594 // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes
1595 case PM_KEYWORD_HASH_NODE: {
1596 const pm_keyword_hash_node_t *keyword_arg = (const pm_keyword_hash_node_t *) argument;
1597 const pm_node_list_t *elements = &keyword_arg->elements;
1598
1599 if (has_keyword_splat || has_splat) {
1600 *flags |= VM_CALL_KW_SPLAT;
1601 has_keyword_splat = true;
1602
1603 if (elements->size > 1 || !(elements->size == 1 && PM_NODE_TYPE_P(elements->nodes[0], PM_ASSOC_SPLAT_NODE))) {
1604 // A new hash will be created for the keyword arguments
1605 // in this case, so mark the method as passing mutable
1606 // keyword splat.
1607 *flags |= VM_CALL_KW_SPLAT_MUT;
1608 pm_compile_hash_elements(iseq, argument, elements, 0, Qundef, true, ret, scope_node);
1609 }
1610 else if (*dup_rest & DUP_SINGLE_KW_SPLAT) {
1611 *flags |= VM_CALL_KW_SPLAT_MUT;
1612 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
1613 PUSH_INSN1(ret, location, newhash, INT2FIX(0));
1614 pm_compile_hash_elements(iseq, argument, elements, 0, Qundef, true, ret, scope_node);
1615 PUSH_SEND(ret, location, id_core_hash_merge_kwd, INT2FIX(2));
1616 }
1617 else {
1618 pm_compile_hash_elements(iseq, argument, elements, 0, Qundef, true, ret, scope_node);
1619 }
1620 }
1621 else {
1622 // We need to first figure out if all elements of the
1623 // KeywordHashNode are AssocNodes with symbol keys.
1625 // If they are all symbol keys then we can pass them as
1626 // keyword arguments. The first thing we need to do is
1627 // deduplicate. We'll do this using the combination of a
1628 // Ruby hash and a Ruby array.
1629 VALUE stored_indices = rb_hash_new();
1630 VALUE keyword_indices = rb_ary_new_capa(elements->size);
1631
1632 size_t size = 0;
1633 for (size_t element_index = 0; element_index < elements->size; element_index++) {
1634 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
1635
1636 // Retrieve the stored index from the hash for this
1637 // keyword.
1638 VALUE keyword = pm_static_literal_value(iseq, assoc->key, scope_node);
1639 VALUE stored_index = rb_hash_aref(stored_indices, keyword);
1640
1641 // If this keyword was already seen in the hash,
1642 // then mark the array at that index as false and
1643 // decrement the keyword size.
1644 if (!NIL_P(stored_index)) {
1645 rb_ary_store(keyword_indices, NUM2LONG(stored_index), Qfalse);
1646 size--;
1647 }
1648
1649 // Store (and possibly overwrite) the index for this
1650 // keyword in the hash, mark the array at that index
1651 // as true, and increment the keyword size.
1652 rb_hash_aset(stored_indices, keyword, ULONG2NUM(element_index));
1653 rb_ary_store(keyword_indices, (long) element_index, Qtrue);
1654 size++;
1655 }
1656
1657 *kw_arg = rb_xmalloc_mul_add(size, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg));
1658 *flags |= VM_CALL_KWARG;
1659
1660 VALUE *keywords = (*kw_arg)->keywords;
1661 (*kw_arg)->references = 0;
1662 (*kw_arg)->keyword_len = (int) size;
1663
1664 size_t keyword_index = 0;
1665 for (size_t element_index = 0; element_index < elements->size; element_index++) {
1666 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
1667 bool popped = true;
1668
1669 if (rb_ary_entry(keyword_indices, (long) element_index) == Qtrue) {
1670 keywords[keyword_index++] = pm_static_literal_value(iseq, assoc->key, scope_node);
1671 popped = false;
1672 }
1673
1674 PM_COMPILE(assoc->value);
1675 }
1676
1677 RUBY_ASSERT(keyword_index == size);
1678 }
1679 else {
1680 // If they aren't all symbol keys then we need to
1681 // construct a new hash and pass that as an argument.
1682 orig_argc++;
1683 *flags |= VM_CALL_KW_SPLAT;
1684
1685 size_t size = elements->size;
1686 if (size > 1) {
1687 // A new hash will be created for the keyword
1688 // arguments in this case, so mark the method as
1689 // passing mutable keyword splat.
1690 *flags |= VM_CALL_KW_SPLAT_MUT;
1691 }
1692
1693 for (size_t element_index = 0; element_index < size; element_index++) {
1694 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) elements->nodes[element_index];
1695 PM_COMPILE_NOT_POPPED(assoc->key);
1696 PM_COMPILE_NOT_POPPED(assoc->value);
1697 }
1698
1699 PUSH_INSN1(ret, location, newhash, INT2FIX(size * 2));
1700 }
1701 }
1702 break;
1703 }
1704 case PM_SPLAT_NODE: {
1705 *flags |= VM_CALL_ARGS_SPLAT;
1706 const pm_splat_node_t *splat_node = (const pm_splat_node_t *) argument;
1707
1708 if (splat_node->expression) {
1709 PM_COMPILE_NOT_POPPED(splat_node->expression);
1710 }
1711 else {
1712 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
1713 PUSH_GETLOCAL(ret, location, index.index, index.level);
1714 }
1715
1716 bool first_splat = !has_splat;
1717
1718 if (first_splat) {
1719 // If this is the first splat array seen and it's not the
1720 // last parameter, we want splatarray to dup it.
1721 //
1722 // foo(a, *b, c)
1723 // ^^
1724 if (index + 1 < arguments->size || has_regular_blockarg) {
1725 PUSH_INSN1(ret, location, splatarray, (*dup_rest & SPLATARRAY_TRUE) ? Qtrue : Qfalse);
1726 if (*dup_rest & SPLATARRAY_TRUE) *dup_rest &= ~SPLATARRAY_TRUE;
1727 }
1728 // If this is the first spalt array seen and it's the last
1729 // parameter, we don't want splatarray to dup it.
1730 //
1731 // foo(a, *b)
1732 // ^^
1733 else {
1734 PUSH_INSN1(ret, location, splatarray, Qfalse);
1735 }
1736 }
1737 else {
1738 // If this is not the first splat array seen and it is also
1739 // the last parameter, we don't want splatarray to dup it
1740 // and we need to concat the array.
1741 //
1742 // foo(a, *b, *c)
1743 // ^^
1744 PUSH_INSN(ret, location, concattoarray);
1745 }
1746
1747 has_splat = true;
1748 post_splat_counter = 0;
1749
1750 break;
1751 }
1752 case PM_FORWARDING_ARGUMENTS_NODE: { // not counted in argc return value
1753 iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
1754
1755 if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
1756 *flags |= VM_CALL_FORWARDING;
1757
1758 pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0);
1759 PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level);
1760
1761 break;
1762 }
1763
1764 orig_argc += 2;
1765
1766 *flags |= VM_CALL_ARGS_SPLAT | VM_CALL_ARGS_SPLAT_MUT | VM_CALL_ARGS_BLOCKARG | VM_CALL_KW_SPLAT;
1767
1768 // Forwarding arguments nodes are treated as foo(*, **, &)
1769 // So foo(...) equals foo(*, **, &) and as such the local
1770 // table for this method is known in advance
1771 //
1772 // Push the *
1773 pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
1774 PUSH_GETLOCAL(ret, location, mult_local.index, mult_local.level);
1775 PUSH_INSN1(ret, location, splatarray, Qtrue);
1776
1777 // Push the **
1778 pm_local_index_t pow_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0);
1779 PUSH_GETLOCAL(ret, location, pow_local.index, pow_local.level);
1780
1781 // Push the &
1782 pm_local_index_t and_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0);
1783 PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(and_local.index + VM_ENV_DATA_SIZE - 1), INT2FIX(and_local.level));
1784 PUSH_INSN(ret, location, splatkw);
1785
1786 break;
1787 }
1788 default: {
1789 post_splat_counter++;
1790 PM_COMPILE_NOT_POPPED(argument);
1791
1792 // If we have a splat and we've seen a splat, we need to process
1793 // everything after the splat.
1794 if (has_splat) {
1795 // Stack items are turned into an array and concatenated in
1796 // the following cases:
1797 //
1798 // If the next node is a splat:
1799 //
1800 // foo(*a, b, *c)
1801 //
1802 // If the next node is a kwarg or kwarg splat:
1803 //
1804 // foo(*a, b, c: :d)
1805 // foo(*a, b, **c)
1806 //
1807 // If the next node is NULL (we have hit the end):
1808 //
1809 // foo(*a, b)
1810 if (index == arguments->size - 1) {
1811 RUBY_ASSERT(post_splat_counter > 0);
1812 PUSH_INSN1(ret, location, pushtoarray, INT2FIX(post_splat_counter));
1813 }
1814 else {
1815 pm_node_t *next_arg = arguments->nodes[index + 1];
1816
1817 switch (PM_NODE_TYPE(next_arg)) {
1818 // A keyword hash node contains all keyword arguments as AssocNodes and AssocSplatNodes
1819 case PM_KEYWORD_HASH_NODE: {
1820 PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter));
1821 PUSH_INSN(ret, location, concatarray);
1822 break;
1823 }
1824 case PM_SPLAT_NODE: {
1825 PUSH_INSN1(ret, location, newarray, INT2FIX(post_splat_counter));
1826 PUSH_INSN(ret, location, concatarray);
1827 break;
1828 }
1829 default:
1830 break;
1831 }
1832 }
1833 }
1834 else {
1835 orig_argc++;
1836 }
1837 }
1838 }
1839 }
1840 }
1841
1842 if (has_splat) orig_argc++;
1843 if (has_keyword_splat) orig_argc++;
1844 return orig_argc;
1845}
1846
1851static inline bool
1852pm_setup_args_dup_rest_p(const pm_node_t *node)
1853{
1854 switch (PM_NODE_TYPE(node)) {
1859 case PM_FALSE_NODE:
1860 case PM_FLOAT_NODE:
1862 case PM_IMAGINARY_NODE:
1864 case PM_INTEGER_NODE:
1865 case PM_LAMBDA_NODE:
1867 case PM_NIL_NODE:
1869 case PM_RATIONAL_NODE:
1871 case PM_SELF_NODE:
1872 case PM_STRING_NODE:
1873 case PM_SYMBOL_NODE:
1874 case PM_TRUE_NODE:
1875 return false;
1876 case PM_IMPLICIT_NODE:
1877 return pm_setup_args_dup_rest_p(((const pm_implicit_node_t *) node)->value);
1878 default:
1879 return true;
1880 }
1881}
1882
1886static int
1887pm_setup_args(const pm_arguments_node_t *arguments_node, const pm_node_t *block, int *flags, struct rb_callinfo_kwarg **kw_arg, rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_node_location_t *node_location)
1888{
1889 int dup_rest = SPLATARRAY_TRUE;
1890
1891 const pm_node_list_t *arguments;
1892 size_t arguments_size;
1893
1894 // Calls like foo(1, *f, **hash) that use splat and kwsplat could be
1895 // eligible for eliding duping the rest array (dup_reset=false).
1896 if (
1897 arguments_node != NULL &&
1898 (arguments = &arguments_node->arguments, arguments_size = arguments->size) >= 2 &&
1901 PM_NODE_TYPE_P(arguments->nodes[arguments_size - 1], PM_KEYWORD_HASH_NODE)
1902 ) {
1903 // Start by assuming that dup_rest=false, then check each element of the
1904 // hash to ensure we don't need to flip it back to true (in case one of
1905 // the elements could potentially mutate the array).
1906 dup_rest = SPLATARRAY_FALSE;
1907
1908 const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) arguments->nodes[arguments_size - 1];
1909 const pm_node_list_t *elements = &keyword_hash->elements;
1910
1911 for (size_t index = 0; dup_rest == SPLATARRAY_FALSE && index < elements->size; index++) {
1912 const pm_node_t *element = elements->nodes[index];
1913
1914 switch (PM_NODE_TYPE(element)) {
1915 case PM_ASSOC_NODE: {
1916 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
1917 if (pm_setup_args_dup_rest_p(assoc->key) || pm_setup_args_dup_rest_p(assoc->value)) dup_rest = SPLATARRAY_TRUE;
1918 break;
1919 }
1920 case PM_ASSOC_SPLAT_NODE: {
1921 const pm_assoc_splat_node_t *assoc = (const pm_assoc_splat_node_t *) element;
1922 if (assoc->value != NULL && pm_setup_args_dup_rest_p(assoc->value)) dup_rest = SPLATARRAY_TRUE;
1923 break;
1924 }
1925 default:
1926 break;
1927 }
1928 }
1929 }
1930
1931 int initial_dup_rest = dup_rest;
1932 int argc;
1933
1934 if (block && PM_NODE_TYPE_P(block, PM_BLOCK_ARGUMENT_NODE)) {
1935 // We compile the `&block_arg` expression first and stitch it later
1936 // since the nature of the expression influences whether splat should
1937 // duplicate the array.
1938 bool regular_block_arg = true;
1939 const pm_node_t *block_expr = ((const pm_block_argument_node_t *)block)->expression;
1940
1941 if (block_expr && pm_setup_args_dup_rest_p(block_expr)) {
1942 dup_rest = SPLATARRAY_TRUE | DUP_SINGLE_KW_SPLAT;
1943 initial_dup_rest = dup_rest;
1944 }
1945
1946 DECL_ANCHOR(block_arg);
1947 pm_compile_node(iseq, block, block_arg, false, scope_node);
1948
1949 *flags |= VM_CALL_ARGS_BLOCKARG;
1950
1951 if (LIST_INSN_SIZE_ONE(block_arg)) {
1952 LINK_ELEMENT *elem = FIRST_ELEMENT(block_arg);
1953 if (IS_INSN(elem)) {
1954 INSN *iobj = (INSN *) elem;
1955 if (iobj->insn_id == BIN(getblockparam)) {
1956 iobj->insn_id = BIN(getblockparamproxy);
1957 }
1958
1959 // Allow splat without duplication for simple one-instruction
1960 // block arguments like `&arg`. It is known that this
1961 // optimization can be too aggressive in some cases. See
1962 // [Bug #16504].
1963 regular_block_arg = false;
1964 }
1965 }
1966
1967 argc = pm_setup_args_core(arguments_node, block, flags, regular_block_arg, kw_arg, &dup_rest, iseq, ret, scope_node, node_location);
1968 PUSH_SEQ(ret, block_arg);
1969 }
1970 else {
1971 argc = pm_setup_args_core(arguments_node, block, flags, false, kw_arg, &dup_rest, iseq, ret, scope_node, node_location);
1972 }
1973
1974 // If the dup_rest flag was consumed while compiling the arguments (which
1975 // effectively means we found the splat node), then it would have changed
1976 // during the call to pm_setup_args_core. In this case, we want to add the
1977 // VM_CALL_ARGS_SPLAT_MUT flag.
1978 if (*flags & VM_CALL_ARGS_SPLAT && dup_rest != initial_dup_rest) {
1979 *flags |= VM_CALL_ARGS_SPLAT_MUT;
1980 }
1981
1982 return argc;
1983}
1984
1995static void
1996pm_compile_index_operator_write_node(rb_iseq_t *iseq, const pm_index_operator_write_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
1997{
1998 const pm_node_location_t location = *node_location;
1999 if (!popped) PUSH_INSN(ret, location, putnil);
2000
2001 PM_COMPILE_NOT_POPPED(node->receiver);
2002
2003 int boff = (node->block == NULL ? 0 : 1);
2004 int flag = PM_NODE_TYPE_P(node->receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
2005 struct rb_callinfo_kwarg *keywords = NULL;
2006 int argc = pm_setup_args(node->arguments, (const pm_node_t *) node->block, &flag, &keywords, iseq, ret, scope_node, node_location);
2007
2008 if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) {
2009 if (boff) {
2010 PUSH_INSN(ret, location, splatkw);
2011 }
2012 else {
2013 PUSH_INSN(ret, location, dup);
2014 PUSH_INSN(ret, location, splatkw);
2015 PUSH_INSN(ret, location, pop);
2016 }
2017 }
2018
2019 int dup_argn = argc + 1 + boff;
2020 int keyword_len = 0;
2021
2022 if (keywords) {
2023 keyword_len = keywords->keyword_len;
2024 dup_argn += keyword_len;
2025 }
2026
2027 PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn));
2028 PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords);
2029 PM_COMPILE_NOT_POPPED(node->value);
2030
2031 ID id_operator = pm_constant_id_lookup(scope_node, node->binary_operator);
2032 PUSH_SEND(ret, location, id_operator, INT2FIX(1));
2033
2034 if (!popped) {
2035 PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
2036 }
2037 if (flag & VM_CALL_ARGS_SPLAT) {
2038 if (flag & VM_CALL_KW_SPLAT) {
2039 PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff));
2040
2041 if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
2042 PUSH_INSN1(ret, location, splatarray, Qtrue);
2043 flag |= VM_CALL_ARGS_SPLAT_MUT;
2044 }
2045
2046 PUSH_INSN(ret, location, swap);
2047 PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
2048 PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff));
2049 PUSH_INSN(ret, location, pop);
2050 }
2051 else {
2052 if (boff > 0) {
2053 PUSH_INSN1(ret, location, dupn, INT2FIX(3));
2054 PUSH_INSN(ret, location, swap);
2055 PUSH_INSN(ret, location, pop);
2056 }
2057 if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
2058 PUSH_INSN(ret, location, swap);
2059 PUSH_INSN1(ret, location, splatarray, Qtrue);
2060 PUSH_INSN(ret, location, swap);
2061 flag |= VM_CALL_ARGS_SPLAT_MUT;
2062 }
2063 PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
2064 if (boff > 0) {
2065 PUSH_INSN1(ret, location, setn, INT2FIX(3));
2066 PUSH_INSN(ret, location, pop);
2067 PUSH_INSN(ret, location, pop);
2068 }
2069 }
2070
2071 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords);
2072 }
2073 else if (flag & VM_CALL_KW_SPLAT) {
2074 if (boff > 0) {
2075 PUSH_INSN1(ret, location, topn, INT2FIX(2));
2076 PUSH_INSN(ret, location, swap);
2077 PUSH_INSN1(ret, location, setn, INT2FIX(3));
2078 PUSH_INSN(ret, location, pop);
2079 }
2080 PUSH_INSN(ret, location, swap);
2081 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2082 }
2083 else if (keyword_len) {
2084 PUSH_INSN(ret, location, dup);
2085 PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 2));
2086 PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1));
2087 PUSH_INSN(ret, location, pop);
2088 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2089 }
2090 else {
2091 if (boff > 0) {
2092 PUSH_INSN(ret, location, swap);
2093 }
2094 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2095 }
2096
2097 PUSH_INSN(ret, location, pop);
2098}
2099
2112static void
2113pm_compile_index_control_flow_write_node(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_t *receiver, const pm_arguments_node_t *arguments, const pm_block_argument_node_t *block, const pm_node_t *value, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
2114{
2115 const pm_node_location_t location = *node_location;
2116 if (!popped) PUSH_INSN(ret, location, putnil);
2117 PM_COMPILE_NOT_POPPED(receiver);
2118
2119 int boff = (block == NULL ? 0 : 1);
2120 int flag = PM_NODE_TYPE_P(receiver, PM_SELF_NODE) ? VM_CALL_FCALL : 0;
2121 struct rb_callinfo_kwarg *keywords = NULL;
2122 int argc = pm_setup_args(arguments, (const pm_node_t *) block, &flag, &keywords, iseq, ret, scope_node, node_location);
2123
2124 if ((argc > 0 || boff) && (flag & VM_CALL_KW_SPLAT)) {
2125 if (boff) {
2126 PUSH_INSN(ret, location, splatkw);
2127 }
2128 else {
2129 PUSH_INSN(ret, location, dup);
2130 PUSH_INSN(ret, location, splatkw);
2131 PUSH_INSN(ret, location, pop);
2132 }
2133 }
2134
2135 int dup_argn = argc + 1 + boff;
2136 int keyword_len = 0;
2137
2138 if (keywords) {
2139 keyword_len = keywords->keyword_len;
2140 dup_argn += keyword_len;
2141 }
2142
2143 PUSH_INSN1(ret, location, dupn, INT2FIX(dup_argn));
2144 PUSH_SEND_R(ret, location, idAREF, INT2FIX(argc), NULL, INT2FIX(flag & ~(VM_CALL_ARGS_SPLAT_MUT | VM_CALL_KW_SPLAT_MUT)), keywords);
2145
2146 LABEL *label = NEW_LABEL(location.line);
2147 LABEL *lfin = NEW_LABEL(location.line);
2148
2149 PUSH_INSN(ret, location, dup);
2151 PUSH_INSNL(ret, location, branchunless, label);
2152 }
2153 else {
2154 PUSH_INSNL(ret, location, branchif, label);
2155 }
2156
2157 PUSH_INSN(ret, location, pop);
2158 PM_COMPILE_NOT_POPPED(value);
2159
2160 if (!popped) {
2161 PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
2162 }
2163
2164 if (flag & VM_CALL_ARGS_SPLAT) {
2165 if (flag & VM_CALL_KW_SPLAT) {
2166 PUSH_INSN1(ret, location, topn, INT2FIX(2 + boff));
2167 if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
2168 PUSH_INSN1(ret, location, splatarray, Qtrue);
2169 flag |= VM_CALL_ARGS_SPLAT_MUT;
2170 }
2171
2172 PUSH_INSN(ret, location, swap);
2173 PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
2174 PUSH_INSN1(ret, location, setn, INT2FIX(2 + boff));
2175 PUSH_INSN(ret, location, pop);
2176 }
2177 else {
2178 if (boff > 0) {
2179 PUSH_INSN1(ret, location, dupn, INT2FIX(3));
2180 PUSH_INSN(ret, location, swap);
2181 PUSH_INSN(ret, location, pop);
2182 }
2183 if (!(flag & VM_CALL_ARGS_SPLAT_MUT)) {
2184 PUSH_INSN(ret, location, swap);
2185 PUSH_INSN1(ret, location, splatarray, Qtrue);
2186 PUSH_INSN(ret, location, swap);
2187 flag |= VM_CALL_ARGS_SPLAT_MUT;
2188 }
2189 PUSH_INSN1(ret, location, pushtoarray, INT2FIX(1));
2190 if (boff > 0) {
2191 PUSH_INSN1(ret, location, setn, INT2FIX(3));
2192 PUSH_INSN(ret, location, pop);
2193 PUSH_INSN(ret, location, pop);
2194 }
2195 }
2196
2197 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc), NULL, INT2FIX(flag), keywords);
2198 }
2199 else if (flag & VM_CALL_KW_SPLAT) {
2200 if (boff > 0) {
2201 PUSH_INSN1(ret, location, topn, INT2FIX(2));
2202 PUSH_INSN(ret, location, swap);
2203 PUSH_INSN1(ret, location, setn, INT2FIX(3));
2204 PUSH_INSN(ret, location, pop);
2205 }
2206
2207 PUSH_INSN(ret, location, swap);
2208 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2209 }
2210 else if (keyword_len) {
2211 PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 1));
2212 PUSH_INSN1(ret, location, opt_reverse, INT2FIX(keyword_len + boff + 0));
2213 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2214 }
2215 else {
2216 if (boff > 0) {
2217 PUSH_INSN(ret, location, swap);
2218 }
2219 PUSH_SEND_R(ret, location, idASET, INT2FIX(argc + 1), NULL, INT2FIX(flag), keywords);
2220 }
2221
2222 PUSH_INSN(ret, location, pop);
2223 PUSH_INSNL(ret, location, jump, lfin);
2224 PUSH_LABEL(ret, label);
2225 if (!popped) {
2226 PUSH_INSN1(ret, location, setn, INT2FIX(dup_argn + 1));
2227 }
2228 PUSH_INSN1(ret, location, adjuststack, INT2FIX(dup_argn + 1));
2229 PUSH_LABEL(ret, lfin);
2230}
2231
2232// When we compile a pattern matching expression, we use the stack as a scratch
2233// space to store lots of different values (consider it like we have a pattern
2234// matching function and we need space for a bunch of different local
2235// variables). The "base index" refers to the index on the stack where we
2236// started compiling the pattern matching expression. These offsets from that
2237// base index indicate the location of the various locals we need.
2238#define PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE 0
2239#define PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING 1
2240#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P 2
2241#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE 3
2242#define PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY 4
2243
2244// A forward declaration because this is the recursive function that handles
2245// compiling a pattern. It can be reentered by nesting patterns, as in the case
2246// of arrays or hashes.
2247static int pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index);
2248
2253static int
2254pm_compile_pattern_generic_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, unsigned int base_index)
2255{
2256 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2257 LABEL *match_succeeded_label = NEW_LABEL(location.line);
2258
2259 PUSH_INSN(ret, location, dup);
2260 PUSH_INSNL(ret, location, branchif, match_succeeded_label);
2261
2262 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2263 PUSH_INSN1(ret, location, putobject, message);
2264 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2265 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2));
2266 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
2267
2268 PUSH_INSN1(ret, location, putobject, Qfalse);
2269 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
2270
2271 PUSH_INSN(ret, location, pop);
2272 PUSH_INSN(ret, location, pop);
2273 PUSH_LABEL(ret, match_succeeded_label);
2274
2275 return COMPILE_OK;
2276}
2277
2283static int
2284pm_compile_pattern_length_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, VALUE message, VALUE length, unsigned int base_index)
2285{
2286 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2287 LABEL *match_succeeded_label = NEW_LABEL(location.line);
2288
2289 PUSH_INSN(ret, location, dup);
2290 PUSH_INSNL(ret, location, branchif, match_succeeded_label);
2291
2292 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2293 PUSH_INSN1(ret, location, putobject, message);
2294 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2295 PUSH_INSN(ret, location, dup);
2296 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2297 PUSH_INSN1(ret, location, putobject, length);
2298 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(4));
2299 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
2300
2301 PUSH_INSN1(ret, location, putobject, Qfalse);
2302 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
2303
2304 PUSH_INSN(ret, location, pop);
2305 PUSH_INSN(ret, location, pop);
2306 PUSH_LABEL(ret, match_succeeded_label);
2307
2308 return COMPILE_OK;
2309}
2310
2316static int
2317pm_compile_pattern_eqq_error(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, unsigned int base_index)
2318{
2319 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2320 LABEL *match_succeeded_label = NEW_LABEL(location.line);
2321
2322 PUSH_INSN(ret, location, dup);
2323 PUSH_INSNL(ret, location, branchif, match_succeeded_label);
2324 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2325
2326 VALUE operand = rb_fstring_lit("%p === %p does not return true");
2327 PUSH_INSN1(ret, location, putobject, operand);
2328
2329 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2330 PUSH_INSN1(ret, location, topn, INT2FIX(5));
2331 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
2332 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
2333 PUSH_INSN1(ret, location, putobject, Qfalse);
2334 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
2335 PUSH_INSN(ret, location, pop);
2336 PUSH_INSN(ret, location, pop);
2337
2338 PUSH_LABEL(ret, match_succeeded_label);
2339 PUSH_INSN1(ret, location, setn, INT2FIX(2));
2340 PUSH_INSN(ret, location, pop);
2341 PUSH_INSN(ret, location, pop);
2342
2343 return COMPILE_OK;
2344}
2345
2352static int
2353pm_compile_pattern_match(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index)
2354{
2355 LABEL *matched_label = NEW_LABEL(pm_node_line_number(scope_node->parser, node));
2356 CHECK(pm_compile_pattern(iseq, scope_node, node, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index));
2357 PUSH_LABEL(ret, matched_label);
2358 return COMPILE_OK;
2359}
2360
2366static int
2367pm_compile_pattern_deconstruct(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *deconstruct_label, LABEL *match_failed_label, LABEL *deconstructed_label, LABEL *type_error_label, bool in_single_pattern, bool use_deconstructed_cache, unsigned int base_index)
2368{
2369 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2370
2371 if (use_deconstructed_cache) {
2372 PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
2373 PUSH_INSNL(ret, location, branchnil, deconstruct_label);
2374
2375 PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
2376 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2377
2378 PUSH_INSN(ret, location, pop);
2379 PUSH_INSN1(ret, location, topn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE - 1));
2380 PUSH_INSNL(ret, location, jump, deconstructed_label);
2381 }
2382 else {
2383 PUSH_INSNL(ret, location, jump, deconstruct_label);
2384 }
2385
2386 PUSH_LABEL(ret, deconstruct_label);
2387 PUSH_INSN(ret, location, dup);
2388
2389 VALUE operand = ID2SYM(rb_intern("deconstruct"));
2390 PUSH_INSN1(ret, location, putobject, operand);
2391 PUSH_SEND(ret, location, idRespond_to, INT2FIX(1));
2392
2393 if (use_deconstructed_cache) {
2394 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE + 1));
2395 }
2396
2397 if (in_single_pattern) {
2398 CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct"), base_index + 1));
2399 }
2400
2401 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2402 PUSH_SEND(ret, location, rb_intern("deconstruct"), INT2FIX(0));
2403
2404 if (use_deconstructed_cache) {
2405 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE));
2406 }
2407
2408 PUSH_INSN(ret, location, dup);
2409 PUSH_INSN1(ret, location, checktype, INT2FIX(T_ARRAY));
2410 PUSH_INSNL(ret, location, branchunless, type_error_label);
2411 PUSH_LABEL(ret, deconstructed_label);
2412
2413 return COMPILE_OK;
2414}
2415
2420static int
2421pm_compile_pattern_constant(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *match_failed_label, bool in_single_pattern, unsigned int base_index)
2422{
2423 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2424
2425 PUSH_INSN(ret, location, dup);
2426 PM_COMPILE_NOT_POPPED(node);
2427
2428 if (in_single_pattern) {
2429 PUSH_INSN1(ret, location, dupn, INT2FIX(2));
2430 }
2431 PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE));
2432 if (in_single_pattern) {
2433 CHECK(pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 3));
2434 }
2435 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2436 return COMPILE_OK;
2437}
2438
2443static void
2444pm_compile_pattern_error_handler(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *done_label, bool popped)
2445{
2446 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2447 LABEL *key_error_label = NEW_LABEL(location.line);
2448 LABEL *cleanup_label = NEW_LABEL(location.line);
2449
2450 struct rb_callinfo_kwarg *kw_arg = rb_xmalloc_mul_add(2, sizeof(VALUE), sizeof(struct rb_callinfo_kwarg));
2451 kw_arg->references = 0;
2452 kw_arg->keyword_len = 2;
2453 kw_arg->keywords[0] = ID2SYM(rb_intern("matchee"));
2454 kw_arg->keywords[1] = ID2SYM(rb_intern("key"));
2455
2456 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2457 PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
2458 PUSH_INSNL(ret, location, branchif, key_error_label);
2459
2460 PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternError);
2461 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2462
2463 {
2464 VALUE operand = rb_fstring_lit("%p: %s");
2465 PUSH_INSN1(ret, location, putobject, operand);
2466 }
2467
2468 PUSH_INSN1(ret, location, topn, INT2FIX(4));
2469 PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6));
2470 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
2471 PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
2472 PUSH_INSNL(ret, location, jump, cleanup_label);
2473
2474 PUSH_LABEL(ret, key_error_label);
2475 PUSH_INSN1(ret, location, putobject, rb_eNoMatchingPatternKeyError);
2476 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2477
2478 {
2479 VALUE operand = rb_fstring_lit("%p: %s");
2480 PUSH_INSN1(ret, location, putobject, operand);
2481 }
2482
2483 PUSH_INSN1(ret, location, topn, INT2FIX(4));
2484 PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 6));
2485 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(3));
2486 PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4));
2487 PUSH_INSN1(ret, location, topn, INT2FIX(PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5));
2488 PUSH_SEND_R(ret, location, rb_intern("new"), INT2FIX(1), NULL, INT2FIX(VM_CALL_KWARG), kw_arg);
2489 PUSH_SEND(ret, location, id_core_raise, INT2FIX(1));
2490 PUSH_LABEL(ret, cleanup_label);
2491
2492 PUSH_INSN1(ret, location, adjuststack, INT2FIX(7));
2493 if (!popped) PUSH_INSN(ret, location, putnil);
2494 PUSH_INSNL(ret, location, jump, done_label);
2495 PUSH_INSN1(ret, location, dupn, INT2FIX(5));
2496 if (popped) PUSH_INSN(ret, location, putnil);
2497}
2498
2502static int
2503pm_compile_pattern(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_t *node, LINK_ANCHOR *const ret, LABEL *matched_label, LABEL *unmatched_label, bool in_single_pattern, bool in_alternation_pattern, bool use_deconstructed_cache, unsigned int base_index)
2504{
2505 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
2506
2507 switch (PM_NODE_TYPE(node)) {
2508 case PM_ARRAY_PATTERN_NODE: {
2509 // Array patterns in pattern matching are triggered by using commas in
2510 // a pattern or wrapping it in braces. They are represented by a
2511 // ArrayPatternNode. This looks like:
2512 //
2513 // foo => [1, 2, 3]
2514 //
2515 // It can optionally have a splat in the middle of it, which can
2516 // optionally have a name attached.
2517 const pm_array_pattern_node_t *cast = (const pm_array_pattern_node_t *) node;
2518
2519 const size_t requireds_size = cast->requireds.size;
2520 const size_t posts_size = cast->posts.size;
2521 const size_t minimum_size = requireds_size + posts_size;
2522
2523 bool rest_named = false;
2524 bool use_rest_size = false;
2525
2526 if (cast->rest != NULL) {
2527 rest_named = (PM_NODE_TYPE_P(cast->rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) cast->rest)->expression != NULL);
2528 use_rest_size = (rest_named || (!rest_named && posts_size > 0));
2529 }
2530
2531 LABEL *match_failed_label = NEW_LABEL(location.line);
2532 LABEL *type_error_label = NEW_LABEL(location.line);
2533 LABEL *deconstruct_label = NEW_LABEL(location.line);
2534 LABEL *deconstructed_label = NEW_LABEL(location.line);
2535
2536 if (use_rest_size) {
2537 PUSH_INSN1(ret, location, putobject, INT2FIX(0));
2538 PUSH_INSN(ret, location, swap);
2539 base_index++;
2540 }
2541
2542 if (cast->constant != NULL) {
2543 CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
2544 }
2545
2546 CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index));
2547
2548 PUSH_INSN(ret, location, dup);
2549 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2550 PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
2551 PUSH_SEND(ret, location, cast->rest == NULL ? idEq : idGE, INT2FIX(1));
2552 if (in_single_pattern) {
2553 VALUE message = cast->rest == NULL ? rb_fstring_lit("%p length mismatch (given %p, expected %p)") : rb_fstring_lit("%p length mismatch (given %p, expected %p+)");
2554 CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, message, INT2FIX(minimum_size), base_index + 1));
2555 }
2556 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2557
2558 for (size_t index = 0; index < requireds_size; index++) {
2559 const pm_node_t *required = cast->requireds.nodes[index];
2560 PUSH_INSN(ret, location, dup);
2561 PUSH_INSN1(ret, location, putobject, INT2FIX(index));
2562 PUSH_SEND(ret, location, idAREF, INT2FIX(1));
2563 CHECK(pm_compile_pattern_match(iseq, scope_node, required, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
2564 }
2565
2566 if (cast->rest != NULL) {
2567 if (rest_named) {
2568 PUSH_INSN(ret, location, dup);
2569 PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size));
2570 PUSH_INSN1(ret, location, topn, INT2FIX(1));
2571 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2572 PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
2573 PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
2574 PUSH_INSN1(ret, location, setn, INT2FIX(4));
2575 PUSH_SEND(ret, location, idAREF, INT2FIX(2));
2576 CHECK(pm_compile_pattern_match(iseq, scope_node, ((const pm_splat_node_t *) cast->rest)->expression, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
2577 }
2578 else if (posts_size > 0) {
2579 PUSH_INSN(ret, location, dup);
2580 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2581 PUSH_INSN1(ret, location, putobject, INT2FIX(minimum_size));
2582 PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
2583 PUSH_INSN1(ret, location, setn, INT2FIX(2));
2584 PUSH_INSN(ret, location, pop);
2585 }
2586 }
2587
2588 for (size_t index = 0; index < posts_size; index++) {
2589 const pm_node_t *post = cast->posts.nodes[index];
2590 PUSH_INSN(ret, location, dup);
2591
2592 PUSH_INSN1(ret, location, putobject, INT2FIX(requireds_size + index));
2593 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2594 PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
2595 PUSH_SEND(ret, location, idAREF, INT2FIX(1));
2596 CHECK(pm_compile_pattern_match(iseq, scope_node, post, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
2597 }
2598
2599 PUSH_INSN(ret, location, pop);
2600 if (use_rest_size) {
2601 PUSH_INSN(ret, location, pop);
2602 }
2603
2604 PUSH_INSNL(ret, location, jump, matched_label);
2605 PUSH_INSN(ret, location, putnil);
2606 if (use_rest_size) {
2607 PUSH_INSN(ret, location, putnil);
2608 }
2609
2610 PUSH_LABEL(ret, type_error_label);
2611 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2612 PUSH_INSN1(ret, location, putobject, rb_eTypeError);
2613
2614 {
2615 VALUE operand = rb_fstring_lit("deconstruct must return Array");
2616 PUSH_INSN1(ret, location, putobject, operand);
2617 }
2618
2619 PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
2620 PUSH_INSN(ret, location, pop);
2621
2622 PUSH_LABEL(ret, match_failed_label);
2623 PUSH_INSN(ret, location, pop);
2624 if (use_rest_size) {
2625 PUSH_INSN(ret, location, pop);
2626 }
2627
2628 PUSH_INSNL(ret, location, jump, unmatched_label);
2629 break;
2630 }
2631 case PM_FIND_PATTERN_NODE: {
2632 // Find patterns in pattern matching are triggered by using commas in
2633 // a pattern or wrapping it in braces and using a splat on both the left
2634 // and right side of the pattern. This looks like:
2635 //
2636 // foo => [*, 1, 2, 3, *]
2637 //
2638 // There can be any number of requireds in the middle. The splats on
2639 // both sides can optionally have names attached.
2640 const pm_find_pattern_node_t *cast = (const pm_find_pattern_node_t *) node;
2641 const size_t size = cast->requireds.size;
2642
2643 LABEL *match_failed_label = NEW_LABEL(location.line);
2644 LABEL *type_error_label = NEW_LABEL(location.line);
2645 LABEL *deconstruct_label = NEW_LABEL(location.line);
2646 LABEL *deconstructed_label = NEW_LABEL(location.line);
2647
2648 if (cast->constant) {
2649 CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
2650 }
2651
2652 CHECK(pm_compile_pattern_deconstruct(iseq, scope_node, node, ret, deconstruct_label, match_failed_label, deconstructed_label, type_error_label, in_single_pattern, use_deconstructed_cache, base_index));
2653
2654 PUSH_INSN(ret, location, dup);
2655 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2656 PUSH_INSN1(ret, location, putobject, INT2FIX(size));
2657 PUSH_SEND(ret, location, idGE, INT2FIX(1));
2658 if (in_single_pattern) {
2659 CHECK(pm_compile_pattern_length_error(iseq, scope_node, node, ret, rb_fstring_lit("%p length mismatch (given %p, expected %p+)"), INT2FIX(size), base_index + 1));
2660 }
2661 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2662
2663 {
2664 LABEL *while_begin_label = NEW_LABEL(location.line);
2665 LABEL *next_loop_label = NEW_LABEL(location.line);
2666 LABEL *find_succeeded_label = NEW_LABEL(location.line);
2667 LABEL *find_failed_label = NEW_LABEL(location.line);
2668
2669 PUSH_INSN(ret, location, dup);
2670 PUSH_SEND(ret, location, idLength, INT2FIX(0));
2671
2672 PUSH_INSN(ret, location, dup);
2673 PUSH_INSN1(ret, location, putobject, INT2FIX(size));
2674 PUSH_SEND(ret, location, idMINUS, INT2FIX(1));
2675 PUSH_INSN1(ret, location, putobject, INT2FIX(0));
2676 PUSH_LABEL(ret, while_begin_label);
2677
2678 PUSH_INSN(ret, location, dup);
2679 PUSH_INSN1(ret, location, topn, INT2FIX(2));
2680 PUSH_SEND(ret, location, idLE, INT2FIX(1));
2681 PUSH_INSNL(ret, location, branchunless, find_failed_label);
2682
2683 for (size_t index = 0; index < size; index++) {
2684 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2685 PUSH_INSN1(ret, location, topn, INT2FIX(1));
2686
2687 if (index != 0) {
2688 PUSH_INSN1(ret, location, putobject, INT2FIX(index));
2689 PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
2690 }
2691
2692 PUSH_SEND(ret, location, idAREF, INT2FIX(1));
2693 CHECK(pm_compile_pattern_match(iseq, scope_node, cast->requireds.nodes[index], ret, next_loop_label, in_single_pattern, in_alternation_pattern, false, base_index + 4));
2694 }
2695
2696 const pm_splat_node_t *left = cast->left;
2697
2698 if (left->expression != NULL) {
2699 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2700 PUSH_INSN1(ret, location, putobject, INT2FIX(0));
2701 PUSH_INSN1(ret, location, topn, INT2FIX(2));
2702 PUSH_SEND(ret, location, idAREF, INT2FIX(2));
2703 CHECK(pm_compile_pattern_match(iseq, scope_node, left->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4));
2704 }
2705
2707 const pm_splat_node_t *right = (const pm_splat_node_t *) cast->right;
2708
2709 if (right->expression != NULL) {
2710 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2711 PUSH_INSN1(ret, location, topn, INT2FIX(1));
2712 PUSH_INSN1(ret, location, putobject, INT2FIX(size));
2713 PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
2714 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2715 PUSH_SEND(ret, location, idAREF, INT2FIX(2));
2716 pm_compile_pattern_match(iseq, scope_node, right->expression, ret, find_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 4);
2717 }
2718
2719 PUSH_INSNL(ret, location, jump, find_succeeded_label);
2720
2721 PUSH_LABEL(ret, next_loop_label);
2722 PUSH_INSN1(ret, location, putobject, INT2FIX(1));
2723 PUSH_SEND(ret, location, idPLUS, INT2FIX(1));
2724 PUSH_INSNL(ret, location, jump, while_begin_label);
2725
2726 PUSH_LABEL(ret, find_failed_label);
2727 PUSH_INSN1(ret, location, adjuststack, INT2FIX(3));
2728 if (in_single_pattern) {
2729 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2730
2731 {
2732 VALUE operand = rb_fstring_lit("%p does not match to find pattern");
2733 PUSH_INSN1(ret, location, putobject, operand);
2734 }
2735
2736 PUSH_INSN1(ret, location, topn, INT2FIX(2));
2737 PUSH_SEND(ret, location, id_core_sprintf, INT2FIX(2));
2738 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
2739
2740 PUSH_INSN1(ret, location, putobject, Qfalse);
2741 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
2742
2743 PUSH_INSN(ret, location, pop);
2744 PUSH_INSN(ret, location, pop);
2745 }
2746 PUSH_INSNL(ret, location, jump, match_failed_label);
2747 PUSH_INSN1(ret, location, dupn, INT2FIX(3));
2748
2749 PUSH_LABEL(ret, find_succeeded_label);
2750 PUSH_INSN1(ret, location, adjuststack, INT2FIX(3));
2751 }
2752
2753 PUSH_INSN(ret, location, pop);
2754 PUSH_INSNL(ret, location, jump, matched_label);
2755 PUSH_INSN(ret, location, putnil);
2756
2757 PUSH_LABEL(ret, type_error_label);
2758 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2759 PUSH_INSN1(ret, location, putobject, rb_eTypeError);
2760
2761 {
2762 VALUE operand = rb_fstring_lit("deconstruct must return Array");
2763 PUSH_INSN1(ret, location, putobject, operand);
2764 }
2765
2766 PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
2767 PUSH_INSN(ret, location, pop);
2768
2769 PUSH_LABEL(ret, match_failed_label);
2770 PUSH_INSN(ret, location, pop);
2771 PUSH_INSNL(ret, location, jump, unmatched_label);
2772
2773 break;
2774 }
2775 case PM_HASH_PATTERN_NODE: {
2776 // Hash patterns in pattern matching are triggered by using labels and
2777 // values in a pattern or by using the ** operator. They are represented
2778 // by the HashPatternNode. This looks like:
2779 //
2780 // foo => { a: 1, b: 2, **bar }
2781 //
2782 // It can optionally have an assoc splat in the middle of it, which can
2783 // optionally have a name.
2784 const pm_hash_pattern_node_t *cast = (const pm_hash_pattern_node_t *) node;
2785
2786 // We don't consider it a "rest" parameter if it's a ** that is unnamed.
2787 bool has_rest = cast->rest != NULL && !(PM_NODE_TYPE_P(cast->rest, PM_ASSOC_SPLAT_NODE) && ((const pm_assoc_splat_node_t *) cast->rest)->value == NULL);
2788 bool has_keys = cast->elements.size > 0 || cast->rest != NULL;
2789
2790 LABEL *match_failed_label = NEW_LABEL(location.line);
2791 LABEL *type_error_label = NEW_LABEL(location.line);
2792 VALUE keys = Qnil;
2793
2794 if (has_keys && !has_rest) {
2795 keys = rb_ary_new_capa(cast->elements.size);
2796
2797 for (size_t index = 0; index < cast->elements.size; index++) {
2798 const pm_node_t *element = cast->elements.nodes[index];
2800
2801 const pm_node_t *key = ((const pm_assoc_node_t *) element)->key;
2803
2804 VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key));
2805 rb_ary_push(keys, symbol);
2806 }
2807 }
2808
2809 if (cast->constant) {
2810 CHECK(pm_compile_pattern_constant(iseq, scope_node, cast->constant, ret, match_failed_label, in_single_pattern, base_index));
2811 }
2812
2813 PUSH_INSN(ret, location, dup);
2814
2815 {
2816 VALUE operand = ID2SYM(rb_intern("deconstruct_keys"));
2817 PUSH_INSN1(ret, location, putobject, operand);
2818 }
2819
2820 PUSH_SEND(ret, location, idRespond_to, INT2FIX(1));
2821 if (in_single_pattern) {
2822 CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p does not respond to #deconstruct_keys"), base_index + 1));
2823 }
2824 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2825
2826 if (NIL_P(keys)) {
2827 PUSH_INSN(ret, location, putnil);
2828 }
2829 else {
2830 PUSH_INSN1(ret, location, duparray, keys);
2831 RB_OBJ_WRITTEN(iseq, Qundef, rb_obj_hide(keys));
2832 }
2833 PUSH_SEND(ret, location, rb_intern("deconstruct_keys"), INT2FIX(1));
2834
2835 PUSH_INSN(ret, location, dup);
2836 PUSH_INSN1(ret, location, checktype, INT2FIX(T_HASH));
2837 PUSH_INSNL(ret, location, branchunless, type_error_label);
2838
2839 if (has_rest) {
2840 PUSH_SEND(ret, location, rb_intern("dup"), INT2FIX(0));
2841 }
2842
2843 if (has_keys) {
2844 DECL_ANCHOR(match_values);
2845
2846 for (size_t index = 0; index < cast->elements.size; index++) {
2847 const pm_node_t *element = cast->elements.nodes[index];
2849
2850 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
2851 const pm_node_t *key = assoc->key;
2853
2854 VALUE symbol = ID2SYM(parse_string_symbol(scope_node, (const pm_symbol_node_t *) key));
2855 PUSH_INSN(ret, location, dup);
2856 PUSH_INSN1(ret, location, putobject, symbol);
2857 PUSH_SEND(ret, location, rb_intern("key?"), INT2FIX(1));
2858
2859 if (in_single_pattern) {
2860 LABEL *match_succeeded_label = NEW_LABEL(location.line);
2861
2862 PUSH_INSN(ret, location, dup);
2863 PUSH_INSNL(ret, location, branchif, match_succeeded_label);
2864
2865 {
2866 VALUE operand = rb_str_freeze(rb_sprintf("key not found: %+"PRIsVALUE, symbol));
2867 PUSH_INSN1(ret, location, putobject, operand);
2868 }
2869
2870 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 2));
2871 PUSH_INSN1(ret, location, putobject, Qtrue);
2872 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 3));
2873 PUSH_INSN1(ret, location, topn, INT2FIX(3));
2874 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE + 4));
2875 PUSH_INSN1(ret, location, putobject, symbol);
2876 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY + 5));
2877
2878 PUSH_INSN1(ret, location, adjuststack, INT2FIX(4));
2879 PUSH_LABEL(ret, match_succeeded_label);
2880 }
2881
2882 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2883 PUSH_INSN(match_values, location, dup);
2884 PUSH_INSN1(match_values, location, putobject, symbol);
2885 PUSH_SEND(match_values, location, has_rest ? rb_intern("delete") : idAREF, INT2FIX(1));
2886
2887 const pm_node_t *value = assoc->value;
2888 if (PM_NODE_TYPE_P(value, PM_IMPLICIT_NODE)) {
2889 value = ((const pm_implicit_node_t *) value)->value;
2890 }
2891
2892 CHECK(pm_compile_pattern_match(iseq, scope_node, value, match_values, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1));
2893 }
2894
2895 PUSH_SEQ(ret, match_values);
2896 }
2897 else {
2898 PUSH_INSN(ret, location, dup);
2899 PUSH_SEND(ret, location, idEmptyP, INT2FIX(0));
2900 if (in_single_pattern) {
2901 CHECK(pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("%p is not empty"), base_index + 1));
2902 }
2903 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2904 }
2905
2906 if (has_rest) {
2907 switch (PM_NODE_TYPE(cast->rest)) {
2909 PUSH_INSN(ret, location, dup);
2910 PUSH_SEND(ret, location, idEmptyP, INT2FIX(0));
2911 if (in_single_pattern) {
2912 pm_compile_pattern_generic_error(iseq, scope_node, node, ret, rb_fstring_lit("rest of %p is not empty"), base_index + 1);
2913 }
2914 PUSH_INSNL(ret, location, branchunless, match_failed_label);
2915 break;
2916 }
2917 case PM_ASSOC_SPLAT_NODE: {
2918 const pm_assoc_splat_node_t *splat = (const pm_assoc_splat_node_t *) cast->rest;
2919 PUSH_INSN(ret, location, dup);
2920 pm_compile_pattern_match(iseq, scope_node, splat->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index + 1);
2921 break;
2922 }
2923 default:
2924 rb_bug("unreachable");
2925 break;
2926 }
2927 }
2928
2929 PUSH_INSN(ret, location, pop);
2930 PUSH_INSNL(ret, location, jump, matched_label);
2931 PUSH_INSN(ret, location, putnil);
2932
2933 PUSH_LABEL(ret, type_error_label);
2934 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
2935 PUSH_INSN1(ret, location, putobject, rb_eTypeError);
2936
2937 {
2938 VALUE operand = rb_fstring_lit("deconstruct_keys must return Hash");
2939 PUSH_INSN1(ret, location, putobject, operand);
2940 }
2941
2942 PUSH_SEND(ret, location, id_core_raise, INT2FIX(2));
2943 PUSH_INSN(ret, location, pop);
2944
2945 PUSH_LABEL(ret, match_failed_label);
2946 PUSH_INSN(ret, location, pop);
2947 PUSH_INSNL(ret, location, jump, unmatched_label);
2948 break;
2949 }
2951 // Capture patterns allow you to pattern match against an element in a
2952 // pattern and also capture the value into a local variable. This looks
2953 // like:
2954 //
2955 // [1] => [Integer => foo]
2956 //
2957 // In this case the `Integer => foo` will be represented by a
2958 // CapturePatternNode, which has both a value (the pattern to match
2959 // against) and a target (the place to write the variable into).
2960 const pm_capture_pattern_node_t *cast = (const pm_capture_pattern_node_t *) node;
2961
2962 LABEL *match_failed_label = NEW_LABEL(location.line);
2963
2964 PUSH_INSN(ret, location, dup);
2965 CHECK(pm_compile_pattern_match(iseq, scope_node, cast->value, ret, match_failed_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index + 1));
2966 CHECK(pm_compile_pattern(iseq, scope_node, (const pm_node_t *) cast->target, ret, matched_label, match_failed_label, in_single_pattern, in_alternation_pattern, false, base_index));
2967 PUSH_INSN(ret, location, putnil);
2968
2969 PUSH_LABEL(ret, match_failed_label);
2970 PUSH_INSN(ret, location, pop);
2971 PUSH_INSNL(ret, location, jump, unmatched_label);
2972
2973 break;
2974 }
2976 // Local variables can be targeted by placing identifiers in the place
2977 // of a pattern. For example, foo in bar. This results in the value
2978 // being matched being written to that local variable.
2980 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
2981
2982 // If this local variable is being written from within an alternation
2983 // pattern, then it cannot actually be added to the local table since
2984 // it's ambiguous which value should be used. So instead we indicate
2985 // this with a compile error.
2986 if (in_alternation_pattern) {
2987 ID id = pm_constant_id_lookup(scope_node, cast->name);
2988 const char *name = rb_id2name(id);
2989
2990 if (name && strlen(name) > 0 && name[0] != '_') {
2991 COMPILE_ERROR(iseq, location.line, "illegal variable in alternative pattern (%"PRIsVALUE")", rb_id2str(id));
2992 return COMPILE_NG;
2993 }
2994 }
2995
2996 PUSH_SETLOCAL(ret, location, index.index, index.level);
2997 PUSH_INSNL(ret, location, jump, matched_label);
2998 break;
2999 }
3001 // Alternation patterns allow you to specify multiple patterns in a
3002 // single expression using the | operator.
3004
3005 LABEL *matched_left_label = NEW_LABEL(location.line);
3006 LABEL *unmatched_left_label = NEW_LABEL(location.line);
3007
3008 // First, we're going to attempt to match against the left pattern. If
3009 // that pattern matches, then we'll skip matching the right pattern.
3010 PUSH_INSN(ret, location, dup);
3011 CHECK(pm_compile_pattern(iseq, scope_node, cast->left, ret, matched_left_label, unmatched_left_label, in_single_pattern, true, use_deconstructed_cache, base_index + 1));
3012
3013 // If we get here, then we matched on the left pattern. In this case we
3014 // should pop out the duplicate value that we preemptively added to
3015 // match against the right pattern and then jump to the match label.
3016 PUSH_LABEL(ret, matched_left_label);
3017 PUSH_INSN(ret, location, pop);
3018 PUSH_INSNL(ret, location, jump, matched_label);
3019 PUSH_INSN(ret, location, putnil);
3020
3021 // If we get here, then we didn't match on the left pattern. In this
3022 // case we attempt to match against the right pattern.
3023 PUSH_LABEL(ret, unmatched_left_label);
3024 CHECK(pm_compile_pattern(iseq, scope_node, cast->right, ret, matched_label, unmatched_label, in_single_pattern, true, use_deconstructed_cache, base_index));
3025 break;
3026 }
3028 // Parentheses are allowed to wrap expressions in pattern matching and
3029 // they do nothing since they can only wrap individual expressions and
3030 // not groups. In this case we'll recurse back into this same function
3031 // with the body of the parentheses.
3032 return pm_compile_pattern(iseq, scope_node, ((const pm_parentheses_node_t *) node)->body, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index);
3034 // Pinned expressions are a way to match against the value of an
3035 // expression that should be evaluated at runtime. This looks like:
3036 // foo in ^(bar). To compile these, we compile the expression as if it
3037 // were a literal value by falling through to the literal case.
3038 node = ((const pm_pinned_expression_node_t *) node)->expression;
3039 /* fallthrough */
3040 case PM_ARRAY_NODE:
3044 case PM_FALSE_NODE:
3045 case PM_FLOAT_NODE:
3047 case PM_IMAGINARY_NODE:
3050 case PM_INTEGER_NODE:
3055 case PM_LAMBDA_NODE:
3057 case PM_NIL_NODE:
3061 case PM_RANGE_NODE:
3062 case PM_RATIONAL_NODE:
3064 case PM_SELF_NODE:
3065 case PM_STRING_NODE:
3066 case PM_SYMBOL_NODE:
3067 case PM_TRUE_NODE:
3068 case PM_X_STRING_NODE: {
3069 // These nodes are all simple patterns, which means we'll use the
3070 // checkmatch instruction to match against them, which is effectively a
3071 // VM-level === operator.
3072 PM_COMPILE_NOT_POPPED(node);
3073 if (in_single_pattern) {
3074 PUSH_INSN1(ret, location, dupn, INT2FIX(2));
3075 }
3076
3077 PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE));
3078
3079 if (in_single_pattern) {
3080 pm_compile_pattern_eqq_error(iseq, scope_node, node, ret, base_index + 2);
3081 }
3082
3083 PUSH_INSNL(ret, location, branchif, matched_label);
3084 PUSH_INSNL(ret, location, jump, unmatched_label);
3085 break;
3086 }
3088 // Pinned variables are a way to match against the value of a variable
3089 // without it looking like you're trying to write to the variable. This
3090 // looks like: foo in ^@bar. To compile these, we compile the variable
3091 // that they hold.
3092 const pm_pinned_variable_node_t *cast = (const pm_pinned_variable_node_t *) node;
3093 CHECK(pm_compile_pattern(iseq, scope_node, cast->variable, ret, matched_label, unmatched_label, in_single_pattern, in_alternation_pattern, true, base_index));
3094 break;
3095 }
3096 case PM_IF_NODE:
3097 case PM_UNLESS_NODE: {
3098 // If and unless nodes can show up here as guards on `in` clauses. This
3099 // looks like:
3100 //
3101 // case foo
3102 // in bar if baz?
3103 // qux
3104 // end
3105 //
3106 // Because we know they're in the modifier form and they can't have any
3107 // variation on this pattern, we compile them differently (more simply)
3108 // here than we would in the normal compilation path.
3109 const pm_node_t *predicate;
3110 const pm_node_t *statement;
3111
3112 if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
3113 const pm_if_node_t *cast = (const pm_if_node_t *) node;
3114 predicate = cast->predicate;
3115
3116 RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1);
3117 statement = cast->statements->body.nodes[0];
3118 }
3119 else {
3120 const pm_unless_node_t *cast = (const pm_unless_node_t *) node;
3121 predicate = cast->predicate;
3122
3123 RUBY_ASSERT(cast->statements != NULL && cast->statements->body.size == 1);
3124 statement = cast->statements->body.nodes[0];
3125 }
3126
3127 CHECK(pm_compile_pattern_match(iseq, scope_node, statement, ret, unmatched_label, in_single_pattern, in_alternation_pattern, use_deconstructed_cache, base_index));
3128 PM_COMPILE_NOT_POPPED(predicate);
3129
3130 if (in_single_pattern) {
3131 LABEL *match_succeeded_label = NEW_LABEL(location.line);
3132
3133 PUSH_INSN(ret, location, dup);
3134 if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
3135 PUSH_INSNL(ret, location, branchif, match_succeeded_label);
3136 }
3137 else {
3138 PUSH_INSNL(ret, location, branchunless, match_succeeded_label);
3139 }
3140
3141 {
3142 VALUE operand = rb_fstring_lit("guard clause does not return true");
3143 PUSH_INSN1(ret, location, putobject, operand);
3144 }
3145
3146 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING + 1));
3147 PUSH_INSN1(ret, location, putobject, Qfalse);
3148 PUSH_INSN1(ret, location, setn, INT2FIX(base_index + PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P + 2));
3149
3150 PUSH_INSN(ret, location, pop);
3151 PUSH_INSN(ret, location, pop);
3152
3153 PUSH_LABEL(ret, match_succeeded_label);
3154 }
3155
3156 if (PM_NODE_TYPE_P(node, PM_IF_NODE)) {
3157 PUSH_INSNL(ret, location, branchunless, unmatched_label);
3158 }
3159 else {
3160 PUSH_INSNL(ret, location, branchif, unmatched_label);
3161 }
3162
3163 PUSH_INSNL(ret, location, jump, matched_label);
3164 break;
3165 }
3166 default:
3167 // If we get here, then we have a node type that should not be in this
3168 // position. This would be a bug in the parser, because a different node
3169 // type should never have been created in this position in the tree.
3170 rb_bug("Unexpected node type in pattern matching expression: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
3171 break;
3172 }
3173
3174 return COMPILE_OK;
3175}
3176
3177#undef PM_PATTERN_BASE_INDEX_OFFSET_DECONSTRUCTED_CACHE
3178#undef PM_PATTERN_BASE_INDEX_OFFSET_ERROR_STRING
3179#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_P
3180#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_MATCHEE
3181#undef PM_PATTERN_BASE_INDEX_OFFSET_KEY_ERROR_KEY
3182
3183// Generate a scope node from the given node.
3184void
3185pm_scope_node_init(const pm_node_t *node, pm_scope_node_t *scope, pm_scope_node_t *previous)
3186{
3187 // This is very important, otherwise the scope node could be seen as having
3188 // certain flags set that _should not_ be set.
3189 memset(scope, 0, sizeof(pm_scope_node_t));
3190
3191 scope->base.type = PM_SCOPE_NODE;
3192 scope->base.location.start = node->location.start;
3193 scope->base.location.end = node->location.end;
3194
3195 scope->previous = previous;
3196 scope->ast_node = (pm_node_t *) node;
3197
3198 if (previous) {
3199 scope->parser = previous->parser;
3200 scope->encoding = previous->encoding;
3201 scope->filepath_encoding = previous->filepath_encoding;
3202 scope->constants = previous->constants;
3203 scope->coverage_enabled = previous->coverage_enabled;
3204 scope->script_lines = previous->script_lines;
3205 }
3206
3207 switch (PM_NODE_TYPE(node)) {
3208 case PM_BLOCK_NODE: {
3209 const pm_block_node_t *cast = (const pm_block_node_t *) node;
3210 scope->body = cast->body;
3211 scope->locals = cast->locals;
3212 scope->parameters = cast->parameters;
3213 break;
3214 }
3215 case PM_CLASS_NODE: {
3216 const pm_class_node_t *cast = (const pm_class_node_t *) node;
3217 scope->body = cast->body;
3218 scope->locals = cast->locals;
3219 break;
3220 }
3221 case PM_DEF_NODE: {
3222 const pm_def_node_t *cast = (const pm_def_node_t *) node;
3223 scope->parameters = (pm_node_t *) cast->parameters;
3224 scope->body = cast->body;
3225 scope->locals = cast->locals;
3226 break;
3227 }
3228 case PM_ENSURE_NODE: {
3229 const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node;
3230 scope->body = (pm_node_t *) node;
3231
3232 if (cast->statements != NULL) {
3233 scope->base.location.start = cast->statements->base.location.start;
3234 scope->base.location.end = cast->statements->base.location.end;
3235 }
3236
3237 break;
3238 }
3239 case PM_FOR_NODE: {
3240 const pm_for_node_t *cast = (const pm_for_node_t *) node;
3241 scope->body = (pm_node_t *) cast->statements;
3242 break;
3243 }
3246 scope->body = (pm_node_t *) node;
3247 break;
3248 }
3249 case PM_LAMBDA_NODE: {
3250 const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node;
3251 scope->parameters = cast->parameters;
3252 scope->body = cast->body;
3253 scope->locals = cast->locals;
3254
3255 if (cast->parameters != NULL) {
3256 scope->base.location.start = cast->parameters->location.start;
3257 }
3258 else {
3259 scope->base.location.start = cast->operator_loc.end;
3260 }
3261 break;
3262 }
3263 case PM_MODULE_NODE: {
3264 const pm_module_node_t *cast = (const pm_module_node_t *) node;
3265 scope->body = cast->body;
3266 scope->locals = cast->locals;
3267 break;
3268 }
3270 const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) node;
3271 scope->body = (pm_node_t *) cast->statements;
3272 break;
3273 }
3274 case PM_PROGRAM_NODE: {
3275 const pm_program_node_t *cast = (const pm_program_node_t *) node;
3276 scope->body = (pm_node_t *) cast->statements;
3277 scope->locals = cast->locals;
3278 break;
3279 }
3280 case PM_RESCUE_NODE: {
3281 const pm_rescue_node_t *cast = (const pm_rescue_node_t *) node;
3282 scope->body = (pm_node_t *) cast->statements;
3283 break;
3284 }
3286 const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node;
3287 scope->body = (pm_node_t *) cast->rescue_expression;
3288 break;
3289 }
3291 const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node;
3292 scope->body = cast->body;
3293 scope->locals = cast->locals;
3294 break;
3295 }
3296 case PM_STATEMENTS_NODE: {
3297 const pm_statements_node_t *cast = (const pm_statements_node_t *) node;
3298 scope->body = (pm_node_t *) cast;
3299 break;
3300 }
3301 default:
3302 rb_bug("unreachable");
3303 break;
3304 }
3305}
3306
3307void
3308pm_scope_node_destroy(pm_scope_node_t *scope_node)
3309{
3310 if (scope_node->index_lookup_table) {
3311 st_free_table(scope_node->index_lookup_table);
3312 }
3313}
3314
3326static void
3327pm_compile_retry_end_label(rb_iseq_t *iseq, LINK_ANCHOR *const ret, LABEL *retry_end_l)
3328{
3329 INSN *iobj;
3330 LINK_ELEMENT *last_elem = LAST_ELEMENT(ret);
3331 iobj = IS_INSN(last_elem) ? (INSN*) last_elem : (INSN*) get_prev_insn((INSN*) last_elem);
3332 while (!IS_INSN_ID(iobj, send) && !IS_INSN_ID(iobj, invokesuper) && !IS_INSN_ID(iobj, sendforward) && !IS_INSN_ID(iobj, invokesuperforward)) {
3333 iobj = (INSN*) get_prev_insn(iobj);
3334 }
3335 ELEM_INSERT_NEXT(&iobj->link, (LINK_ELEMENT*) retry_end_l);
3336
3337 // LINK_ANCHOR has a pointer to the last element, but
3338 // ELEM_INSERT_NEXT does not update it even if we add an insn to the
3339 // last of LINK_ANCHOR. So this updates it manually.
3340 if (&iobj->link == LAST_ELEMENT(ret)) {
3341 ret->last = (LINK_ELEMENT*) retry_end_l;
3342 }
3343}
3344
3345static const char *
3346pm_iseq_builtin_function_name(const pm_scope_node_t *scope_node, const pm_node_t *receiver, ID method_id)
3347{
3348 const char *name = rb_id2name(method_id);
3349 static const char prefix[] = "__builtin_";
3350 const size_t prefix_len = sizeof(prefix) - 1;
3351
3352 if (receiver == NULL) {
3353 if (UNLIKELY(strncmp(prefix, name, prefix_len) == 0)) {
3354 // __builtin_foo
3355 return &name[prefix_len];
3356 }
3357 }
3358 else if (PM_NODE_TYPE_P(receiver, PM_CALL_NODE)) {
3360 const pm_call_node_t *cast = (const pm_call_node_t *) receiver;
3361 if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("__builtin")) {
3362 // __builtin.foo
3363 return name;
3364 }
3365 }
3366 }
3367 else if (PM_NODE_TYPE_P(receiver, PM_CONSTANT_READ_NODE)) {
3368 const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) receiver;
3369 if (pm_constant_id_lookup(scope_node, cast->name) == rb_intern_const("Primitive")) {
3370 // Primitive.foo
3371 return name;
3372 }
3373 }
3374
3375 return NULL;
3376}
3377
3378// Compile Primitive.attr! :leaf, ...
3379static int
3380pm_compile_builtin_attr(rb_iseq_t *iseq, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location)
3381{
3382 if (arguments == NULL) {
3383 COMPILE_ERROR(iseq, node_location->line, "attr!: no argument");
3384 return COMPILE_NG;
3385 }
3386
3387 const pm_node_t *argument;
3388 PM_NODE_LIST_FOREACH(&arguments->arguments, index, argument) {
3389 if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) {
3390 COMPILE_ERROR(iseq, node_location->line, "non symbol argument to attr!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument)));
3391 return COMPILE_NG;
3392 }
3393
3394 VALUE symbol = pm_static_literal_value(iseq, argument, scope_node);
3395 VALUE string = rb_sym2str(symbol);
3396
3397 if (strcmp(RSTRING_PTR(string), "leaf") == 0) {
3398 ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_LEAF;
3399 }
3400 else if (strcmp(RSTRING_PTR(string), "inline_block") == 0) {
3401 ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_INLINE_BLOCK;
3402 }
3403 else if (strcmp(RSTRING_PTR(string), "use_block") == 0) {
3404 iseq_set_use_block(iseq);
3405 }
3406 else if (strcmp(RSTRING_PTR(string), "c_trace") == 0) {
3407 // Let the iseq act like a C method in backtraces
3408 ISEQ_BODY(iseq)->builtin_attrs |= BUILTIN_ATTR_C_TRACE;
3409 }
3410 else {
3411 COMPILE_ERROR(iseq, node_location->line, "unknown argument to attr!: %s", RSTRING_PTR(string));
3412 return COMPILE_NG;
3413 }
3414 }
3415
3416 return COMPILE_OK;
3417}
3418
3419static int
3420pm_compile_builtin_arg(rb_iseq_t *iseq, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node, const pm_arguments_node_t *arguments, const pm_node_location_t *node_location, int popped)
3421{
3422 if (arguments == NULL) {
3423 COMPILE_ERROR(iseq, node_location->line, "arg!: no argument");
3424 return COMPILE_NG;
3425 }
3426
3427 if (arguments->arguments.size != 1) {
3428 COMPILE_ERROR(iseq, node_location->line, "arg!: too many argument");
3429 return COMPILE_NG;
3430 }
3431
3432 const pm_node_t *argument = arguments->arguments.nodes[0];
3433 if (!PM_NODE_TYPE_P(argument, PM_SYMBOL_NODE)) {
3434 COMPILE_ERROR(iseq, node_location->line, "non symbol argument to arg!: %s", pm_node_type_to_str(PM_NODE_TYPE(argument)));
3435 return COMPILE_NG;
3436 }
3437
3438 if (!popped) {
3439 ID name = parse_string_symbol(scope_node, ((const pm_symbol_node_t *) argument));
3440 int index = ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->local_table_size - get_local_var_idx(iseq, name);
3441
3442 debugs("id: %s idx: %d\n", rb_id2name(name), index);
3443 PUSH_GETLOCAL(ret, *node_location, index, get_lvar_level(iseq));
3444 }
3445
3446 return COMPILE_OK;
3447}
3448
3449static int
3450pm_compile_builtin_mandatory_only_method(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location)
3451{
3452 const pm_node_t *ast_node = scope_node->ast_node;
3453 if (!PM_NODE_TYPE_P(ast_node, PM_DEF_NODE)) {
3454 rb_bug("mandatory_only?: not in method definition");
3455 return COMPILE_NG;
3456 }
3457
3458 const pm_def_node_t *def_node = (const pm_def_node_t *) ast_node;
3459 const pm_parameters_node_t *parameters_node = def_node->parameters;
3460 if (parameters_node == NULL) {
3461 rb_bug("mandatory_only?: in method definition with no parameters");
3462 return COMPILE_NG;
3463 }
3464
3465 const pm_node_t *body_node = def_node->body;
3466 if (body_node == NULL || !PM_NODE_TYPE_P(body_node, PM_STATEMENTS_NODE) || (((const pm_statements_node_t *) body_node)->body.size != 1) || !PM_NODE_TYPE_P(((const pm_statements_node_t *) body_node)->body.nodes[0], PM_IF_NODE)) {
3467 rb_bug("mandatory_only?: not in method definition with plain statements");
3468 return COMPILE_NG;
3469 }
3470
3471 const pm_if_node_t *if_node = (const pm_if_node_t *) ((const pm_statements_node_t *) body_node)->body.nodes[0];
3472 if (if_node->predicate != ((const pm_node_t *) call_node)) {
3473 rb_bug("mandatory_only?: can't find mandatory node");
3474 return COMPILE_NG;
3475 }
3476
3477 pm_parameters_node_t parameters = {
3478 .base = parameters_node->base,
3479 .requireds = parameters_node->requireds
3480 };
3481
3482 const pm_def_node_t def = {
3483 .base = def_node->base,
3484 .name = def_node->name,
3485 .receiver = def_node->receiver,
3486 .parameters = &parameters,
3487 .body = (pm_node_t *) if_node->statements,
3488 .locals = {
3489 .ids = def_node->locals.ids,
3490 .size = parameters_node->requireds.size,
3491 .capacity = def_node->locals.capacity
3492 }
3493 };
3494
3495 pm_scope_node_t next_scope_node;
3496 pm_scope_node_init(&def.base, &next_scope_node, scope_node);
3497
3498 int error_state;
3499 ISEQ_BODY(iseq)->mandatory_only_iseq = pm_iseq_new_with_opt(
3500 &next_scope_node,
3501 rb_iseq_base_label(iseq),
3502 rb_iseq_path(iseq),
3503 rb_iseq_realpath(iseq),
3504 node_location->line,
3505 NULL,
3506 0,
3507 ISEQ_TYPE_METHOD,
3508 ISEQ_COMPILE_DATA(iseq)->option,
3509 &error_state
3510 );
3511
3512 if (error_state) {
3513 RUBY_ASSERT(ISEQ_BODY(iseq)->mandatory_only_iseq == NULL);
3514 rb_jump_tag(error_state);
3515 }
3516
3517 pm_scope_node_destroy(&next_scope_node);
3518 return COMPILE_OK;
3519}
3520
3521static int
3522pm_compile_builtin_function_call(rb_iseq_t *iseq, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, const pm_call_node_t *call_node, const pm_node_location_t *node_location, int popped, const rb_iseq_t *parent_block, const char *builtin_func)
3523{
3524 const pm_arguments_node_t *arguments = call_node->arguments;
3525
3526 if (parent_block != NULL) {
3527 COMPILE_ERROR(iseq, node_location->line, "should not call builtins here.");
3528 return COMPILE_NG;
3529 }
3530
3531#define BUILTIN_INLINE_PREFIX "_bi"
3532 char inline_func[sizeof(BUILTIN_INLINE_PREFIX) + DECIMAL_SIZE_OF(int)];
3533 bool cconst = false;
3534retry:;
3535 const struct rb_builtin_function *bf = iseq_builtin_function_lookup(iseq, builtin_func);
3536
3537 if (bf == NULL) {
3538 if (strcmp("cstmt!", builtin_func) == 0 || strcmp("cexpr!", builtin_func) == 0) {
3539 // ok
3540 }
3541 else if (strcmp("cconst!", builtin_func) == 0) {
3542 cconst = true;
3543 }
3544 else if (strcmp("cinit!", builtin_func) == 0) {
3545 // ignore
3546 return COMPILE_OK;
3547 }
3548 else if (strcmp("attr!", builtin_func) == 0) {
3549 return pm_compile_builtin_attr(iseq, scope_node, arguments, node_location);
3550 }
3551 else if (strcmp("arg!", builtin_func) == 0) {
3552 return pm_compile_builtin_arg(iseq, ret, scope_node, arguments, node_location, popped);
3553 }
3554 else if (strcmp("mandatory_only?", builtin_func) == 0) {
3555 if (popped) {
3556 rb_bug("mandatory_only? should be in if condition");
3557 }
3558 else if (!LIST_INSN_SIZE_ZERO(ret)) {
3559 rb_bug("mandatory_only? should be put on top");
3560 }
3561
3562 PUSH_INSN1(ret, *node_location, putobject, Qfalse);
3563 return pm_compile_builtin_mandatory_only_method(iseq, scope_node, call_node, node_location);
3564 }
3565 else if (1) {
3566 rb_bug("can't find builtin function:%s", builtin_func);
3567 }
3568 else {
3569 COMPILE_ERROR(iseq, node_location->line, "can't find builtin function:%s", builtin_func);
3570 return COMPILE_NG;
3571 }
3572
3573 int inline_index = node_location->line;
3574 snprintf(inline_func, sizeof(inline_func), BUILTIN_INLINE_PREFIX "%d", inline_index);
3575 builtin_func = inline_func;
3576 arguments = NULL;
3577 goto retry;
3578 }
3579
3580 if (cconst) {
3581 typedef VALUE(*builtin_func0)(void *, VALUE);
3582 VALUE const_val = (*(builtin_func0)(uintptr_t)bf->func_ptr)(NULL, Qnil);
3583 PUSH_INSN1(ret, *node_location, putobject, const_val);
3584 return COMPILE_OK;
3585 }
3586
3587 // fprintf(stderr, "func_name:%s -> %p\n", builtin_func, bf->func_ptr);
3588
3589 DECL_ANCHOR(args_seq);
3590
3591 int flags = 0;
3592 struct rb_callinfo_kwarg *keywords = NULL;
3593 int argc = pm_setup_args(arguments, call_node->block, &flags, &keywords, iseq, args_seq, scope_node, node_location);
3594
3595 if (argc != bf->argc) {
3596 COMPILE_ERROR(iseq, node_location->line, "argc is not match for builtin function:%s (expect %d but %d)", builtin_func, bf->argc, argc);
3597 return COMPILE_NG;
3598 }
3599
3600 unsigned int start_index;
3601 if (delegate_call_p(iseq, argc, args_seq, &start_index)) {
3602 PUSH_INSN2(ret, *node_location, opt_invokebuiltin_delegate, bf, INT2FIX(start_index));
3603 }
3604 else {
3605 PUSH_SEQ(ret, args_seq);
3606 PUSH_INSN1(ret, *node_location, invokebuiltin, bf);
3607 }
3608
3609 if (popped) PUSH_INSN(ret, *node_location, pop);
3610 return COMPILE_OK;
3611}
3612
3616static void
3617pm_compile_call(rb_iseq_t *iseq, const pm_call_node_t *call_node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, ID method_id, LABEL *start)
3618{
3619 const pm_location_t *message_loc = &call_node->message_loc;
3620 if (message_loc->start == NULL) message_loc = &call_node->base.location;
3621
3622 const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, call_node->base.node_id);
3623 LABEL *else_label = NEW_LABEL(location.line);
3624 LABEL *end_label = NEW_LABEL(location.line);
3625 LABEL *retry_end_l = NEW_LABEL(location.line);
3626
3627 VALUE branches = Qfalse;
3628 rb_code_location_t code_location = { 0 };
3629 int node_id = location.node_id;
3630
3632 if (PM_BRANCH_COVERAGE_P(iseq)) {
3633 const uint8_t *cursors[3] = {
3634 call_node->closing_loc.end,
3635 call_node->arguments == NULL ? NULL : call_node->arguments->base.location.end,
3636 call_node->message_loc.end
3637 };
3638
3639 const uint8_t *end_cursor = cursors[0];
3640 end_cursor = (end_cursor == NULL || cursors[1] == NULL) ? cursors[1] : (end_cursor > cursors[1] ? end_cursor : cursors[1]);
3641 end_cursor = (end_cursor == NULL || cursors[2] == NULL) ? cursors[2] : (end_cursor > cursors[2] ? end_cursor : cursors[2]);
3642 if (!end_cursor) end_cursor = call_node->closing_loc.end;
3643
3644 const pm_line_column_t start_location = PM_NODE_START_LINE_COLUMN(scope_node->parser, call_node);
3645 const pm_line_column_t end_location = pm_newline_list_line_column(&scope_node->parser->newline_list, end_cursor, scope_node->parser->start_line);
3646
3647 code_location = (rb_code_location_t) {
3648 .beg_pos = { .lineno = start_location.line, .column = start_location.column },
3649 .end_pos = { .lineno = end_location.line, .column = end_location.column }
3650 };
3651
3652 branches = decl_branch_base(iseq, PTR2NUM(call_node), &code_location, "&.");
3653 }
3654
3655 PUSH_INSN(ret, location, dup);
3656 PUSH_INSNL(ret, location, branchnil, else_label);
3657
3658 add_trace_branch_coverage(iseq, ret, &code_location, node_id, 0, "then", branches);
3659 }
3660
3661 int flags = 0;
3662 struct rb_callinfo_kwarg *kw_arg = NULL;
3663
3664 int orig_argc = pm_setup_args(call_node->arguments, call_node->block, &flags, &kw_arg, iseq, ret, scope_node, &location);
3665 const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
3666 const rb_iseq_t *block_iseq = NULL;
3667
3668 if (call_node->block != NULL && PM_NODE_TYPE_P(call_node->block, PM_BLOCK_NODE)) {
3669 // Scope associated with the block
3670 pm_scope_node_t next_scope_node;
3671 pm_scope_node_init(call_node->block, &next_scope_node, scope_node);
3672
3673 block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, pm_node_line_number(scope_node->parser, call_node->block));
3674 pm_scope_node_destroy(&next_scope_node);
3675 ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq;
3676 }
3677 else {
3679 flags |= VM_CALL_VCALL;
3680 }
3681
3682 if (!flags) {
3683 flags |= VM_CALL_ARGS_SIMPLE;
3684 }
3685 }
3686
3688 flags |= VM_CALL_FCALL;
3689 }
3690
3691 if (!popped && PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE)) {
3692 if (flags & VM_CALL_ARGS_BLOCKARG) {
3693 PUSH_INSN1(ret, location, topn, INT2FIX(1));
3694 if (flags & VM_CALL_ARGS_SPLAT) {
3695 PUSH_INSN1(ret, location, putobject, INT2FIX(-1));
3696 PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0));
3697 }
3698 PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 3));
3699 PUSH_INSN(ret, location, pop);
3700 }
3701 else if (flags & VM_CALL_ARGS_SPLAT) {
3702 PUSH_INSN(ret, location, dup);
3703 PUSH_INSN1(ret, location, putobject, INT2FIX(-1));
3704 PUSH_SEND_WITH_FLAG(ret, location, idAREF, INT2FIX(1), INT2FIX(0));
3705 PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 2));
3706 PUSH_INSN(ret, location, pop);
3707 }
3708 else {
3709 PUSH_INSN1(ret, location, setn, INT2FIX(orig_argc + 1));
3710 }
3711 }
3712
3713 if ((flags & VM_CALL_KW_SPLAT) && (flags & VM_CALL_ARGS_BLOCKARG) && !(flags & VM_CALL_KW_SPLAT_MUT)) {
3714 PUSH_INSN(ret, location, splatkw);
3715 }
3716
3717 PUSH_SEND_R(ret, location, method_id, INT2FIX(orig_argc), block_iseq, INT2FIX(flags), kw_arg);
3718
3719 if (block_iseq && ISEQ_BODY(block_iseq)->catch_table) {
3720 pm_compile_retry_end_label(iseq, ret, retry_end_l);
3721 PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, start, retry_end_l, block_iseq, retry_end_l);
3722 }
3723
3725 PUSH_INSNL(ret, location, jump, end_label);
3726 PUSH_LABEL(ret, else_label);
3727 add_trace_branch_coverage(iseq, ret, &code_location, node_id, 1, "else", branches);
3728 PUSH_LABEL(ret, end_label);
3729 }
3730
3731 if (PM_NODE_FLAG_P(call_node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) {
3732 PUSH_INSN(ret, location, pop);
3733 }
3734
3735 if (popped) PUSH_INSN(ret, location, pop);
3736 ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
3737}
3738
3743static inline VALUE
3744pm_compile_back_reference_ref(const pm_back_reference_read_node_t *node)
3745{
3746 const char *type = (const char *) (node->base.location.start + 1);
3747
3748 // Since a back reference is `$<char>`, Ruby represents the ID as an
3749 // rb_intern on the value after the `$`.
3750 return INT2FIX(rb_intern2(type, 1)) << 1 | 1;
3751}
3752
3757static inline VALUE
3758pm_compile_numbered_reference_ref(const pm_numbered_reference_read_node_t *node)
3759{
3760 return INT2FIX(node->number << 1);
3761}
3762
3763static void
3764pm_compile_defined_expr0(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish, bool explicit_receiver)
3765{
3766#define PUSH_VAL(type) (in_condition ? Qtrue : rb_iseq_defined_string(type))
3767
3768 // in_condition is the same as compile.c's needstr
3769 enum defined_type dtype = DEFINED_NOT_DEFINED;
3770 const pm_node_location_t location = *node_location;
3771
3772 switch (PM_NODE_TYPE(node)) {
3773/* DEFINED_NIL ****************************************************************/
3774 case PM_NIL_NODE:
3775 // defined?(nil)
3776 // ^^^
3777 dtype = DEFINED_NIL;
3778 break;
3779/* DEFINED_IVAR ***************************************************************/
3781 // defined?(@a)
3782 // ^^
3784 ID name = pm_constant_id_lookup(scope_node, cast->name);
3785
3786 PUSH_INSN3(ret, location, definedivar, ID2SYM(name), get_ivar_ic_value(iseq, name), PUSH_VAL(DEFINED_IVAR));
3787
3788 return;
3789 }
3790/* DEFINED_LVAR ***************************************************************/
3792 // a = 1; defined?(a)
3793 // ^
3795 // 1.then { defined?(it) }
3796 // ^^
3797 dtype = DEFINED_LVAR;
3798 break;
3799/* DEFINED_GVAR ***************************************************************/
3801 // defined?($a)
3802 // ^^
3804 ID name = pm_constant_id_lookup(scope_node, cast->name);
3805
3806 PUSH_INSN(ret, location, putnil);
3807 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), ID2SYM(name), PUSH_VAL(DEFINED_GVAR));
3808
3809 return;
3810 }
3811/* DEFINED_CVAR ***************************************************************/
3813 // defined?(@@a)
3814 // ^^^
3816 ID name = pm_constant_id_lookup(scope_node, cast->name);
3817
3818 PUSH_INSN(ret, location, putnil);
3819 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), ID2SYM(name), PUSH_VAL(DEFINED_CVAR));
3820
3821 return;
3822 }
3823/* DEFINED_CONST **************************************************************/
3824 case PM_CONSTANT_READ_NODE: {
3825 // defined?(A)
3826 // ^
3827 const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
3828 ID name = pm_constant_id_lookup(scope_node, cast->name);
3829
3830 PUSH_INSN(ret, location, putnil);
3831 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), ID2SYM(name), PUSH_VAL(DEFINED_CONST));
3832
3833 return;
3834 }
3835/* DEFINED_YIELD **************************************************************/
3836 case PM_YIELD_NODE:
3837 // defined?(yield)
3838 // ^^^^^
3839 iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
3840
3841 PUSH_INSN(ret, location, putnil);
3842 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_YIELD), 0, PUSH_VAL(DEFINED_YIELD));
3843
3844 return;
3845/* DEFINED_ZSUPER *************************************************************/
3846 case PM_SUPER_NODE: {
3847 // defined?(super 1, 2)
3848 // ^^^^^^^^^^
3849 const pm_super_node_t *cast = (const pm_super_node_t *) node;
3850
3851 if (cast->block != NULL && !PM_NODE_TYPE_P(cast->block, PM_BLOCK_ARGUMENT_NODE)) {
3852 dtype = DEFINED_EXPR;
3853 break;
3854 }
3855
3856 PUSH_INSN(ret, location, putnil);
3857 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER));
3858 return;
3859 }
3861 // defined?(super)
3862 // ^^^^^
3863 const pm_forwarding_super_node_t *cast = (const pm_forwarding_super_node_t *) node;
3864
3865 if (cast->block != NULL) {
3866 dtype = DEFINED_EXPR;
3867 break;
3868 }
3869
3870 PUSH_INSN(ret, location, putnil);
3871 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_ZSUPER), 0, PUSH_VAL(DEFINED_ZSUPER));
3872 return;
3873 }
3874/* DEFINED_SELF ***************************************************************/
3875 case PM_SELF_NODE:
3876 // defined?(self)
3877 // ^^^^
3878 dtype = DEFINED_SELF;
3879 break;
3880/* DEFINED_TRUE ***************************************************************/
3881 case PM_TRUE_NODE:
3882 // defined?(true)
3883 // ^^^^
3884 dtype = DEFINED_TRUE;
3885 break;
3886/* DEFINED_FALSE **************************************************************/
3887 case PM_FALSE_NODE:
3888 // defined?(false)
3889 // ^^^^^
3890 dtype = DEFINED_FALSE;
3891 break;
3892/* DEFINED_ASGN ***************************************************************/
3894 // defined?(a.a &&= 1)
3895 // ^^^^^^^^^
3897 // defined?(a.a += 1)
3898 // ^^^^^^^^
3900 // defined?(a.a ||= 1)
3901 // ^^^^^^^^^
3903 // defined?(@@a &&= 1)
3904 // ^^^^^^^^^
3906 // defined?(@@a += 1)
3907 // ^^^^^^^^
3909 // defined?(@@a ||= 1)
3910 // ^^^^^^^^^
3912 // defined?(@@a = 1)
3913 // ^^^^^^^
3915 // defined?(A &&= 1)
3916 // ^^^^^^^
3918 // defined?(A += 1)
3919 // ^^^^^^
3921 // defined?(A ||= 1)
3922 // ^^^^^^^
3924 // defined?(A::A &&= 1)
3925 // ^^^^^^^^^^
3927 // defined?(A::A += 1)
3928 // ^^^^^^^^^
3930 // defined?(A::A ||= 1)
3931 // ^^^^^^^^^^
3933 // defined?(A::A = 1)
3934 // ^^^^^^^^
3936 // defined?(A = 1)
3937 // ^^^^^
3939 // defined?($a &&= 1)
3940 // ^^^^^^^^
3942 // defined?($a += 1)
3943 // ^^^^^^^
3945 // defined?($a ||= 1)
3946 // ^^^^^^^^
3948 // defined?($a = 1)
3949 // ^^^^^^
3951 // defined?(a[1] &&= 1)
3952 // ^^^^^^^^^^
3954 // defined?(a[1] += 1)
3955 // ^^^^^^^^^
3957 // defined?(a[1] ||= 1)
3958 // ^^^^^^^^^^
3960 // defined?(@a &&= 1)
3961 // ^^^^^^^^
3963 // defined?(@a += 1)
3964 // ^^^^^^^
3966 // defined?(@a ||= 1)
3967 // ^^^^^^^^
3969 // defined?(@a = 1)
3970 // ^^^^^^
3972 // defined?(a &&= 1)
3973 // ^^^^^^^
3975 // defined?(a += 1)
3976 // ^^^^^^
3978 // defined?(a ||= 1)
3979 // ^^^^^^^
3981 // defined?(a = 1)
3982 // ^^^^^
3984 // defined?((a, = 1))
3985 // ^^^^^^
3986 dtype = DEFINED_ASGN;
3987 break;
3988/* DEFINED_EXPR ***************************************************************/
3990 // defined?((alias $a $b))
3991 // ^^^^^^^^^^^
3993 // defined?((alias a b))
3994 // ^^^^^^^^^
3995 case PM_AND_NODE:
3996 // defined?(a and b)
3997 // ^^^^^^^
3998 case PM_BREAK_NODE:
3999 // defined?(break 1)
4000 // ^^^^^^^
4001 case PM_CASE_MATCH_NODE:
4002 // defined?(case 1; in 1; end)
4003 // ^^^^^^^^^^^^^^^^^
4004 case PM_CASE_NODE:
4005 // defined?(case 1; when 1; end)
4006 // ^^^^^^^^^^^^^^^^^^^
4007 case PM_CLASS_NODE:
4008 // defined?(class Foo; end)
4009 // ^^^^^^^^^^^^^^
4010 case PM_DEF_NODE:
4011 // defined?(def a() end)
4012 // ^^^^^^^^^^^
4013 case PM_DEFINED_NODE:
4014 // defined?(defined?(a))
4015 // ^^^^^^^^^^^
4016 case PM_FLIP_FLOP_NODE:
4017 // defined?(not (a .. b))
4018 // ^^^^^^
4019 case PM_FLOAT_NODE:
4020 // defined?(1.0)
4021 // ^^^
4022 case PM_FOR_NODE:
4023 // defined?(for a in 1 do end)
4024 // ^^^^^^^^^^^^^^^^^
4025 case PM_IF_NODE:
4026 // defined?(if a then end)
4027 // ^^^^^^^^^^^^^
4028 case PM_IMAGINARY_NODE:
4029 // defined?(1i)
4030 // ^^
4031 case PM_INTEGER_NODE:
4032 // defined?(1)
4033 // ^
4035 // defined?(not /#{1}/)
4036 // ^^^^^^
4038 // defined?(/#{1}/)
4039 // ^^^^^^
4041 // defined?("#{1}")
4042 // ^^^^^^
4044 // defined?(:"#{1}")
4045 // ^^^^^^^
4047 // defined?(`#{1}`)
4048 // ^^^^^^
4049 case PM_LAMBDA_NODE:
4050 // defined?(-> {})
4051 // ^^^^^
4053 // defined?(not //)
4054 // ^^^^^^
4056 // defined?(1 in 1)
4057 // ^^^^^^
4059 // defined?(1 => 1)
4060 // ^^^^^^
4062 // defined?(/(?<a>)/ =~ "")
4063 // ^^^^^^^^^^^^^^
4064 case PM_MODULE_NODE:
4065 // defined?(module A end)
4066 // ^^^^^^^^^^^^
4067 case PM_NEXT_NODE:
4068 // defined?(next 1)
4069 // ^^^^^^
4070 case PM_OR_NODE:
4071 // defined?(a or b)
4072 // ^^^^^^
4074 // defined?((END {}))
4075 // ^^^^^^^^
4076 case PM_RANGE_NODE:
4077 // defined?(1..1)
4078 // ^^^^
4079 case PM_RATIONAL_NODE:
4080 // defined?(1r)
4081 // ^^
4082 case PM_REDO_NODE:
4083 // defined?(redo)
4084 // ^^^^
4086 // defined?(//)
4087 // ^^
4089 // defined?(a rescue b)
4090 // ^^^^^^^^^^
4091 case PM_RETRY_NODE:
4092 // defined?(retry)
4093 // ^^^^^
4094 case PM_RETURN_NODE:
4095 // defined?(return)
4096 // ^^^^^^
4098 // defined?(class << self; end)
4099 // ^^^^^^^^^^^^^^^^^^
4101 // defined?(__ENCODING__)
4102 // ^^^^^^^^^^^^
4104 // defined?(__FILE__)
4105 // ^^^^^^^^
4107 // defined?(__LINE__)
4108 // ^^^^^^^^
4109 case PM_STRING_NODE:
4110 // defined?("")
4111 // ^^
4112 case PM_SYMBOL_NODE:
4113 // defined?(:a)
4114 // ^^
4115 case PM_UNDEF_NODE:
4116 // defined?((undef a))
4117 // ^^^^^^^
4118 case PM_UNLESS_NODE:
4119 // defined?(unless a then end)
4120 // ^^^^^^^^^^^^^^^^^
4121 case PM_UNTIL_NODE:
4122 // defined?(until a do end)
4123 // ^^^^^^^^^^^^^^
4124 case PM_WHILE_NODE:
4125 // defined?(while a do end)
4126 // ^^^^^^^^^^^^^^
4127 case PM_X_STRING_NODE:
4128 // defined?(``)
4129 // ^^
4130 dtype = DEFINED_EXPR;
4131 break;
4132/* DEFINED_REF ****************************************************************/
4134 // defined?($+)
4135 // ^^
4137 VALUE ref = pm_compile_back_reference_ref(cast);
4138
4139 PUSH_INSN(ret, location, putnil);
4140 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), ref, PUSH_VAL(DEFINED_GVAR));
4141
4142 return;
4143 }
4145 // defined?($1)
4146 // ^^
4148 VALUE ref = pm_compile_numbered_reference_ref(cast);
4149
4150 PUSH_INSN(ret, location, putnil);
4151 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_REF), ref, PUSH_VAL(DEFINED_GVAR));
4152
4153 return;
4154 }
4155/* DEFINED_CONST_FROM *********************************************************/
4156 case PM_CONSTANT_PATH_NODE: {
4157 // defined?(A::A)
4158 // ^^^^
4159 const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
4160 ID name = pm_constant_id_lookup(scope_node, cast->name);
4161
4162 if (cast->parent != NULL) {
4163 if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line);
4164 pm_compile_defined_expr0(iseq, cast->parent, node_location, ret, popped, scope_node, true, lfinish, false);
4165
4166 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4167 PM_COMPILE(cast->parent);
4168 }
4169 else {
4170 PUSH_INSN1(ret, location, putobject, rb_cObject);
4171 }
4172
4173 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), ID2SYM(name), PUSH_VAL(DEFINED_CONST));
4174 return;
4175 }
4176/* Containers *****************************************************************/
4177 case PM_BEGIN_NODE: {
4178 // defined?(begin end)
4179 // ^^^^^^^^^
4180 const pm_begin_node_t *cast = (const pm_begin_node_t *) node;
4181
4182 if (cast->rescue_clause == NULL && cast->ensure_clause == NULL && cast->else_clause == NULL) {
4183 if (cast->statements == NULL) {
4184 // If we have empty statements, then we want to return "nil".
4185 dtype = DEFINED_NIL;
4186 }
4187 else if (cast->statements->body.size == 1) {
4188 // If we have a begin node that is wrapping a single statement
4189 // then we want to recurse down to that statement and compile
4190 // it.
4191 pm_compile_defined_expr0(iseq, cast->statements->body.nodes[0], node_location, ret, popped, scope_node, in_condition, lfinish, false);
4192 return;
4193 }
4194 else {
4195 // Otherwise, we have a begin wrapping multiple statements, in
4196 // which case this is defined as "expression".
4197 dtype = DEFINED_EXPR;
4198 }
4199 } else {
4200 // If we have any of the other clauses besides the main begin/end,
4201 // this is defined as "expression".
4202 dtype = DEFINED_EXPR;
4203 }
4204
4205 break;
4206 }
4207 case PM_PARENTHESES_NODE: {
4208 // defined?(())
4209 // ^^
4210 const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node;
4211
4212 if (cast->body == NULL) {
4213 // If we have empty parentheses, then we want to return "nil".
4214 dtype = DEFINED_NIL;
4215 }
4217 // If we have a parentheses node that is wrapping a single statement
4218 // then we want to recurse down to that statement and compile it.
4219 pm_compile_defined_expr0(iseq, ((const pm_statements_node_t *) cast->body)->body.nodes[0], node_location, ret, popped, scope_node, in_condition, lfinish, false);
4220 return;
4221 }
4222 else {
4223 // Otherwise, we have parentheses wrapping multiple statements, in
4224 // which case this is defined as "expression".
4225 dtype = DEFINED_EXPR;
4226 }
4227
4228 break;
4229 }
4230 case PM_ARRAY_NODE: {
4231 // defined?([])
4232 // ^^
4233 const pm_array_node_t *cast = (const pm_array_node_t *) node;
4234
4235 if (cast->elements.size > 0 && !lfinish[1]) {
4236 lfinish[1] = NEW_LABEL(location.line);
4237 }
4238
4239 for (size_t index = 0; index < cast->elements.size; index++) {
4240 pm_compile_defined_expr0(iseq, cast->elements.nodes[index], node_location, ret, popped, scope_node, true, lfinish, false);
4241 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4242 }
4243
4244 dtype = DEFINED_EXPR;
4245 break;
4246 }
4247 case PM_HASH_NODE:
4248 // defined?({ a: 1 })
4249 // ^^^^^^^^
4250 case PM_KEYWORD_HASH_NODE: {
4251 // defined?(a(a: 1))
4252 // ^^^^
4253 const pm_node_list_t *elements;
4254
4255 if (PM_NODE_TYPE_P(node, PM_HASH_NODE)) {
4256 elements = &((const pm_hash_node_t *) node)->elements;
4257 }
4258 else {
4259 elements = &((const pm_keyword_hash_node_t *) node)->elements;
4260 }
4261
4262 if (elements->size > 0 && !lfinish[1]) {
4263 lfinish[1] = NEW_LABEL(location.line);
4264 }
4265
4266 for (size_t index = 0; index < elements->size; index++) {
4267 pm_compile_defined_expr0(iseq, elements->nodes[index], node_location, ret, popped, scope_node, true, lfinish, false);
4268 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4269 }
4270
4271 dtype = DEFINED_EXPR;
4272 break;
4273 }
4274 case PM_ASSOC_NODE: {
4275 // defined?({ a: 1 })
4276 // ^^^^
4277 const pm_assoc_node_t *cast = (const pm_assoc_node_t *) node;
4278
4279 pm_compile_defined_expr0(iseq, cast->key, node_location, ret, popped, scope_node, true, lfinish, false);
4280 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4281 pm_compile_defined_expr0(iseq, cast->value, node_location, ret, popped, scope_node, true, lfinish, false);
4282
4283 return;
4284 }
4285 case PM_ASSOC_SPLAT_NODE: {
4286 // defined?({ **a })
4287 // ^^^^
4288 const pm_assoc_splat_node_t *cast = (const pm_assoc_splat_node_t *) node;
4289
4290 if (cast->value == NULL) {
4291 dtype = DEFINED_EXPR;
4292 break;
4293 }
4294
4295 pm_compile_defined_expr0(iseq, cast->value, node_location, ret, popped, scope_node, true, lfinish, false);
4296 return;
4297 }
4298 case PM_IMPLICIT_NODE: {
4299 // defined?({ a: })
4300 // ^^
4301 const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node;
4302 pm_compile_defined_expr0(iseq, cast->value, node_location, ret, popped, scope_node, in_condition, lfinish, false);
4303 return;
4304 }
4305 case PM_CALL_NODE: {
4306#define BLOCK_P(cast) ((cast)->block != NULL && PM_NODE_TYPE_P((cast)->block, PM_BLOCK_NODE))
4307
4308 // defined?(a(1, 2, 3))
4309 // ^^^^^^^^^^
4310 const pm_call_node_t *cast = ((const pm_call_node_t *) node);
4311
4312 if (BLOCK_P(cast)) {
4313 dtype = DEFINED_EXPR;
4314 break;
4315 }
4316
4317 if (cast->receiver || cast->arguments || (cast->block && PM_NODE_TYPE_P(cast->block, PM_BLOCK_ARGUMENT_NODE))) {
4318 if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line);
4319 if (!lfinish[2]) lfinish[2] = NEW_LABEL(location.line);
4320 }
4321
4322 if (cast->arguments) {
4323 pm_compile_defined_expr0(iseq, (const pm_node_t *) cast->arguments, node_location, ret, popped, scope_node, true, lfinish, false);
4324 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4325 }
4326
4327 if (cast->block && PM_NODE_TYPE_P(cast->block, PM_BLOCK_ARGUMENT_NODE)) {
4328 pm_compile_defined_expr0(iseq, cast->block, node_location, ret, popped, scope_node, true, lfinish, false);
4329 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4330 }
4331
4332 if (cast->receiver) {
4333 if (PM_NODE_TYPE_P(cast->receiver, PM_CALL_NODE) && !BLOCK_P((const pm_call_node_t *) cast->receiver)) {
4334 // Special behavior here where we chain calls together. This is
4335 // the only path that sets explicit_receiver to true.
4336 pm_compile_defined_expr0(iseq, cast->receiver, node_location, ret, popped, scope_node, true, lfinish, true);
4337 PUSH_INSNL(ret, location, branchunless, lfinish[2]);
4338
4339 const pm_call_node_t *receiver = (const pm_call_node_t *) cast->receiver;
4340 ID method_id = pm_constant_id_lookup(scope_node, receiver->name);
4341
4342 pm_compile_call(iseq, receiver, ret, popped, scope_node, method_id, NULL);
4343 }
4344 else {
4345 pm_compile_defined_expr0(iseq, cast->receiver, node_location, ret, popped, scope_node, true, lfinish, false);
4346 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4347 PM_COMPILE(cast->receiver);
4348 }
4349
4350 ID method_id = pm_constant_id_lookup(scope_node, cast->name);
4351
4352 if (explicit_receiver) PUSH_INSN(ret, location, dup);
4353 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_METHOD), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD));
4354 }
4355 else {
4356 ID method_id = pm_constant_id_lookup(scope_node, cast->name);
4357
4358 PUSH_INSN(ret, location, putself);
4359 if (explicit_receiver) PUSH_INSN(ret, location, dup);
4360
4361 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_FUNC), rb_id2sym(method_id), PUSH_VAL(DEFINED_METHOD));
4362 }
4363
4364 return;
4365
4366#undef BLOCK_P
4367 }
4368 case PM_ARGUMENTS_NODE: {
4369 // defined?(a(1, 2, 3))
4370 // ^^^^^^^
4371 const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node;
4372
4373 for (size_t index = 0; index < cast->arguments.size; index++) {
4374 pm_compile_defined_expr0(iseq, cast->arguments.nodes[index], node_location, ret, popped, scope_node, in_condition, lfinish, false);
4375 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4376 }
4377
4378 dtype = DEFINED_EXPR;
4379 break;
4380 }
4382 // defined?(a(&b))
4383 // ^^
4384 dtype = DEFINED_EXPR;
4385 break;
4387 // def a(...) = defined?(a(...))
4388 // ^^^
4389 dtype = DEFINED_EXPR;
4390 break;
4391 case PM_SPLAT_NODE: {
4392 // def a(*) = defined?(a(*))
4393 // ^
4394 const pm_splat_node_t *cast = (const pm_splat_node_t *) node;
4395
4396 if (cast->expression == NULL) {
4397 dtype = DEFINED_EXPR;
4398 break;
4399 }
4400
4401 pm_compile_defined_expr0(iseq, cast->expression, node_location, ret, popped, scope_node, in_condition, lfinish, false);
4402
4403 if (!lfinish[1]) lfinish[1] = NEW_LABEL(location.line);
4404 PUSH_INSNL(ret, location, branchunless, lfinish[1]);
4405
4406 dtype = DEFINED_EXPR;
4407 break;
4408 }
4410 // # shareable_constant_value: literal
4411 // defined?(A = 1)
4412 // ^^^^^
4413 pm_compile_defined_expr0(iseq, ((const pm_shareable_constant_node_t *) node)->write, node_location, ret, popped, scope_node, in_condition, lfinish, explicit_receiver);
4414 return;
4415/* Unreachable (parameters) ***************************************************/
4422 case PM_PARAMETERS_NODE:
4431/* Unreachable (pattern matching) *********************************************/
4439/* Unreachable (indirect writes) **********************************************/
4449/* Unreachable (clauses) ******************************************************/
4450 case PM_ELSE_NODE:
4451 case PM_ENSURE_NODE:
4452 case PM_IN_NODE:
4453 case PM_RESCUE_NODE:
4454 case PM_WHEN_NODE:
4455/* Unreachable (miscellaneous) ************************************************/
4456 case PM_BLOCK_NODE:
4459 case PM_MISSING_NODE:
4461 case PM_PROGRAM_NODE:
4462 case PM_SCOPE_NODE:
4463 case PM_STATEMENTS_NODE:
4464 rb_bug("Unreachable node in defined?: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
4465 }
4466
4467 RUBY_ASSERT(dtype != DEFINED_NOT_DEFINED);
4468 PUSH_INSN1(ret, location, putobject, PUSH_VAL(dtype));
4469
4470#undef PUSH_VAL
4471}
4472
4473static void
4474pm_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition, LABEL **lfinish)
4475{
4476 LINK_ELEMENT *lcur = ret->last;
4477 pm_compile_defined_expr0(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish, false);
4478
4479 if (lfinish[1]) {
4480 LABEL *lstart = NEW_LABEL(node_location->line);
4481 LABEL *lend = NEW_LABEL(node_location->line);
4482
4484 rb_iseq_new_with_callback_new_callback(build_defined_rescue_iseq, NULL);
4485
4486 const rb_iseq_t *rescue = new_child_iseq_with_callback(
4487 iseq,
4488 ifunc,
4489 rb_str_concat(rb_str_new2("defined guard in "), ISEQ_BODY(iseq)->location.label),
4490 iseq,
4491 ISEQ_TYPE_RESCUE,
4492 0
4493 );
4494
4495 lstart->rescued = LABEL_RESCUE_BEG;
4496 lend->rescued = LABEL_RESCUE_END;
4497
4498 APPEND_LABEL(ret, lcur, lstart);
4499 PUSH_LABEL(ret, lend);
4500 PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue, lfinish[1]);
4501 }
4502}
4503
4504static void
4505pm_compile_defined_expr(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node, bool in_condition)
4506{
4507 LABEL *lfinish[3];
4508 LINK_ELEMENT *last = ret->last;
4509
4510 lfinish[0] = NEW_LABEL(node_location->line);
4511 lfinish[1] = 0;
4512 lfinish[2] = 0;
4513
4514 if (!popped) {
4515 pm_defined_expr(iseq, node, node_location, ret, popped, scope_node, in_condition, lfinish);
4516 }
4517
4518 if (lfinish[1]) {
4519 ELEM_INSERT_NEXT(last, &new_insn_body(iseq, node_location->line, node_location->node_id, BIN(putnil), 0)->link);
4520 PUSH_INSN(ret, *node_location, swap);
4521
4522 if (lfinish[2]) PUSH_LABEL(ret, lfinish[2]);
4523 PUSH_INSN(ret, *node_location, pop);
4524 PUSH_LABEL(ret, lfinish[1]);
4525
4526 }
4527
4528 PUSH_LABEL(ret, lfinish[0]);
4529}
4530
4531// This is exactly the same as add_ensure_iseq, except it compiled
4532// the node as a Prism node, and not a CRuby node
4533static void
4534pm_add_ensure_iseq(LINK_ANCHOR *const ret, rb_iseq_t *iseq, int is_return, pm_scope_node_t *scope_node)
4535{
4536 RUBY_ASSERT(can_add_ensure_iseq(iseq));
4537
4539 ISEQ_COMPILE_DATA(iseq)->ensure_node_stack;
4540 struct iseq_compile_data_ensure_node_stack *prev_enlp = enlp;
4541 DECL_ANCHOR(ensure);
4542
4543 while (enlp) {
4544 if (enlp->erange != NULL) {
4545 DECL_ANCHOR(ensure_part);
4546 LABEL *lstart = NEW_LABEL(0);
4547 LABEL *lend = NEW_LABEL(0);
4548
4549 add_ensure_range(iseq, enlp->erange, lstart, lend);
4550
4551 ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enlp->prev;
4552 PUSH_LABEL(ensure_part, lstart);
4553 bool popped = true;
4554 PM_COMPILE_INTO_ANCHOR(ensure_part, (const pm_node_t *) enlp->ensure_node);
4555 PUSH_LABEL(ensure_part, lend);
4556 PUSH_SEQ(ensure, ensure_part);
4557 }
4558 else {
4559 if (!is_return) {
4560 break;
4561 }
4562 }
4563 enlp = enlp->prev;
4564 }
4565 ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = prev_enlp;
4566 PUSH_SEQ(ret, ensure);
4567}
4568
4570 pm_scope_node_t *scope_node;
4571 rb_ast_id_table_t *local_table_for_iseq;
4572 int local_index;
4573};
4574
4575static int
4576pm_local_table_insert_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
4577{
4578 if (!existing) {
4579 pm_constant_id_t constant_id = (pm_constant_id_t) *key;
4580 struct pm_local_table_insert_ctx * ctx = (struct pm_local_table_insert_ctx *) arg;
4581
4582 pm_scope_node_t *scope_node = ctx->scope_node;
4583 rb_ast_id_table_t *local_table_for_iseq = ctx->local_table_for_iseq;
4584 int local_index = ctx->local_index;
4585
4586 ID local = pm_constant_id_lookup(scope_node, constant_id);
4587 local_table_for_iseq->ids[local_index] = local;
4588
4589 *value = (st_data_t)local_index;
4590
4591 ctx->local_index++;
4592 }
4593
4594 return ST_CONTINUE;
4595}
4596
4602static void
4603pm_insert_local_index(pm_constant_id_t constant_id, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node)
4604{
4605 RUBY_ASSERT((constant_id & PM_SPECIAL_CONSTANT_FLAG) == 0);
4606
4607 ID local = pm_constant_id_lookup(scope_node, constant_id);
4608 local_table_for_iseq->ids[local_index] = local;
4609 st_insert(index_lookup_table, (st_data_t) constant_id, (st_data_t) local_index);
4610}
4611
4616static void
4617pm_insert_local_special(ID local_name, int local_index, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq)
4618{
4619 local_table_for_iseq->ids[local_index] = local_name;
4620 st_insert(index_lookup_table, (st_data_t) (local_name | PM_SPECIAL_CONSTANT_FLAG), (st_data_t) local_index);
4621}
4622
4629static int
4630pm_compile_destructured_param_locals(const pm_multi_target_node_t *node, st_table *index_lookup_table, rb_ast_id_table_t *local_table_for_iseq, pm_scope_node_t *scope_node, int local_index)
4631{
4632 for (size_t index = 0; index < node->lefts.size; index++) {
4633 const pm_node_t *left = node->lefts.nodes[index];
4634
4637 pm_insert_local_index(((const pm_required_parameter_node_t *) left)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
4638 local_index++;
4639 }
4640 }
4641 else {
4643 local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) left, index_lookup_table, local_table_for_iseq, scope_node, local_index);
4644 }
4645 }
4646
4647 if (node->rest != NULL && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE)) {
4648 const pm_splat_node_t *rest = (const pm_splat_node_t *) node->rest;
4649
4650 if (rest->expression != NULL) {
4652
4653 if (!PM_NODE_FLAG_P(rest->expression, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
4654 pm_insert_local_index(((const pm_required_parameter_node_t *) rest->expression)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
4655 local_index++;
4656 }
4657 }
4658 }
4659
4660 for (size_t index = 0; index < node->rights.size; index++) {
4661 const pm_node_t *right = node->rights.nodes[index];
4662
4665 pm_insert_local_index(((const pm_required_parameter_node_t *) right)->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
4666 local_index++;
4667 }
4668 }
4669 else {
4671 local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) right, index_lookup_table, local_table_for_iseq, scope_node, local_index);
4672 }
4673 }
4674
4675 return local_index;
4676}
4677
4682static inline void
4683pm_compile_destructured_param_write(rb_iseq_t *iseq, const pm_required_parameter_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
4684{
4685 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
4686 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, node->name, 0);
4687 PUSH_SETLOCAL(ret, location, index.index, index.level);
4688}
4689
4698static void
4699pm_compile_destructured_param_writes(rb_iseq_t *iseq, const pm_multi_target_node_t *node, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
4700{
4701 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
4702 bool has_rest = (node->rest && PM_NODE_TYPE_P(node->rest, PM_SPLAT_NODE) && (((const pm_splat_node_t *) node->rest)->expression) != NULL);
4703 bool has_rights = node->rights.size > 0;
4704
4705 int flag = (has_rest || has_rights) ? 1 : 0;
4706 PUSH_INSN2(ret, location, expandarray, INT2FIX(node->lefts.size), INT2FIX(flag));
4707
4708 for (size_t index = 0; index < node->lefts.size; index++) {
4709 const pm_node_t *left = node->lefts.nodes[index];
4710
4712 pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) left, ret, scope_node);
4713 }
4714 else {
4716 pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) left, ret, scope_node);
4717 }
4718 }
4719
4720 if (has_rest) {
4721 if (has_rights) {
4722 PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(3));
4723 }
4724
4725 const pm_node_t *rest = ((const pm_splat_node_t *) node->rest)->expression;
4727
4728 pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) rest, ret, scope_node);
4729 }
4730
4731 if (has_rights) {
4732 if (!has_rest) {
4733 PUSH_INSN2(ret, location, expandarray, INT2FIX(node->rights.size), INT2FIX(2));
4734 }
4735
4736 for (size_t index = 0; index < node->rights.size; index++) {
4737 const pm_node_t *right = node->rights.nodes[index];
4738
4740 pm_compile_destructured_param_write(iseq, (const pm_required_parameter_node_t *) right, ret, scope_node);
4741 }
4742 else {
4744 pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) right, ret, scope_node);
4745 }
4746 }
4747 }
4748}
4749
4755 // The pointer to the topn instruction that will need to be modified after
4756 // we know the total stack size of all of the targets.
4757 INSN *topn;
4758
4759 // The index of the stack from the base of the entire multi target at which
4760 // the parent expression is located.
4761 size_t stack_index;
4762
4763 // The number of slots in the stack that this node occupies.
4764 size_t stack_size;
4765
4766 // The position of the node in the list of targets.
4767 size_t position;
4768
4769 // A pointer to the next node in this linked list.
4770 struct pm_multi_target_state_node *next;
4772
4780typedef struct {
4781 // The total number of slots in the stack that this multi target occupies.
4782 size_t stack_size;
4783
4784 // The position of the current node being compiled. This is forwarded to
4785 // nodes when they are allocated.
4786 size_t position;
4787
4788 // A pointer to the head of this linked list.
4790
4791 // A pointer to the tail of this linked list.
4794
4798static void
4799pm_multi_target_state_push(pm_multi_target_state_t *state, INSN *topn, size_t stack_size)
4800{
4802 node->topn = topn;
4803 node->stack_index = state->stack_size + 1;
4804 node->stack_size = stack_size;
4805 node->position = state->position;
4806 node->next = NULL;
4807
4808 if (state->head == NULL) {
4809 state->head = node;
4810 state->tail = node;
4811 }
4812 else {
4813 state->tail->next = node;
4814 state->tail = node;
4815 }
4816
4817 state->stack_size += stack_size;
4818}
4819
4825static void
4826pm_multi_target_state_update(pm_multi_target_state_t *state)
4827{
4828 // If nothing was ever pushed onto the stack, then we don't need to do any
4829 // kind of updates.
4830 if (state->stack_size == 0) return;
4831
4832 pm_multi_target_state_node_t *current = state->head;
4834
4835 while (current != NULL) {
4836 VALUE offset = INT2FIX(state->stack_size - current->stack_index + current->position);
4837 current->topn->operands[0] = offset;
4838
4839 // stack_size will be > 1 in the case that we compiled an index target
4840 // and it had arguments. In this case, we use multiple topn instructions
4841 // to grab up all of the arguments as well, so those offsets need to be
4842 // updated as well.
4843 if (current->stack_size > 1) {
4844 INSN *insn = current->topn;
4845
4846 for (size_t index = 1; index < current->stack_size; index += 1) {
4847 LINK_ELEMENT *element = get_next_insn(insn);
4848 RUBY_ASSERT(IS_INSN(element));
4849
4850 insn = (INSN *) element;
4851 RUBY_ASSERT(insn->insn_id == BIN(topn));
4852
4853 insn->operands[0] = offset;
4854 }
4855 }
4856
4857 previous = current;
4858 current = current->next;
4859
4860 xfree(previous);
4861 }
4862}
4863
4864static void
4865pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state);
4866
4895static void
4896pm_compile_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state)
4897{
4898 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
4899
4900 switch (PM_NODE_TYPE(node)) {
4902 // Local variable targets have no parent expression, so they only need
4903 // to compile the write.
4904 //
4905 // for i in []; end
4906 //
4908 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
4909
4910 PUSH_SETLOCAL(writes, location, index.index, index.level);
4911 break;
4912 }
4914 // Class variable targets have no parent expression, so they only need
4915 // to compile the write.
4916 //
4917 // for @@i in []; end
4918 //
4920 ID name = pm_constant_id_lookup(scope_node, cast->name);
4921
4922 VALUE operand = ID2SYM(name);
4923 PUSH_INSN2(writes, location, setclassvariable, operand, get_cvar_ic_value(iseq, name));
4924 break;
4925 }
4927 // Constant targets have no parent expression, so they only need to
4928 // compile the write.
4929 //
4930 // for I in []; end
4931 //
4932 const pm_constant_target_node_t *cast = (const pm_constant_target_node_t *) node;
4933 ID name = pm_constant_id_lookup(scope_node, cast->name);
4934
4935 VALUE operand = ID2SYM(name);
4936 PUSH_INSN1(writes, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
4937 PUSH_INSN1(writes, location, setconstant, operand);
4938 break;
4939 }
4941 // Global variable targets have no parent expression, so they only need
4942 // to compile the write.
4943 //
4944 // for $i in []; end
4945 //
4947 ID name = pm_constant_id_lookup(scope_node, cast->name);
4948
4949 VALUE operand = ID2SYM(name);
4950 PUSH_INSN1(writes, location, setglobal, operand);
4951 break;
4952 }
4954 // Instance variable targets have no parent expression, so they only
4955 // need to compile the write.
4956 //
4957 // for @i in []; end
4958 //
4960 ID name = pm_constant_id_lookup(scope_node, cast->name);
4961
4962 VALUE operand = ID2SYM(name);
4963 PUSH_INSN2(writes, location, setinstancevariable, operand, get_ivar_ic_value(iseq, name));
4964 break;
4965 }
4967 // Constant path targets have a parent expression that is the object
4968 // that owns the constant. This needs to be compiled first into the
4969 // parents sequence. If no parent is found, then it represents using the
4970 // unary :: operator to indicate a top-level constant. In that case we
4971 // need to push Object onto the stack.
4972 //
4973 // for I::J in []; end
4974 //
4976 ID name = pm_constant_id_lookup(scope_node, cast->name);
4977
4978 if (cast->parent != NULL) {
4979 pm_compile_node(iseq, cast->parent, parents, false, scope_node);
4980 }
4981 else {
4982 PUSH_INSN1(parents, location, putobject, rb_cObject);
4983 }
4984
4985 if (state == NULL) {
4986 PUSH_INSN(writes, location, swap);
4987 }
4988 else {
4989 PUSH_INSN1(writes, location, topn, INT2FIX(1));
4990 pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1);
4991 }
4992
4993 VALUE operand = ID2SYM(name);
4994 PUSH_INSN1(writes, location, setconstant, operand);
4995
4996 if (state != NULL) {
4997 PUSH_INSN(cleanup, location, pop);
4998 }
4999
5000 break;
5001 }
5002 case PM_CALL_TARGET_NODE: {
5003 // Call targets have a parent expression that is the receiver of the
5004 // method being called. This needs to be compiled first into the parents
5005 // sequence. These nodes cannot have arguments, so the method call is
5006 // compiled with a single argument which represents the value being
5007 // written.
5008 //
5009 // for i.j in []; end
5010 //
5011 const pm_call_target_node_t *cast = (const pm_call_target_node_t *) node;
5012 ID method_id = pm_constant_id_lookup(scope_node, cast->name);
5013
5014 pm_compile_node(iseq, cast->receiver, parents, false, scope_node);
5015
5016 LABEL *safe_label = NULL;
5018 safe_label = NEW_LABEL(location.line);
5019 PUSH_INSN(parents, location, dup);
5020 PUSH_INSNL(parents, location, branchnil, safe_label);
5021 }
5022
5023 if (state != NULL) {
5024 PUSH_INSN1(writes, location, topn, INT2FIX(1));
5025 pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), 1);
5026 PUSH_INSN(writes, location, swap);
5027 }
5028
5029 int flags = VM_CALL_ARGS_SIMPLE;
5030 if (PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY)) flags |= VM_CALL_FCALL;
5031
5032 PUSH_SEND_WITH_FLAG(writes, location, method_id, INT2FIX(1), INT2FIX(flags));
5033 if (safe_label != NULL && state == NULL) PUSH_LABEL(writes, safe_label);
5034 PUSH_INSN(writes, location, pop);
5035 if (safe_label != NULL && state != NULL) PUSH_LABEL(writes, safe_label);
5036
5037 if (state != NULL) {
5038 PUSH_INSN(cleanup, location, pop);
5039 }
5040
5041 break;
5042 }
5043 case PM_INDEX_TARGET_NODE: {
5044 // Index targets have a parent expression that is the receiver of the
5045 // method being called and any additional arguments that are being
5046 // passed along with the value being written. The receiver and arguments
5047 // both need to be on the stack. Note that this is even more complicated
5048 // by the fact that these nodes can hold a block using the unary &
5049 // operator.
5050 //
5051 // for i[:j] in []; end
5052 //
5053 const pm_index_target_node_t *cast = (const pm_index_target_node_t *) node;
5054
5055 pm_compile_node(iseq, cast->receiver, parents, false, scope_node);
5056
5057 int flags = 0;
5058 struct rb_callinfo_kwarg *kwargs = NULL;
5059 int argc = pm_setup_args(cast->arguments, (const pm_node_t *) cast->block, &flags, &kwargs, iseq, parents, scope_node, &location);
5060
5061 if (state != NULL) {
5062 PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
5063 pm_multi_target_state_push(state, (INSN *) LAST_ELEMENT(writes), argc + 1);
5064
5065 if (argc == 0) {
5066 PUSH_INSN(writes, location, swap);
5067 }
5068 else {
5069 for (int index = 0; index < argc; index++) {
5070 PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
5071 }
5072 PUSH_INSN1(writes, location, topn, INT2FIX(argc + 1));
5073 }
5074 }
5075
5076 // The argc that we're going to pass to the send instruction is the
5077 // number of arguments + 1 for the value being written. If there's a
5078 // splat, then we need to insert newarray and concatarray instructions
5079 // after the arguments have been written.
5080 int ci_argc = argc + 1;
5081 if (flags & VM_CALL_ARGS_SPLAT) {
5082 ci_argc--;
5083 PUSH_INSN1(writes, location, newarray, INT2FIX(1));
5084 PUSH_INSN(writes, location, concatarray);
5085 }
5086
5087 PUSH_SEND_R(writes, location, idASET, INT2NUM(ci_argc), NULL, INT2FIX(flags), kwargs);
5088 PUSH_INSN(writes, location, pop);
5089
5090 if (state != NULL) {
5091 if (argc != 0) {
5092 PUSH_INSN(writes, location, pop);
5093 }
5094
5095 for (int index = 0; index < argc + 1; index++) {
5096 PUSH_INSN(cleanup, location, pop);
5097 }
5098 }
5099
5100 break;
5101 }
5102 case PM_MULTI_TARGET_NODE: {
5103 // Multi target nodes represent a set of writes to multiple variables.
5104 // The parent expressions are the combined set of the parent expressions
5105 // of its inner target nodes.
5106 //
5107 // for i, j in []; end
5108 //
5109 size_t before_position;
5110 if (state != NULL) {
5111 before_position = state->position;
5112 state->position--;
5113 }
5114
5115 pm_compile_multi_target_node(iseq, node, parents, writes, cleanup, scope_node, state);
5116 if (state != NULL) state->position = before_position;
5117
5118 break;
5119 }
5120 default:
5121 rb_bug("Unexpected node type: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
5122 break;
5123 }
5124}
5125
5131static void
5132pm_compile_multi_target_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const parents, LINK_ANCHOR *const writes, LINK_ANCHOR *const cleanup, pm_scope_node_t *scope_node, pm_multi_target_state_t *state)
5133{
5134 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
5135 const pm_node_list_t *lefts;
5136 const pm_node_t *rest;
5137 const pm_node_list_t *rights;
5138
5139 switch (PM_NODE_TYPE(node)) {
5140 case PM_MULTI_TARGET_NODE: {
5141 const pm_multi_target_node_t *cast = (const pm_multi_target_node_t *) node;
5142 lefts = &cast->lefts;
5143 rest = cast->rest;
5144 rights = &cast->rights;
5145 break;
5146 }
5147 case PM_MULTI_WRITE_NODE: {
5148 const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node;
5149 lefts = &cast->lefts;
5150 rest = cast->rest;
5151 rights = &cast->rights;
5152 break;
5153 }
5154 default:
5155 rb_bug("Unsupported node %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
5156 break;
5157 }
5158
5159 bool has_rest = (rest != NULL) && PM_NODE_TYPE_P(rest, PM_SPLAT_NODE) && ((const pm_splat_node_t *) rest)->expression != NULL;
5160 bool has_posts = rights->size > 0;
5161
5162 // The first instruction in the writes sequence is going to spread the
5163 // top value of the stack onto the number of values that we're going to
5164 // write.
5165 PUSH_INSN2(writes, location, expandarray, INT2FIX(lefts->size), INT2FIX((has_rest || has_posts) ? 1 : 0));
5166
5167 // We need to keep track of some additional state information as we're
5168 // going through the targets because we will need to revisit them once
5169 // we know how many values are being pushed onto the stack.
5170 pm_multi_target_state_t target_state = { 0 };
5171 if (state == NULL) state = &target_state;
5172
5173 size_t base_position = state->position;
5174 size_t splat_position = (has_rest || has_posts) ? 1 : 0;
5175
5176 // Next, we'll iterate through all of the leading targets.
5177 for (size_t index = 0; index < lefts->size; index++) {
5178 const pm_node_t *target = lefts->nodes[index];
5179 state->position = lefts->size - index + splat_position + base_position;
5180 pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
5181 }
5182
5183 // Next, we'll compile the rest target if there is one.
5184 if (has_rest) {
5185 const pm_node_t *target = ((const pm_splat_node_t *) rest)->expression;
5186 state->position = 1 + rights->size + base_position;
5187
5188 if (has_posts) {
5189 PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(3));
5190 }
5191
5192 pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
5193 }
5194
5195 // Finally, we'll compile the trailing targets.
5196 if (has_posts) {
5197 if (!has_rest && rest != NULL) {
5198 PUSH_INSN2(writes, location, expandarray, INT2FIX(rights->size), INT2FIX(2));
5199 }
5200
5201 for (size_t index = 0; index < rights->size; index++) {
5202 const pm_node_t *target = rights->nodes[index];
5203 state->position = rights->size - index + base_position;
5204 pm_compile_target_node(iseq, target, parents, writes, cleanup, scope_node, state);
5205 }
5206 }
5207}
5208
5214static void
5215pm_compile_for_node_index(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node)
5216{
5217 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
5218
5219 switch (PM_NODE_TYPE(node)) {
5221 // For local variables, all we have to do is retrieve the value and then
5222 // compile the index node.
5223 PUSH_GETLOCAL(ret, location, 1, 0);
5224 pm_compile_target_node(iseq, node, ret, ret, ret, scope_node, NULL);
5225 break;
5226 }
5233 case PM_INDEX_TARGET_NODE: {
5234 // For other targets, we need to potentially compile the parent or
5235 // owning expression of this target, then retrieve the value, expand it,
5236 // and then compile the necessary writes.
5237 DECL_ANCHOR(writes);
5238 DECL_ANCHOR(cleanup);
5239
5240 pm_multi_target_state_t state = { 0 };
5241 state.position = 1;
5242 pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, &state);
5243
5244 PUSH_GETLOCAL(ret, location, 1, 0);
5245 PUSH_INSN2(ret, location, expandarray, INT2FIX(1), INT2FIX(0));
5246
5247 PUSH_SEQ(ret, writes);
5248 PUSH_SEQ(ret, cleanup);
5249
5250 pm_multi_target_state_update(&state);
5251 break;
5252 }
5253 case PM_MULTI_TARGET_NODE: {
5254 DECL_ANCHOR(writes);
5255 DECL_ANCHOR(cleanup);
5256
5257 pm_compile_target_node(iseq, node, ret, writes, cleanup, scope_node, NULL);
5258
5259 LABEL *not_single = NEW_LABEL(location.line);
5260 LABEL *not_ary = NEW_LABEL(location.line);
5261
5262 // When there are multiple targets, we'll do a bunch of work to convert
5263 // the value into an array before we expand it. Effectively we're trying
5264 // to accomplish:
5265 //
5266 // (args.length == 1 && Array.try_convert(args[0])) || args
5267 //
5268 PUSH_GETLOCAL(ret, location, 1, 0);
5269 PUSH_INSN(ret, location, dup);
5270 PUSH_CALL(ret, location, idLength, INT2FIX(0));
5271 PUSH_INSN1(ret, location, putobject, INT2FIX(1));
5272 PUSH_CALL(ret, location, idEq, INT2FIX(1));
5273 PUSH_INSNL(ret, location, branchunless, not_single);
5274 PUSH_INSN(ret, location, dup);
5275 PUSH_INSN1(ret, location, putobject, INT2FIX(0));
5276 PUSH_CALL(ret, location, idAREF, INT2FIX(1));
5277 PUSH_INSN1(ret, location, putobject, rb_cArray);
5278 PUSH_INSN(ret, location, swap);
5279 PUSH_CALL(ret, location, rb_intern("try_convert"), INT2FIX(1));
5280 PUSH_INSN(ret, location, dup);
5281 PUSH_INSNL(ret, location, branchunless, not_ary);
5282 PUSH_INSN(ret, location, swap);
5283
5284 PUSH_LABEL(ret, not_ary);
5285 PUSH_INSN(ret, location, pop);
5286
5287 PUSH_LABEL(ret, not_single);
5288 PUSH_SEQ(ret, writes);
5289 PUSH_SEQ(ret, cleanup);
5290 break;
5291 }
5292 default:
5293 rb_bug("Unexpected node type for index in for node: %s", pm_node_type_to_str(PM_NODE_TYPE(node)));
5294 break;
5295 }
5296}
5297
5298static void
5299pm_compile_rescue(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5300{
5301 const pm_parser_t *parser = scope_node->parser;
5302
5303 LABEL *lstart = NEW_LABEL(node_location->line);
5304 LABEL *lend = NEW_LABEL(node_location->line);
5305 LABEL *lcont = NEW_LABEL(node_location->line);
5306
5307 pm_scope_node_t rescue_scope_node;
5308 pm_scope_node_init((const pm_node_t *) cast->rescue_clause, &rescue_scope_node, scope_node);
5309
5310 rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(
5311 &rescue_scope_node,
5312 rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label),
5313 ISEQ_TYPE_RESCUE,
5314 pm_node_line_number(parser, (const pm_node_t *) cast->rescue_clause)
5315 );
5316
5317 pm_scope_node_destroy(&rescue_scope_node);
5318
5319 lstart->rescued = LABEL_RESCUE_BEG;
5320 lend->rescued = LABEL_RESCUE_END;
5321 PUSH_LABEL(ret, lstart);
5322
5323 bool prev_in_rescue = ISEQ_COMPILE_DATA(iseq)->in_rescue;
5324 ISEQ_COMPILE_DATA(iseq)->in_rescue = true;
5325
5326 if (cast->statements != NULL) {
5327 PM_COMPILE_NOT_POPPED((const pm_node_t *) cast->statements);
5328 }
5329 else {
5330 const pm_node_location_t location = PM_NODE_START_LOCATION(parser, cast->rescue_clause);
5331 PUSH_INSN(ret, location, putnil);
5332 }
5333
5334 ISEQ_COMPILE_DATA(iseq)->in_rescue = prev_in_rescue;
5335 PUSH_LABEL(ret, lend);
5336
5337 if (cast->else_clause != NULL) {
5338 if (!popped) PUSH_INSN(ret, *node_location, pop);
5339 PM_COMPILE((const pm_node_t *) cast->else_clause);
5340 }
5341
5342 PUSH_INSN(ret, *node_location, nop);
5343 PUSH_LABEL(ret, lcont);
5344
5345 if (popped) PUSH_INSN(ret, *node_location, pop);
5346 PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont);
5347 PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart);
5348}
5349
5350static void
5351pm_compile_ensure(rb_iseq_t *iseq, const pm_begin_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5352{
5353 const pm_parser_t *parser = scope_node->parser;
5354 const pm_statements_node_t *statements = cast->ensure_clause->statements;
5355
5356 pm_node_location_t location;
5357 if (statements != NULL) {
5358 location = PM_NODE_START_LOCATION(parser, statements);
5359 }
5360 else {
5361 location = *node_location;
5362 }
5363
5364 LABEL *lstart = NEW_LABEL(location.line);
5365 LABEL *lend = NEW_LABEL(location.line);
5366 LABEL *lcont = NEW_LABEL(location.line);
5367
5368 struct ensure_range er;
5370 struct ensure_range *erange;
5371
5372 DECL_ANCHOR(ensr);
5373 if (statements != NULL) {
5374 pm_compile_node(iseq, (const pm_node_t *) statements, ensr, true, scope_node);
5375 }
5376
5377 LINK_ELEMENT *last = ensr->last;
5378 bool last_leave = last && IS_INSN(last) && IS_INSN_ID(last, leave);
5379
5380 er.begin = lstart;
5381 er.end = lend;
5382 er.next = 0;
5383 push_ensure_entry(iseq, &enl, &er, (void *) cast->ensure_clause);
5384
5385 PUSH_LABEL(ret, lstart);
5386 if (cast->rescue_clause != NULL) {
5387 pm_compile_rescue(iseq, cast, node_location, ret, popped | last_leave, scope_node);
5388 }
5389 else if (cast->statements != NULL) {
5390 pm_compile_node(iseq, (const pm_node_t *) cast->statements, ret, popped | last_leave, scope_node);
5391 }
5392 else if (!(popped | last_leave)) {
5393 PUSH_SYNTHETIC_PUTNIL(ret, iseq);
5394 }
5395
5396 PUSH_LABEL(ret, lend);
5397 PUSH_SEQ(ret, ensr);
5398 if (!popped && last_leave) PUSH_INSN(ret, *node_location, putnil);
5399 PUSH_LABEL(ret, lcont);
5400 if (last_leave) PUSH_INSN(ret, *node_location, pop);
5401
5402 pm_scope_node_t next_scope_node;
5403 pm_scope_node_init((const pm_node_t *) cast->ensure_clause, &next_scope_node, scope_node);
5404
5405 rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(
5406 &next_scope_node,
5407 rb_str_concat(rb_str_new2("ensure in "), ISEQ_BODY(iseq)->location.label),
5408 ISEQ_TYPE_ENSURE,
5409 location.line
5410 );
5411
5412 pm_scope_node_destroy(&next_scope_node);
5413
5414 erange = ISEQ_COMPILE_DATA(iseq)->ensure_node_stack->erange;
5415 if (lstart->link.next != &lend->link) {
5416 while (erange) {
5417 PUSH_CATCH_ENTRY(CATCH_TYPE_ENSURE, erange->begin, erange->end, child_iseq, lcont);
5418 erange = erange->next;
5419 }
5420 }
5421 ISEQ_COMPILE_DATA(iseq)->ensure_node_stack = enl.prev;
5422}
5423
5428static inline bool
5429pm_opt_str_freeze_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
5430{
5431 return (
5433 node->receiver != NULL &&
5435 node->arguments == NULL &&
5436 node->block == NULL &&
5437 ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
5438 );
5439}
5440
5445static inline bool
5446pm_opt_aref_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
5447{
5448 return (
5450 node->arguments != NULL &&
5452 ((const pm_arguments_node_t *) node->arguments)->arguments.size == 1 &&
5453 PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) &&
5454 node->block == NULL &&
5455 !PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) &&
5456 ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
5457 );
5458}
5459
5464static inline bool
5465pm_opt_aset_with_p(const rb_iseq_t *iseq, const pm_call_node_t *node)
5466{
5467 return (
5469 node->arguments != NULL &&
5471 ((const pm_arguments_node_t *) node->arguments)->arguments.size == 2 &&
5472 PM_NODE_TYPE_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_NODE) &&
5473 node->block == NULL &&
5474 !PM_NODE_FLAG_P(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0], PM_STRING_FLAGS_FROZEN) &&
5475 ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction
5476 );
5477}
5478
5483static void
5484pm_compile_constant_read(rb_iseq_t *iseq, VALUE name, const pm_location_t *name_loc, uint32_t node_id, LINK_ANCHOR *const ret, const pm_scope_node_t *scope_node)
5485{
5486 const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, name_loc, node_id);
5487
5488 if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache) {
5489 ISEQ_BODY(iseq)->ic_size++;
5490 VALUE segments = rb_ary_new_from_args(1, name);
5491 PUSH_INSN1(ret, location, opt_getconstant_path, segments);
5492 }
5493 else {
5494 PUSH_INSN(ret, location, putnil);
5495 PUSH_INSN1(ret, location, putobject, Qtrue);
5496 PUSH_INSN1(ret, location, getconstant, name);
5497 }
5498}
5499
5504static VALUE
5505pm_constant_path_parts(const pm_node_t *node, const pm_scope_node_t *scope_node)
5506{
5507 VALUE parts = rb_ary_new();
5508
5509 while (true) {
5510 switch (PM_NODE_TYPE(node)) {
5511 case PM_CONSTANT_READ_NODE: {
5512 const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
5513 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
5514
5515 rb_ary_unshift(parts, name);
5516 return parts;
5517 }
5518 case PM_CONSTANT_PATH_NODE: {
5519 const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
5520 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
5521
5522 rb_ary_unshift(parts, name);
5523 if (cast->parent == NULL) {
5524 rb_ary_unshift(parts, ID2SYM(idNULL));
5525 return parts;
5526 }
5527
5528 node = cast->parent;
5529 break;
5530 }
5531 default:
5532 return Qnil;
5533 }
5534 }
5535}
5536
5542static void
5543pm_compile_constant_path(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const prefix, LINK_ANCHOR *const body, bool popped, pm_scope_node_t *scope_node)
5544{
5545 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
5546
5547 switch (PM_NODE_TYPE(node)) {
5548 case PM_CONSTANT_READ_NODE: {
5549 const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
5550 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
5551
5552 PUSH_INSN1(body, location, putobject, Qtrue);
5553 PUSH_INSN1(body, location, getconstant, name);
5554 break;
5555 }
5556 case PM_CONSTANT_PATH_NODE: {
5557 const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) node;
5558 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
5559
5560 if (cast->parent == NULL) {
5561 PUSH_INSN(body, location, pop);
5562 PUSH_INSN1(body, location, putobject, rb_cObject);
5563 PUSH_INSN1(body, location, putobject, Qtrue);
5564 PUSH_INSN1(body, location, getconstant, name);
5565 }
5566 else {
5567 pm_compile_constant_path(iseq, cast->parent, prefix, body, false, scope_node);
5568 PUSH_INSN1(body, location, putobject, Qfalse);
5569 PUSH_INSN1(body, location, getconstant, name);
5570 }
5571 break;
5572 }
5573 default:
5574 PM_COMPILE_INTO_ANCHOR(prefix, node);
5575 break;
5576 }
5577}
5578
5582static VALUE
5583pm_compile_shareable_constant_literal(rb_iseq_t *iseq, const pm_node_t *node, const pm_scope_node_t *scope_node)
5584{
5585 switch (PM_NODE_TYPE(node)) {
5586 case PM_TRUE_NODE:
5587 case PM_FALSE_NODE:
5588 case PM_NIL_NODE:
5589 case PM_SYMBOL_NODE:
5592 case PM_INTEGER_NODE:
5593 case PM_FLOAT_NODE:
5594 case PM_RATIONAL_NODE:
5595 case PM_IMAGINARY_NODE:
5597 return pm_static_literal_value(iseq, node, scope_node);
5598 case PM_STRING_NODE:
5599 return parse_static_literal_string(iseq, scope_node, node, &((const pm_string_node_t *) node)->unescaped);
5601 return pm_source_file_value((const pm_source_file_node_t *) node, scope_node);
5602 case PM_ARRAY_NODE: {
5603 const pm_array_node_t *cast = (const pm_array_node_t *) node;
5604 VALUE result = rb_ary_new_capa(cast->elements.size);
5605
5606 for (size_t index = 0; index < cast->elements.size; index++) {
5607 VALUE element = pm_compile_shareable_constant_literal(iseq, cast->elements.nodes[index], scope_node);
5608 if (element == Qundef) return Qundef;
5609
5610 rb_ary_push(result, element);
5611 }
5612
5613 return rb_ractor_make_shareable(result);
5614 }
5615 case PM_HASH_NODE: {
5616 const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
5617 VALUE result = rb_hash_new_capa(cast->elements.size);
5618
5619 for (size_t index = 0; index < cast->elements.size; index++) {
5620 const pm_node_t *element = cast->elements.nodes[index];
5621 if (!PM_NODE_TYPE_P(element, PM_ASSOC_NODE)) return Qundef;
5622
5623 const pm_assoc_node_t *assoc = (const pm_assoc_node_t *) element;
5624
5625 VALUE key = pm_compile_shareable_constant_literal(iseq, assoc->key, scope_node);
5626 if (key == Qundef) return Qundef;
5627
5628 VALUE value = pm_compile_shareable_constant_literal(iseq, assoc->value, scope_node);
5629 if (value == Qundef) return Qundef;
5630
5631 rb_hash_aset(result, key, value);
5632 }
5633
5634 return rb_ractor_make_shareable(result);
5635 }
5636 default:
5637 return Qundef;
5638 }
5639}
5640
5645static void
5646pm_compile_shareable_constant_value(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_flags_t shareability, VALUE path, LINK_ANCHOR *const ret, pm_scope_node_t *scope_node, bool top)
5647{
5648 VALUE literal = pm_compile_shareable_constant_literal(iseq, node, scope_node);
5649 if (literal != Qundef) {
5650 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
5651 PUSH_INSN1(ret, location, putobject, literal);
5652 return;
5653 }
5654
5655 const pm_node_location_t location = PM_NODE_START_LOCATION(scope_node->parser, node);
5656 switch (PM_NODE_TYPE(node)) {
5657 case PM_ARRAY_NODE: {
5658 const pm_array_node_t *cast = (const pm_array_node_t *) node;
5659
5660 if (top) {
5661 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
5662 }
5663
5664 for (size_t index = 0; index < cast->elements.size; index++) {
5665 pm_compile_shareable_constant_value(iseq, cast->elements.nodes[index], shareability, path, ret, scope_node, false);
5666 }
5667
5668 PUSH_INSN1(ret, location, newarray, INT2FIX(cast->elements.size));
5669
5670 if (top) {
5671 ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable");
5672 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
5673 }
5674
5675 return;
5676 }
5677 case PM_HASH_NODE: {
5678 const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
5679
5680 if (top) {
5681 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
5682 }
5683
5684 pm_compile_hash_elements(iseq, (const pm_node_t *) cast, &cast->elements, shareability, path, false, ret, scope_node);
5685
5686 if (top) {
5687 ID method_id = (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY) ? rb_intern("make_shareable_copy") : rb_intern("make_shareable");
5688 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
5689 }
5690
5691 return;
5692 }
5693 default: {
5694 DECL_ANCHOR(value_seq);
5695
5696 pm_compile_node(iseq, node, value_seq, false, scope_node);
5698 PUSH_SEND_WITH_FLAG(value_seq, location, idUMinus, INT2FIX(0), INT2FIX(VM_CALL_ARGS_SIMPLE));
5699 }
5700
5701 if (shareability & PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL) {
5702 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
5703 PUSH_SEQ(ret, value_seq);
5704 PUSH_INSN1(ret, location, putobject, path);
5705 PUSH_SEND_WITH_FLAG(ret, location, rb_intern("ensure_shareable"), INT2FIX(2), INT2FIX(VM_CALL_ARGS_SIMPLE));
5706 }
5708 if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
5709 PUSH_SEQ(ret, value_seq);
5710 if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable_copy"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
5711 }
5713 if (top) PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
5714 PUSH_SEQ(ret, value_seq);
5715 if (top) PUSH_SEND_WITH_FLAG(ret, location, rb_intern("make_shareable"), INT2FIX(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
5716 }
5717
5718 break;
5719 }
5720 }
5721}
5722
5727static void
5728pm_compile_constant_write_node(rb_iseq_t *iseq, const pm_constant_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5729{
5730 const pm_node_location_t location = *node_location;
5731 ID name_id = pm_constant_id_lookup(scope_node, node->name);
5732
5733 if (shareability != 0) {
5734 pm_compile_shareable_constant_value(iseq, node->value, shareability, rb_id2str(name_id), ret, scope_node, true);
5735 }
5736 else {
5737 PM_COMPILE_NOT_POPPED(node->value);
5738 }
5739
5740 if (!popped) PUSH_INSN(ret, location, dup);
5741 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
5742
5743 VALUE operand = ID2SYM(name_id);
5744 PUSH_INSN1(ret, location, setconstant, operand);
5745}
5746
5751static void
5752pm_compile_constant_and_write_node(rb_iseq_t *iseq, const pm_constant_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5753{
5754 const pm_node_location_t location = *node_location;
5755
5756 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
5757 LABEL *end_label = NEW_LABEL(location.line);
5758
5759 pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
5760 if (!popped) PUSH_INSN(ret, location, dup);
5761
5762 PUSH_INSNL(ret, location, branchunless, end_label);
5763 if (!popped) PUSH_INSN(ret, location, pop);
5764
5765 if (shareability != 0) {
5766 pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
5767 }
5768 else {
5769 PM_COMPILE_NOT_POPPED(node->value);
5770 }
5771
5772 if (!popped) PUSH_INSN(ret, location, dup);
5773 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
5774 PUSH_INSN1(ret, location, setconstant, name);
5775 PUSH_LABEL(ret, end_label);
5776}
5777
5782static void
5783pm_compile_constant_or_write_node(rb_iseq_t *iseq, const pm_constant_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5784{
5785 const pm_node_location_t location = *node_location;
5786 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
5787
5788 LABEL *set_label = NEW_LABEL(location.line);
5789 LABEL *end_label = NEW_LABEL(location.line);
5790
5791 PUSH_INSN(ret, location, putnil);
5792 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST), name, Qtrue);
5793 PUSH_INSNL(ret, location, branchunless, set_label);
5794
5795 pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
5796 if (!popped) PUSH_INSN(ret, location, dup);
5797
5798 PUSH_INSNL(ret, location, branchif, end_label);
5799 if (!popped) PUSH_INSN(ret, location, pop);
5800 PUSH_LABEL(ret, set_label);
5801
5802 if (shareability != 0) {
5803 pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
5804 }
5805 else {
5806 PM_COMPILE_NOT_POPPED(node->value);
5807 }
5808
5809 if (!popped) PUSH_INSN(ret, location, dup);
5810 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
5811 PUSH_INSN1(ret, location, setconstant, name);
5812 PUSH_LABEL(ret, end_label);
5813}
5814
5819static void
5820pm_compile_constant_operator_write_node(rb_iseq_t *iseq, const pm_constant_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5821{
5822 const pm_node_location_t location = *node_location;
5823
5824 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, node->name));
5825 ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator);
5826
5827 pm_compile_constant_read(iseq, name, &node->name_loc, location.node_id, ret, scope_node);
5828
5829 if (shareability != 0) {
5830 pm_compile_shareable_constant_value(iseq, node->value, shareability, name, ret, scope_node, true);
5831 }
5832 else {
5833 PM_COMPILE_NOT_POPPED(node->value);
5834 }
5835
5836 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
5837 if (!popped) PUSH_INSN(ret, location, dup);
5838
5839 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CONST_BASE));
5840 PUSH_INSN1(ret, location, setconstant, name);
5841}
5842
5847static VALUE
5848pm_constant_path_path(const pm_constant_path_node_t *node, const pm_scope_node_t *scope_node)
5849{
5850 VALUE parts = rb_ary_new();
5851 rb_ary_push(parts, rb_id2str(pm_constant_id_lookup(scope_node, node->name)));
5852
5853 const pm_node_t *current = node->parent;
5854 while (current != NULL && PM_NODE_TYPE_P(current, PM_CONSTANT_PATH_NODE)) {
5855 const pm_constant_path_node_t *cast = (const pm_constant_path_node_t *) current;
5856 rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, cast->name)));
5857 current = cast->parent;
5858 }
5859
5860 if (current == NULL) {
5861 rb_ary_unshift(parts, rb_id2str(idNULL));
5862 }
5863 else if (PM_NODE_TYPE_P(current, PM_CONSTANT_READ_NODE)) {
5864 rb_ary_unshift(parts, rb_id2str(pm_constant_id_lookup(scope_node, ((const pm_constant_read_node_t *) current)->name)));
5865 }
5866 else {
5867 rb_ary_unshift(parts, rb_str_new_cstr("..."));
5868 }
5869
5870 return rb_ary_join(parts, rb_str_new_cstr("::"));
5871}
5872
5877static void
5878pm_compile_constant_path_write_node(rb_iseq_t *iseq, const pm_constant_path_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5879{
5880 const pm_node_location_t location = *node_location;
5881 const pm_constant_path_node_t *target = node->target;
5882 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
5883
5884 if (target->parent) {
5885 PM_COMPILE_NOT_POPPED((const pm_node_t *) target->parent);
5886 }
5887 else {
5888 PUSH_INSN1(ret, location, putobject, rb_cObject);
5889 }
5890
5891 if (shareability != 0) {
5892 pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
5893 }
5894 else {
5895 PM_COMPILE_NOT_POPPED(node->value);
5896 }
5897
5898 if (!popped) {
5899 PUSH_INSN(ret, location, swap);
5900 PUSH_INSN1(ret, location, topn, INT2FIX(1));
5901 }
5902
5903 PUSH_INSN(ret, location, swap);
5904 PUSH_INSN1(ret, location, setconstant, name);
5905}
5906
5911static void
5912pm_compile_constant_path_and_write_node(rb_iseq_t *iseq, const pm_constant_path_and_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5913{
5914 const pm_node_location_t location = *node_location;
5915 const pm_constant_path_node_t *target = node->target;
5916
5917 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
5918 LABEL *lfin = NEW_LABEL(location.line);
5919
5920 if (target->parent) {
5921 PM_COMPILE_NOT_POPPED(target->parent);
5922 }
5923 else {
5924 PUSH_INSN1(ret, location, putobject, rb_cObject);
5925 }
5926
5927 PUSH_INSN(ret, location, dup);
5928 PUSH_INSN1(ret, location, putobject, Qtrue);
5929 PUSH_INSN1(ret, location, getconstant, name);
5930
5931 if (!popped) PUSH_INSN(ret, location, dup);
5932 PUSH_INSNL(ret, location, branchunless, lfin);
5933
5934 if (!popped) PUSH_INSN(ret, location, pop);
5935
5936 if (shareability != 0) {
5937 pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
5938 }
5939 else {
5940 PM_COMPILE_NOT_POPPED(node->value);
5941 }
5942
5943 if (popped) {
5944 PUSH_INSN1(ret, location, topn, INT2FIX(1));
5945 }
5946 else {
5947 PUSH_INSN1(ret, location, dupn, INT2FIX(2));
5948 PUSH_INSN(ret, location, swap);
5949 }
5950
5951 PUSH_INSN1(ret, location, setconstant, name);
5952 PUSH_LABEL(ret, lfin);
5953
5954 if (!popped) PUSH_INSN(ret, location, swap);
5955 PUSH_INSN(ret, location, pop);
5956}
5957
5962static void
5963pm_compile_constant_path_or_write_node(rb_iseq_t *iseq, const pm_constant_path_or_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
5964{
5965 const pm_node_location_t location = *node_location;
5966 const pm_constant_path_node_t *target = node->target;
5967
5968 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
5969 LABEL *lassign = NEW_LABEL(location.line);
5970 LABEL *lfin = NEW_LABEL(location.line);
5971
5972 if (target->parent) {
5973 PM_COMPILE_NOT_POPPED(target->parent);
5974 }
5975 else {
5976 PUSH_INSN1(ret, location, putobject, rb_cObject);
5977 }
5978
5979 PUSH_INSN(ret, location, dup);
5980 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CONST_FROM), name, Qtrue);
5981 PUSH_INSNL(ret, location, branchunless, lassign);
5982
5983 PUSH_INSN(ret, location, dup);
5984 PUSH_INSN1(ret, location, putobject, Qtrue);
5985 PUSH_INSN1(ret, location, getconstant, name);
5986
5987 if (!popped) PUSH_INSN(ret, location, dup);
5988 PUSH_INSNL(ret, location, branchif, lfin);
5989
5990 if (!popped) PUSH_INSN(ret, location, pop);
5991 PUSH_LABEL(ret, lassign);
5992
5993 if (shareability != 0) {
5994 pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
5995 }
5996 else {
5997 PM_COMPILE_NOT_POPPED(node->value);
5998 }
5999
6000 if (popped) {
6001 PUSH_INSN1(ret, location, topn, INT2FIX(1));
6002 }
6003 else {
6004 PUSH_INSN1(ret, location, dupn, INT2FIX(2));
6005 PUSH_INSN(ret, location, swap);
6006 }
6007
6008 PUSH_INSN1(ret, location, setconstant, name);
6009 PUSH_LABEL(ret, lfin);
6010
6011 if (!popped) PUSH_INSN(ret, location, swap);
6012 PUSH_INSN(ret, location, pop);
6013}
6014
6019static void
6020pm_compile_constant_path_operator_write_node(rb_iseq_t *iseq, const pm_constant_path_operator_write_node_t *node, const pm_node_flags_t shareability, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
6021{
6022 const pm_node_location_t location = *node_location;
6023 const pm_constant_path_node_t *target = node->target;
6024
6025 ID method_id = pm_constant_id_lookup(scope_node, node->binary_operator);
6026 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, target->name));
6027
6028 if (target->parent) {
6029 PM_COMPILE_NOT_POPPED(target->parent);
6030 }
6031 else {
6032 PUSH_INSN1(ret, location, putobject, rb_cObject);
6033 }
6034
6035 PUSH_INSN(ret, location, dup);
6036 PUSH_INSN1(ret, location, putobject, Qtrue);
6037 PUSH_INSN1(ret, location, getconstant, name);
6038
6039 if (shareability != 0) {
6040 pm_compile_shareable_constant_value(iseq, node->value, shareability, pm_constant_path_path(node->target, scope_node), ret, scope_node, true);
6041 }
6042 else {
6043 PM_COMPILE_NOT_POPPED(node->value);
6044 }
6045
6046 PUSH_CALL(ret, location, method_id, INT2FIX(1));
6047 PUSH_INSN(ret, location, swap);
6048
6049 if (!popped) {
6050 PUSH_INSN1(ret, location, topn, INT2FIX(1));
6051 PUSH_INSN(ret, location, swap);
6052 }
6053
6054 PUSH_INSN1(ret, location, setconstant, name);
6055}
6056
6063#define PM_CONTAINER_P(node) (PM_NODE_TYPE_P(node, PM_ARRAY_NODE) || PM_NODE_TYPE_P(node, PM_HASH_NODE) || PM_NODE_TYPE_P(node, PM_RANGE_NODE))
6064
6069static inline void
6070pm_compile_scope_node(rb_iseq_t *iseq, pm_scope_node_t *scope_node, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped)
6071{
6072 const pm_node_location_t location = *node_location;
6073 struct rb_iseq_constant_body *body = ISEQ_BODY(iseq);
6074
6075 pm_constant_id_list_t *locals = &scope_node->locals;
6076 pm_parameters_node_t *parameters_node = NULL;
6077 pm_node_list_t *keywords_list = NULL;
6078 pm_node_list_t *optionals_list = NULL;
6079 pm_node_list_t *posts_list = NULL;
6080 pm_node_list_t *requireds_list = NULL;
6081 pm_node_list_t *block_locals = NULL;
6082 bool trailing_comma = false;
6083
6084 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) {
6085 PUSH_TRACE(ret, RUBY_EVENT_CLASS);
6086 }
6087
6088 if (scope_node->parameters != NULL) {
6089 switch (PM_NODE_TYPE(scope_node->parameters)) {
6091 pm_block_parameters_node_t *cast = (pm_block_parameters_node_t *) scope_node->parameters;
6092 parameters_node = cast->parameters;
6093 block_locals = &cast->locals;
6094
6095 if (parameters_node) {
6096 if (parameters_node->rest && PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE)) {
6097 trailing_comma = true;
6098 }
6099 }
6100 break;
6101 }
6102 case PM_PARAMETERS_NODE: {
6103 parameters_node = (pm_parameters_node_t *) scope_node->parameters;
6104 break;
6105 }
6107 uint32_t maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum;
6108 body->param.lead_num = maximum;
6109 body->param.flags.ambiguous_param0 = maximum == 1;
6110 break;
6111 }
6113 body->param.lead_num = 1;
6114 body->param.flags.ambiguous_param0 = true;
6115 break;
6116 default:
6117 rb_bug("Unexpected node type for parameters: %s", pm_node_type_to_str(PM_NODE_TYPE(scope_node->parameters)));
6118 }
6119 }
6120
6121 struct rb_iseq_param_keyword *keyword = NULL;
6122
6123 if (parameters_node) {
6124 optionals_list = &parameters_node->optionals;
6125 requireds_list = &parameters_node->requireds;
6126 keywords_list = &parameters_node->keywords;
6127 posts_list = &parameters_node->posts;
6128 }
6129 else if (scope_node->parameters && (PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE) || PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE))) {
6130 body->param.opt_num = 0;
6131 }
6132 else {
6133 body->param.lead_num = 0;
6134 body->param.opt_num = 0;
6135 }
6136
6137 //********STEP 1**********
6138 // Goal: calculate the table size for the locals, accounting for
6139 // hidden variables and multi target nodes
6140 size_t locals_size = locals->size;
6141
6142 // Index lookup table buffer size is only the number of the locals
6143 st_table *index_lookup_table = st_init_numtable();
6144
6145 int table_size = (int) locals_size;
6146
6147 // For nodes have a hidden iteration variable. We add that to the local
6148 // table size here.
6149 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) table_size++;
6150
6151 if (keywords_list && keywords_list->size) {
6152 table_size++;
6153 }
6154
6155 if (requireds_list) {
6156 for (size_t i = 0; i < requireds_list->size; i++) {
6157 // For each MultiTargetNode, we're going to have one
6158 // additional anonymous local not represented in the locals table
6159 // We want to account for this in our table size
6160 pm_node_t *required = requireds_list->nodes[i];
6161 if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
6162 table_size++;
6163 }
6164 else if (PM_NODE_TYPE_P(required, PM_REQUIRED_PARAMETER_NODE)) {
6166 table_size++;
6167 }
6168 }
6169 }
6170 }
6171
6172 // If we have the `it` implicit local variable, we need to account for
6173 // it in the local table size.
6174 if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) {
6175 table_size++;
6176 }
6177
6178 // Ensure there is enough room in the local table for any
6179 // parameters that have been repeated
6180 // ex: def underscore_parameters(_, _ = 1, _ = 2); _; end
6181 // ^^^^^^^^^^^^
6182 if (optionals_list && optionals_list->size) {
6183 for (size_t i = 0; i < optionals_list->size; i++) {
6184 pm_node_t * node = optionals_list->nodes[i];
6186 table_size++;
6187 }
6188 }
6189 }
6190
6191 // If we have an anonymous "rest" node, we'll need to increase the local
6192 // table size to take it in to account.
6193 // def m(foo, *, bar)
6194 // ^
6195 if (parameters_node) {
6196 if (parameters_node->rest) {
6197 if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) {
6198 if (!((const pm_rest_parameter_node_t *) parameters_node->rest)->name || PM_NODE_FLAG_P(parameters_node->rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
6199 table_size++;
6200 }
6201 }
6202 }
6203
6204 // def foo(_, **_); _; end
6205 // ^^^
6206 if (parameters_node->keyword_rest) {
6207 // def foo(...); end
6208 // ^^^
6209 // When we have a `...` as the keyword_rest, it's a forwarding_parameter_node and
6210 // we need to leave space for 4 locals: *, **, &, ...
6212 // Only optimize specifically methods like this: `foo(...)`
6213 if (requireds_list->size == 0 && optionals_list->size == 0 && keywords_list->size == 0) {
6214 ISEQ_BODY(iseq)->param.flags.use_block = TRUE;
6215 ISEQ_BODY(iseq)->param.flags.forwardable = TRUE;
6216 table_size += 1;
6217 }
6218 else {
6219 table_size += 4;
6220 }
6221 }
6222 else {
6223 const pm_keyword_rest_parameter_node_t *kw_rest = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest;
6224
6225 // If it's anonymous or repeated, then we need to allocate stack space
6226 if (!kw_rest->name || PM_NODE_FLAG_P(kw_rest, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
6227 table_size++;
6228 }
6229 }
6230 }
6231 }
6232
6233 if (posts_list) {
6234 for (size_t i = 0; i < posts_list->size; i++) {
6235 // For each MultiTargetNode, we're going to have one
6236 // additional anonymous local not represented in the locals table
6237 // We want to account for this in our table size
6238 pm_node_t *required = posts_list->nodes[i];
6240 table_size++;
6241 }
6242 }
6243 }
6244
6245 if (keywords_list && keywords_list->size) {
6246 for (size_t i = 0; i < keywords_list->size; i++) {
6247 pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
6248 if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
6249 table_size++;
6250 }
6251 }
6252 }
6253
6254 if (parameters_node && parameters_node->block) {
6255 const pm_block_parameter_node_t *block_node = (const pm_block_parameter_node_t *) parameters_node->block;
6256
6257 if (PM_NODE_FLAG_P(block_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER) || !block_node->name) {
6258 table_size++;
6259 }
6260 }
6261
6262 // We can create local_table_for_iseq with the correct size
6263 VALUE idtmp = 0;
6264 rb_ast_id_table_t *local_table_for_iseq = ALLOCV(idtmp, sizeof(rb_ast_id_table_t) + table_size * sizeof(ID));
6265 local_table_for_iseq->size = table_size;
6266
6267 //********END OF STEP 1**********
6268
6269 //********STEP 2**********
6270 // Goal: populate iv index table as well as local table, keeping the
6271 // layout of the local table consistent with the layout of the
6272 // stack when calling the method
6273 //
6274 // Do a first pass on all of the parameters, setting their values in
6275 // the local_table_for_iseq, _except_ for Multis who get a hidden
6276 // variable in this step, and will get their names inserted in step 3
6277
6278 // local_index is a cursor that keeps track of the current
6279 // index into local_table_for_iseq. The local table is actually a list,
6280 // and the order of that list must match the order of the items pushed
6281 // on the stack. We need to take in to account things pushed on the
6282 // stack that _might not have a name_ (for example array destructuring).
6283 // This index helps us know which item we're dealing with and also give
6284 // those anonymous items temporary names (as below)
6285 int local_index = 0;
6286
6287 // Here we figure out local table indices and insert them in to the
6288 // index lookup table and local tables.
6289 //
6290 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6291 // ^^^^^^^^^^^^^
6292 if (requireds_list && requireds_list->size) {
6293 for (size_t i = 0; i < requireds_list->size; i++, local_index++) {
6294 ID local;
6295
6296 // For each MultiTargetNode, we're going to have one additional
6297 // anonymous local not represented in the locals table. We want
6298 // to account for this in our table size.
6299 pm_node_t *required = requireds_list->nodes[i];
6300
6301 switch (PM_NODE_TYPE(required)) {
6302 case PM_MULTI_TARGET_NODE: {
6303 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6304 // ^^^^^^^^^^
6305 local = rb_make_temporary_id(local_index);
6306 local_table_for_iseq->ids[local_index] = local;
6307 break;
6308 }
6310 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6311 // ^
6312 const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) required;
6313
6315 ID local = pm_constant_id_lookup(scope_node, param->name);
6316 local_table_for_iseq->ids[local_index] = local;
6317 }
6318 else {
6319 pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6320 }
6321
6322 break;
6323 }
6324 default:
6325 rb_bug("Unsupported node in requireds in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(required)));
6326 }
6327 }
6328
6329 body->param.lead_num = (int) requireds_list->size;
6330 body->param.flags.has_lead = true;
6331 }
6332
6333 if (scope_node->parameters != NULL && PM_NODE_TYPE_P(scope_node->parameters, PM_IT_PARAMETERS_NODE)) {
6334 ID local = rb_make_temporary_id(local_index);
6335 local_table_for_iseq->ids[local_index++] = local;
6336 }
6337
6338 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6339 // ^^^^^
6340 if (optionals_list && optionals_list->size) {
6341 body->param.opt_num = (int) optionals_list->size;
6342 body->param.flags.has_opt = true;
6343
6344 for (size_t i = 0; i < optionals_list->size; i++, local_index++) {
6345 pm_node_t * node = optionals_list->nodes[i];
6346 pm_constant_id_t name = ((const pm_optional_parameter_node_t *) node)->name;
6347
6349 ID local = pm_constant_id_lookup(scope_node, name);
6350 local_table_for_iseq->ids[local_index] = local;
6351 }
6352 else {
6353 pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6354 }
6355 }
6356 }
6357
6358 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6359 // ^^
6360 if (parameters_node && parameters_node->rest) {
6361 body->param.rest_start = local_index;
6362
6363 // If there's a trailing comma, we'll have an implicit rest node,
6364 // and we don't want it to impact the rest variables on param
6365 if (!(PM_NODE_TYPE_P(parameters_node->rest, PM_IMPLICIT_REST_NODE))) {
6366 body->param.flags.has_rest = true;
6367 RUBY_ASSERT(body->param.rest_start != -1);
6368
6369 pm_constant_id_t name = ((const pm_rest_parameter_node_t *) parameters_node->rest)->name;
6370
6371 if (name) {
6372 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6373 // ^^
6375 ID local = pm_constant_id_lookup(scope_node, name);
6376 local_table_for_iseq->ids[local_index] = local;
6377 }
6378 else {
6379 pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6380 }
6381 }
6382 else {
6383 // def foo(a, (b, *c, d), e = 1, *, g, (h, *i, j), k:, l: 1, **m, &n)
6384 // ^
6385 body->param.flags.anon_rest = true;
6386 pm_insert_local_special(idMULT, local_index, index_lookup_table, local_table_for_iseq);
6387 }
6388
6389 local_index++;
6390 }
6391 }
6392
6393 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6394 // ^^^^^^^^^^^^^
6395 if (posts_list && posts_list->size) {
6396 body->param.post_num = (int) posts_list->size;
6397 body->param.post_start = local_index;
6398 body->param.flags.has_post = true;
6399
6400 for (size_t i = 0; i < posts_list->size; i++, local_index++) {
6401 ID local;
6402
6403 // For each MultiTargetNode, we're going to have one additional
6404 // anonymous local not represented in the locals table. We want
6405 // to account for this in our table size.
6406 const pm_node_t *post_node = posts_list->nodes[i];
6407
6408 switch (PM_NODE_TYPE(post_node)) {
6409 case PM_MULTI_TARGET_NODE: {
6410 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6411 // ^^^^^^^^^^
6412 local = rb_make_temporary_id(local_index);
6413 local_table_for_iseq->ids[local_index] = local;
6414 break;
6415 }
6417 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6418 // ^
6419 const pm_required_parameter_node_t *param = (const pm_required_parameter_node_t *) post_node;
6420
6422 ID local = pm_constant_id_lookup(scope_node, param->name);
6423 local_table_for_iseq->ids[local_index] = local;
6424 }
6425 else {
6426 pm_insert_local_index(param->name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6427 }
6428 break;
6429 }
6430 default:
6431 rb_bug("Unsupported node in posts in parameters %s", pm_node_type_to_str(PM_NODE_TYPE(post_node)));
6432 }
6433 }
6434 }
6435
6436 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6437 // ^^^^^^^^
6438 // Keywords create an internal variable on the parse tree
6439 if (keywords_list && keywords_list->size) {
6440 keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
6441 keyword->num = (int) keywords_list->size;
6442
6443 const VALUE default_values = rb_ary_hidden_new(1);
6444 const VALUE complex_mark = rb_str_tmp_new(0);
6445
6446 for (size_t i = 0; i < keywords_list->size; i++) {
6447 pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
6448 pm_constant_id_t name;
6449
6450 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6451 // ^^
6452 if (PM_NODE_TYPE_P(keyword_parameter_node, PM_REQUIRED_KEYWORD_PARAMETER_NODE)) {
6453 name = ((const pm_required_keyword_parameter_node_t *) keyword_parameter_node)->name;
6454 keyword->required_num++;
6455 ID local = pm_constant_id_lookup(scope_node, name);
6456
6457 if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
6458 local_table_for_iseq->ids[local_index] = local;
6459 }
6460 else {
6461 pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6462 }
6463 local_index++;
6464 }
6465 }
6466
6467 for (size_t i = 0; i < keywords_list->size; i++) {
6468 pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
6469 pm_constant_id_t name;
6470
6471 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6472 // ^^^^
6473 if (PM_NODE_TYPE_P(keyword_parameter_node, PM_OPTIONAL_KEYWORD_PARAMETER_NODE)) {
6474 const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node);
6475
6476 pm_node_t *value = cast->value;
6477 name = cast->name;
6478
6479 if (PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) && !PM_CONTAINER_P(value)) {
6480 rb_ary_push(default_values, pm_static_literal_value(iseq, value, scope_node));
6481 }
6482 else {
6483 rb_ary_push(default_values, complex_mark);
6484 }
6485
6486 ID local = pm_constant_id_lookup(scope_node, name);
6487 if (PM_NODE_FLAG_P(keyword_parameter_node, PM_PARAMETER_FLAGS_REPEATED_PARAMETER)) {
6488 local_table_for_iseq->ids[local_index] = local;
6489 }
6490 else {
6491 pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6492 }
6493 local_index++;
6494 }
6495
6496 }
6497
6498 if (RARRAY_LEN(default_values)) {
6499 VALUE *dvs = ALLOC_N(VALUE, RARRAY_LEN(default_values));
6500
6501 for (int i = 0; i < RARRAY_LEN(default_values); i++) {
6502 VALUE dv = RARRAY_AREF(default_values, i);
6503 if (dv == complex_mark) dv = Qundef;
6504 RB_OBJ_WRITE(iseq, &dvs[i], dv);
6505 }
6506
6507 keyword->default_values = dvs;
6508 }
6509
6510 // Hidden local for keyword arguments
6511 keyword->bits_start = local_index;
6512 ID local = rb_make_temporary_id(local_index);
6513 local_table_for_iseq->ids[local_index] = local;
6514 local_index++;
6515
6516 body->param.keyword = keyword;
6517 body->param.flags.has_kw = true;
6518 }
6519
6520 if (body->type == ISEQ_TYPE_BLOCK && local_index == 1 && requireds_list && requireds_list->size == 1 && !trailing_comma) {
6521 body->param.flags.ambiguous_param0 = true;
6522 }
6523
6524 if (parameters_node) {
6525 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6526 // ^^^
6527 if (parameters_node->keyword_rest) {
6528 switch (PM_NODE_TYPE(parameters_node->keyword_rest)) {
6530 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **nil, &n)
6531 // ^^^^^
6532 body->param.flags.accepts_no_kwarg = true;
6533 break;
6534 }
6536 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6537 // ^^^
6538 const pm_keyword_rest_parameter_node_t *kw_rest_node = (const pm_keyword_rest_parameter_node_t *) parameters_node->keyword_rest;
6539 if (!body->param.flags.has_kw) {
6540 body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
6541 }
6542
6543 keyword->rest_start = local_index;
6544 body->param.flags.has_kwrest = true;
6545
6546 pm_constant_id_t constant_id = kw_rest_node->name;
6547 if (constant_id) {
6549 ID local = pm_constant_id_lookup(scope_node, constant_id);
6550 local_table_for_iseq->ids[local_index] = local;
6551 }
6552 else {
6553 pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6554 }
6555 }
6556 else {
6557 body->param.flags.anon_kwrest = true;
6558 pm_insert_local_special(idPow, local_index, index_lookup_table, local_table_for_iseq);
6559 }
6560
6561 local_index++;
6562 break;
6563 }
6565 // def foo(...)
6566 // ^^^
6567 if (!ISEQ_BODY(iseq)->param.flags.forwardable) {
6568 // Add the anonymous *
6569 body->param.rest_start = local_index;
6570 body->param.flags.has_rest = true;
6571 body->param.flags.anon_rest = true;
6572 pm_insert_local_special(idMULT, local_index++, index_lookup_table, local_table_for_iseq);
6573
6574 // Add the anonymous **
6575 RUBY_ASSERT(!body->param.flags.has_kw);
6576 body->param.flags.has_kw = false;
6577 body->param.flags.has_kwrest = true;
6578 body->param.flags.anon_kwrest = true;
6579 body->param.keyword = keyword = ZALLOC_N(struct rb_iseq_param_keyword, 1);
6580 keyword->rest_start = local_index;
6581 pm_insert_local_special(idPow, local_index++, index_lookup_table, local_table_for_iseq);
6582
6583 // Add the anonymous &
6584 body->param.block_start = local_index;
6585 body->param.flags.has_block = true;
6586 pm_insert_local_special(idAnd, local_index++, index_lookup_table, local_table_for_iseq);
6587 }
6588
6589 // Add the ...
6590 pm_insert_local_special(idDot3, local_index++, index_lookup_table, local_table_for_iseq);
6591 break;
6592 }
6593 default:
6594 rb_bug("node type %s not expected as keyword_rest", pm_node_type_to_str(PM_NODE_TYPE(parameters_node->keyword_rest)));
6595 }
6596 }
6597
6598 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6599 // ^^
6600 if (parameters_node->block) {
6601 body->param.block_start = local_index;
6602 body->param.flags.has_block = true;
6603 iseq_set_use_block(iseq);
6604
6605 pm_constant_id_t name = ((const pm_block_parameter_node_t *) parameters_node->block)->name;
6606
6607 if (name) {
6609 ID local = pm_constant_id_lookup(scope_node, name);
6610 local_table_for_iseq->ids[local_index] = local;
6611 }
6612 else {
6613 pm_insert_local_index(name, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6614 }
6615 }
6616 else {
6617 pm_insert_local_special(idAnd, local_index, index_lookup_table, local_table_for_iseq);
6618 }
6619
6620 local_index++;
6621 }
6622 }
6623
6624 //********END OF STEP 2**********
6625 // The local table is now consistent with expected
6626 // stack layout
6627
6628 // If there's only one required element in the parameters
6629 // CRuby needs to recognize it as an ambiguous parameter
6630
6631 //********STEP 3**********
6632 // Goal: fill in the names of the parameters in MultiTargetNodes
6633 //
6634 // Go through requireds again to set the multis
6635
6636 if (requireds_list && requireds_list->size) {
6637 for (size_t i = 0; i < requireds_list->size; i++) {
6638 // For each MultiTargetNode, we're going to have one
6639 // additional anonymous local not represented in the locals table
6640 // We want to account for this in our table size
6641 const pm_node_t *required = requireds_list->nodes[i];
6642
6643 if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
6644 local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) required, index_lookup_table, local_table_for_iseq, scope_node, local_index);
6645 }
6646 }
6647 }
6648
6649 // Go through posts again to set the multis
6650 if (posts_list && posts_list->size) {
6651 for (size_t i = 0; i < posts_list->size; i++) {
6652 // For each MultiTargetNode, we're going to have one
6653 // additional anonymous local not represented in the locals table
6654 // We want to account for this in our table size
6655 const pm_node_t *post = posts_list->nodes[i];
6656
6658 local_index = pm_compile_destructured_param_locals((const pm_multi_target_node_t *) post, index_lookup_table, local_table_for_iseq, scope_node, local_index);
6659 }
6660 }
6661 }
6662
6663 // Set any anonymous locals for the for node
6664 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) {
6665 if (PM_NODE_TYPE_P(((const pm_for_node_t *) scope_node->ast_node)->index, PM_LOCAL_VARIABLE_TARGET_NODE)) {
6666 body->param.lead_num++;
6667 }
6668 else {
6669 body->param.rest_start = local_index;
6670 body->param.flags.has_rest = true;
6671 }
6672
6673 ID local = rb_make_temporary_id(local_index);
6674 local_table_for_iseq->ids[local_index] = local;
6675 local_index++;
6676 }
6677
6678 // Fill in any NumberedParameters, if they exist
6679 if (scope_node->parameters && PM_NODE_TYPE_P(scope_node->parameters, PM_NUMBERED_PARAMETERS_NODE)) {
6680 int maximum = ((const pm_numbered_parameters_node_t *) scope_node->parameters)->maximum;
6681 RUBY_ASSERT(0 < maximum && maximum <= 9);
6682 for (int i = 0; i < maximum; i++, local_index++) {
6683 const uint8_t param_name[] = { '_', '1' + i };
6684 pm_constant_id_t constant_id = pm_constant_pool_find(&scope_node->parser->constant_pool, param_name, 2);
6685 RUBY_ASSERT(constant_id && "parser should fill in any gaps in numbered parameters");
6686 pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6687 }
6688 body->param.lead_num = maximum;
6689 body->param.flags.has_lead = true;
6690 }
6691
6692 //********END OF STEP 3**********
6693
6694 //********STEP 4**********
6695 // Goal: fill in the method body locals
6696 // To be explicit, these are the non-parameter locals
6697 // We fill in the block_locals, if they exist
6698 // lambda { |x; y| y }
6699 // ^
6700 if (block_locals && block_locals->size) {
6701 for (size_t i = 0; i < block_locals->size; i++, local_index++) {
6702 pm_constant_id_t constant_id = ((const pm_block_local_variable_node_t *) block_locals->nodes[i])->name;
6703 pm_insert_local_index(constant_id, local_index, index_lookup_table, local_table_for_iseq, scope_node);
6704 }
6705 }
6706
6707 // Fill in any locals we missed
6708 if (scope_node->locals.size) {
6709 for (size_t i = 0; i < scope_node->locals.size; i++) {
6710 pm_constant_id_t constant_id = locals->ids[i];
6711 if (constant_id) {
6712 struct pm_local_table_insert_ctx ctx;
6713 ctx.scope_node = scope_node;
6714 ctx.local_table_for_iseq = local_table_for_iseq;
6715 ctx.local_index = local_index;
6716
6717 st_update(index_lookup_table, (st_data_t)constant_id, pm_local_table_insert_func, (st_data_t)&ctx);
6718
6719 local_index = ctx.local_index;
6720 }
6721 }
6722 }
6723
6724 //********END OF STEP 4**********
6725
6726 // We set the index_lookup_table on the scope node so we can
6727 // refer to the parameters correctly
6728 if (scope_node->index_lookup_table) {
6729 st_free_table(scope_node->index_lookup_table);
6730 }
6731 scope_node->index_lookup_table = index_lookup_table;
6732 iseq_calc_param_size(iseq);
6733
6734 if (ISEQ_BODY(iseq)->param.flags.forwardable) {
6735 // We're treating `...` as a parameter so that frame
6736 // pushing won't clobber it.
6737 ISEQ_BODY(iseq)->param.size += 1;
6738 }
6739
6740 // FIXME: args?
6741 iseq_set_local_table(iseq, local_table_for_iseq, 0);
6742 scope_node->local_table_for_iseq_size = local_table_for_iseq->size;
6743
6744 if (keyword != NULL) {
6745 size_t keyword_start_index = keyword->bits_start - keyword->num;
6746 keyword->table = (ID *)&ISEQ_BODY(iseq)->local_table[keyword_start_index];
6747 }
6748
6749 //********STEP 5************
6750 // Goal: compile anything that needed to be compiled
6751 if (optionals_list && optionals_list->size) {
6752 LABEL **opt_table = (LABEL **) ALLOC_N(VALUE, optionals_list->size + 1);
6753 LABEL *label;
6754
6755 // TODO: Should we make an api for NEW_LABEL where you can pass
6756 // a pointer to the label it should fill out? We already
6757 // have a list of labels allocated above so it seems wasteful
6758 // to do the copies.
6759 for (size_t i = 0; i < optionals_list->size; i++) {
6760 label = NEW_LABEL(location.line);
6761 opt_table[i] = label;
6762 PUSH_LABEL(ret, label);
6763 pm_node_t *optional_node = optionals_list->nodes[i];
6764 PM_COMPILE_NOT_POPPED(optional_node);
6765 }
6766
6767 // Set the last label
6768 label = NEW_LABEL(location.line);
6769 opt_table[optionals_list->size] = label;
6770 PUSH_LABEL(ret, label);
6771
6772 body->param.opt_table = (const VALUE *) opt_table;
6773 }
6774
6775 if (keywords_list && keywords_list->size) {
6776 size_t optional_index = 0;
6777 for (size_t i = 0; i < keywords_list->size; i++) {
6778 pm_node_t *keyword_parameter_node = keywords_list->nodes[i];
6779 pm_constant_id_t name;
6780
6781 switch (PM_NODE_TYPE(keyword_parameter_node)) {
6783 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6784 // ^^^^
6785 const pm_optional_keyword_parameter_node_t *cast = ((const pm_optional_keyword_parameter_node_t *) keyword_parameter_node);
6786
6787 pm_node_t *value = cast->value;
6788 name = cast->name;
6789
6790 if (!PM_NODE_FLAG_P(value, PM_NODE_FLAG_STATIC_LITERAL) || PM_CONTAINER_P(value)) {
6791 LABEL *end_label = NEW_LABEL(location.line);
6792
6793 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, name, 0);
6794 int kw_bits_idx = table_size - body->param.keyword->bits_start;
6795 PUSH_INSN2(ret, location, checkkeyword, INT2FIX(kw_bits_idx + VM_ENV_DATA_SIZE - 1), INT2FIX(optional_index));
6796 PUSH_INSNL(ret, location, branchif, end_label);
6797 PM_COMPILE(value);
6798 PUSH_SETLOCAL(ret, location, index.index, index.level);
6799 PUSH_LABEL(ret, end_label);
6800 }
6801 optional_index++;
6802 break;
6803 }
6805 // def foo(a, (b, *c, d), e = 1, *f, g, (h, *i, j), k:, l: 1, **m, &n)
6806 // ^^
6807 break;
6808 default:
6809 rb_bug("Unexpected keyword parameter node type %s", pm_node_type_to_str(PM_NODE_TYPE(keyword_parameter_node)));
6810 }
6811 }
6812 }
6813
6814 if (requireds_list && requireds_list->size) {
6815 for (size_t i = 0; i < requireds_list->size; i++) {
6816 // For each MultiTargetNode, we're going to have one additional
6817 // anonymous local not represented in the locals table. We want
6818 // to account for this in our table size.
6819 const pm_node_t *required = requireds_list->nodes[i];
6820
6821 if (PM_NODE_TYPE_P(required, PM_MULTI_TARGET_NODE)) {
6822 PUSH_GETLOCAL(ret, location, table_size - (int)i, 0);
6823 pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) required, ret, scope_node);
6824 }
6825 }
6826 }
6827
6828 if (posts_list && posts_list->size) {
6829 for (size_t i = 0; i < posts_list->size; i++) {
6830 // For each MultiTargetNode, we're going to have one additional
6831 // anonymous local not represented in the locals table. We want
6832 // to account for this in our table size.
6833 const pm_node_t *post = posts_list->nodes[i];
6834
6836 PUSH_GETLOCAL(ret, location, table_size - body->param.post_start - (int) i, 0);
6837 pm_compile_destructured_param_writes(iseq, (const pm_multi_target_node_t *) post, ret, scope_node);
6838 }
6839 }
6840 }
6841
6842 switch (body->type) {
6843 case ISEQ_TYPE_PLAIN: {
6845
6847 pm_compile_regexp_dynamic(iseq, (const pm_node_t *) cast, &cast->parts, &location, ret, popped, scope_node);
6848
6849 break;
6850 }
6851 case ISEQ_TYPE_BLOCK: {
6852 LABEL *start = ISEQ_COMPILE_DATA(iseq)->start_label = NEW_LABEL(0);
6853 LABEL *end = ISEQ_COMPILE_DATA(iseq)->end_label = NEW_LABEL(0);
6854 const pm_node_location_t block_location = { .line = body->location.first_lineno, .node_id = scope_node->ast_node->node_id };
6855
6856 start->rescued = LABEL_RESCUE_BEG;
6857 end->rescued = LABEL_RESCUE_END;
6858
6859 // For nodes automatically assign the iteration variable to whatever
6860 // index variable. We need to handle that write here because it has
6861 // to happen in the context of the block. Note that this happens
6862 // before the B_CALL tracepoint event.
6863 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_FOR_NODE)) {
6864 pm_compile_for_node_index(iseq, ((const pm_for_node_t *) scope_node->ast_node)->index, ret, scope_node);
6865 }
6866
6867 PUSH_TRACE(ret, RUBY_EVENT_B_CALL);
6868 PUSH_INSN(ret, block_location, nop);
6869 PUSH_LABEL(ret, start);
6870
6871 if (scope_node->body != NULL) {
6872 switch (PM_NODE_TYPE(scope_node->ast_node)) {
6874 const pm_post_execution_node_t *cast = (const pm_post_execution_node_t *) scope_node->ast_node;
6875 PUSH_INSN1(ret, block_location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
6876
6877 // We create another ScopeNode from the statements within the PostExecutionNode
6878 pm_scope_node_t next_scope_node;
6879 pm_scope_node_init((const pm_node_t *) cast->statements, &next_scope_node, scope_node);
6880
6881 const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(body->parent_iseq), ISEQ_TYPE_BLOCK, location.line);
6882 pm_scope_node_destroy(&next_scope_node);
6883
6884 PUSH_CALL_WITH_BLOCK(ret, block_location, id_core_set_postexe, INT2FIX(0), block);
6885 break;
6886 }
6889 pm_compile_regexp_dynamic(iseq, (const pm_node_t *) cast, &cast->parts, &location, ret, popped, scope_node);
6890 break;
6891 }
6892 default:
6893 pm_compile_node(iseq, scope_node->body, ret, popped, scope_node);
6894 break;
6895 }
6896 }
6897 else {
6898 PUSH_INSN(ret, block_location, putnil);
6899 }
6900
6901 PUSH_LABEL(ret, end);
6902 PUSH_TRACE(ret, RUBY_EVENT_B_RETURN);
6903 ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno;
6904
6905 /* wide range catch handler must put at last */
6906 PUSH_CATCH_ENTRY(CATCH_TYPE_REDO, start, end, NULL, start);
6907 PUSH_CATCH_ENTRY(CATCH_TYPE_NEXT, start, end, NULL, end);
6908 break;
6909 }
6910 case ISEQ_TYPE_ENSURE: {
6911 const pm_node_location_t statements_location = (scope_node->body != NULL ? PM_NODE_START_LOCATION(scope_node->parser, scope_node->body) : location);
6912 iseq_set_exception_local_table(iseq);
6913
6914 if (scope_node->body != NULL) {
6915 PM_COMPILE_POPPED((const pm_node_t *) scope_node->body);
6916 }
6917
6918 PUSH_GETLOCAL(ret, statements_location, 1, 0);
6919 PUSH_INSN1(ret, statements_location, throw, INT2FIX(0));
6920 return;
6921 }
6922 case ISEQ_TYPE_METHOD: {
6923 ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body;
6924 PUSH_TRACE(ret, RUBY_EVENT_CALL);
6925
6926 if (scope_node->body) {
6927 PM_COMPILE((const pm_node_t *) scope_node->body);
6928 }
6929 else {
6930 PUSH_INSN(ret, location, putnil);
6931 }
6932
6933 ISEQ_COMPILE_DATA(iseq)->root_node = (const void *) scope_node->body;
6934 PUSH_TRACE(ret, RUBY_EVENT_RETURN);
6935
6936 ISEQ_COMPILE_DATA(iseq)->last_line = body->location.code_location.end_pos.lineno;
6937 break;
6938 }
6939 case ISEQ_TYPE_RESCUE: {
6940 iseq_set_exception_local_table(iseq);
6941 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_RESCUE_MODIFIER_NODE)) {
6942 LABEL *lab = NEW_LABEL(location.line);
6943 LABEL *rescue_end = NEW_LABEL(location.line);
6944 PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0);
6945 PUSH_INSN1(ret, location, putobject, rb_eStandardError);
6946 PUSH_INSN1(ret, location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE));
6947 PUSH_INSNL(ret, location, branchif, lab);
6948 PUSH_INSNL(ret, location, jump, rescue_end);
6949 PUSH_LABEL(ret, lab);
6950 PUSH_TRACE(ret, RUBY_EVENT_RESCUE);
6951 PM_COMPILE((const pm_node_t *) scope_node->body);
6952 PUSH_INSN(ret, location, leave);
6953 PUSH_LABEL(ret, rescue_end);
6954 PUSH_GETLOCAL(ret, location, LVAR_ERRINFO, 0);
6955 }
6956 else {
6957 PM_COMPILE((const pm_node_t *) scope_node->ast_node);
6958 }
6959 PUSH_INSN1(ret, location, throw, INT2FIX(0));
6960
6961 return;
6962 }
6963 default:
6964 if (scope_node->body) {
6965 PM_COMPILE((const pm_node_t *) scope_node->body);
6966 }
6967 else {
6968 PUSH_INSN(ret, location, putnil);
6969 }
6970 break;
6971 }
6972
6973 if (PM_NODE_TYPE_P(scope_node->ast_node, PM_CLASS_NODE) || PM_NODE_TYPE_P(scope_node->ast_node, PM_MODULE_NODE)) {
6974 const pm_node_location_t end_location = PM_NODE_END_LOCATION(scope_node->parser, scope_node->ast_node);
6975 PUSH_TRACE(ret, RUBY_EVENT_END);
6976 ISEQ_COMPILE_DATA(iseq)->last_line = end_location.line;
6977 }
6978
6979 if (!PM_NODE_TYPE_P(scope_node->ast_node, PM_ENSURE_NODE)) {
6980 const pm_node_location_t location = { .line = ISEQ_COMPILE_DATA(iseq)->last_line, .node_id = scope_node->ast_node->node_id };
6981 PUSH_INSN(ret, location, leave);
6982 }
6983}
6984
6985static inline void
6986pm_compile_alias_global_variable_node(rb_iseq_t *iseq, const pm_alias_global_variable_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
6987{
6988 // alias $foo $bar
6989 // ^^^^^^^^^^^^^^^
6990 PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
6991
6992 {
6993 const pm_location_t *name_loc = &node->new_name->location;
6994 VALUE operand = ID2SYM(rb_intern3((const char *) name_loc->start, name_loc->end - name_loc->start, scope_node->encoding));
6995 PUSH_INSN1(ret, *location, putobject, operand);
6996 }
6997
6998 {
6999 const pm_location_t *name_loc = &node->old_name->location;
7000 VALUE operand = ID2SYM(rb_intern3((const char *) name_loc->start, name_loc->end - name_loc->start, scope_node->encoding));
7001 PUSH_INSN1(ret, *location, putobject, operand);
7002 }
7003
7004 PUSH_SEND(ret, *location, id_core_set_variable_alias, INT2FIX(2));
7005 if (popped) PUSH_INSN(ret, *location, pop);
7006}
7007
7008static inline void
7009pm_compile_alias_method_node(rb_iseq_t *iseq, const pm_alias_method_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7010{
7011 PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
7012 PUSH_INSN1(ret, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE));
7013 PM_COMPILE_NOT_POPPED(node->new_name);
7014 PM_COMPILE_NOT_POPPED(node->old_name);
7015
7016 PUSH_SEND(ret, *location, id_core_set_method_alias, INT2FIX(3));
7017 if (popped) PUSH_INSN(ret, *location, pop);
7018}
7019
7020static inline void
7021pm_compile_and_node(rb_iseq_t *iseq, const pm_and_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7022{
7023 LABEL *end_label = NEW_LABEL(location->line);
7024
7025 PM_COMPILE_NOT_POPPED(node->left);
7026 if (!popped) PUSH_INSN(ret, *location, dup);
7027 PUSH_INSNL(ret, *location, branchunless, end_label);
7028
7029 if (!popped) PUSH_INSN(ret, *location, pop);
7030 PM_COMPILE(node->right);
7031 PUSH_LABEL(ret, end_label);
7032}
7033
7034static inline void
7035pm_compile_array_node(rb_iseq_t *iseq, const pm_node_t *node, const pm_node_list_t *elements, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7036{
7037 // If every node in the array is static, then we can compile the entire
7038 // array now instead of later.
7039 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
7040 // We're only going to compile this node if it's not popped. If it
7041 // is popped, then we know we don't need to do anything since it's
7042 // statically known.
7043 if (!popped) {
7044 if (elements->size) {
7045 VALUE value = pm_static_literal_value(iseq, node, scope_node);
7046 PUSH_INSN1(ret, *location, duparray, value);
7047 }
7048 else {
7049 PUSH_INSN1(ret, *location, newarray, INT2FIX(0));
7050 }
7051 }
7052 return;
7053 }
7054
7055 // Here since we know there are possible side-effects inside the
7056 // array contents, we're going to build it entirely at runtime.
7057 // We'll do this by pushing all of the elements onto the stack and
7058 // then combining them with newarray.
7059 //
7060 // If this array is popped, then this serves only to ensure we enact
7061 // all side-effects (like method calls) that are contained within
7062 // the array contents.
7063 //
7064 // We treat all sequences of non-splat elements as their
7065 // own arrays, followed by a newarray, and then continually
7066 // concat the arrays with the SplatNode nodes.
7067 const int max_new_array_size = 0x100;
7068 const unsigned int min_tmp_array_size = 0x40;
7069
7070 int new_array_size = 0;
7071 bool first_chunk = true;
7072
7073 // This is an optimization wherein we keep track of whether or not
7074 // the previous element was a static literal. If it was, then we do
7075 // not attempt to check if we have a subarray that can be optimized.
7076 // If it was not, then we do check.
7077 bool static_literal = false;
7078
7079 // Either create a new array, or push to the existing array.
7080#define FLUSH_CHUNK \
7081 if (new_array_size) { \
7082 if (first_chunk) PUSH_INSN1(ret, *location, newarray, INT2FIX(new_array_size)); \
7083 else PUSH_INSN1(ret, *location, pushtoarray, INT2FIX(new_array_size)); \
7084 first_chunk = false; \
7085 new_array_size = 0; \
7086 }
7087
7088 for (size_t index = 0; index < elements->size; index++) {
7089 const pm_node_t *element = elements->nodes[index];
7090
7091 if (PM_NODE_TYPE_P(element, PM_SPLAT_NODE)) {
7092 FLUSH_CHUNK;
7093
7094 const pm_splat_node_t *splat_element = (const pm_splat_node_t *) element;
7095 if (splat_element->expression) {
7096 PM_COMPILE_NOT_POPPED(splat_element->expression);
7097 }
7098 else {
7099 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_MULT, 0);
7100 PUSH_GETLOCAL(ret, *location, index.index, index.level);
7101 }
7102
7103 if (first_chunk) {
7104 // If this is the first element of the array then we
7105 // need to splatarray the elements into the list.
7106 PUSH_INSN1(ret, *location, splatarray, Qtrue);
7107 first_chunk = false;
7108 }
7109 else {
7110 PUSH_INSN(ret, *location, concattoarray);
7111 }
7112
7113 static_literal = false;
7114 }
7115 else if (PM_NODE_TYPE_P(element, PM_KEYWORD_HASH_NODE)) {
7116 if (new_array_size == 0 && first_chunk) {
7117 PUSH_INSN1(ret, *location, newarray, INT2FIX(0));
7118 first_chunk = false;
7119 }
7120 else {
7121 FLUSH_CHUNK;
7122 }
7123
7124 // If we get here, then this is the last element of the
7125 // array/arguments, because it cannot be followed by
7126 // anything else without a syntax error. This looks like:
7127 //
7128 // [foo, bar, baz: qux]
7129 // ^^^^^^^^
7130 //
7131 // [foo, bar, **baz]
7132 // ^^^^^
7133 //
7134 const pm_keyword_hash_node_t *keyword_hash = (const pm_keyword_hash_node_t *) element;
7135 pm_compile_hash_elements(iseq, element, &keyword_hash->elements, 0, Qundef, false, ret, scope_node);
7136
7137 // This boolean controls the manner in which we push the
7138 // hash onto the array. If it's all keyword splats, then we
7139 // can use the very specialized pushtoarraykwsplat
7140 // instruction to check if it's empty before we push it.
7141 size_t splats = 0;
7142 while (splats < keyword_hash->elements.size && PM_NODE_TYPE_P(keyword_hash->elements.nodes[splats], PM_ASSOC_SPLAT_NODE)) splats++;
7143
7144 if (keyword_hash->elements.size == splats) {
7145 PUSH_INSN(ret, *location, pushtoarraykwsplat);
7146 }
7147 else {
7148 new_array_size++;
7149 }
7150 }
7151 else if (
7152 PM_NODE_FLAG_P(element, PM_NODE_FLAG_STATIC_LITERAL) &&
7153 !PM_CONTAINER_P(element) &&
7154 !static_literal &&
7155 ((index + min_tmp_array_size) < elements->size)
7156 ) {
7157 // If we have a static literal, then there's the potential
7158 // to group a bunch of them together with a literal array
7159 // and then concat them together.
7160 size_t right_index = index + 1;
7161 while (
7162 right_index < elements->size &&
7163 PM_NODE_FLAG_P(elements->nodes[right_index], PM_NODE_FLAG_STATIC_LITERAL) &&
7164 !PM_CONTAINER_P(elements->nodes[right_index])
7165 ) right_index++;
7166
7167 size_t tmp_array_size = right_index - index;
7168 if (tmp_array_size >= min_tmp_array_size) {
7169 VALUE tmp_array = rb_ary_hidden_new(tmp_array_size);
7170
7171 // Create the temporary array.
7172 for (; tmp_array_size; tmp_array_size--)
7173 rb_ary_push(tmp_array, pm_static_literal_value(iseq, elements->nodes[index++], scope_node));
7174
7175 index--; // about to be incremented by for loop
7176 OBJ_FREEZE(tmp_array);
7177
7178 // Emit the optimized code.
7179 FLUSH_CHUNK;
7180 if (first_chunk) {
7181 PUSH_INSN1(ret, *location, duparray, tmp_array);
7182 first_chunk = false;
7183 }
7184 else {
7185 PUSH_INSN1(ret, *location, putobject, tmp_array);
7186 PUSH_INSN(ret, *location, concattoarray);
7187 }
7188 }
7189 else {
7190 PM_COMPILE_NOT_POPPED(element);
7191 if (++new_array_size >= max_new_array_size) FLUSH_CHUNK;
7192 static_literal = true;
7193 }
7194 } else {
7195 PM_COMPILE_NOT_POPPED(element);
7196 if (++new_array_size >= max_new_array_size) FLUSH_CHUNK;
7197 static_literal = false;
7198 }
7199 }
7200
7201 FLUSH_CHUNK;
7202 if (popped) PUSH_INSN(ret, *location, pop);
7203
7204#undef FLUSH_CHUNK
7205}
7206
7207static inline void
7208pm_compile_break_node(rb_iseq_t *iseq, const pm_break_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7209{
7210 unsigned long throw_flag = 0;
7211
7212 if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) {
7213 /* while/until */
7214 LABEL *splabel = NEW_LABEL(0);
7215 PUSH_LABEL(ret, splabel);
7216 PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
7217
7218 if (node->arguments != NULL) {
7219 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
7220 }
7221 else {
7222 PUSH_INSN(ret, *location, putnil);
7223 }
7224
7225 pm_add_ensure_iseq(ret, iseq, 0, scope_node);
7226 PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->end_label);
7227 PUSH_ADJUST_RESTORE(ret, splabel);
7228 if (!popped) PUSH_INSN(ret, *location, putnil);
7229 }
7230 else {
7231 const rb_iseq_t *ip = iseq;
7232
7233 while (ip) {
7234 if (!ISEQ_COMPILE_DATA(ip)) {
7235 ip = 0;
7236 break;
7237 }
7238
7239 if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
7240 throw_flag = VM_THROW_NO_ESCAPE_FLAG;
7241 }
7242 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
7243 throw_flag = 0;
7244 }
7245 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
7246 COMPILE_ERROR(iseq, location->line, "Invalid break");
7247 return;
7248 }
7249 else {
7250 ip = ISEQ_BODY(ip)->parent_iseq;
7251 continue;
7252 }
7253
7254 /* escape from block */
7255 if (node->arguments != NULL) {
7256 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
7257 }
7258 else {
7259 PUSH_INSN(ret, *location, putnil);
7260 }
7261
7262 PUSH_INSN1(ret, *location, throw, INT2FIX(throw_flag | TAG_BREAK));
7263 if (popped) PUSH_INSN(ret, *location, pop);
7264
7265 return;
7266 }
7267
7268 COMPILE_ERROR(iseq, location->line, "Invalid break");
7269 }
7270}
7271
7272static inline void
7273pm_compile_call_node(rb_iseq_t *iseq, const pm_call_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7274{
7275 ID method_id = pm_constant_id_lookup(scope_node, node->name);
7276
7277 const pm_location_t *message_loc = &node->message_loc;
7278 if (message_loc->start == NULL) message_loc = &node->base.location;
7279
7280 const pm_node_location_t location = PM_LOCATION_START_LOCATION(scope_node->parser, message_loc, node->base.node_id);
7281 const char *builtin_func;
7282
7283 if (UNLIKELY(iseq_has_builtin_function_table(iseq)) && (builtin_func = pm_iseq_builtin_function_name(scope_node, node->receiver, method_id)) != NULL) {
7284 pm_compile_builtin_function_call(iseq, ret, scope_node, node, &location, popped, ISEQ_COMPILE_DATA(iseq)->current_block, builtin_func);
7285 return;
7286 }
7287
7288 LABEL *start = NEW_LABEL(location.line);
7289 if (node->block) PUSH_LABEL(ret, start);
7290
7291 switch (method_id) {
7292 case idUMinus: {
7293 if (pm_opt_str_freeze_p(iseq, node)) {
7294 VALUE value = parse_static_literal_string(iseq, scope_node, node->receiver, &((const pm_string_node_t * ) node->receiver)->unescaped);
7295 const struct rb_callinfo *callinfo = new_callinfo(iseq, idUMinus, 0, 0, NULL, FALSE);
7296 PUSH_INSN2(ret, location, opt_str_uminus, value, callinfo);
7297 if (popped) PUSH_INSN(ret, location, pop);
7298 return;
7299 }
7300 break;
7301 }
7302 case idFreeze: {
7303 if (pm_opt_str_freeze_p(iseq, node)) {
7304 VALUE value = parse_static_literal_string(iseq, scope_node, node->receiver, &((const pm_string_node_t * ) node->receiver)->unescaped);
7305 const struct rb_callinfo *callinfo = new_callinfo(iseq, idFreeze, 0, 0, NULL, FALSE);
7306 PUSH_INSN2(ret, location, opt_str_freeze, value, callinfo);
7307 if (popped) PUSH_INSN(ret, location, pop);
7308 return;
7309 }
7310 break;
7311 }
7312 case idAREF: {
7313 if (pm_opt_aref_with_p(iseq, node)) {
7314 const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0];
7315 VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped);
7316
7317 PM_COMPILE_NOT_POPPED(node->receiver);
7318
7319 const struct rb_callinfo *callinfo = new_callinfo(iseq, idAREF, 1, 0, NULL, FALSE);
7320 PUSH_INSN2(ret, location, opt_aref_with, value, callinfo);
7321
7322 if (popped) {
7323 PUSH_INSN(ret, location, pop);
7324 }
7325
7326 return;
7327 }
7328 break;
7329 }
7330 case idASET: {
7331 if (pm_opt_aset_with_p(iseq, node)) {
7332 const pm_string_node_t *string = (const pm_string_node_t *) ((const pm_arguments_node_t *) node->arguments)->arguments.nodes[0];
7333 VALUE value = parse_static_literal_string(iseq, scope_node, (const pm_node_t *) string, &string->unescaped);
7334
7335 PM_COMPILE_NOT_POPPED(node->receiver);
7336 PM_COMPILE_NOT_POPPED(((const pm_arguments_node_t *) node->arguments)->arguments.nodes[1]);
7337
7338 if (!popped) {
7339 PUSH_INSN(ret, location, swap);
7340 PUSH_INSN1(ret, location, topn, INT2FIX(1));
7341 }
7342
7343 const struct rb_callinfo *callinfo = new_callinfo(iseq, idASET, 2, 0, NULL, FALSE);
7344 PUSH_INSN2(ret, location, opt_aset_with, value, callinfo);
7345 PUSH_INSN(ret, location, pop);
7346 return;
7347 }
7348 break;
7349 }
7350 }
7351
7352 if (PM_NODE_FLAG_P(node, PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE) && !popped) {
7353 PUSH_INSN(ret, location, putnil);
7354 }
7355
7356 if (node->receiver == NULL) {
7357 PUSH_INSN(ret, location, putself);
7358 }
7359 else {
7360 if (method_id == idCall && PM_NODE_TYPE_P(node->receiver, PM_LOCAL_VARIABLE_READ_NODE)) {
7361 const pm_local_variable_read_node_t *read_node_cast = (const pm_local_variable_read_node_t *) node->receiver;
7362 uint32_t node_id = node->receiver->node_id;
7363 int idx, level;
7364
7365 if (iseq_block_param_id_p(iseq, pm_constant_id_lookup(scope_node, read_node_cast->name), &idx, &level)) {
7366 ADD_ELEM(ret, (LINK_ELEMENT *) new_insn_body(iseq, location.line, node_id, BIN(getblockparamproxy), 2, INT2FIX((idx) + VM_ENV_DATA_SIZE - 1), INT2FIX(level)));
7367 }
7368 else {
7369 PM_COMPILE_NOT_POPPED(node->receiver);
7370 }
7371 }
7372 else {
7373 PM_COMPILE_NOT_POPPED(node->receiver);
7374 }
7375 }
7376
7377 pm_compile_call(iseq, node, ret, popped, scope_node, method_id, start);
7378 return;
7379}
7380
7381static inline void
7382pm_compile_call_operator_write_node(rb_iseq_t *iseq, const pm_call_operator_write_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7383{
7384 int flag = 0;
7385
7387 flag = VM_CALL_FCALL;
7388 }
7389
7390 PM_COMPILE_NOT_POPPED(node->receiver);
7391
7392 LABEL *safe_label = NULL;
7394 safe_label = NEW_LABEL(location->line);
7395 PUSH_INSN(ret, *location, dup);
7396 PUSH_INSNL(ret, *location, branchnil, safe_label);
7397 }
7398
7399 PUSH_INSN(ret, *location, dup);
7400
7401 ID id_read_name = pm_constant_id_lookup(scope_node, node->read_name);
7402 PUSH_SEND_WITH_FLAG(ret, *location, id_read_name, INT2FIX(0), INT2FIX(flag));
7403
7404 PM_COMPILE_NOT_POPPED(node->value);
7405 ID id_operator = pm_constant_id_lookup(scope_node, node->binary_operator);
7406 PUSH_SEND(ret, *location, id_operator, INT2FIX(1));
7407
7408 if (!popped) {
7409 PUSH_INSN(ret, *location, swap);
7410 PUSH_INSN1(ret, *location, topn, INT2FIX(1));
7411 }
7412
7413 ID id_write_name = pm_constant_id_lookup(scope_node, node->write_name);
7414 PUSH_SEND_WITH_FLAG(ret, *location, id_write_name, INT2FIX(1), INT2FIX(flag));
7415
7416 if (safe_label != NULL && popped) PUSH_LABEL(ret, safe_label);
7417 PUSH_INSN(ret, *location, pop);
7418 if (safe_label != NULL && !popped) PUSH_LABEL(ret, safe_label);
7419}
7420
7437static VALUE
7438pm_compile_case_node_dispatch(rb_iseq_t *iseq, VALUE dispatch, const pm_node_t *node, LABEL *label, const pm_scope_node_t *scope_node)
7439{
7440 VALUE key = Qundef;
7441
7442 switch (PM_NODE_TYPE(node)) {
7443 case PM_FLOAT_NODE: {
7444 key = pm_static_literal_value(iseq, node, scope_node);
7445 double intptr;
7446
7447 if (modf(RFLOAT_VALUE(key), &intptr) == 0.0) {
7448 key = (FIXABLE(intptr) ? LONG2FIX((long) intptr) : rb_dbl2big(intptr));
7449 }
7450
7451 break;
7452 }
7453 case PM_FALSE_NODE:
7454 case PM_INTEGER_NODE:
7455 case PM_NIL_NODE:
7458 case PM_SYMBOL_NODE:
7459 case PM_TRUE_NODE:
7460 key = pm_static_literal_value(iseq, node, scope_node);
7461 break;
7462 case PM_STRING_NODE: {
7463 const pm_string_node_t *cast = (const pm_string_node_t *) node;
7464 key = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
7465 break;
7466 }
7467 default:
7468 return Qundef;
7469 }
7470
7471 if (NIL_P(rb_hash_lookup(dispatch, key))) {
7472 rb_hash_aset(dispatch, key, ((VALUE) label) | 1);
7473 }
7474
7475 return dispatch;
7476}
7477
7481static inline void
7482pm_compile_case_node(rb_iseq_t *iseq, const pm_case_node_t *cast, const pm_node_location_t *node_location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7483{
7484 const pm_parser_t *parser = scope_node->parser;
7485 const pm_node_location_t location = *node_location;
7486 const pm_node_list_t *conditions = &cast->conditions;
7487
7488 // This is the anchor that we will compile the conditions of the various
7489 // `when` nodes into. If a match is found, they will need to jump into
7490 // the body_seq anchor to the correct spot.
7491 DECL_ANCHOR(cond_seq);
7492
7493 // This is the anchor that we will compile the bodies of the various
7494 // `when` nodes into. We'll make sure that the clauses that are compiled
7495 // jump into the correct spots within this anchor.
7496 DECL_ANCHOR(body_seq);
7497
7498 // This is the label where all of the when clauses will jump to if they
7499 // have matched and are done executing their bodies.
7500 LABEL *end_label = NEW_LABEL(location.line);
7501
7502 // If we have a predicate on this case statement, then it's going to
7503 // compare all of the various when clauses to the predicate. If we
7504 // don't, then it's basically an if-elsif-else chain.
7505 if (cast->predicate == NULL) {
7506 // Establish branch coverage for the case node.
7507 VALUE branches = Qfalse;
7508 rb_code_location_t case_location = { 0 };
7509 int branch_id = 0;
7510
7511 if (PM_BRANCH_COVERAGE_P(iseq)) {
7512 case_location = pm_code_location(scope_node, (const pm_node_t *) cast);
7513 branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case");
7514 }
7515
7516 // Loop through each clauses in the case node and compile each of
7517 // the conditions within them into cond_seq. If they match, they
7518 // should jump into their respective bodies in body_seq.
7519 for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) {
7520 const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index];
7521 const pm_node_list_t *conditions = &clause->conditions;
7522
7523 int clause_lineno = pm_node_line_number(parser, (const pm_node_t *) clause);
7524 LABEL *label = NEW_LABEL(clause_lineno);
7525 PUSH_LABEL(body_seq, label);
7526
7527 // Establish branch coverage for the when clause.
7528 if (PM_BRANCH_COVERAGE_P(iseq)) {
7529 rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause));
7530 add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches);
7531 }
7532
7533 if (clause->statements != NULL) {
7534 pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node);
7535 }
7536 else if (!popped) {
7537 PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
7538 }
7539
7540 PUSH_INSNL(body_seq, location, jump, end_label);
7541
7542 // Compile each of the conditions for the when clause into the
7543 // cond_seq. Each one should have a unique condition and should
7544 // jump to the subsequent one if it doesn't match.
7545 for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) {
7546 const pm_node_t *condition = conditions->nodes[condition_index];
7547
7548 if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) {
7549 pm_node_location_t cond_location = PM_NODE_START_LOCATION(parser, condition);
7550 PUSH_INSN(cond_seq, cond_location, putnil);
7551 pm_compile_node(iseq, condition, cond_seq, false, scope_node);
7552 PUSH_INSN1(cond_seq, cond_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_WHEN | VM_CHECKMATCH_ARRAY));
7553 PUSH_INSNL(cond_seq, cond_location, branchif, label);
7554 }
7555 else {
7556 LABEL *next_label = NEW_LABEL(pm_node_line_number(parser, condition));
7557 pm_compile_branch_condition(iseq, cond_seq, condition, label, next_label, false, scope_node);
7558 PUSH_LABEL(cond_seq, next_label);
7559 }
7560 }
7561 }
7562
7563 // Establish branch coverage for the else clause (implicit or
7564 // explicit).
7565 if (PM_BRANCH_COVERAGE_P(iseq)) {
7566 rb_code_location_t branch_location;
7567
7568 if (cast->else_clause == NULL) {
7569 branch_location = case_location;
7570 } else if (cast->else_clause->statements == NULL) {
7571 branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause);
7572 } else {
7573 branch_location = pm_code_location(scope_node, (const pm_node_t *) cast->else_clause->statements);
7574 }
7575
7576 add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
7577 }
7578
7579 // Compile the else clause if there is one.
7580 if (cast->else_clause != NULL) {
7581 pm_compile_node(iseq, (const pm_node_t *) cast->else_clause, cond_seq, popped, scope_node);
7582 }
7583 else if (!popped) {
7584 PUSH_SYNTHETIC_PUTNIL(cond_seq, iseq);
7585 }
7586
7587 // Finally, jump to the end label if none of the other conditions
7588 // have matched.
7589 PUSH_INSNL(cond_seq, location, jump, end_label);
7590 PUSH_SEQ(ret, cond_seq);
7591 }
7592 else {
7593 // Establish branch coverage for the case node.
7594 VALUE branches = Qfalse;
7595 rb_code_location_t case_location = { 0 };
7596 int branch_id = 0;
7597
7598 if (PM_BRANCH_COVERAGE_P(iseq)) {
7599 case_location = pm_code_location(scope_node, (const pm_node_t *) cast);
7600 branches = decl_branch_base(iseq, PTR2NUM(cast), &case_location, "case");
7601 }
7602
7603 // This is the label where everything will fall into if none of the
7604 // conditions matched.
7605 LABEL *else_label = NEW_LABEL(location.line);
7606
7607 // It's possible for us to speed up the case node by using a
7608 // dispatch hash. This is a hash that maps the conditions of the
7609 // various when clauses to the labels of their bodies. If we can
7610 // compile the conditions into a hash key, then we can use a hash
7611 // lookup to jump directly to the correct when clause body.
7612 VALUE dispatch = Qundef;
7613 if (ISEQ_COMPILE_DATA(iseq)->option->specialized_instruction) {
7614 dispatch = rb_hash_new();
7615 RHASH_TBL_RAW(dispatch)->type = &cdhash_type;
7616 }
7617
7618 // We're going to loop through each of the conditions in the case
7619 // node and compile each of their contents into both the cond_seq
7620 // and the body_seq. Each condition will use its own label to jump
7621 // from its conditions into its body.
7622 //
7623 // Note that none of the code in the loop below should be adding
7624 // anything to ret, as we're going to be laying out the entire case
7625 // node instructions later.
7626 for (size_t clause_index = 0; clause_index < conditions->size; clause_index++) {
7627 const pm_when_node_t *clause = (const pm_when_node_t *) conditions->nodes[clause_index];
7628 pm_node_location_t clause_location = PM_NODE_START_LOCATION(parser, (const pm_node_t *) clause);
7629
7630 const pm_node_list_t *conditions = &clause->conditions;
7631 LABEL *label = NEW_LABEL(clause_location.line);
7632
7633 // Compile each of the conditions for the when clause into the
7634 // cond_seq. Each one should have a unique comparison that then
7635 // jumps into the body if it matches.
7636 for (size_t condition_index = 0; condition_index < conditions->size; condition_index++) {
7637 const pm_node_t *condition = conditions->nodes[condition_index];
7638 const pm_node_location_t condition_location = PM_NODE_START_LOCATION(parser, condition);
7639
7640 // If we haven't already abandoned the optimization, then
7641 // we're going to try to compile the condition into the
7642 // dispatch hash.
7643 if (dispatch != Qundef) {
7644 dispatch = pm_compile_case_node_dispatch(iseq, dispatch, condition, label, scope_node);
7645 }
7646
7647 if (PM_NODE_TYPE_P(condition, PM_SPLAT_NODE)) {
7648 PUSH_INSN(cond_seq, condition_location, dup);
7649 pm_compile_node(iseq, condition, cond_seq, false, scope_node);
7650 PUSH_INSN1(cond_seq, condition_location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_CASE | VM_CHECKMATCH_ARRAY));
7651 }
7652 else {
7653 if (PM_NODE_TYPE_P(condition, PM_STRING_NODE)) {
7654 const pm_string_node_t *string = (const pm_string_node_t *) condition;
7655 VALUE value = parse_static_literal_string(iseq, scope_node, condition, &string->unescaped);
7656 PUSH_INSN1(cond_seq, condition_location, putobject, value);
7657 }
7658 else {
7659 pm_compile_node(iseq, condition, cond_seq, false, scope_node);
7660 }
7661
7662 PUSH_INSN1(cond_seq, condition_location, topn, INT2FIX(1));
7663 PUSH_SEND_WITH_FLAG(cond_seq, condition_location, idEqq, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
7664 }
7665
7666 PUSH_INSNL(cond_seq, condition_location, branchif, label);
7667 }
7668
7669 // Now, add the label to the body and compile the body of the
7670 // when clause. This involves popping the predicate, compiling
7671 // the statements to be executed, and then compiling a jump to
7672 // the end of the case node.
7673 PUSH_LABEL(body_seq, label);
7674 PUSH_INSN(body_seq, clause_location, pop);
7675
7676 // Establish branch coverage for the when clause.
7677 if (PM_BRANCH_COVERAGE_P(iseq)) {
7678 rb_code_location_t branch_location = pm_code_location(scope_node, clause->statements != NULL ? ((const pm_node_t *) clause->statements) : ((const pm_node_t *) clause));
7679 add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "when", branches);
7680 }
7681
7682 if (clause->statements != NULL) {
7683 pm_compile_node(iseq, (const pm_node_t *) clause->statements, body_seq, popped, scope_node);
7684 }
7685 else if (!popped) {
7686 PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
7687 }
7688
7689 PUSH_INSNL(body_seq, clause_location, jump, end_label);
7690 }
7691
7692 // Now that we have compiled the conditions and the bodies of the
7693 // various when clauses, we can compile the predicate, lay out the
7694 // conditions, compile the fallback subsequent if there is one, and
7695 // finally put in the bodies of the when clauses.
7696 PM_COMPILE_NOT_POPPED(cast->predicate);
7697
7698 // If we have a dispatch hash, then we'll use it here to create the
7699 // optimization.
7700 if (dispatch != Qundef) {
7701 PUSH_INSN(ret, location, dup);
7702 PUSH_INSN2(ret, location, opt_case_dispatch, dispatch, else_label);
7703 LABEL_REF(else_label);
7704 }
7705
7706 PUSH_SEQ(ret, cond_seq);
7707
7708 // Compile either the explicit else clause or an implicit else
7709 // clause.
7710 PUSH_LABEL(ret, else_label);
7711
7712 if (cast->else_clause != NULL) {
7713 pm_node_location_t else_location = PM_NODE_START_LOCATION(parser, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause));
7714 PUSH_INSN(ret, else_location, pop);
7715
7716 // Establish branch coverage for the else clause.
7717 if (PM_BRANCH_COVERAGE_P(iseq)) {
7718 rb_code_location_t branch_location = pm_code_location(scope_node, cast->else_clause->statements != NULL ? ((const pm_node_t *) cast->else_clause->statements) : ((const pm_node_t *) cast->else_clause));
7719 add_trace_branch_coverage(iseq, ret, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
7720 }
7721
7722 PM_COMPILE((const pm_node_t *) cast->else_clause);
7723 PUSH_INSNL(ret, else_location, jump, end_label);
7724 }
7725 else {
7726 PUSH_INSN(ret, location, pop);
7727
7728 // Establish branch coverage for the implicit else clause.
7729 if (PM_BRANCH_COVERAGE_P(iseq)) {
7730 add_trace_branch_coverage(iseq, ret, &case_location, case_location.beg_pos.column, branch_id, "else", branches);
7731 }
7732
7733 if (!popped) PUSH_INSN(ret, location, putnil);
7734 PUSH_INSNL(ret, location, jump, end_label);
7735 }
7736 }
7737
7738 PUSH_SEQ(ret, body_seq);
7739 PUSH_LABEL(ret, end_label);
7740}
7741
7742static inline void
7743pm_compile_case_match_node(rb_iseq_t *iseq, const pm_case_match_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7744{
7745 // This is the anchor that we will compile the bodies of the various
7746 // `in` nodes into. We'll make sure that the patterns that are compiled
7747 // jump into the correct spots within this anchor.
7748 DECL_ANCHOR(body_seq);
7749
7750 // This is the anchor that we will compile the patterns of the various
7751 // `in` nodes into. If a match is found, they will need to jump into the
7752 // body_seq anchor to the correct spot.
7753 DECL_ANCHOR(cond_seq);
7754
7755 // This label is used to indicate the end of the entire node. It is
7756 // jumped to after the entire stack is cleaned up.
7757 LABEL *end_label = NEW_LABEL(location->line);
7758
7759 // This label is used as the fallback for the case match. If no match is
7760 // found, then we jump to this label. This is either an `else` clause or
7761 // an error handler.
7762 LABEL *else_label = NEW_LABEL(location->line);
7763
7764 // We're going to use this to uniquely identify each branch so that we
7765 // can track coverage information.
7766 rb_code_location_t case_location = { 0 };
7767 VALUE branches = Qfalse;
7768 int branch_id = 0;
7769
7770 if (PM_BRANCH_COVERAGE_P(iseq)) {
7771 case_location = pm_code_location(scope_node, (const pm_node_t *) node);
7772 branches = decl_branch_base(iseq, PTR2NUM(node), &case_location, "case");
7773 }
7774
7775 // If there is only one pattern, then the behavior changes a bit. It
7776 // effectively gets treated as a match required node (this is how it is
7777 // represented in the other parser).
7778 bool in_single_pattern = node->else_clause == NULL && node->conditions.size == 1;
7779
7780 // First, we're going to push a bunch of stuff onto the stack that is
7781 // going to serve as our scratch space.
7782 if (in_single_pattern) {
7783 PUSH_INSN(ret, *location, putnil); // key error key
7784 PUSH_INSN(ret, *location, putnil); // key error matchee
7785 PUSH_INSN1(ret, *location, putobject, Qfalse); // key error?
7786 PUSH_INSN(ret, *location, putnil); // error string
7787 }
7788
7789 // Now we're going to compile the value to match against.
7790 PUSH_INSN(ret, *location, putnil); // deconstruct cache
7791 PM_COMPILE_NOT_POPPED(node->predicate);
7792
7793 // Next, we'll loop through every in clause and compile its body into
7794 // the body_seq anchor and its pattern into the cond_seq anchor. We'll
7795 // make sure the pattern knows how to jump correctly into the body if it
7796 // finds a match.
7797 for (size_t index = 0; index < node->conditions.size; index++) {
7798 const pm_node_t *condition = node->conditions.nodes[index];
7800
7801 const pm_in_node_t *in_node = (const pm_in_node_t *) condition;
7802 const pm_node_location_t in_location = PM_NODE_START_LOCATION(scope_node->parser, in_node);
7803 const pm_node_location_t pattern_location = PM_NODE_START_LOCATION(scope_node->parser, in_node->pattern);
7804
7805 if (branch_id) {
7806 PUSH_INSN(body_seq, in_location, putnil);
7807 }
7808
7809 LABEL *body_label = NEW_LABEL(in_location.line);
7810 PUSH_LABEL(body_seq, body_label);
7811 PUSH_INSN1(body_seq, in_location, adjuststack, INT2FIX(in_single_pattern ? 6 : 2));
7812
7813 // Establish branch coverage for the in clause.
7814 if (PM_BRANCH_COVERAGE_P(iseq)) {
7815 rb_code_location_t branch_location = pm_code_location(scope_node, in_node->statements != NULL ? ((const pm_node_t *) in_node->statements) : ((const pm_node_t *) in_node));
7816 add_trace_branch_coverage(iseq, body_seq, &branch_location, branch_location.beg_pos.column, branch_id++, "in", branches);
7817 }
7818
7819 if (in_node->statements != NULL) {
7820 PM_COMPILE_INTO_ANCHOR(body_seq, (const pm_node_t *) in_node->statements);
7821 }
7822 else if (!popped) {
7823 PUSH_SYNTHETIC_PUTNIL(body_seq, iseq);
7824 }
7825
7826 PUSH_INSNL(body_seq, in_location, jump, end_label);
7827 LABEL *next_pattern_label = NEW_LABEL(pattern_location.line);
7828
7829 PUSH_INSN(cond_seq, pattern_location, dup);
7830 pm_compile_pattern(iseq, scope_node, in_node->pattern, cond_seq, body_label, next_pattern_label, in_single_pattern, false, true, 2);
7831 PUSH_LABEL(cond_seq, next_pattern_label);
7832 LABEL_UNREMOVABLE(next_pattern_label);
7833 }
7834
7835 if (node->else_clause != NULL) {
7836 // If we have an `else` clause, then this becomes our fallback (and
7837 // there is no need to compile in code to potentially raise an
7838 // error).
7839 const pm_else_node_t *else_node = node->else_clause;
7840
7841 PUSH_LABEL(cond_seq, else_label);
7842 PUSH_INSN(cond_seq, *location, pop);
7843 PUSH_INSN(cond_seq, *location, pop);
7844
7845 // Establish branch coverage for the else clause.
7846 if (PM_BRANCH_COVERAGE_P(iseq)) {
7847 rb_code_location_t branch_location = pm_code_location(scope_node, else_node->statements != NULL ? ((const pm_node_t *) else_node->statements) : ((const pm_node_t *) else_node));
7848 add_trace_branch_coverage(iseq, cond_seq, &branch_location, branch_location.beg_pos.column, branch_id, "else", branches);
7849 }
7850
7851 PM_COMPILE_INTO_ANCHOR(cond_seq, (const pm_node_t *) else_node);
7852 PUSH_INSNL(cond_seq, *location, jump, end_label);
7853 PUSH_INSN(cond_seq, *location, putnil);
7854 if (popped) PUSH_INSN(cond_seq, *location, putnil);
7855 }
7856 else {
7857 // Otherwise, if we do not have an `else` clause, we will compile in
7858 // the code to handle raising an appropriate error.
7859 PUSH_LABEL(cond_seq, else_label);
7860
7861 // Establish branch coverage for the implicit else clause.
7862 add_trace_branch_coverage(iseq, cond_seq, &case_location, case_location.beg_pos.column, branch_id, "else", branches);
7863
7864 if (in_single_pattern) {
7865 pm_compile_pattern_error_handler(iseq, scope_node, (const pm_node_t *) node, cond_seq, end_label, popped);
7866 }
7867 else {
7868 PUSH_INSN1(cond_seq, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
7869 PUSH_INSN1(cond_seq, *location, putobject, rb_eNoMatchingPatternError);
7870 PUSH_INSN1(cond_seq, *location, topn, INT2FIX(2));
7871 PUSH_SEND(cond_seq, *location, id_core_raise, INT2FIX(2));
7872
7873 PUSH_INSN1(cond_seq, *location, adjuststack, INT2FIX(3));
7874 if (!popped) PUSH_INSN(cond_seq, *location, putnil);
7875 PUSH_INSNL(cond_seq, *location, jump, end_label);
7876 PUSH_INSN1(cond_seq, *location, dupn, INT2FIX(1));
7877 if (popped) PUSH_INSN(cond_seq, *location, putnil);
7878 }
7879 }
7880
7881 // At the end of all of this compilation, we will add the code for the
7882 // conditions first, then the various bodies, then mark the end of the
7883 // entire sequence with the end label.
7884 PUSH_SEQ(ret, cond_seq);
7885 PUSH_SEQ(ret, body_seq);
7886 PUSH_LABEL(ret, end_label);
7887}
7888
7889static inline void
7890pm_compile_forwarding_super_node(rb_iseq_t *iseq, const pm_forwarding_super_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
7891{
7892 const rb_iseq_t *block = NULL;
7893 const rb_iseq_t *previous_block = NULL;
7894 LABEL *retry_label = NULL;
7895 LABEL *retry_end_l = NULL;
7896
7897 if (node->block != NULL) {
7898 previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
7899 ISEQ_COMPILE_DATA(iseq)->current_block = NULL;
7900
7901 retry_label = NEW_LABEL(location->line);
7902 retry_end_l = NEW_LABEL(location->line);
7903
7904 PUSH_LABEL(ret, retry_label);
7905 }
7906 else {
7907 iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
7908 }
7909
7910 PUSH_INSN(ret, *location, putself);
7911 int flag = VM_CALL_ZSUPER | VM_CALL_SUPER | VM_CALL_FCALL;
7912
7913 if (node->block != NULL) {
7914 pm_scope_node_t next_scope_node;
7915 pm_scope_node_init((const pm_node_t *) node->block, &next_scope_node, scope_node);
7916
7917 ISEQ_COMPILE_DATA(iseq)->current_block = block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location->line);
7918 pm_scope_node_destroy(&next_scope_node);
7919 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block);
7920 }
7921
7922 DECL_ANCHOR(args);
7923
7924 struct rb_iseq_constant_body *const body = ISEQ_BODY(iseq);
7925 const rb_iseq_t *local_iseq = body->local_iseq;
7926 const struct rb_iseq_constant_body *const local_body = ISEQ_BODY(local_iseq);
7927
7928 int argc = 0;
7929 int depth = get_lvar_level(iseq);
7930
7931 if (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
7932 flag |= VM_CALL_FORWARDING;
7933 pm_local_index_t mult_local = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_DOT3, 0);
7934 PUSH_GETLOCAL(ret, *location, mult_local.index, mult_local.level);
7935
7936 const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, 0, flag, NULL, block != NULL);
7937 PUSH_INSN2(ret, *location, invokesuperforward, callinfo, block);
7938
7939 if (popped) PUSH_INSN(ret, *location, pop);
7940 if (node->block) {
7941 ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
7942 }
7943 return;
7944 }
7945
7946 if (local_body->param.flags.has_lead) {
7947 /* required arguments */
7948 for (int i = 0; i < local_body->param.lead_num; i++) {
7949 int idx = local_body->local_table_size - i;
7950 PUSH_GETLOCAL(args, *location, idx, depth);
7951 }
7952 argc += local_body->param.lead_num;
7953 }
7954
7955 if (local_body->param.flags.has_opt) {
7956 /* optional arguments */
7957 for (int j = 0; j < local_body->param.opt_num; j++) {
7958 int idx = local_body->local_table_size - (argc + j);
7959 PUSH_GETLOCAL(args, *location, idx, depth);
7960 }
7961 argc += local_body->param.opt_num;
7962 }
7963
7964 if (local_body->param.flags.has_rest) {
7965 /* rest argument */
7966 int idx = local_body->local_table_size - local_body->param.rest_start;
7967 PUSH_GETLOCAL(args, *location, idx, depth);
7968 PUSH_INSN1(args, *location, splatarray, Qfalse);
7969
7970 argc = local_body->param.rest_start + 1;
7971 flag |= VM_CALL_ARGS_SPLAT;
7972 }
7973
7974 if (local_body->param.flags.has_post) {
7975 /* post arguments */
7976 int post_len = local_body->param.post_num;
7977 int post_start = local_body->param.post_start;
7978
7979 int j = 0;
7980 for (; j < post_len; j++) {
7981 int idx = local_body->local_table_size - (post_start + j);
7982 PUSH_GETLOCAL(args, *location, idx, depth);
7983 }
7984
7985 if (local_body->param.flags.has_rest) {
7986 // argc remains unchanged from rest branch
7987 PUSH_INSN1(args, *location, newarray, INT2FIX(j));
7988 PUSH_INSN(args, *location, concatarray);
7989 }
7990 else {
7991 argc = post_len + post_start;
7992 }
7993 }
7994
7995 const struct rb_iseq_param_keyword *const local_keyword = local_body->param.keyword;
7996 if (local_body->param.flags.has_kw) {
7997 int local_size = local_body->local_table_size;
7998 argc++;
7999
8000 PUSH_INSN1(args, *location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
8001
8002 if (local_body->param.flags.has_kwrest) {
8003 int idx = local_body->local_table_size - local_keyword->rest_start;
8004 PUSH_GETLOCAL(args, *location, idx, depth);
8005 RUBY_ASSERT(local_keyword->num > 0);
8006 PUSH_SEND(args, *location, rb_intern("dup"), INT2FIX(0));
8007 }
8008 else {
8009 PUSH_INSN1(args, *location, newhash, INT2FIX(0));
8010 }
8011 int i = 0;
8012 for (; i < local_keyword->num; ++i) {
8013 ID id = local_keyword->table[i];
8014 int idx = local_size - get_local_var_idx(local_iseq, id);
8015
8016 {
8017 VALUE operand = ID2SYM(id);
8018 PUSH_INSN1(args, *location, putobject, operand);
8019 }
8020
8021 PUSH_GETLOCAL(args, *location, idx, depth);
8022 }
8023
8024 PUSH_SEND(args, *location, id_core_hash_merge_ptr, INT2FIX(i * 2 + 1));
8025 flag |= VM_CALL_KW_SPLAT| VM_CALL_KW_SPLAT_MUT;
8026 }
8027 else if (local_body->param.flags.has_kwrest) {
8028 int idx = local_body->local_table_size - local_keyword->rest_start;
8029 PUSH_GETLOCAL(args, *location, idx, depth);
8030 argc++;
8031 flag |= VM_CALL_KW_SPLAT;
8032 }
8033
8034 PUSH_SEQ(ret, args);
8035
8036 {
8037 const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flag, NULL, block != NULL);
8038 PUSH_INSN2(ret, *location, invokesuper, callinfo, block);
8039 }
8040
8041 if (node->block != NULL) {
8042 pm_compile_retry_end_label(iseq, ret, retry_end_l);
8043 PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, block, retry_end_l);
8044 ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
8045 }
8046
8047 if (popped) PUSH_INSN(ret, *location, pop);
8048}
8049
8050static inline void
8051pm_compile_match_required_node(rb_iseq_t *iseq, const pm_match_required_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8052{
8053 LABEL *matched_label = NEW_LABEL(location->line);
8054 LABEL *unmatched_label = NEW_LABEL(location->line);
8055 LABEL *done_label = NEW_LABEL(location->line);
8056
8057 // First, we're going to push a bunch of stuff onto the stack that is
8058 // going to serve as our scratch space.
8059 PUSH_INSN(ret, *location, putnil); // key error key
8060 PUSH_INSN(ret, *location, putnil); // key error matchee
8061 PUSH_INSN1(ret, *location, putobject, Qfalse); // key error?
8062 PUSH_INSN(ret, *location, putnil); // error string
8063 PUSH_INSN(ret, *location, putnil); // deconstruct cache
8064
8065 // Next we're going to compile the value expression such that it's on
8066 // the stack.
8067 PM_COMPILE_NOT_POPPED(node->value);
8068
8069 // Here we'll dup it so that it can be used for comparison, but also be
8070 // used for error handling.
8071 PUSH_INSN(ret, *location, dup);
8072
8073 // Next we'll compile the pattern. We indicate to the pm_compile_pattern
8074 // function that this is the only pattern that will be matched against
8075 // through the in_single_pattern parameter. We also indicate that the
8076 // value to compare against is 2 slots from the top of the stack (the
8077 // base_index parameter).
8078 pm_compile_pattern(iseq, scope_node, node->pattern, ret, matched_label, unmatched_label, true, false, true, 2);
8079
8080 // If the pattern did not match the value, then we're going to compile
8081 // in our error handler code. This will determine which error to raise
8082 // and raise it.
8083 PUSH_LABEL(ret, unmatched_label);
8084 pm_compile_pattern_error_handler(iseq, scope_node, (const pm_node_t *) node, ret, done_label, popped);
8085
8086 // If the pattern did match, we'll clean up the values we've pushed onto
8087 // the stack and then push nil onto the stack if it's not popped.
8088 PUSH_LABEL(ret, matched_label);
8089 PUSH_INSN1(ret, *location, adjuststack, INT2FIX(6));
8090 if (!popped) PUSH_INSN(ret, *location, putnil);
8091 PUSH_INSNL(ret, *location, jump, done_label);
8092
8093 PUSH_LABEL(ret, done_label);
8094}
8095
8096static inline void
8097pm_compile_match_write_node(rb_iseq_t *iseq, const pm_match_write_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8098{
8099 LABEL *fail_label = NEW_LABEL(location->line);
8100 LABEL *end_label = NEW_LABEL(location->line);
8101
8102 // First, we'll compile the call so that all of its instructions are
8103 // present. Then we'll compile all of the local variable targets.
8104 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->call);
8105
8106 // Now, check if the match was successful. If it was, then we'll
8107 // continue on and assign local variables. Otherwise we'll skip over the
8108 // assignment code.
8109 {
8110 VALUE operand = rb_id2sym(idBACKREF);
8111 PUSH_INSN1(ret, *location, getglobal, operand);
8112 }
8113
8114 PUSH_INSN(ret, *location, dup);
8115 PUSH_INSNL(ret, *location, branchunless, fail_label);
8116
8117 // If there's only a single local variable target, we can skip some of
8118 // the bookkeeping, so we'll put a special branch here.
8119 size_t targets_count = node->targets.size;
8120
8121 if (targets_count == 1) {
8122 const pm_node_t *target = node->targets.nodes[0];
8124
8125 const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target;
8126 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth);
8127
8128 {
8129 VALUE operand = rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name));
8130 PUSH_INSN1(ret, *location, putobject, operand);
8131 }
8132
8133 PUSH_SEND(ret, *location, idAREF, INT2FIX(1));
8134 PUSH_LABEL(ret, fail_label);
8135 PUSH_SETLOCAL(ret, *location, index.index, index.level);
8136 if (popped) PUSH_INSN(ret, *location, pop);
8137 return;
8138 }
8139
8140 DECL_ANCHOR(fail_anchor);
8141
8142 // Otherwise there is more than one local variable target, so we'll need
8143 // to do some bookkeeping.
8144 for (size_t targets_index = 0; targets_index < targets_count; targets_index++) {
8145 const pm_node_t *target = node->targets.nodes[targets_index];
8147
8148 const pm_local_variable_target_node_t *local_target = (const pm_local_variable_target_node_t *) target;
8149 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, local_target->name, local_target->depth);
8150
8151 if (((size_t) targets_index) < (targets_count - 1)) {
8152 PUSH_INSN(ret, *location, dup);
8153 }
8154
8155 {
8156 VALUE operand = rb_id2sym(pm_constant_id_lookup(scope_node, local_target->name));
8157 PUSH_INSN1(ret, *location, putobject, operand);
8158 }
8159
8160 PUSH_SEND(ret, *location, idAREF, INT2FIX(1));
8161 PUSH_SETLOCAL(ret, *location, index.index, index.level);
8162
8163 PUSH_INSN(fail_anchor, *location, putnil);
8164 PUSH_SETLOCAL(fail_anchor, *location, index.index, index.level);
8165 }
8166
8167 // Since we matched successfully, now we'll jump to the end.
8168 PUSH_INSNL(ret, *location, jump, end_label);
8169
8170 // In the case that the match failed, we'll loop through each local
8171 // variable target and set all of them to `nil`.
8172 PUSH_LABEL(ret, fail_label);
8173 PUSH_INSN(ret, *location, pop);
8174 PUSH_SEQ(ret, fail_anchor);
8175
8176 // Finally, we can push the end label for either case.
8177 PUSH_LABEL(ret, end_label);
8178 if (popped) PUSH_INSN(ret, *location, pop);
8179}
8180
8181static inline void
8182pm_compile_next_node(rb_iseq_t *iseq, const pm_next_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8183{
8184 if (ISEQ_COMPILE_DATA(iseq)->redo_label != 0 && can_add_ensure_iseq(iseq)) {
8185 LABEL *splabel = NEW_LABEL(0);
8186 PUSH_LABEL(ret, splabel);
8187
8188 if (node->arguments) {
8189 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
8190 }
8191 else {
8192 PUSH_INSN(ret, *location, putnil);
8193 }
8194 pm_add_ensure_iseq(ret, iseq, 0, scope_node);
8195
8196 PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
8197 PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->start_label);
8198
8199 PUSH_ADJUST_RESTORE(ret, splabel);
8200 if (!popped) PUSH_INSN(ret, *location, putnil);
8201 }
8202 else if (ISEQ_COMPILE_DATA(iseq)->end_label && can_add_ensure_iseq(iseq)) {
8203 LABEL *splabel = NEW_LABEL(0);
8204
8205 PUSH_LABEL(ret, splabel);
8206 PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->start_label);
8207
8208 if (node->arguments != NULL) {
8209 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
8210 }
8211 else {
8212 PUSH_INSN(ret, *location, putnil);
8213 }
8214
8215 pm_add_ensure_iseq(ret, iseq, 0, scope_node);
8216 PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->end_label);
8217 PUSH_ADJUST_RESTORE(ret, splabel);
8218 splabel->unremovable = FALSE;
8219
8220 if (!popped) PUSH_INSN(ret, *location, putnil);
8221 }
8222 else {
8223 const rb_iseq_t *ip = iseq;
8224 unsigned long throw_flag = 0;
8225
8226 while (ip) {
8227 if (!ISEQ_COMPILE_DATA(ip)) {
8228 ip = 0;
8229 break;
8230 }
8231
8232 throw_flag = VM_THROW_NO_ESCAPE_FLAG;
8233 if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
8234 /* while loop */
8235 break;
8236 }
8237 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
8238 break;
8239 }
8240 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
8241 COMPILE_ERROR(iseq, location->line, "Invalid next");
8242 return;
8243 }
8244
8245 ip = ISEQ_BODY(ip)->parent_iseq;
8246 }
8247
8248 if (ip != 0) {
8249 if (node->arguments) {
8250 PM_COMPILE_NOT_POPPED((const pm_node_t *) node->arguments);
8251 }
8252 else {
8253 PUSH_INSN(ret, *location, putnil);
8254 }
8255
8256 PUSH_INSN1(ret, *location, throw, INT2FIX(throw_flag | TAG_NEXT));
8257 if (popped) PUSH_INSN(ret, *location, pop);
8258 }
8259 else {
8260 COMPILE_ERROR(iseq, location->line, "Invalid next");
8261 }
8262 }
8263}
8264
8265static inline void
8266pm_compile_redo_node(rb_iseq_t *iseq, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8267{
8268 if (ISEQ_COMPILE_DATA(iseq)->redo_label && can_add_ensure_iseq(iseq)) {
8269 LABEL *splabel = NEW_LABEL(0);
8270
8271 PUSH_LABEL(ret, splabel);
8272 PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->redo_label);
8273 pm_add_ensure_iseq(ret, iseq, 0, scope_node);
8274
8275 PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->redo_label);
8276 PUSH_ADJUST_RESTORE(ret, splabel);
8277 if (!popped) PUSH_INSN(ret, *location, putnil);
8278 }
8279 else if (ISEQ_BODY(iseq)->type != ISEQ_TYPE_EVAL && ISEQ_COMPILE_DATA(iseq)->start_label && can_add_ensure_iseq(iseq)) {
8280 LABEL *splabel = NEW_LABEL(0);
8281
8282 PUSH_LABEL(ret, splabel);
8283 pm_add_ensure_iseq(ret, iseq, 0, scope_node);
8284 PUSH_ADJUST(ret, *location, ISEQ_COMPILE_DATA(iseq)->start_label);
8285
8286 PUSH_INSNL(ret, *location, jump, ISEQ_COMPILE_DATA(iseq)->start_label);
8287 PUSH_ADJUST_RESTORE(ret, splabel);
8288 if (!popped) PUSH_INSN(ret, *location, putnil);
8289 }
8290 else {
8291 const rb_iseq_t *ip = iseq;
8292
8293 while (ip) {
8294 if (!ISEQ_COMPILE_DATA(ip)) {
8295 ip = 0;
8296 break;
8297 }
8298
8299 if (ISEQ_COMPILE_DATA(ip)->redo_label != 0) {
8300 break;
8301 }
8302 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_BLOCK) {
8303 break;
8304 }
8305 else if (ISEQ_BODY(ip)->type == ISEQ_TYPE_EVAL) {
8306 COMPILE_ERROR(iseq, location->line, "Invalid redo");
8307 return;
8308 }
8309
8310 ip = ISEQ_BODY(ip)->parent_iseq;
8311 }
8312
8313 if (ip != 0) {
8314 PUSH_INSN(ret, *location, putnil);
8315 PUSH_INSN1(ret, *location, throw, INT2FIX(VM_THROW_NO_ESCAPE_FLAG | TAG_REDO));
8316 if (popped) PUSH_INSN(ret, *location, pop);
8317 }
8318 else {
8319 COMPILE_ERROR(iseq, location->line, "Invalid redo");
8320 }
8321 }
8322}
8323
8324static inline void
8325pm_compile_rescue_node(rb_iseq_t *iseq, const pm_rescue_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8326{
8327 iseq_set_exception_local_table(iseq);
8328
8329 // First, establish the labels that we need to be able to jump to within
8330 // this compilation block.
8331 LABEL *exception_match_label = NEW_LABEL(location->line);
8332 LABEL *rescue_end_label = NEW_LABEL(location->line);
8333
8334 // Next, compile each of the exceptions that we're going to be
8335 // handling. For each one, we'll add instructions to check if the
8336 // exception matches the raised one, and if it does then jump to the
8337 // exception_match_label label. Otherwise it will fall through to the
8338 // subsequent check. If there are no exceptions, we'll only check
8339 // StandardError.
8340 const pm_node_list_t *exceptions = &node->exceptions;
8341
8342 if (exceptions->size > 0) {
8343 for (size_t index = 0; index < exceptions->size; index++) {
8344 PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
8345 PM_COMPILE(exceptions->nodes[index]);
8346 int checkmatch_flags = VM_CHECKMATCH_TYPE_RESCUE;
8347 if (PM_NODE_TYPE_P(exceptions->nodes[index], PM_SPLAT_NODE)) {
8348 checkmatch_flags |= VM_CHECKMATCH_ARRAY;
8349 }
8350 PUSH_INSN1(ret, *location, checkmatch, INT2FIX(checkmatch_flags));
8351 PUSH_INSNL(ret, *location, branchif, exception_match_label);
8352 }
8353 }
8354 else {
8355 PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
8356 PUSH_INSN1(ret, *location, putobject, rb_eStandardError);
8357 PUSH_INSN1(ret, *location, checkmatch, INT2FIX(VM_CHECKMATCH_TYPE_RESCUE));
8358 PUSH_INSNL(ret, *location, branchif, exception_match_label);
8359 }
8360
8361 // If none of the exceptions that we are matching against matched, then
8362 // we'll jump straight to the rescue_end_label label.
8363 PUSH_INSNL(ret, *location, jump, rescue_end_label);
8364
8365 // Here we have the exception_match_label, which is where the
8366 // control-flow goes in the case that one of the exceptions matched.
8367 // Here we will compile the instructions to handle the exception.
8368 PUSH_LABEL(ret, exception_match_label);
8369 PUSH_TRACE(ret, RUBY_EVENT_RESCUE);
8370
8371 // If we have a reference to the exception, then we'll compile the write
8372 // into the instruction sequence. This can look quite different
8373 // depending on the kind of write being performed.
8374 if (node->reference) {
8375 DECL_ANCHOR(writes);
8376 DECL_ANCHOR(cleanup);
8377
8378 pm_compile_target_node(iseq, node->reference, ret, writes, cleanup, scope_node, NULL);
8379 PUSH_GETLOCAL(ret, *location, LVAR_ERRINFO, 0);
8380
8381 PUSH_SEQ(ret, writes);
8382 PUSH_SEQ(ret, cleanup);
8383 }
8384
8385 // If we have statements to execute, we'll compile them here. Otherwise
8386 // we'll push nil onto the stack.
8387 if (node->statements != NULL) {
8388 // We'll temporarily remove the end_label location from the iseq
8389 // when compiling the statements so that next/redo statements
8390 // inside the body will throw to the correct place instead of
8391 // jumping straight to the end of this iseq
8392 LABEL *prev_end = ISEQ_COMPILE_DATA(iseq)->end_label;
8393 ISEQ_COMPILE_DATA(iseq)->end_label = NULL;
8394
8395 PM_COMPILE((const pm_node_t *) node->statements);
8396
8397 // Now restore the end_label
8398 ISEQ_COMPILE_DATA(iseq)->end_label = prev_end;
8399 }
8400 else {
8401 PUSH_INSN(ret, *location, putnil);
8402 }
8403
8404 PUSH_INSN(ret, *location, leave);
8405
8406 // Here we'll insert the rescue_end_label label, which is jumped to if
8407 // none of the exceptions matched. It will cause the control-flow to
8408 // either jump to the next rescue clause or it will fall through to the
8409 // subsequent instruction returning the raised error.
8410 PUSH_LABEL(ret, rescue_end_label);
8411 if (node->subsequent != NULL) {
8412 PM_COMPILE((const pm_node_t *) node->subsequent);
8413 }
8414 else {
8415 PUSH_GETLOCAL(ret, *location, 1, 0);
8416 }
8417}
8418
8419static inline void
8420pm_compile_return_node(rb_iseq_t *iseq, const pm_return_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8421{
8422 const pm_arguments_node_t *arguments = node->arguments;
8423 enum rb_iseq_type type = ISEQ_BODY(iseq)->type;
8424 LABEL *splabel = 0;
8425
8426 const rb_iseq_t *parent_iseq = iseq;
8427 enum rb_iseq_type parent_type = ISEQ_BODY(parent_iseq)->type;
8428 while (parent_type == ISEQ_TYPE_RESCUE || parent_type == ISEQ_TYPE_ENSURE) {
8429 if (!(parent_iseq = ISEQ_BODY(parent_iseq)->parent_iseq)) break;
8430 parent_type = ISEQ_BODY(parent_iseq)->type;
8431 }
8432
8433 switch (parent_type) {
8434 case ISEQ_TYPE_TOP:
8435 case ISEQ_TYPE_MAIN:
8436 if (arguments) {
8437 rb_warn("argument of top-level return is ignored");
8438 }
8439 if (parent_iseq == iseq) {
8440 type = ISEQ_TYPE_METHOD;
8441 }
8442 break;
8443 default:
8444 break;
8445 }
8446
8447 if (type == ISEQ_TYPE_METHOD) {
8448 splabel = NEW_LABEL(0);
8449 PUSH_LABEL(ret, splabel);
8450 PUSH_ADJUST(ret, *location, 0);
8451 }
8452
8453 if (arguments != NULL) {
8454 PM_COMPILE_NOT_POPPED((const pm_node_t *) arguments);
8455 }
8456 else {
8457 PUSH_INSN(ret, *location, putnil);
8458 }
8459
8460 if (type == ISEQ_TYPE_METHOD && can_add_ensure_iseq(iseq)) {
8461 pm_add_ensure_iseq(ret, iseq, 1, scope_node);
8462 PUSH_TRACE(ret, RUBY_EVENT_RETURN);
8463 PUSH_INSN(ret, *location, leave);
8464 PUSH_ADJUST_RESTORE(ret, splabel);
8465 if (!popped) PUSH_INSN(ret, *location, putnil);
8466 }
8467 else {
8468 PUSH_INSN1(ret, *location, throw, INT2FIX(TAG_RETURN));
8469 if (popped) PUSH_INSN(ret, *location, pop);
8470 }
8471}
8472
8473static inline void
8474pm_compile_super_node(rb_iseq_t *iseq, const pm_super_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8475{
8476 DECL_ANCHOR(args);
8477
8478 LABEL *retry_label = NEW_LABEL(location->line);
8479 LABEL *retry_end_l = NEW_LABEL(location->line);
8480
8481 const rb_iseq_t *previous_block = ISEQ_COMPILE_DATA(iseq)->current_block;
8482 const rb_iseq_t *current_block;
8483 ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NULL;
8484
8485 PUSH_LABEL(ret, retry_label);
8486 PUSH_INSN(ret, *location, putself);
8487
8488 int flags = 0;
8489 struct rb_callinfo_kwarg *keywords = NULL;
8490 int argc = pm_setup_args(node->arguments, node->block, &flags, &keywords, iseq, ret, scope_node, location);
8491 bool is_forwardable = (node->arguments != NULL) && PM_NODE_FLAG_P(node->arguments, PM_ARGUMENTS_NODE_FLAGS_CONTAINS_FORWARDING);
8492 flags |= VM_CALL_SUPER | VM_CALL_FCALL;
8493
8494 if (node->block && PM_NODE_TYPE_P(node->block, PM_BLOCK_NODE)) {
8495 pm_scope_node_t next_scope_node;
8496 pm_scope_node_init(node->block, &next_scope_node, scope_node);
8497
8498 ISEQ_COMPILE_DATA(iseq)->current_block = current_block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location->line);
8499 pm_scope_node_destroy(&next_scope_node);
8500 }
8501
8502 if (!node->block) {
8503 iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
8504 }
8505
8506 if ((flags & VM_CALL_ARGS_BLOCKARG) && (flags & VM_CALL_KW_SPLAT) && !(flags & VM_CALL_KW_SPLAT_MUT)) {
8507 PUSH_INSN(args, *location, splatkw);
8508 }
8509
8510 PUSH_SEQ(ret, args);
8511 if (is_forwardable && ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->param.flags.forwardable) {
8512 flags |= VM_CALL_FORWARDING;
8513
8514 {
8515 const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL);
8516 PUSH_INSN2(ret, *location, invokesuperforward, callinfo, current_block);
8517 }
8518 }
8519 else {
8520 {
8521 const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, current_block != NULL);
8522 PUSH_INSN2(ret, *location, invokesuper, callinfo, current_block);
8523 }
8524
8525 }
8526
8527 pm_compile_retry_end_label(iseq, ret, retry_end_l);
8528
8529 if (popped) PUSH_INSN(ret, *location, pop);
8530 ISEQ_COMPILE_DATA(iseq)->current_block = previous_block;
8531 PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, current_block, retry_end_l);
8532}
8533
8534static inline void
8535pm_compile_yield_node(rb_iseq_t *iseq, const pm_yield_node_t *node, const pm_node_location_t *location, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8536{
8537 switch (ISEQ_BODY(ISEQ_BODY(iseq)->local_iseq)->type) {
8538 case ISEQ_TYPE_TOP:
8539 case ISEQ_TYPE_MAIN:
8540 case ISEQ_TYPE_CLASS:
8541 COMPILE_ERROR(iseq, location->line, "Invalid yield");
8542 return;
8543 default: /* valid */;
8544 }
8545
8546 int argc = 0;
8547 int flags = 0;
8548 struct rb_callinfo_kwarg *keywords = NULL;
8549
8550 if (node->arguments) {
8551 argc = pm_setup_args(node->arguments, NULL, &flags, &keywords, iseq, ret, scope_node, location);
8552 }
8553
8554 const struct rb_callinfo *callinfo = new_callinfo(iseq, 0, argc, flags, keywords, FALSE);
8555 PUSH_INSN1(ret, *location, invokeblock, callinfo);
8556
8557 iseq_set_use_block(ISEQ_BODY(iseq)->local_iseq);
8558 if (popped) PUSH_INSN(ret, *location, pop);
8559
8560 int level = 0;
8561 for (const rb_iseq_t *tmp_iseq = iseq; tmp_iseq != ISEQ_BODY(iseq)->local_iseq; level++) {
8562 tmp_iseq = ISEQ_BODY(tmp_iseq)->parent_iseq;
8563 }
8564
8565 if (level > 0) access_outer_variables(iseq, level, rb_intern("yield"), true);
8566}
8567
8578static void
8579pm_compile_node(rb_iseq_t *iseq, const pm_node_t *node, LINK_ANCHOR *const ret, bool popped, pm_scope_node_t *scope_node)
8580{
8581 const pm_parser_t *parser = scope_node->parser;
8582 const pm_node_location_t location = PM_NODE_START_LOCATION(parser, node);
8583 int lineno = (int) location.line;
8584
8585 if (PM_NODE_TYPE_P(node, PM_BEGIN_NODE) && (((const pm_begin_node_t *) node)->statements == NULL) && (((const pm_begin_node_t *) node)->rescue_clause != NULL)) {
8586 // If this node is a begin node and it has empty statements and also
8587 // has a rescue clause, then the other parser considers it as
8588 // starting on the same line as the rescue, as opposed to the
8589 // location of the begin keyword. We replicate that behavior here.
8590 lineno = (int) PM_NODE_START_LINE_COLUMN(parser, ((const pm_begin_node_t *) node)->rescue_clause).line;
8591 }
8592
8593 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_NEWLINE) && ISEQ_COMPILE_DATA(iseq)->last_line != lineno) {
8594 // If this node has the newline flag set and it is on a new line
8595 // from the previous nodes that have been compiled for this ISEQ,
8596 // then we need to emit a newline event.
8597 int event = RUBY_EVENT_LINE;
8598
8599 ISEQ_COMPILE_DATA(iseq)->last_line = lineno;
8600 if (ISEQ_COVERAGE(iseq) && ISEQ_LINE_COVERAGE(iseq)) {
8601 event |= RUBY_EVENT_COVERAGE_LINE;
8602 }
8603 PUSH_TRACE(ret, event);
8604 }
8605
8606 switch (PM_NODE_TYPE(node)) {
8608 // alias $foo $bar
8609 // ^^^^^^^^^^^^^^^
8610 pm_compile_alias_global_variable_node(iseq, (const pm_alias_global_variable_node_t *) node, &location, ret, popped, scope_node);
8611 return;
8613 // alias foo bar
8614 // ^^^^^^^^^^^^^
8615 pm_compile_alias_method_node(iseq, (const pm_alias_method_node_t *) node, &location, ret, popped, scope_node);
8616 return;
8617 case PM_AND_NODE:
8618 // a and b
8619 // ^^^^^^^
8620 pm_compile_and_node(iseq, (const pm_and_node_t *) node, &location, ret, popped, scope_node);
8621 return;
8622 case PM_ARGUMENTS_NODE: {
8623 // break foo
8624 // ^^^
8625 //
8626 // These are ArgumentsNodes that are not compiled directly by their
8627 // parent call nodes, used in the cases of NextNodes, ReturnNodes, and
8628 // BreakNodes. They can create an array like ArrayNode.
8629 const pm_arguments_node_t *cast = (const pm_arguments_node_t *) node;
8630 const pm_node_list_t *elements = &cast->arguments;
8631
8632 if (elements->size == 1) {
8633 // If we are only returning a single element through one of the jump
8634 // nodes, then we will only compile that node directly.
8635 PM_COMPILE(elements->nodes[0]);
8636 }
8637 else {
8638 pm_compile_array_node(iseq, (const pm_node_t *) cast, elements, &location, ret, popped, scope_node);
8639 }
8640 return;
8641 }
8642 case PM_ARRAY_NODE: {
8643 // [foo, bar, baz]
8644 // ^^^^^^^^^^^^^^^
8645 const pm_array_node_t *cast = (const pm_array_node_t *) node;
8646 pm_compile_array_node(iseq, (const pm_node_t *) cast, &cast->elements, &location, ret, popped, scope_node);
8647 return;
8648 }
8649 case PM_ASSOC_NODE: {
8650 // { foo: 1 }
8651 // ^^^^^^
8652 //
8653 // foo(bar: 1)
8654 // ^^^^^^
8655 const pm_assoc_node_t *cast = (const pm_assoc_node_t *) node;
8656
8657 PM_COMPILE(cast->key);
8658 PM_COMPILE(cast->value);
8659
8660 return;
8661 }
8662 case PM_ASSOC_SPLAT_NODE: {
8663 // { **foo }
8664 // ^^^^^
8665 //
8666 // def foo(**); bar(**); end
8667 // ^^
8668 const pm_assoc_splat_node_t *cast = (const pm_assoc_splat_node_t *) node;
8669
8670 if (cast->value != NULL) {
8671 PM_COMPILE(cast->value);
8672 }
8673 else if (!popped) {
8674 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_POW, 0);
8675 PUSH_GETLOCAL(ret, location, index.index, index.level);
8676 }
8677
8678 return;
8679 }
8681 // $+
8682 // ^^
8683 if (!popped) {
8685 VALUE backref = pm_compile_back_reference_ref(cast);
8686
8687 PUSH_INSN2(ret, location, getspecial, INT2FIX(1), backref);
8688 }
8689 return;
8690 }
8691 case PM_BEGIN_NODE: {
8692 // begin end
8693 // ^^^^^^^^^
8694 const pm_begin_node_t *cast = (const pm_begin_node_t *) node;
8695
8696 if (cast->ensure_clause) {
8697 // Compiling the ensure clause will compile the rescue clause (if
8698 // there is one), which will compile the begin statements.
8699 pm_compile_ensure(iseq, cast, &location, ret, popped, scope_node);
8700 }
8701 else if (cast->rescue_clause) {
8702 // Compiling rescue will compile begin statements (if applicable).
8703 pm_compile_rescue(iseq, cast, &location, ret, popped, scope_node);
8704 }
8705 else {
8706 // If there is neither ensure or rescue, the just compile the
8707 // statements.
8708 if (cast->statements != NULL) {
8709 PM_COMPILE((const pm_node_t *) cast->statements);
8710 }
8711 else if (!popped) {
8712 PUSH_SYNTHETIC_PUTNIL(ret, iseq);
8713 }
8714 }
8715 return;
8716 }
8718 // foo(&bar)
8719 // ^^^^
8720 const pm_block_argument_node_t *cast = (const pm_block_argument_node_t *) node;
8721
8722 if (cast->expression != NULL) {
8723 PM_COMPILE(cast->expression);
8724 }
8725 else {
8726 // If there's no expression, this must be block forwarding.
8727 pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, PM_CONSTANT_AND, 0);
8728 PUSH_INSN2(ret, location, getblockparamproxy, INT2FIX(local_index.index + VM_ENV_DATA_SIZE - 1), INT2FIX(local_index.level));
8729 }
8730 return;
8731 }
8732 case PM_BREAK_NODE:
8733 // break
8734 // ^^^^^
8735 //
8736 // break foo
8737 // ^^^^^^^^^
8738 pm_compile_break_node(iseq, (const pm_break_node_t *) node, &location, ret, popped, scope_node);
8739 return;
8740 case PM_CALL_NODE:
8741 // foo
8742 // ^^^
8743 //
8744 // foo.bar
8745 // ^^^^^^^
8746 //
8747 // foo.bar() {}
8748 // ^^^^^^^^^^^^
8749 pm_compile_call_node(iseq, (const pm_call_node_t *) node, ret, popped, scope_node);
8750 return;
8752 // foo.bar &&= baz
8753 // ^^^^^^^^^^^^^^^
8754 const pm_call_and_write_node_t *cast = (const pm_call_and_write_node_t *) node;
8755 pm_compile_call_and_or_write_node(iseq, true, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node);
8756 return;
8757 }
8758 case PM_CALL_OR_WRITE_NODE: {
8759 // foo.bar ||= baz
8760 // ^^^^^^^^^^^^^^^
8761 const pm_call_or_write_node_t *cast = (const pm_call_or_write_node_t *) node;
8762 pm_compile_call_and_or_write_node(iseq, false, cast->receiver, cast->value, cast->write_name, cast->read_name, PM_NODE_FLAG_P(cast, PM_CALL_NODE_FLAGS_SAFE_NAVIGATION), &location, ret, popped, scope_node);
8763 return;
8764 }
8766 // foo.bar += baz
8767 // ^^^^^^^^^^^^^^^
8768 //
8769 // Call operator writes occur when you have a call node on the left-hand
8770 // side of a write operator that is not `=`. As an example,
8771 // `foo.bar *= 1`. This breaks down to caching the receiver on the
8772 // stack and then performing three method calls, one to read the value,
8773 // one to compute the result, and one to write the result back to the
8774 // receiver.
8775 pm_compile_call_operator_write_node(iseq, (const pm_call_operator_write_node_t *) node, &location, ret, popped, scope_node);
8776 return;
8777 case PM_CASE_NODE:
8778 // case foo; when bar; end
8779 // ^^^^^^^^^^^^^^^^^^^^^^^
8780 pm_compile_case_node(iseq, (const pm_case_node_t *) node, &location, ret, popped, scope_node);
8781 return;
8782 case PM_CASE_MATCH_NODE:
8783 // case foo; in bar; end
8784 // ^^^^^^^^^^^^^^^^^^^^^
8785 //
8786 // If you use the `case` keyword to create a case match node, it will
8787 // match against all of the `in` clauses until it finds one that
8788 // matches. If it doesn't find one, it can optionally fall back to an
8789 // `else` clause. If none is present and a match wasn't found, it will
8790 // raise an appropriate error.
8791 pm_compile_case_match_node(iseq, (const pm_case_match_node_t *) node, &location, ret, popped, scope_node);
8792 return;
8793 case PM_CLASS_NODE: {
8794 // class Foo; end
8795 // ^^^^^^^^^^^^^^
8796 const pm_class_node_t *cast = (const pm_class_node_t *) node;
8797
8798 ID class_id = pm_constant_id_lookup(scope_node, cast->name);
8799 VALUE class_name = rb_str_freeze(rb_sprintf("<class:%"PRIsVALUE">", rb_id2str(class_id)));
8800
8801 pm_scope_node_t next_scope_node;
8802 pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
8803
8804 const rb_iseq_t *class_iseq = NEW_CHILD_ISEQ(&next_scope_node, class_name, ISEQ_TYPE_CLASS, location.line);
8805 pm_scope_node_destroy(&next_scope_node);
8806
8807 // TODO: Once we merge constant path nodes correctly, fix this flag
8808 const int flags = VM_DEFINECLASS_TYPE_CLASS |
8809 (cast->superclass ? VM_DEFINECLASS_FLAG_HAS_SUPERCLASS : 0) |
8810 pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node);
8811
8812 if (cast->superclass) {
8813 PM_COMPILE_NOT_POPPED(cast->superclass);
8814 }
8815 else {
8816 PUSH_INSN(ret, location, putnil);
8817 }
8818
8819 {
8820 VALUE operand = ID2SYM(class_id);
8821 PUSH_INSN3(ret, location, defineclass, operand, class_iseq, INT2FIX(flags));
8822 }
8823 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE)class_iseq);
8824
8825 if (popped) PUSH_INSN(ret, location, pop);
8826 return;
8827 }
8829 // @@foo &&= bar
8830 // ^^^^^^^^^^^^^
8832 LABEL *end_label = NEW_LABEL(location.line);
8833
8834 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
8835 VALUE name = ID2SYM(name_id);
8836
8837 PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
8838 if (!popped) PUSH_INSN(ret, location, dup);
8839
8840 PUSH_INSNL(ret, location, branchunless, end_label);
8841 if (!popped) PUSH_INSN(ret, location, pop);
8842
8843 PM_COMPILE_NOT_POPPED(cast->value);
8844 if (!popped) PUSH_INSN(ret, location, dup);
8845
8846 PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
8847 PUSH_LABEL(ret, end_label);
8848
8849 return;
8850 }
8852 // @@foo += bar
8853 // ^^^^^^^^^^^^
8855
8856 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
8857 VALUE name = ID2SYM(name_id);
8858
8859 PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
8860 PM_COMPILE_NOT_POPPED(cast->value);
8861
8862 ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
8863 int flags = VM_CALL_ARGS_SIMPLE;
8864 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
8865
8866 if (!popped) PUSH_INSN(ret, location, dup);
8867 PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
8868
8869 return;
8870 }
8872 // @@foo ||= bar
8873 // ^^^^^^^^^^^^^
8875 LABEL *end_label = NEW_LABEL(location.line);
8876 LABEL *start_label = NEW_LABEL(location.line);
8877
8878 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
8879 VALUE name = ID2SYM(name_id);
8880
8881 PUSH_INSN(ret, location, putnil);
8882 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_CVAR), name, Qtrue);
8883 PUSH_INSNL(ret, location, branchunless, start_label);
8884
8885 PUSH_INSN2(ret, location, getclassvariable, name, get_cvar_ic_value(iseq, name_id));
8886 if (!popped) PUSH_INSN(ret, location, dup);
8887
8888 PUSH_INSNL(ret, location, branchif, end_label);
8889 if (!popped) PUSH_INSN(ret, location, pop);
8890
8891 PUSH_LABEL(ret, start_label);
8892 PM_COMPILE_NOT_POPPED(cast->value);
8893 if (!popped) PUSH_INSN(ret, location, dup);
8894
8895 PUSH_INSN2(ret, location, setclassvariable, name, get_cvar_ic_value(iseq, name_id));
8896 PUSH_LABEL(ret, end_label);
8897
8898 return;
8899 }
8901 // @@foo
8902 // ^^^^^
8903 if (!popped) {
8905 ID name = pm_constant_id_lookup(scope_node, cast->name);
8906 PUSH_INSN2(ret, location, getclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name));
8907 }
8908 return;
8909 }
8911 // @@foo = 1
8912 // ^^^^^^^^^
8914 PM_COMPILE_NOT_POPPED(cast->value);
8915 if (!popped) PUSH_INSN(ret, location, dup);
8916
8917 ID name = pm_constant_id_lookup(scope_node, cast->name);
8918 PUSH_INSN2(ret, location, setclassvariable, ID2SYM(name), get_cvar_ic_value(iseq, name));
8919
8920 return;
8921 }
8922 case PM_CONSTANT_PATH_NODE: {
8923 // Foo::Bar
8924 // ^^^^^^^^
8925 VALUE parts;
8926
8927 if (ISEQ_COMPILE_DATA(iseq)->option->inline_const_cache && ((parts = pm_constant_path_parts(node, scope_node)) != Qnil)) {
8928 ISEQ_BODY(iseq)->ic_size++;
8929 PUSH_INSN1(ret, location, opt_getconstant_path, parts);
8930 }
8931 else {
8932 DECL_ANCHOR(prefix);
8933 DECL_ANCHOR(body);
8934
8935 pm_compile_constant_path(iseq, node, prefix, body, popped, scope_node);
8936 if (LIST_INSN_SIZE_ZERO(prefix)) {
8937 PUSH_INSN(ret, location, putnil);
8938 }
8939 else {
8940 PUSH_SEQ(ret, prefix);
8941 }
8942
8943 PUSH_SEQ(ret, body);
8944 }
8945
8946 if (popped) PUSH_INSN(ret, location, pop);
8947 return;
8948 }
8950 // Foo::Bar &&= baz
8951 // ^^^^^^^^^^^^^^^^
8953 pm_compile_constant_path_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
8954 return;
8955 }
8957 // Foo::Bar ||= baz
8958 // ^^^^^^^^^^^^^^^^
8960 pm_compile_constant_path_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
8961 return;
8962 }
8964 // Foo::Bar += baz
8965 // ^^^^^^^^^^^^^^^
8967 pm_compile_constant_path_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
8968 return;
8969 }
8971 // Foo::Bar = 1
8972 // ^^^^^^^^^^^^
8974 pm_compile_constant_path_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
8975 return;
8976 }
8977 case PM_CONSTANT_READ_NODE: {
8978 // Foo
8979 // ^^^
8980 const pm_constant_read_node_t *cast = (const pm_constant_read_node_t *) node;
8981 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
8982
8983 pm_compile_constant_read(iseq, name, &cast->base.location, location.node_id, ret, scope_node);
8984 if (popped) PUSH_INSN(ret, location, pop);
8985
8986 return;
8987 }
8989 // Foo &&= bar
8990 // ^^^^^^^^^^^
8992 pm_compile_constant_and_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
8993 return;
8994 }
8996 // Foo ||= bar
8997 // ^^^^^^^^^^^
8998 const pm_constant_or_write_node_t *cast = (const pm_constant_or_write_node_t *) node;
8999 pm_compile_constant_or_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
9000 return;
9001 }
9003 // Foo += bar
9004 // ^^^^^^^^^^
9006 pm_compile_constant_operator_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
9007 return;
9008 }
9010 // Foo = 1
9011 // ^^^^^^^
9012 const pm_constant_write_node_t *cast = (const pm_constant_write_node_t *) node;
9013 pm_compile_constant_write_node(iseq, cast, 0, &location, ret, popped, scope_node);
9014 return;
9015 }
9016 case PM_DEF_NODE: {
9017 // def foo; end
9018 // ^^^^^^^^^^^^
9019 //
9020 // def self.foo; end
9021 // ^^^^^^^^^^^^^^^^^
9022 const pm_def_node_t *cast = (const pm_def_node_t *) node;
9023 ID method_name = pm_constant_id_lookup(scope_node, cast->name);
9024
9025 pm_scope_node_t next_scope_node;
9026 pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
9027
9028 rb_iseq_t *method_iseq = NEW_ISEQ(&next_scope_node, rb_id2str(method_name), ISEQ_TYPE_METHOD, location.line);
9029 pm_scope_node_destroy(&next_scope_node);
9030
9031 if (cast->receiver) {
9032 PM_COMPILE_NOT_POPPED(cast->receiver);
9033 PUSH_INSN2(ret, location, definesmethod, ID2SYM(method_name), method_iseq);
9034 }
9035 else {
9036 PUSH_INSN2(ret, location, definemethod, ID2SYM(method_name), method_iseq);
9037 }
9038 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) method_iseq);
9039
9040 if (!popped) {
9041 PUSH_INSN1(ret, location, putobject, ID2SYM(method_name));
9042 }
9043
9044 return;
9045 }
9046 case PM_DEFINED_NODE: {
9047 // defined?(a)
9048 // ^^^^^^^^^^^
9049 const pm_defined_node_t *cast = (const pm_defined_node_t *) node;
9050 pm_compile_defined_expr(iseq, cast->value, &location, ret, popped, scope_node, false);
9051 return;
9052 }
9054 // "foo #{bar}"
9055 // ^^^^^^
9057
9058 if (cast->statements != NULL) {
9059 PM_COMPILE((const pm_node_t *) (cast->statements));
9060 }
9061 else {
9062 PUSH_SYNTHETIC_PUTNIL(ret, iseq);
9063 }
9064
9065 if (popped) PUSH_INSN(ret, location, pop);
9066 return;
9067 }
9069 // "foo #@bar"
9070 // ^^^^^
9071 const pm_embedded_variable_node_t *cast = (const pm_embedded_variable_node_t *) node;
9072 PM_COMPILE(cast->variable);
9073 return;
9074 }
9075 case PM_FALSE_NODE: {
9076 // false
9077 // ^^^^^
9078 if (!popped) {
9079 PUSH_INSN1(ret, location, putobject, Qfalse);
9080 }
9081 return;
9082 }
9083 case PM_ENSURE_NODE: {
9084 const pm_ensure_node_t *cast = (const pm_ensure_node_t *) node;
9085
9086 if (cast->statements != NULL) {
9087 PM_COMPILE((const pm_node_t *) cast->statements);
9088 }
9089
9090 return;
9091 }
9092 case PM_ELSE_NODE: {
9093 // if foo then bar else baz end
9094 // ^^^^^^^^^^^^
9095 const pm_else_node_t *cast = (const pm_else_node_t *) node;
9096
9097 if (cast->statements != NULL) {
9098 PM_COMPILE((const pm_node_t *) cast->statements);
9099 }
9100 else if (!popped) {
9101 PUSH_SYNTHETIC_PUTNIL(ret, iseq);
9102 }
9103
9104 return;
9105 }
9106 case PM_FLIP_FLOP_NODE: {
9107 // if foo .. bar; end
9108 // ^^^^^^^^^^
9109 const pm_flip_flop_node_t *cast = (const pm_flip_flop_node_t *) node;
9110
9111 LABEL *final_label = NEW_LABEL(location.line);
9112 LABEL *then_label = NEW_LABEL(location.line);
9113 LABEL *else_label = NEW_LABEL(location.line);
9114
9115 pm_compile_flip_flop(cast, else_label, then_label, iseq, location.line, ret, popped, scope_node);
9116
9117 PUSH_LABEL(ret, then_label);
9118 PUSH_INSN1(ret, location, putobject, Qtrue);
9119 PUSH_INSNL(ret, location, jump, final_label);
9120 PUSH_LABEL(ret, else_label);
9121 PUSH_INSN1(ret, location, putobject, Qfalse);
9122 PUSH_LABEL(ret, final_label);
9123
9124 return;
9125 }
9126 case PM_FLOAT_NODE: {
9127 // 1.0
9128 // ^^^
9129 if (!popped) {
9130 VALUE operand = parse_float((const pm_float_node_t *) node);
9131 PUSH_INSN1(ret, location, putobject, operand);
9132 }
9133 return;
9134 }
9135 case PM_FOR_NODE: {
9136 // for foo in bar do end
9137 // ^^^^^^^^^^^^^^^^^^^^^
9138 const pm_for_node_t *cast = (const pm_for_node_t *) node;
9139
9140 LABEL *retry_label = NEW_LABEL(location.line);
9141 LABEL *retry_end_l = NEW_LABEL(location.line);
9142
9143 // First, compile the collection that we're going to be iterating over.
9144 PUSH_LABEL(ret, retry_label);
9145 PM_COMPILE_NOT_POPPED(cast->collection);
9146
9147 // Next, create the new scope that is going to contain the block that
9148 // will be passed to the each method.
9149 pm_scope_node_t next_scope_node;
9150 pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
9151
9152 const rb_iseq_t *child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, location.line);
9153 pm_scope_node_destroy(&next_scope_node);
9154
9155 const rb_iseq_t *prev_block = ISEQ_COMPILE_DATA(iseq)->current_block;
9156 ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq;
9157
9158 // Now, create the method call to each that will be used to iterate over
9159 // the collection, and pass the newly created iseq as the block.
9160 PUSH_SEND_WITH_BLOCK(ret, location, idEach, INT2FIX(0), child_iseq);
9161 pm_compile_retry_end_label(iseq, ret, retry_end_l);
9162
9163 if (popped) PUSH_INSN(ret, location, pop);
9164 ISEQ_COMPILE_DATA(iseq)->current_block = prev_block;
9165 PUSH_CATCH_ENTRY(CATCH_TYPE_BREAK, retry_label, retry_end_l, child_iseq, retry_end_l);
9166 return;
9167 }
9169 rb_bug("Cannot compile a ForwardingArgumentsNode directly\n");
9170 return;
9172 // super
9173 // ^^^^^
9174 //
9175 // super {}
9176 // ^^^^^^^^
9177 pm_compile_forwarding_super_node(iseq, (const pm_forwarding_super_node_t *) node, &location, ret, popped, scope_node);
9178 return;
9180 // $foo &&= bar
9181 // ^^^^^^^^^^^^
9183 LABEL *end_label = NEW_LABEL(location.line);
9184
9185 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
9186 PUSH_INSN1(ret, location, getglobal, name);
9187 if (!popped) PUSH_INSN(ret, location, dup);
9188
9189 PUSH_INSNL(ret, location, branchunless, end_label);
9190 if (!popped) PUSH_INSN(ret, location, pop);
9191
9192 PM_COMPILE_NOT_POPPED(cast->value);
9193 if (!popped) PUSH_INSN(ret, location, dup);
9194
9195 PUSH_INSN1(ret, location, setglobal, name);
9196 PUSH_LABEL(ret, end_label);
9197
9198 return;
9199 }
9201 // $foo += bar
9202 // ^^^^^^^^^^^
9204
9205 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
9206 PUSH_INSN1(ret, location, getglobal, name);
9207 PM_COMPILE_NOT_POPPED(cast->value);
9208
9209 ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
9210 int flags = VM_CALL_ARGS_SIMPLE;
9211 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
9212
9213 if (!popped) PUSH_INSN(ret, location, dup);
9214 PUSH_INSN1(ret, location, setglobal, name);
9215
9216 return;
9217 }
9219 // $foo ||= bar
9220 // ^^^^^^^^^^^^
9222 LABEL *set_label = NEW_LABEL(location.line);
9223 LABEL *end_label = NEW_LABEL(location.line);
9224
9225 PUSH_INSN(ret, location, putnil);
9226 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
9227
9228 PUSH_INSN3(ret, location, defined, INT2FIX(DEFINED_GVAR), name, Qtrue);
9229 PUSH_INSNL(ret, location, branchunless, set_label);
9230
9231 PUSH_INSN1(ret, location, getglobal, name);
9232 if (!popped) PUSH_INSN(ret, location, dup);
9233
9234 PUSH_INSNL(ret, location, branchif, end_label);
9235 if (!popped) PUSH_INSN(ret, location, pop);
9236
9237 PUSH_LABEL(ret, set_label);
9238 PM_COMPILE_NOT_POPPED(cast->value);
9239 if (!popped) PUSH_INSN(ret, location, dup);
9240
9241 PUSH_INSN1(ret, location, setglobal, name);
9242 PUSH_LABEL(ret, end_label);
9243
9244 return;
9245 }
9247 // $foo
9248 // ^^^^
9250 VALUE name = ID2SYM(pm_constant_id_lookup(scope_node, cast->name));
9251
9252 PUSH_INSN1(ret, location, getglobal, name);
9253 if (popped) PUSH_INSN(ret, location, pop);
9254
9255 return;
9256 }
9258 // $foo = 1
9259 // ^^^^^^^^
9261 PM_COMPILE_NOT_POPPED(cast->value);
9262 if (!popped) PUSH_INSN(ret, location, dup);
9263
9264 ID name = pm_constant_id_lookup(scope_node, cast->name);
9265 PUSH_INSN1(ret, location, setglobal, ID2SYM(name));
9266
9267 return;
9268 }
9269 case PM_HASH_NODE: {
9270 // {}
9271 // ^^
9272 //
9273 // If every node in the hash is static, then we can compile the entire
9274 // hash now instead of later.
9275 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
9276 // We're only going to compile this node if it's not popped. If it
9277 // is popped, then we know we don't need to do anything since it's
9278 // statically known.
9279 if (!popped) {
9280 const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
9281
9282 if (cast->elements.size == 0) {
9283 PUSH_INSN1(ret, location, newhash, INT2FIX(0));
9284 }
9285 else {
9286 VALUE value = pm_static_literal_value(iseq, node, scope_node);
9287 PUSH_INSN1(ret, location, duphash, value);
9288 RB_OBJ_WRITTEN(iseq, Qundef, value);
9289 }
9290 }
9291 }
9292 else {
9293 // Here since we know there are possible side-effects inside the
9294 // hash contents, we're going to build it entirely at runtime. We'll
9295 // do this by pushing all of the key-value pairs onto the stack and
9296 // then combining them with newhash.
9297 //
9298 // If this hash is popped, then this serves only to ensure we enact
9299 // all side-effects (like method calls) that are contained within
9300 // the hash contents.
9301 const pm_hash_node_t *cast = (const pm_hash_node_t *) node;
9302 const pm_node_list_t *elements = &cast->elements;
9303
9304 if (popped) {
9305 // If this hash is popped, then we can iterate through each
9306 // element and compile it. The result of each compilation will
9307 // only include the side effects of the element itself.
9308 for (size_t index = 0; index < elements->size; index++) {
9309 PM_COMPILE_POPPED(elements->nodes[index]);
9310 }
9311 }
9312 else {
9313 pm_compile_hash_elements(iseq, node, elements, 0, Qundef, false, ret, scope_node);
9314 }
9315 }
9316
9317 return;
9318 }
9319 case PM_IF_NODE: {
9320 // if foo then bar end
9321 // ^^^^^^^^^^^^^^^^^^^
9322 //
9323 // bar if foo
9324 // ^^^^^^^^^^
9325 //
9326 // foo ? bar : baz
9327 // ^^^^^^^^^^^^^^^
9328 const pm_if_node_t *cast = (const pm_if_node_t *) node;
9329 pm_compile_conditional(iseq, &location, PM_IF_NODE, (const pm_node_t *) cast, cast->statements, cast->subsequent, cast->predicate, ret, popped, scope_node);
9330 return;
9331 }
9332 case PM_IMAGINARY_NODE: {
9333 // 1i
9334 // ^^
9335 if (!popped) {
9336 VALUE operand = parse_imaginary((const pm_imaginary_node_t *) node);
9337 PUSH_INSN1(ret, location, putobject, operand);
9338 }
9339 return;
9340 }
9341 case PM_IMPLICIT_NODE: {
9342 // Implicit nodes mark places in the syntax tree where explicit syntax
9343 // was omitted, but implied. For example,
9344 //
9345 // { foo: }
9346 //
9347 // In this case a method call/local variable read is implied by virtue
9348 // of the missing value. To compile these nodes, we simply compile the
9349 // value that is implied, which is helpfully supplied by the parser.
9350 const pm_implicit_node_t *cast = (const pm_implicit_node_t *) node;
9351 PM_COMPILE(cast->value);
9352 return;
9353 }
9354 case PM_IN_NODE: {
9355 // In nodes are handled by the case match node directly, so we should
9356 // never end up hitting them through this path.
9357 rb_bug("Should not ever enter an in node directly");
9358 return;
9359 }
9361 // foo[bar] += baz
9362 // ^^^^^^^^^^^^^^^
9364 pm_compile_index_operator_write_node(iseq, cast, &location, ret, popped, scope_node);
9365 return;
9366 }
9368 // foo[bar] &&= baz
9369 // ^^^^^^^^^^^^^^^^
9370 const pm_index_and_write_node_t *cast = (const pm_index_and_write_node_t *) node;
9371 pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node);
9372 return;
9373 }
9375 // foo[bar] ||= baz
9376 // ^^^^^^^^^^^^^^^^
9377 const pm_index_or_write_node_t *cast = (const pm_index_or_write_node_t *) node;
9378 pm_compile_index_control_flow_write_node(iseq, node, cast->receiver, cast->arguments, cast->block, cast->value, &location, ret, popped, scope_node);
9379 return;
9380 }
9382 // @foo &&= bar
9383 // ^^^^^^^^^^^^
9385 LABEL *end_label = NEW_LABEL(location.line);
9386
9387 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
9388 VALUE name = ID2SYM(name_id);
9389
9390 PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9391 if (!popped) PUSH_INSN(ret, location, dup);
9392
9393 PUSH_INSNL(ret, location, branchunless, end_label);
9394 if (!popped) PUSH_INSN(ret, location, pop);
9395
9396 PM_COMPILE_NOT_POPPED(cast->value);
9397 if (!popped) PUSH_INSN(ret, location, dup);
9398
9399 PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9400 PUSH_LABEL(ret, end_label);
9401
9402 return;
9403 }
9405 // @foo += bar
9406 // ^^^^^^^^^^^
9408
9409 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
9410 VALUE name = ID2SYM(name_id);
9411
9412 PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9413 PM_COMPILE_NOT_POPPED(cast->value);
9414
9415 ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
9416 int flags = VM_CALL_ARGS_SIMPLE;
9417 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(flags));
9418
9419 if (!popped) PUSH_INSN(ret, location, dup);
9420 PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9421
9422 return;
9423 }
9425 // @foo ||= bar
9426 // ^^^^^^^^^^^^
9428 LABEL *end_label = NEW_LABEL(location.line);
9429
9430 ID name_id = pm_constant_id_lookup(scope_node, cast->name);
9431 VALUE name = ID2SYM(name_id);
9432
9433 PUSH_INSN2(ret, location, getinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9434 if (!popped) PUSH_INSN(ret, location, dup);
9435
9436 PUSH_INSNL(ret, location, branchif, end_label);
9437 if (!popped) PUSH_INSN(ret, location, pop);
9438
9439 PM_COMPILE_NOT_POPPED(cast->value);
9440 if (!popped) PUSH_INSN(ret, location, dup);
9441
9442 PUSH_INSN2(ret, location, setinstancevariable, name, get_ivar_ic_value(iseq, name_id));
9443 PUSH_LABEL(ret, end_label);
9444
9445 return;
9446 }
9448 // @foo
9449 // ^^^^
9450 if (!popped) {
9452 ID name = pm_constant_id_lookup(scope_node, cast->name);
9453 PUSH_INSN2(ret, location, getinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name));
9454 }
9455 return;
9456 }
9458 // @foo = 1
9459 // ^^^^^^^^
9461 PM_COMPILE_NOT_POPPED(cast->value);
9462 if (!popped) PUSH_INSN(ret, location, dup);
9463
9464 ID name = pm_constant_id_lookup(scope_node, cast->name);
9465 PUSH_INSN2(ret, location, setinstancevariable, ID2SYM(name), get_ivar_ic_value(iseq, name));
9466
9467 return;
9468 }
9469 case PM_INTEGER_NODE: {
9470 // 1
9471 // ^
9472 if (!popped) {
9473 VALUE operand = parse_integer((const pm_integer_node_t *) node);
9474 PUSH_INSN1(ret, location, putobject, operand);
9475 }
9476 return;
9477 }
9479 // if /foo #{bar}/ then end
9480 // ^^^^^^^^^^^^
9481 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
9482 if (!popped) {
9483 VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
9484 PUSH_INSN1(ret, location, putobject, regexp);
9485 }
9486 }
9487 else {
9488 pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_match_last_line_node_t *) node)->parts, &location, ret, popped, scope_node);
9489 }
9490
9491 PUSH_INSN1(ret, location, getglobal, rb_id2sym(idLASTLINE));
9492 PUSH_SEND(ret, location, idEqTilde, INT2NUM(1));
9493 if (popped) PUSH_INSN(ret, location, pop);
9494
9495 return;
9496 }
9498 // /foo #{bar}/
9499 // ^^^^^^^^^^^^
9501 const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block;
9502 const rb_iseq_t *block_iseq = NULL;
9503 int ise_index = ISEQ_BODY(iseq)->ise_size++;
9504
9505 pm_scope_node_t next_scope_node;
9506 pm_scope_node_init(node, &next_scope_node, scope_node);
9507
9508 block_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_PLAIN, location.line);
9509 pm_scope_node_destroy(&next_scope_node);
9510
9511 ISEQ_COMPILE_DATA(iseq)->current_block = block_iseq;
9512 PUSH_INSN2(ret, location, once, block_iseq, INT2FIX(ise_index));
9513 ISEQ_COMPILE_DATA(iseq)->current_block = prevblock;
9514
9515 if (popped) PUSH_INSN(ret, location, pop);
9516 return;
9517 }
9518
9519 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
9520 if (!popped) {
9521 VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
9522 PUSH_INSN1(ret, location, putobject, regexp);
9523 }
9524 }
9525 else {
9526 pm_compile_regexp_dynamic(iseq, node, &((const pm_interpolated_regular_expression_node_t *) node)->parts, &location, ret, popped, scope_node);
9527 if (popped) PUSH_INSN(ret, location, pop);
9528 }
9529
9530 return;
9531 }
9533 // "foo #{bar}"
9534 // ^^^^^^^^^^^^
9535 if (PM_NODE_FLAG_P(node, PM_NODE_FLAG_STATIC_LITERAL)) {
9536 if (!popped) {
9537 VALUE string = pm_static_literal_value(iseq, node, scope_node);
9538
9540 PUSH_INSN1(ret, location, putobject, string);
9541 }
9543 PUSH_INSN1(ret, location, putstring, string);
9544 }
9545 else {
9546 PUSH_INSN1(ret, location, putchilledstring, string);
9547 }
9548 }
9549 }
9550 else {
9552 int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL);
9553 if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
9554 if (popped) PUSH_INSN(ret, location, pop);
9555 }
9556
9557 return;
9558 }
9560 // :"foo #{bar}"
9561 // ^^^^^^^^^^^^^
9563 int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, popped, scope_node, NULL, NULL);
9564
9565 if (length > 1) {
9566 PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
9567 }
9568
9569 if (!popped) {
9570 PUSH_INSN(ret, location, intern);
9571 }
9572 else {
9573 PUSH_INSN(ret, location, pop);
9574 }
9575
9576 return;
9577 }
9579 // `foo #{bar}`
9580 // ^^^^^^^^^^^^
9582
9583 PUSH_INSN(ret, location, putself);
9584
9585 int length = pm_interpolated_node_compile(iseq, &cast->parts, &location, ret, false, scope_node, NULL, NULL);
9586 if (length > 1) PUSH_INSN1(ret, location, concatstrings, INT2FIX(length));
9587
9588 PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
9589 if (popped) PUSH_INSN(ret, location, pop);
9590
9591 return;
9592 }
9594 // -> { it }
9595 // ^^
9596 if (!popped) {
9597 PUSH_GETLOCAL(ret, location, scope_node->local_table_for_iseq_size, 0);
9598 }
9599
9600 return;
9601 }
9602 case PM_KEYWORD_HASH_NODE: {
9603 // foo(bar: baz)
9604 // ^^^^^^^^
9605 const pm_keyword_hash_node_t *cast = (const pm_keyword_hash_node_t *) node;
9606 const pm_node_list_t *elements = &cast->elements;
9607
9608 const pm_node_t *element;
9609 PM_NODE_LIST_FOREACH(elements, index, element) {
9610 PM_COMPILE(element);
9611 }
9612
9613 if (!popped) PUSH_INSN1(ret, location, newhash, INT2FIX(elements->size * 2));
9614 return;
9615 }
9616 case PM_LAMBDA_NODE: {
9617 // -> {}
9618 // ^^^^^
9619 const pm_lambda_node_t *cast = (const pm_lambda_node_t *) node;
9620
9621 pm_scope_node_t next_scope_node;
9622 pm_scope_node_init(node, &next_scope_node, scope_node);
9623
9624 int opening_lineno = pm_location_line_number(parser, &cast->opening_loc);
9625 const rb_iseq_t *block = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, opening_lineno);
9626 pm_scope_node_destroy(&next_scope_node);
9627
9628 VALUE argc = INT2FIX(0);
9629 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
9630 PUSH_CALL_WITH_BLOCK(ret, location, idLambda, argc, block);
9631 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) block);
9632
9633 if (popped) PUSH_INSN(ret, location, pop);
9634 return;
9635 }
9637 // foo &&= bar
9638 // ^^^^^^^^^^^
9640 LABEL *end_label = NEW_LABEL(location.line);
9641
9642 pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
9643 PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
9644 if (!popped) PUSH_INSN(ret, location, dup);
9645
9646 PUSH_INSNL(ret, location, branchunless, end_label);
9647 if (!popped) PUSH_INSN(ret, location, pop);
9648
9649 PM_COMPILE_NOT_POPPED(cast->value);
9650 if (!popped) PUSH_INSN(ret, location, dup);
9651
9652 PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
9653 PUSH_LABEL(ret, end_label);
9654
9655 return;
9656 }
9658 // foo += bar
9659 // ^^^^^^^^^^
9661
9662 pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
9663 PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
9664
9665 PM_COMPILE_NOT_POPPED(cast->value);
9666
9667 ID method_id = pm_constant_id_lookup(scope_node, cast->binary_operator);
9668 PUSH_SEND_WITH_FLAG(ret, location, method_id, INT2NUM(1), INT2FIX(VM_CALL_ARGS_SIMPLE));
9669
9670 if (!popped) PUSH_INSN(ret, location, dup);
9671 PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
9672
9673 return;
9674 }
9676 // foo ||= bar
9677 // ^^^^^^^^^^^
9679
9680 LABEL *set_label = NEW_LABEL(location.line);
9681 LABEL *end_label = NEW_LABEL(location.line);
9682
9683 PUSH_INSN1(ret, location, putobject, Qtrue);
9684 PUSH_INSNL(ret, location, branchunless, set_label);
9685
9686 pm_local_index_t local_index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
9687 PUSH_GETLOCAL(ret, location, local_index.index, local_index.level);
9688 if (!popped) PUSH_INSN(ret, location, dup);
9689
9690 PUSH_INSNL(ret, location, branchif, end_label);
9691 if (!popped) PUSH_INSN(ret, location, pop);
9692
9693 PUSH_LABEL(ret, set_label);
9694 PM_COMPILE_NOT_POPPED(cast->value);
9695 if (!popped) PUSH_INSN(ret, location, dup);
9696
9697 PUSH_SETLOCAL(ret, location, local_index.index, local_index.level);
9698 PUSH_LABEL(ret, end_label);
9699
9700 return;
9701 }
9703 // foo
9704 // ^^^
9705 if (!popped) {
9707 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
9708 PUSH_GETLOCAL(ret, location, index.index, index.level);
9709 }
9710
9711 return;
9712 }
9714 // foo = 1
9715 // ^^^^^^^
9717 PM_COMPILE_NOT_POPPED(cast->value);
9718 if (!popped) PUSH_INSN(ret, location, dup);
9719
9720 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, cast->depth);
9721 PUSH_SETLOCAL(ret, location, index.index, index.level);
9722 return;
9723 }
9725 // if /foo/ then end
9726 // ^^^^^
9727 VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
9728
9729 PUSH_INSN1(ret, location, putobject, regexp);
9730 PUSH_INSN2(ret, location, getspecial, INT2FIX(0), INT2FIX(0));
9731 PUSH_SEND(ret, location, idEqTilde, INT2NUM(1));
9732 if (popped) PUSH_INSN(ret, location, pop);
9733
9734 return;
9735 }
9737 // foo in bar
9738 // ^^^^^^^^^^
9739 const pm_match_predicate_node_t *cast = (const pm_match_predicate_node_t *) node;
9740
9741 // First, allocate some stack space for the cached return value of any
9742 // calls to #deconstruct.
9743 PUSH_INSN(ret, location, putnil);
9744
9745 // Next, compile the expression that we're going to match against.
9746 PM_COMPILE_NOT_POPPED(cast->value);
9747 PUSH_INSN(ret, location, dup);
9748
9749 // Now compile the pattern that is going to be used to match against the
9750 // expression.
9751 LABEL *matched_label = NEW_LABEL(location.line);
9752 LABEL *unmatched_label = NEW_LABEL(location.line);
9753 LABEL *done_label = NEW_LABEL(location.line);
9754 pm_compile_pattern(iseq, scope_node, cast->pattern, ret, matched_label, unmatched_label, false, false, true, 2);
9755
9756 // If the pattern did not match, then compile the necessary instructions
9757 // to handle pushing false onto the stack, then jump to the end.
9758 PUSH_LABEL(ret, unmatched_label);
9759 PUSH_INSN(ret, location, pop);
9760 PUSH_INSN(ret, location, pop);
9761
9762 if (!popped) PUSH_INSN1(ret, location, putobject, Qfalse);
9763 PUSH_INSNL(ret, location, jump, done_label);
9764 PUSH_INSN(ret, location, putnil);
9765
9766 // If the pattern did match, then compile the necessary instructions to
9767 // handle pushing true onto the stack, then jump to the end.
9768 PUSH_LABEL(ret, matched_label);
9769 PUSH_INSN1(ret, location, adjuststack, INT2FIX(2));
9770 if (!popped) PUSH_INSN1(ret, location, putobject, Qtrue);
9771 PUSH_INSNL(ret, location, jump, done_label);
9772
9773 PUSH_LABEL(ret, done_label);
9774 return;
9775 }
9777 // foo => bar
9778 // ^^^^^^^^^^
9779 //
9780 // A match required node represents pattern matching against a single
9781 // pattern using the => operator. For example,
9782 //
9783 // foo => bar
9784 //
9785 // This is somewhat analogous to compiling a case match statement with a
9786 // single pattern. In both cases, if the pattern fails it should
9787 // immediately raise an error.
9788 pm_compile_match_required_node(iseq, (const pm_match_required_node_t *) node, &location, ret, popped, scope_node);
9789 return;
9791 // /(?<foo>foo)/ =~ bar
9792 // ^^^^^^^^^^^^^^^^^^^^
9793 //
9794 // Match write nodes are specialized call nodes that have a regular
9795 // expression with valid named capture groups on the left, the =~
9796 // operator, and some value on the right. The nodes themselves simply
9797 // wrap the call with the local variable targets that will be written
9798 // when the call is executed.
9799 pm_compile_match_write_node(iseq, (const pm_match_write_node_t *) node, &location, ret, popped, scope_node);
9800 return;
9801 case PM_MISSING_NODE:
9802 rb_bug("A pm_missing_node_t should not exist in prism's AST.");
9803 return;
9804 case PM_MODULE_NODE: {
9805 // module Foo; end
9806 // ^^^^^^^^^^^^^^^
9807 const pm_module_node_t *cast = (const pm_module_node_t *) node;
9808
9809 ID module_id = pm_constant_id_lookup(scope_node, cast->name);
9810 VALUE module_name = rb_str_freeze(rb_sprintf("<module:%"PRIsVALUE">", rb_id2str(module_id)));
9811
9812 pm_scope_node_t next_scope_node;
9813 pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
9814
9815 const rb_iseq_t *module_iseq = NEW_CHILD_ISEQ(&next_scope_node, module_name, ISEQ_TYPE_CLASS, location.line);
9816 pm_scope_node_destroy(&next_scope_node);
9817
9818 const int flags = VM_DEFINECLASS_TYPE_MODULE | pm_compile_class_path(iseq, cast->constant_path, &location, ret, false, scope_node);
9819 PUSH_INSN(ret, location, putnil);
9820 PUSH_INSN3(ret, location, defineclass, ID2SYM(module_id), module_iseq, INT2FIX(flags));
9821 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) module_iseq);
9822
9823 if (popped) PUSH_INSN(ret, location, pop);
9824 return;
9825 }
9827 // def foo(bar); end
9828 // ^^^
9830 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0);
9831
9832 PUSH_SETLOCAL(ret, location, index.index, index.level);
9833 return;
9834 }
9835 case PM_MULTI_WRITE_NODE: {
9836 // foo, bar = baz
9837 // ^^^^^^^^^^^^^^
9838 //
9839 // A multi write node represents writing to multiple values using an =
9840 // operator. Importantly these nodes are only parsed when the left-hand
9841 // side of the operator has multiple targets. The right-hand side of the
9842 // operator having multiple targets represents an implicit array
9843 // instead.
9844 const pm_multi_write_node_t *cast = (const pm_multi_write_node_t *) node;
9845
9846 DECL_ANCHOR(writes);
9847 DECL_ANCHOR(cleanup);
9848
9849 pm_multi_target_state_t state = { 0 };
9850 state.position = popped ? 0 : 1;
9851 pm_compile_multi_target_node(iseq, node, ret, writes, cleanup, scope_node, &state);
9852
9853 PM_COMPILE_NOT_POPPED(cast->value);
9854 if (!popped) PUSH_INSN(ret, location, dup);
9855
9856 PUSH_SEQ(ret, writes);
9857 if (!popped && state.stack_size >= 1) {
9858 // Make sure the value on the right-hand side of the = operator is
9859 // being returned before we pop the parent expressions.
9860 PUSH_INSN1(ret, location, setn, INT2FIX(state.stack_size));
9861 }
9862
9863 // Now, we need to go back and modify the topn instructions in order to
9864 // ensure they can correctly retrieve the parent expressions.
9865 pm_multi_target_state_update(&state);
9866
9867 PUSH_SEQ(ret, cleanup);
9868 return;
9869 }
9870 case PM_NEXT_NODE:
9871 // next
9872 // ^^^^
9873 //
9874 // next foo
9875 // ^^^^^^^^
9876 pm_compile_next_node(iseq, (const pm_next_node_t *) node, &location, ret, popped, scope_node);
9877 return;
9878 case PM_NIL_NODE: {
9879 // nil
9880 // ^^^
9881 if (!popped) {
9882 PUSH_INSN(ret, location, putnil);
9883 }
9884
9885 return;
9886 }
9888 // def foo(**nil); end
9889 // ^^^^^
9890 ISEQ_BODY(iseq)->param.flags.accepts_no_kwarg = TRUE;
9891 return;
9892 }
9894 // $1
9895 // ^^
9896 if (!popped) {
9898
9899 if (cast->number != 0) {
9900 VALUE ref = pm_compile_numbered_reference_ref(cast);
9901 PUSH_INSN2(ret, location, getspecial, INT2FIX(1), ref);
9902 }
9903 else {
9904 PUSH_INSN(ret, location, putnil);
9905 }
9906 }
9907
9908 return;
9909 }
9910 case PM_OR_NODE: {
9911 // a or b
9912 // ^^^^^^
9913 const pm_or_node_t *cast = (const pm_or_node_t *) node;
9914
9915 LABEL *end_label = NEW_LABEL(location.line);
9916 PM_COMPILE_NOT_POPPED(cast->left);
9917
9918 if (!popped) PUSH_INSN(ret, location, dup);
9919 PUSH_INSNL(ret, location, branchif, end_label);
9920
9921 if (!popped) PUSH_INSN(ret, location, pop);
9922 PM_COMPILE(cast->right);
9923 PUSH_LABEL(ret, end_label);
9924
9925 return;
9926 }
9928 // def foo(bar = 1); end
9929 // ^^^^^^^
9931 PM_COMPILE_NOT_POPPED(cast->value);
9932
9933 pm_local_index_t index = pm_lookup_local_index(iseq, scope_node, cast->name, 0);
9934 PUSH_SETLOCAL(ret, location, index.index, index.level);
9935
9936 return;
9937 }
9938 case PM_PARENTHESES_NODE: {
9939 // ()
9940 // ^^
9941 //
9942 // (1)
9943 // ^^^
9944 const pm_parentheses_node_t *cast = (const pm_parentheses_node_t *) node;
9945
9946 if (cast->body != NULL) {
9947 PM_COMPILE(cast->body);
9948 }
9949 else if (!popped) {
9950 PUSH_INSN(ret, location, putnil);
9951 }
9952
9953 return;
9954 }
9955 case PM_PRE_EXECUTION_NODE: {
9956 // BEGIN {}
9957 // ^^^^^^^^
9958 const pm_pre_execution_node_t *cast = (const pm_pre_execution_node_t *) node;
9959
9960 LINK_ANCHOR *outer_pre = scope_node->pre_execution_anchor;
9961 RUBY_ASSERT(outer_pre != NULL);
9962
9963 // BEGIN{} nodes can be nested, so here we're going to do the same thing
9964 // that we did for the top-level compilation where we create two
9965 // anchors and then join them in the correct order into the resulting
9966 // anchor.
9967 DECL_ANCHOR(inner_pre);
9968 scope_node->pre_execution_anchor = inner_pre;
9969
9970 DECL_ANCHOR(inner_body);
9971
9972 if (cast->statements != NULL) {
9973 const pm_node_list_t *body = &cast->statements->body;
9974
9975 for (size_t index = 0; index < body->size; index++) {
9976 pm_compile_node(iseq, body->nodes[index], inner_body, true, scope_node);
9977 }
9978 }
9979
9980 if (!popped) {
9981 PUSH_INSN(inner_body, location, putnil);
9982 }
9983
9984 // Now that everything has been compiled, join both anchors together
9985 // into the correct outer pre execution anchor, and reset the value so
9986 // that subsequent BEGIN{} nodes can be compiled correctly.
9987 PUSH_SEQ(outer_pre, inner_pre);
9988 PUSH_SEQ(outer_pre, inner_body);
9989 scope_node->pre_execution_anchor = outer_pre;
9990
9991 return;
9992 }
9994 // END {}
9995 // ^^^^^^
9996 const rb_iseq_t *child_iseq;
9997 const rb_iseq_t *prevblock = ISEQ_COMPILE_DATA(iseq)->current_block;
9998
9999 pm_scope_node_t next_scope_node;
10000 pm_scope_node_init(node, &next_scope_node, scope_node);
10001 child_iseq = NEW_CHILD_ISEQ(&next_scope_node, make_name_for_block(iseq), ISEQ_TYPE_BLOCK, lineno);
10002 pm_scope_node_destroy(&next_scope_node);
10003
10004 ISEQ_COMPILE_DATA(iseq)->current_block = child_iseq;
10005
10006 int is_index = ISEQ_BODY(iseq)->ise_size++;
10007 PUSH_INSN2(ret, location, once, child_iseq, INT2FIX(is_index));
10008 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq);
10009 if (popped) PUSH_INSN(ret, location, pop);
10010
10011 ISEQ_COMPILE_DATA(iseq)->current_block = prevblock;
10012
10013 return;
10014 }
10015 case PM_RANGE_NODE: {
10016 // 0..5
10017 // ^^^^
10018 const pm_range_node_t *cast = (const pm_range_node_t *) node;
10019 bool exclude_end = PM_NODE_FLAG_P(cast, PM_RANGE_FLAGS_EXCLUDE_END);
10020
10021 if (pm_optimizable_range_item_p(cast->left) && pm_optimizable_range_item_p(cast->right)) {
10022 if (!popped) {
10023 const pm_node_t *left = cast->left;
10024 const pm_node_t *right = cast->right;
10025
10026 VALUE val = rb_range_new(
10027 (left && PM_NODE_TYPE_P(left, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) left) : Qnil,
10028 (right && PM_NODE_TYPE_P(right, PM_INTEGER_NODE)) ? parse_integer((const pm_integer_node_t *) right) : Qnil,
10029 exclude_end
10030 );
10031
10032 PUSH_INSN1(ret, location, putobject, val);
10033 }
10034 }
10035 else {
10036 if (cast->left != NULL) {
10037 PM_COMPILE(cast->left);
10038 }
10039 else if (!popped) {
10040 PUSH_INSN(ret, location, putnil);
10041 }
10042
10043 if (cast->right != NULL) {
10044 PM_COMPILE(cast->right);
10045 }
10046 else if (!popped) {
10047 PUSH_INSN(ret, location, putnil);
10048 }
10049
10050 if (!popped) {
10051 PUSH_INSN1(ret, location, newrange, INT2FIX(exclude_end ? 1 : 0));
10052 }
10053 }
10054 return;
10055 }
10056 case PM_RATIONAL_NODE: {
10057 // 1r
10058 // ^^
10059 if (!popped) {
10060 PUSH_INSN1(ret, location, putobject, parse_rational((const pm_rational_node_t *) node));
10061 }
10062 return;
10063 }
10064 case PM_REDO_NODE:
10065 // redo
10066 // ^^^^
10067 pm_compile_redo_node(iseq, &location, ret, popped, scope_node);
10068 return;
10070 // /foo/
10071 // ^^^^^
10072 if (!popped) {
10073 VALUE regexp = pm_static_literal_value(iseq, node, scope_node);
10074 PUSH_INSN1(ret, location, putobject, regexp);
10075 }
10076 return;
10077 }
10078 case PM_RESCUE_NODE:
10079 // begin; rescue; end
10080 // ^^^^^^^
10081 pm_compile_rescue_node(iseq, (const pm_rescue_node_t *) node, &location, ret, popped, scope_node);
10082 return;
10084 // foo rescue bar
10085 // ^^^^^^^^^^^^^^
10086 const pm_rescue_modifier_node_t *cast = (const pm_rescue_modifier_node_t *) node;
10087
10088 pm_scope_node_t rescue_scope_node;
10089 pm_scope_node_init((const pm_node_t *) cast, &rescue_scope_node, scope_node);
10090
10091 rb_iseq_t *rescue_iseq = NEW_CHILD_ISEQ(
10092 &rescue_scope_node,
10093 rb_str_concat(rb_str_new2("rescue in "), ISEQ_BODY(iseq)->location.label),
10094 ISEQ_TYPE_RESCUE,
10095 pm_node_line_number(parser, cast->rescue_expression)
10096 );
10097
10098 pm_scope_node_destroy(&rescue_scope_node);
10099
10100 LABEL *lstart = NEW_LABEL(location.line);
10101 LABEL *lend = NEW_LABEL(location.line);
10102 LABEL *lcont = NEW_LABEL(location.line);
10103
10104 lstart->rescued = LABEL_RESCUE_BEG;
10105 lend->rescued = LABEL_RESCUE_END;
10106
10107 PUSH_LABEL(ret, lstart);
10108 PM_COMPILE_NOT_POPPED(cast->expression);
10109 PUSH_LABEL(ret, lend);
10110
10111 PUSH_INSN(ret, location, nop);
10112 PUSH_LABEL(ret, lcont);
10113 if (popped) PUSH_INSN(ret, location, pop);
10114
10115 PUSH_CATCH_ENTRY(CATCH_TYPE_RESCUE, lstart, lend, rescue_iseq, lcont);
10116 PUSH_CATCH_ENTRY(CATCH_TYPE_RETRY, lend, lcont, NULL, lstart);
10117 return;
10118 }
10119 case PM_RETURN_NODE:
10120 // return
10121 // ^^^^^^
10122 //
10123 // return 1
10124 // ^^^^^^^^
10125 pm_compile_return_node(iseq, (const pm_return_node_t *) node, &location, ret, popped, scope_node);
10126 return;
10127 case PM_RETRY_NODE: {
10128 // retry
10129 // ^^^^^
10130 if (ISEQ_BODY(iseq)->type == ISEQ_TYPE_RESCUE) {
10131 PUSH_INSN(ret, location, putnil);
10132 PUSH_INSN1(ret, location, throw, INT2FIX(TAG_RETRY));
10133 if (popped) PUSH_INSN(ret, location, pop);
10134 }
10135 else {
10136 COMPILE_ERROR(iseq, location.line, "Invalid retry");
10137 return;
10138 }
10139 return;
10140 }
10141 case PM_SCOPE_NODE:
10142 pm_compile_scope_node(iseq, (pm_scope_node_t *) node, &location, ret, popped);
10143 return;
10144 case PM_SELF_NODE: {
10145 // self
10146 // ^^^^
10147 if (!popped) {
10148 PUSH_INSN(ret, location, putself);
10149 }
10150 return;
10151 }
10153 // A value that is being written to a constant that is being marked as
10154 // shared depending on the current lexical context.
10157
10158 switch (PM_NODE_TYPE(cast->write)) {
10160 pm_compile_constant_write_node(iseq, (const pm_constant_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10161 break;
10163 pm_compile_constant_and_write_node(iseq, (const pm_constant_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10164 break;
10166 pm_compile_constant_or_write_node(iseq, (const pm_constant_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10167 break;
10169 pm_compile_constant_operator_write_node(iseq, (const pm_constant_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10170 break;
10172 pm_compile_constant_path_write_node(iseq, (const pm_constant_path_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10173 break;
10175 pm_compile_constant_path_and_write_node(iseq, (const pm_constant_path_and_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10176 break;
10178 pm_compile_constant_path_or_write_node(iseq, (const pm_constant_path_or_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10179 break;
10181 pm_compile_constant_path_operator_write_node(iseq, (const pm_constant_path_operator_write_node_t *) cast->write, shareability, &location, ret, popped, scope_node);
10182 break;
10183 default:
10184 rb_bug("Unexpected node type for shareable constant write: %s", pm_node_type_to_str(PM_NODE_TYPE(cast->write)));
10185 break;
10186 }
10187
10188 return;
10189 }
10191 // class << self; end
10192 // ^^^^^^^^^^^^^^^^^^
10193 const pm_singleton_class_node_t *cast = (const pm_singleton_class_node_t *) node;
10194
10195 pm_scope_node_t next_scope_node;
10196 pm_scope_node_init((const pm_node_t *) cast, &next_scope_node, scope_node);
10197 const rb_iseq_t *child_iseq = NEW_ISEQ(&next_scope_node, rb_fstring_lit("singleton class"), ISEQ_TYPE_CLASS, location.line);
10198 pm_scope_node_destroy(&next_scope_node);
10199
10200 PM_COMPILE_NOT_POPPED(cast->expression);
10201 PUSH_INSN(ret, location, putnil);
10202
10203 ID singletonclass;
10204 CONST_ID(singletonclass, "singletonclass");
10205 PUSH_INSN3(ret, location, defineclass, ID2SYM(singletonclass), child_iseq, INT2FIX(VM_DEFINECLASS_TYPE_SINGLETON_CLASS));
10206
10207 if (popped) PUSH_INSN(ret, location, pop);
10208 RB_OBJ_WRITTEN(iseq, Qundef, (VALUE) child_iseq);
10209
10210 return;
10211 }
10213 // __ENCODING__
10214 // ^^^^^^^^^^^^
10215 if (!popped) {
10216 VALUE value = pm_static_literal_value(iseq, node, scope_node);
10217 PUSH_INSN1(ret, location, putobject, value);
10218 }
10219 return;
10220 }
10221 case PM_SOURCE_FILE_NODE: {
10222 // __FILE__
10223 // ^^^^^^^^
10224 if (!popped) {
10225 const pm_source_file_node_t *cast = (const pm_source_file_node_t *) node;
10226 VALUE string = pm_source_file_value(cast, scope_node);
10227
10229 PUSH_INSN1(ret, location, putobject, string);
10230 }
10231 else if (PM_NODE_FLAG_P(cast, PM_STRING_FLAGS_MUTABLE)) {
10232 PUSH_INSN1(ret, location, putstring, string);
10233 }
10234 else {
10235 PUSH_INSN1(ret, location, putchilledstring, string);
10236 }
10237 }
10238 return;
10239 }
10240 case PM_SOURCE_LINE_NODE: {
10241 // __LINE__
10242 // ^^^^^^^^
10243 if (!popped) {
10244 VALUE value = pm_static_literal_value(iseq, node, scope_node);
10245 PUSH_INSN1(ret, location, putobject, value);
10246 }
10247 return;
10248 }
10249 case PM_SPLAT_NODE: {
10250 // foo(*bar)
10251 // ^^^^
10252 const pm_splat_node_t *cast = (const pm_splat_node_t *) node;
10253 if (cast->expression) {
10254 PM_COMPILE(cast->expression);
10255 }
10256
10257 if (!popped) {
10258 PUSH_INSN1(ret, location, splatarray, Qtrue);
10259 }
10260 return;
10261 }
10262 case PM_STATEMENTS_NODE: {
10263 // A list of statements.
10264 const pm_statements_node_t *cast = (const pm_statements_node_t *) node;
10265 const pm_node_list_t *body = &cast->body;
10266
10267 if (body->size > 0) {
10268 for (size_t index = 0; index < body->size - 1; index++) {
10269 PM_COMPILE_POPPED(body->nodes[index]);
10270 }
10271 PM_COMPILE(body->nodes[body->size - 1]);
10272 }
10273 else {
10274 PUSH_INSN(ret, location, putnil);
10275 }
10276 return;
10277 }
10278 case PM_STRING_NODE: {
10279 // "foo"
10280 // ^^^^^
10281 if (!popped) {
10282 const pm_string_node_t *cast = (const pm_string_node_t *) node;
10283 VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
10284
10286 PUSH_INSN1(ret, location, putobject, value);
10287 }
10288 else if (PM_NODE_FLAG_P(node, PM_STRING_FLAGS_MUTABLE)) {
10289 PUSH_INSN1(ret, location, putstring, value);
10290 }
10291 else {
10292 PUSH_INSN1(ret, location, putchilledstring, value);
10293 }
10294 }
10295 return;
10296 }
10297 case PM_SUPER_NODE:
10298 // super()
10299 // super(foo)
10300 // super(...)
10301 pm_compile_super_node(iseq, (const pm_super_node_t *) node, &location, ret, popped, scope_node);
10302 return;
10303 case PM_SYMBOL_NODE: {
10304 // :foo
10305 // ^^^^
10306 if (!popped) {
10307 VALUE value = pm_static_literal_value(iseq, node, scope_node);
10308 PUSH_INSN1(ret, location, putobject, value);
10309 }
10310 return;
10311 }
10312 case PM_TRUE_NODE: {
10313 // true
10314 // ^^^^
10315 if (!popped) {
10316 PUSH_INSN1(ret, location, putobject, Qtrue);
10317 }
10318 return;
10319 }
10320 case PM_UNDEF_NODE: {
10321 // undef foo
10322 // ^^^^^^^^^
10323 const pm_undef_node_t *cast = (const pm_undef_node_t *) node;
10324 const pm_node_list_t *names = &cast->names;
10325
10326 for (size_t index = 0; index < names->size; index++) {
10327 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_VMCORE));
10328 PUSH_INSN1(ret, location, putspecialobject, INT2FIX(VM_SPECIAL_OBJECT_CBASE));
10329
10330 PM_COMPILE_NOT_POPPED(names->nodes[index]);
10331 PUSH_SEND(ret, location, id_core_undef_method, INT2NUM(2));
10332
10333 if (index < names->size - 1) {
10334 PUSH_INSN(ret, location, pop);
10335 }
10336 }
10337
10338 if (popped) PUSH_INSN(ret, location, pop);
10339 return;
10340 }
10341 case PM_UNLESS_NODE: {
10342 // unless foo; bar end
10343 // ^^^^^^^^^^^^^^^^^^^
10344 //
10345 // bar unless foo
10346 // ^^^^^^^^^^^^^^
10347 const pm_unless_node_t *cast = (const pm_unless_node_t *) node;
10348 const pm_statements_node_t *statements = NULL;
10349 if (cast->else_clause != NULL) {
10350 statements = ((const pm_else_node_t *) cast->else_clause)->statements;
10351 }
10352
10353 pm_compile_conditional(iseq, &location, PM_UNLESS_NODE, (const pm_node_t *) cast, statements, (const pm_node_t *) cast->statements, cast->predicate, ret, popped, scope_node);
10354 return;
10355 }
10356 case PM_UNTIL_NODE: {
10357 // until foo; bar end
10358 // ^^^^^^^^^^^^^^^^^
10359 //
10360 // bar until foo
10361 // ^^^^^^^^^^^^^
10362 const pm_until_node_t *cast = (const pm_until_node_t *) node;
10363 pm_compile_loop(iseq, &location, cast->base.flags, PM_UNTIL_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node);
10364 return;
10365 }
10366 case PM_WHILE_NODE: {
10367 // while foo; bar end
10368 // ^^^^^^^^^^^^^^^^^^
10369 //
10370 // bar while foo
10371 // ^^^^^^^^^^^^^
10372 const pm_while_node_t *cast = (const pm_while_node_t *) node;
10373 pm_compile_loop(iseq, &location, cast->base.flags, PM_WHILE_NODE, (const pm_node_t *) cast, cast->statements, cast->predicate, ret, popped, scope_node);
10374 return;
10375 }
10376 case PM_X_STRING_NODE: {
10377 // `foo`
10378 // ^^^^^
10379 const pm_x_string_node_t *cast = (const pm_x_string_node_t *) node;
10380 VALUE value = parse_static_literal_string(iseq, scope_node, node, &cast->unescaped);
10381
10382 PUSH_INSN(ret, location, putself);
10383 PUSH_INSN1(ret, location, putobject, value);
10384 PUSH_SEND_WITH_FLAG(ret, location, idBackquote, INT2NUM(1), INT2FIX(VM_CALL_FCALL | VM_CALL_ARGS_SIMPLE));
10385 if (popped) PUSH_INSN(ret, location, pop);
10386
10387 return;
10388 }
10389 case PM_YIELD_NODE:
10390 // yield
10391 // ^^^^^
10392 //
10393 // yield 1
10394 // ^^^^^^^
10395 pm_compile_yield_node(iseq, (const pm_yield_node_t *) node, &location, ret, popped, scope_node);
10396 return;
10397 default:
10398 rb_raise(rb_eNotImpError, "node type %s not implemented", pm_node_type_to_str(PM_NODE_TYPE(node)));
10399 return;
10400 }
10401}
10402
10403#undef PM_CONTAINER_P
10404
10406static inline bool
10407pm_iseq_pre_execution_p(rb_iseq_t *iseq)
10408{
10409 switch (ISEQ_BODY(iseq)->type) {
10410 case ISEQ_TYPE_TOP:
10411 case ISEQ_TYPE_EVAL:
10412 case ISEQ_TYPE_MAIN:
10413 return true;
10414 default:
10415 return false;
10416 }
10417}
10418
10426VALUE
10427pm_iseq_compile_node(rb_iseq_t *iseq, pm_scope_node_t *node)
10428{
10429 DECL_ANCHOR(ret);
10430
10431 if (pm_iseq_pre_execution_p(iseq)) {
10432 // Because these ISEQs can have BEGIN{}, we're going to create two
10433 // anchors to compile them, a "pre" and a "body". We'll mark the "pre"
10434 // on the scope node so that when BEGIN{} is found, its contents will be
10435 // added to the "pre" anchor.
10436 DECL_ANCHOR(pre);
10437 node->pre_execution_anchor = pre;
10438
10439 // Now we'll compile the body as normal. We won't compile directly into
10440 // the "ret" anchor yet because we want to add the "pre" anchor to the
10441 // beginning of the "ret" anchor first.
10442 DECL_ANCHOR(body);
10443 pm_compile_node(iseq, (const pm_node_t *) node, body, false, node);
10444
10445 // Now we'll join both anchors together so that the content is in the
10446 // correct order.
10447 PUSH_SEQ(ret, pre);
10448 PUSH_SEQ(ret, body);
10449 }
10450 else {
10451 // In other circumstances, we can just compile the node directly into
10452 // the "ret" anchor.
10453 pm_compile_node(iseq, (const pm_node_t *) node, ret, false, node);
10454 }
10455
10456 CHECK(iseq_setup_insn(iseq, ret));
10457 return iseq_setup(iseq, ret);
10458}
10459
10464void
10465pm_parse_result_free(pm_parse_result_t *result)
10466{
10467 if (result->node.ast_node != NULL) {
10468 pm_node_destroy(&result->parser, result->node.ast_node);
10469 }
10470
10471 if (result->parsed) {
10472 xfree(result->node.constants);
10473 pm_scope_node_destroy(&result->node);
10474 }
10475
10476 pm_parser_free(&result->parser);
10477 pm_string_free(&result->input);
10478 pm_options_free(&result->options);
10479}
10480
10482typedef struct {
10485
10487 int32_t line;
10488
10491
10493 uint32_t column_end;
10495
10497typedef struct {
10499 const char *number_prefix;
10500
10502 const char *blank_prefix;
10503
10505 const char *divider;
10506
10509
10513
10514#define PM_COLOR_BOLD "\033[1m"
10515#define PM_COLOR_GRAY "\033[2m"
10516#define PM_COLOR_RED "\033[1;31m"
10517#define PM_COLOR_RESET "\033[m"
10518#define PM_ERROR_TRUNCATE 30
10519
10520static inline pm_parse_error_t *
10521pm_parse_errors_format_sort(const pm_parser_t *parser, const pm_list_t *error_list, const pm_newline_list_t *newline_list) {
10522 pm_parse_error_t *errors = xcalloc(error_list->size, sizeof(pm_parse_error_t));
10523 if (errors == NULL) return NULL;
10524
10525 int32_t start_line = parser->start_line;
10526 for (pm_diagnostic_t *error = (pm_diagnostic_t *) error_list->head; error != NULL; error = (pm_diagnostic_t *) error->node.next) {
10527 pm_line_column_t start = pm_newline_list_line_column(newline_list, error->location.start, start_line);
10528 pm_line_column_t end = pm_newline_list_line_column(newline_list, error->location.end, start_line);
10529
10530 // We're going to insert this error into the array in sorted order. We
10531 // do this by finding the first error that has a line number greater
10532 // than the current error and then inserting the current error before
10533 // that one.
10534 size_t index = 0;
10535 while (
10536 (index < error_list->size) &&
10537 (errors[index].error != NULL) &&
10538 (
10539 (errors[index].line < start.line) ||
10540 ((errors[index].line == start.line) && (errors[index].column_start < start.column))
10541 )
10542 ) index++;
10543
10544 // Now we're going to shift all of the errors after this one down one
10545 // index to make room for the new error.
10546 if (index + 1 < error_list->size) {
10547 memmove(&errors[index + 1], &errors[index], sizeof(pm_parse_error_t) * (error_list->size - index - 1));
10548 }
10549
10550 // Finally, we'll insert the error into the array.
10551 uint32_t column_end;
10552 if (start.line == end.line) {
10553 column_end = end.column;
10554 } else {
10555 column_end = (uint32_t) (newline_list->offsets[start.line - start_line + 1] - newline_list->offsets[start.line - start_line] - 1);
10556 }
10557
10558 // Ensure we have at least one column of error.
10559 if (start.column == column_end) column_end++;
10560
10561 errors[index] = (pm_parse_error_t) {
10562 .error = error,
10563 .line = start.line,
10564 .column_start = start.column,
10565 .column_end = column_end
10566 };
10567 }
10568
10569 return errors;
10570}
10571
10572/* Append a literal string to the buffer. */
10573#define pm_buffer_append_literal(buffer, str) pm_buffer_append_string(buffer, str, rb_strlen_lit(str))
10574
10575static inline void
10576pm_parse_errors_format_line(const pm_parser_t *parser, const pm_newline_list_t *newline_list, const char *number_prefix, int32_t line, uint32_t column_start, uint32_t column_end, pm_buffer_t *buffer) {
10577 int32_t line_delta = line - parser->start_line;
10578 assert(line_delta >= 0);
10579
10580 size_t index = (size_t) line_delta;
10581 assert(index < newline_list->size);
10582
10583 const uint8_t *start = &parser->start[newline_list->offsets[index]];
10584 const uint8_t *end;
10585
10586 if (index >= newline_list->size - 1) {
10587 end = parser->end;
10588 } else {
10589 end = &parser->start[newline_list->offsets[index + 1]];
10590 }
10591
10592 pm_buffer_append_format(buffer, number_prefix, line);
10593
10594 // Here we determine if we should truncate the end of the line.
10595 bool truncate_end = false;
10596 if ((column_end != 0) && ((end - (start + column_end)) >= PM_ERROR_TRUNCATE)) {
10597 end = start + column_end + PM_ERROR_TRUNCATE;
10598 truncate_end = true;
10599 }
10600
10601 // Here we determine if we should truncate the start of the line.
10602 if (column_start >= PM_ERROR_TRUNCATE) {
10603 pm_buffer_append_string(buffer, "... ", 4);
10604 start += column_start;
10605 }
10606
10607 pm_buffer_append_string(buffer, (const char *) start, (size_t) (end - start));
10608
10609 if (truncate_end) {
10610 pm_buffer_append_string(buffer, " ...\n", 5);
10611 } else if (end == parser->end && end[-1] != '\n') {
10612 pm_buffer_append_string(buffer, "\n", 1);
10613 }
10614}
10615
10619static void
10620pm_parse_errors_format(const pm_parser_t *parser, const pm_list_t *error_list, pm_buffer_t *buffer, int highlight, bool inline_messages) {
10621 assert(error_list->size != 0);
10622
10623 // First, we're going to sort all of the errors by line number using an
10624 // insertion sort into a newly allocated array.
10625 const int32_t start_line = parser->start_line;
10626 const pm_newline_list_t *newline_list = &parser->newline_list;
10627
10628 pm_parse_error_t *errors = pm_parse_errors_format_sort(parser, error_list, newline_list);
10629 if (errors == NULL) return;
10630
10631 // Now we're going to determine how we're going to format line numbers and
10632 // blank lines based on the maximum number of digits in the line numbers
10633 // that are going to be displaid.
10634 pm_parse_error_format_t error_format;
10635 int32_t first_line_number = errors[0].line;
10636 int32_t last_line_number = errors[error_list->size - 1].line;
10637
10638 // If we have a maximum line number that is negative, then we're going to
10639 // use the absolute value for comparison but multiple by 10 to additionally
10640 // have a column for the negative sign.
10641 if (first_line_number < 0) first_line_number = (-first_line_number) * 10;
10642 if (last_line_number < 0) last_line_number = (-last_line_number) * 10;
10643 int32_t max_line_number = first_line_number > last_line_number ? first_line_number : last_line_number;
10644
10645 if (max_line_number < 10) {
10646 if (highlight > 0) {
10647 error_format = (pm_parse_error_format_t) {
10648 .number_prefix = PM_COLOR_GRAY "%1" PRIi32 " | " PM_COLOR_RESET,
10649 .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
10650 .divider = PM_COLOR_GRAY " ~~~~~" PM_COLOR_RESET "\n"
10651 };
10652 } else {
10653 error_format = (pm_parse_error_format_t) {
10654 .number_prefix = "%1" PRIi32 " | ",
10655 .blank_prefix = " | ",
10656 .divider = " ~~~~~\n"
10657 };
10658 }
10659 } else if (max_line_number < 100) {
10660 if (highlight > 0) {
10661 error_format = (pm_parse_error_format_t) {
10662 .number_prefix = PM_COLOR_GRAY "%2" PRIi32 " | " PM_COLOR_RESET,
10663 .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
10664 .divider = PM_COLOR_GRAY " ~~~~~~" PM_COLOR_RESET "\n"
10665 };
10666 } else {
10667 error_format = (pm_parse_error_format_t) {
10668 .number_prefix = "%2" PRIi32 " | ",
10669 .blank_prefix = " | ",
10670 .divider = " ~~~~~~\n"
10671 };
10672 }
10673 } else if (max_line_number < 1000) {
10674 if (highlight > 0) {
10675 error_format = (pm_parse_error_format_t) {
10676 .number_prefix = PM_COLOR_GRAY "%3" PRIi32 " | " PM_COLOR_RESET,
10677 .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
10678 .divider = PM_COLOR_GRAY " ~~~~~~~" PM_COLOR_RESET "\n"
10679 };
10680 } else {
10681 error_format = (pm_parse_error_format_t) {
10682 .number_prefix = "%3" PRIi32 " | ",
10683 .blank_prefix = " | ",
10684 .divider = " ~~~~~~~\n"
10685 };
10686 }
10687 } else if (max_line_number < 10000) {
10688 if (highlight > 0) {
10689 error_format = (pm_parse_error_format_t) {
10690 .number_prefix = PM_COLOR_GRAY "%4" PRIi32 " | " PM_COLOR_RESET,
10691 .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
10692 .divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n"
10693 };
10694 } else {
10695 error_format = (pm_parse_error_format_t) {
10696 .number_prefix = "%4" PRIi32 " | ",
10697 .blank_prefix = " | ",
10698 .divider = " ~~~~~~~~\n"
10699 };
10700 }
10701 } else {
10702 if (highlight > 0) {
10703 error_format = (pm_parse_error_format_t) {
10704 .number_prefix = PM_COLOR_GRAY "%5" PRIi32 " | " PM_COLOR_RESET,
10705 .blank_prefix = PM_COLOR_GRAY " | " PM_COLOR_RESET,
10706 .divider = PM_COLOR_GRAY " ~~~~~~~~" PM_COLOR_RESET "\n"
10707 };
10708 } else {
10709 error_format = (pm_parse_error_format_t) {
10710 .number_prefix = "%5" PRIi32 " | ",
10711 .blank_prefix = " | ",
10712 .divider = " ~~~~~~~~\n"
10713 };
10714 }
10715 }
10716
10717 error_format.blank_prefix_length = strlen(error_format.blank_prefix);
10718 error_format.divider_length = strlen(error_format.divider);
10719
10720 // Now we're going to iterate through every error in our error list and
10721 // display it. While we're iterating, we will display some padding lines of
10722 // the source before the error to give some context. We'll be careful not to
10723 // display the same line twice in case the errors are close enough in the
10724 // source.
10725 int32_t last_line = parser->start_line - 1;
10726 uint32_t last_column_start = 0;
10727 const pm_encoding_t *encoding = parser->encoding;
10728
10729 for (size_t index = 0; index < error_list->size; index++) {
10730 pm_parse_error_t *error = &errors[index];
10731
10732 // Here we determine how many lines of padding of the source to display,
10733 // based on the difference from the last line that was displaid.
10734 if (error->line - last_line > 1) {
10735 if (error->line - last_line > 2) {
10736 if ((index != 0) && (error->line - last_line > 3)) {
10737 pm_buffer_append_string(buffer, error_format.divider, error_format.divider_length);
10738 }
10739
10740 pm_buffer_append_string(buffer, " ", 2);
10741 pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 2, 0, 0, buffer);
10742 }
10743
10744 pm_buffer_append_string(buffer, " ", 2);
10745 pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line - 1, 0, 0, buffer);
10746 }
10747
10748 // If this is the first error or we're on a new line, then we'll display
10749 // the line that has the error in it.
10750 if ((index == 0) || (error->line != last_line)) {
10751 if (highlight > 1) {
10752 pm_buffer_append_literal(buffer, PM_COLOR_RED "> " PM_COLOR_RESET);
10753 } else if (highlight > 0) {
10754 pm_buffer_append_literal(buffer, PM_COLOR_BOLD "> " PM_COLOR_RESET);
10755 } else {
10756 pm_buffer_append_literal(buffer, "> ");
10757 }
10758
10759 last_column_start = error->column_start;
10760
10761 // Find the maximum column end of all the errors on this line.
10762 uint32_t column_end = error->column_end;
10763 for (size_t next_index = index + 1; next_index < error_list->size; next_index++) {
10764 if (errors[next_index].line != error->line) break;
10765 if (errors[next_index].column_end > column_end) column_end = errors[next_index].column_end;
10766 }
10767
10768 pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, error->line, error->column_start, column_end, buffer);
10769 }
10770
10771 const uint8_t *start = &parser->start[newline_list->offsets[error->line - start_line]];
10772 if (start == parser->end) pm_buffer_append_byte(buffer, '\n');
10773
10774 // Now we'll display the actual error message. We'll do this by first
10775 // putting the prefix to the line, then a bunch of blank spaces
10776 // depending on the column, then as many carets as we need to display
10777 // the width of the error, then the error message itself.
10778 //
10779 // Note that this doesn't take into account the width of the actual
10780 // character when displaid in the terminal. For some east-asian
10781 // languages or emoji, this means it can be thrown off pretty badly. We
10782 // will need to solve this eventually.
10783 pm_buffer_append_string(buffer, " ", 2);
10784 pm_buffer_append_string(buffer, error_format.blank_prefix, error_format.blank_prefix_length);
10785
10786 size_t column = 0;
10787 if (last_column_start >= PM_ERROR_TRUNCATE) {
10788 pm_buffer_append_string(buffer, " ", 4);
10789 column = last_column_start;
10790 }
10791
10792 while (column < error->column_start) {
10793 pm_buffer_append_byte(buffer, ' ');
10794
10795 size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
10796 column += (char_width == 0 ? 1 : char_width);
10797 }
10798
10799 if (highlight > 1) pm_buffer_append_literal(buffer, PM_COLOR_RED);
10800 else if (highlight > 0) pm_buffer_append_literal(buffer, PM_COLOR_BOLD);
10801 pm_buffer_append_byte(buffer, '^');
10802
10803 size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
10804 column += (char_width == 0 ? 1 : char_width);
10805
10806 while (column < error->column_end) {
10807 pm_buffer_append_byte(buffer, '~');
10808
10809 size_t char_width = encoding->char_width(start + column, parser->end - (start + column));
10810 column += (char_width == 0 ? 1 : char_width);
10811 }
10812
10813 if (highlight > 0) pm_buffer_append_literal(buffer, PM_COLOR_RESET);
10814
10815 if (inline_messages) {
10816 pm_buffer_append_byte(buffer, ' ');
10817 assert(error->error != NULL);
10818
10819 const char *message = error->error->message;
10820 pm_buffer_append_string(buffer, message, strlen(message));
10821 }
10822
10823 pm_buffer_append_byte(buffer, '\n');
10824
10825 // Here we determine how many lines of padding to display after the
10826 // error, depending on where the next error is in source.
10827 last_line = error->line;
10828 int32_t next_line;
10829
10830 if (index == error_list->size - 1) {
10831 next_line = (((int32_t) newline_list->size) + parser->start_line);
10832
10833 // If the file ends with a newline, subtract one from our "next_line"
10834 // so that we don't output an extra line at the end of the file
10835 if ((parser->start + newline_list->offsets[newline_list->size - 1]) == parser->end) {
10836 next_line--;
10837 }
10838 }
10839 else {
10840 next_line = errors[index + 1].line;
10841 }
10842
10843 if (next_line - last_line > 1) {
10844 pm_buffer_append_string(buffer, " ", 2);
10845 pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer);
10846 }
10847
10848 if (next_line - last_line > 1) {
10849 pm_buffer_append_string(buffer, " ", 2);
10850 pm_parse_errors_format_line(parser, newline_list, error_format.number_prefix, ++last_line, 0, 0, buffer);
10851 }
10852 }
10853
10854 // Finally, we'll free the array of errors that we allocated.
10855 xfree(errors);
10856}
10857
10858#undef PM_ERROR_TRUNCATE
10859#undef PM_COLOR_GRAY
10860#undef PM_COLOR_RED
10861#undef PM_COLOR_RESET
10862
10869static bool
10870pm_parse_process_error_utf8_p(const pm_parser_t *parser, const pm_location_t *location)
10871{
10872 const size_t start_line = pm_newline_list_line_column(&parser->newline_list, location->start, 1).line;
10873 const size_t end_line = pm_newline_list_line_column(&parser->newline_list, location->end, 1).line;
10874
10875 const uint8_t *start = parser->start + parser->newline_list.offsets[start_line - 1];
10876 const uint8_t *end = ((end_line == parser->newline_list.size) ? parser->end : (parser->start + parser->newline_list.offsets[end_line]));
10877 size_t width;
10878
10879 while (start < end) {
10880 if ((width = pm_encoding_utf_8_char_width(start, end - start)) == 0) return false;
10881 start += width;
10882 }
10883
10884 return true;
10885}
10886
10891static VALUE
10892pm_parse_process_error(const pm_parse_result_t *result)
10893{
10894 const pm_parser_t *parser = &result->parser;
10895 const pm_diagnostic_t *head = (const pm_diagnostic_t *) parser->error_list.head;
10896 bool valid_utf8 = true;
10897
10898 pm_buffer_t buffer = { 0 };
10899 const pm_string_t *filepath = &parser->filepath;
10900
10901 int highlight = rb_stderr_tty_p();
10902 if (highlight) {
10903 const char *no_color = getenv("NO_COLOR");
10904 highlight = (no_color == NULL || no_color[0] == '\0') ? 2 : 1;
10905 }
10906
10907 for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) {
10908 switch (error->level) {
10910 // It is implicitly assumed that the error messages will be
10911 // encodeable as UTF-8. Because of this, we can't include source
10912 // examples that contain invalid byte sequences. So if any source
10913 // examples include invalid UTF-8 byte sequences, we will skip
10914 // showing source examples entirely.
10915 if (valid_utf8 && !pm_parse_process_error_utf8_p(parser, &error->location)) {
10916 valid_utf8 = false;
10917 }
10918 break;
10920 // Any errors with the level PM_ERROR_LEVEL_ARGUMENT take over as
10921 // the only argument that gets raised. This is to allow priority
10922 // messages that should be handled before anything else.
10923 int32_t line_number = (int32_t) pm_location_line_number(parser, &error->location);
10924
10925 pm_buffer_append_format(
10926 &buffer,
10927 "%.*s:%" PRIi32 ": %s",
10928 (int) pm_string_length(filepath),
10929 pm_string_source(filepath),
10930 line_number,
10931 error->message
10932 );
10933
10934 if (pm_parse_process_error_utf8_p(parser, &error->location)) {
10935 pm_buffer_append_byte(&buffer, '\n');
10936
10937 pm_list_node_t *list_node = (pm_list_node_t *) error;
10938 pm_list_t error_list = { .size = 1, .head = list_node, .tail = list_node };
10939
10940 pm_parse_errors_format(parser, &error_list, &buffer, highlight, false);
10941 }
10942
10943 VALUE value = rb_exc_new(rb_eArgError, pm_buffer_value(&buffer), pm_buffer_length(&buffer));
10944 pm_buffer_free(&buffer);
10945
10946 return value;
10947 }
10948 case PM_ERROR_LEVEL_LOAD: {
10949 // Load errors are much simpler, because they don't include any of
10950 // the source in them. We create the error directly from the
10951 // message.
10952 VALUE message = rb_enc_str_new_cstr(error->message, rb_locale_encoding());
10953 VALUE value = rb_exc_new3(rb_eLoadError, message);
10954 rb_ivar_set(value, rb_intern_const("@path"), Qnil);
10955 return value;
10956 }
10957 }
10958 }
10959
10960 pm_buffer_append_format(
10961 &buffer,
10962 "%.*s:%" PRIi32 ": syntax error%s found\n",
10963 (int) pm_string_length(filepath),
10964 pm_string_source(filepath),
10965 (int32_t) pm_location_line_number(parser, &head->location),
10966 (parser->error_list.size > 1) ? "s" : ""
10967 );
10968
10969 if (valid_utf8) {
10970 pm_parse_errors_format(parser, &parser->error_list, &buffer, highlight, true);
10971 }
10972 else {
10973 for (const pm_diagnostic_t *error = head; error != NULL; error = (const pm_diagnostic_t *) error->node.next) {
10974 if (error != head) pm_buffer_append_byte(&buffer, '\n');
10975 pm_buffer_append_format(&buffer, "%.*s:%" PRIi32 ": %s", (int) pm_string_length(filepath), pm_string_source(filepath), (int32_t) pm_location_line_number(parser, &error->location), error->message);
10976 }
10977 }
10978
10979 VALUE message = rb_enc_str_new(pm_buffer_value(&buffer), pm_buffer_length(&buffer), result->node.encoding);
10980 VALUE error = rb_exc_new_str(rb_eSyntaxError, message);
10981
10982 rb_encoding *filepath_encoding = result->node.filepath_encoding != NULL ? result->node.filepath_encoding : rb_utf8_encoding();
10983 VALUE path = rb_enc_str_new((const char *) pm_string_source(filepath), pm_string_length(filepath), filepath_encoding);
10984
10985 rb_ivar_set(error, rb_intern_const("@path"), path);
10986 pm_buffer_free(&buffer);
10987
10988 return error;
10989}
10990
10996static VALUE
10997pm_parse_process(pm_parse_result_t *result, pm_node_t *node, VALUE *script_lines)
10998{
10999 pm_parser_t *parser = &result->parser;
11000
11001 // First, set up the scope node so that the AST node is attached and can be
11002 // freed regardless of whether or we return an error.
11003 pm_scope_node_t *scope_node = &result->node;
11004 rb_encoding *filepath_encoding = scope_node->filepath_encoding;
11005 int coverage_enabled = scope_node->coverage_enabled;
11006
11007 pm_scope_node_init(node, scope_node, NULL);
11008 scope_node->filepath_encoding = filepath_encoding;
11009
11010 scope_node->encoding = rb_enc_find(parser->encoding->name);
11011 if (!scope_node->encoding) rb_bug("Encoding not found %s!", parser->encoding->name);
11012
11013 scope_node->coverage_enabled = coverage_enabled;
11014
11015 // If RubyVM.keep_script_lines is set to true, then we need to create that
11016 // array of script lines here.
11017 if (script_lines != NULL) {
11018 *script_lines = rb_ary_new_capa(parser->newline_list.size);
11019
11020 for (size_t index = 0; index < parser->newline_list.size; index++) {
11021 size_t offset = parser->newline_list.offsets[index];
11022 size_t length = index == parser->newline_list.size - 1 ? ((size_t) (parser->end - (parser->start + offset))) : (parser->newline_list.offsets[index + 1] - offset);
11023 rb_ary_push(*script_lines, rb_enc_str_new((const char *) parser->start + offset, length, scope_node->encoding));
11024 }
11025
11026 scope_node->script_lines = script_lines;
11027 }
11028
11029 // Emit all of the various warnings from the parse.
11030 const pm_diagnostic_t *warning;
11031 const char *warning_filepath = (const char *) pm_string_source(&parser->filepath);
11032
11033 for (warning = (const pm_diagnostic_t *) parser->warning_list.head; warning != NULL; warning = (const pm_diagnostic_t *) warning->node.next) {
11034 int line = pm_location_line_number(parser, &warning->location);
11035
11036 if (warning->level == PM_WARNING_LEVEL_VERBOSE) {
11037 rb_enc_compile_warning(scope_node->encoding, warning_filepath, line, "%s", warning->message);
11038 }
11039 else {
11040 rb_enc_compile_warn(scope_node->encoding, warning_filepath, line, "%s", warning->message);
11041 }
11042 }
11043
11044 // If there are errors, raise an appropriate error and free the result.
11045 if (parser->error_list.size > 0) {
11046 VALUE error = pm_parse_process_error(result);
11047
11048 // TODO: We need to set the backtrace.
11049 // rb_funcallv(error, rb_intern("set_backtrace"), 1, &path);
11050 return error;
11051 }
11052
11053 // Now set up the constant pool and intern all of the various constants into
11054 // their corresponding IDs.
11055 scope_node->parser = parser;
11056 scope_node->constants = xcalloc(parser->constant_pool.size, sizeof(ID));
11057
11058 for (uint32_t index = 0; index < parser->constant_pool.size; index++) {
11059 pm_constant_t *constant = &parser->constant_pool.constants[index];
11060 scope_node->constants[index] = rb_intern3((const char *) constant->start, constant->length, scope_node->encoding);
11061 }
11062
11063 scope_node->index_lookup_table = st_init_numtable();
11064 pm_constant_id_list_t *locals = &scope_node->locals;
11065 for (size_t index = 0; index < locals->size; index++) {
11066 st_insert(scope_node->index_lookup_table, locals->ids[index], index);
11067 }
11068
11069 // If we got here, this is a success and we can return Qnil to indicate that
11070 // no error should be raised.
11071 result->parsed = true;
11072 return Qnil;
11073}
11074
11079static void
11080pm_options_frozen_string_literal_init(pm_options_t *options)
11081{
11082 int frozen_string_literal = rb_iseq_opt_frozen_string_literal();
11083
11084 switch (frozen_string_literal) {
11085 case ISEQ_FROZEN_STRING_LITERAL_UNSET:
11086 break;
11087 case ISEQ_FROZEN_STRING_LITERAL_DISABLED:
11088 pm_options_frozen_string_literal_set(options, false);
11089 break;
11090 case ISEQ_FROZEN_STRING_LITERAL_ENABLED:
11091 pm_options_frozen_string_literal_set(options, true);
11092 break;
11093 default:
11094 rb_bug("pm_options_frozen_string_literal_init: invalid frozen_string_literal=%d", frozen_string_literal);
11095 break;
11096 }
11097}
11098
11103static inline VALUE
11104pm_parse_file_script_lines(const pm_scope_node_t *scope_node, const pm_parser_t *parser)
11105{
11106 const pm_newline_list_t *newline_list = &parser->newline_list;
11107 const char *start = (const char *) parser->start;
11108 const char *end = (const char *) parser->end;
11109
11110 // If we end exactly on a newline, then there's no need to push on a final
11111 // segment. If we don't, then we need to push on the last offset up to the
11112 // end of the string.
11113 size_t last_offset = newline_list->offsets[newline_list->size - 1];
11114 bool last_push = start + last_offset != end;
11115
11116 // Create the ruby strings that represent the lines of the source.
11117 VALUE lines = rb_ary_new_capa(newline_list->size - (last_push ? 0 : 1));
11118
11119 for (size_t index = 0; index < newline_list->size - 1; index++) {
11120 size_t offset = newline_list->offsets[index];
11121 size_t length = newline_list->offsets[index + 1] - offset;
11122
11123 rb_ary_push(lines, rb_enc_str_new(start + offset, length, scope_node->encoding));
11124 }
11125
11126 // Push on the last line if we need to.
11127 if (last_push) {
11128 rb_ary_push(lines, rb_enc_str_new(start + last_offset, end - (start + last_offset), scope_node->encoding));
11129 }
11130
11131 return lines;
11132}
11133
11134// This is essentially pm_string_mapped_init(), preferring to memory map the
11135// file, with additional handling for files that require blocking to properly
11136// read (e.g. pipes).
11138pm_read_file(pm_string_t *string, const char *filepath)
11139{
11140#ifdef _WIN32
11141 // Open the file for reading.
11142 int length = MultiByteToWideChar(CP_UTF8, 0, filepath, -1, NULL, 0);
11143 if (length == 0) return PM_STRING_INIT_ERROR_GENERIC;
11144
11145 WCHAR *wfilepath = xmalloc(sizeof(WCHAR) * ((size_t) length));
11146 if ((wfilepath == NULL) || (MultiByteToWideChar(CP_UTF8, 0, filepath, -1, wfilepath, length) == 0)) {
11147 xfree(wfilepath);
11149 }
11150
11151 HANDLE file = CreateFileW(wfilepath, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL);
11152 if (file == INVALID_HANDLE_VALUE) {
11154
11155 if (GetLastError() == ERROR_ACCESS_DENIED) {
11156 DWORD attributes = GetFileAttributesW(wfilepath);
11157 if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
11159 }
11160 }
11161
11162 xfree(wfilepath);
11163 return result;
11164 }
11165
11166 // Get the file size.
11167 DWORD file_size = GetFileSize(file, NULL);
11168 if (file_size == INVALID_FILE_SIZE) {
11169 CloseHandle(file);
11170 xfree(wfilepath);
11172 }
11173
11174 // If the file is empty, then we don't need to do anything else, we'll set
11175 // the source to a constant empty string and return.
11176 if (file_size == 0) {
11177 CloseHandle(file);
11178 xfree(wfilepath);
11179 const uint8_t source[] = "";
11180 *string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 };
11182 }
11183
11184 // Create a mapping of the file.
11185 HANDLE mapping = CreateFileMapping(file, NULL, PAGE_READONLY, 0, 0, NULL);
11186 if (mapping == NULL) {
11187 CloseHandle(file);
11188 xfree(wfilepath);
11190 }
11191
11192 // Map the file into memory.
11193 uint8_t *source = (uint8_t *) MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, 0);
11194 CloseHandle(mapping);
11195 CloseHandle(file);
11196 xfree(wfilepath);
11197
11198 if (source == NULL) {
11200 }
11201
11202 *string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = (size_t) file_size };
11204#elif defined(_POSIX_MAPPED_FILES)
11205 // Open the file for reading
11206 const int open_mode = O_RDONLY | O_NONBLOCK;
11207 int fd = open(filepath, open_mode);
11208 if (fd == -1) {
11210 }
11211
11212 // Stat the file to get the file size
11213 struct stat sb;
11214 if (fstat(fd, &sb) == -1) {
11215 close(fd);
11217 }
11218
11219 // Ensure it is a file and not a directory
11220 if (S_ISDIR(sb.st_mode)) {
11221 close(fd);
11223 }
11224
11225 // We need to wait for data first before reading from pipes and character
11226 // devices. To not block the entire VM, we need to release the GVL while
11227 // reading. Use IO#read to do this and let the GC handle closing the FD.
11228 if (S_ISFIFO(sb.st_mode) || S_ISCHR(sb.st_mode)) {
11229 VALUE io = rb_io_fdopen((int) fd, open_mode, filepath);
11231 VALUE contents = rb_funcall(io, rb_intern("read"), 0);
11232
11233 if (!RB_TYPE_P(contents, T_STRING)) {
11235 }
11236
11237 long len = RSTRING_LEN(contents);
11238 if (len < 0) {
11240 }
11241
11242 size_t length = (size_t) len;
11243 uint8_t *source = malloc(length);
11244 memcpy(source, RSTRING_PTR(contents), length);
11245 *string = (pm_string_t) { .type = PM_STRING_OWNED, .source = source, .length = length };
11246
11248 }
11249
11250 // mmap the file descriptor to virtually get the contents
11251 size_t size = (size_t) sb.st_size;
11252 uint8_t *source = NULL;
11253
11254 if (size == 0) {
11255 close(fd);
11256 const uint8_t source[] = "";
11257 *string = (pm_string_t) { .type = PM_STRING_CONSTANT, .source = source, .length = 0 };
11259 }
11260
11261 source = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
11262 if (source == MAP_FAILED) {
11263 close(fd);
11265 }
11266
11267 close(fd);
11268 *string = (pm_string_t) { .type = PM_STRING_MAPPED, .source = source, .length = size };
11270#else
11271 return pm_string_file_init(string, filepath);
11272#endif
11273}
11274
11279VALUE
11280pm_load_file(pm_parse_result_t *result, VALUE filepath, bool load_error)
11281{
11282 pm_string_init_result_t init_result = pm_read_file(&result->input, RSTRING_PTR(filepath));
11283
11284 if (init_result == PM_STRING_INIT_SUCCESS) {
11285 pm_options_frozen_string_literal_init(&result->options);
11286 return Qnil;
11287 }
11288
11289 int err;
11290 if (init_result == PM_STRING_INIT_ERROR_DIRECTORY) {
11291 err = EISDIR;
11292 } else {
11293#ifdef _WIN32
11294 err = rb_w32_map_errno(GetLastError());
11295#else
11296 err = errno;
11297#endif
11298 }
11299
11300 VALUE error;
11301 if (load_error) {
11302 VALUE message = rb_str_buf_new_cstr(strerror(err));
11303 rb_str_cat2(message, " -- ");
11304 rb_str_append(message, filepath);
11305
11306 error = rb_exc_new3(rb_eLoadError, message);
11307 rb_ivar_set(error, rb_intern_const("@path"), filepath);
11308 } else {
11309 error = rb_syserr_new(err, RSTRING_PTR(filepath));
11310 RB_GC_GUARD(filepath);
11311 }
11312
11313 return error;
11314}
11315
11322VALUE
11323pm_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines)
11324{
11325 result->node.filepath_encoding = rb_enc_get(filepath);
11326 pm_options_filepath_set(&result->options, RSTRING_PTR(filepath));
11327 RB_GC_GUARD(filepath);
11328
11329 pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options);
11330 pm_node_t *node = pm_parse(&result->parser);
11331
11332 VALUE error = pm_parse_process(result, node, script_lines);
11333
11334 // If we're parsing a filepath, then we need to potentially support the
11335 // SCRIPT_LINES__ constant, which can be a hash that has an array of lines
11336 // of every read file.
11337 ID id_script_lines = rb_intern("SCRIPT_LINES__");
11338
11339 if (rb_const_defined_at(rb_cObject, id_script_lines)) {
11340 VALUE constant_script_lines = rb_const_get_at(rb_cObject, id_script_lines);
11341
11342 if (RB_TYPE_P(constant_script_lines, T_HASH)) {
11343 rb_hash_aset(constant_script_lines, filepath, pm_parse_file_script_lines(&result->node, &result->parser));
11344 }
11345 }
11346
11347 return error;
11348}
11349
11354VALUE
11355pm_load_parse_file(pm_parse_result_t *result, VALUE filepath, VALUE *script_lines)
11356{
11357 VALUE error = pm_load_file(result, filepath, false);
11358 if (NIL_P(error)) {
11359 error = pm_parse_file(result, filepath, script_lines);
11360 }
11361
11362 return error;
11363}
11364
11371VALUE
11372pm_parse_string(pm_parse_result_t *result, VALUE source, VALUE filepath, VALUE *script_lines)
11373{
11374 rb_encoding *encoding = rb_enc_get(source);
11375 if (!rb_enc_asciicompat(encoding)) {
11376 return rb_exc_new_cstr(rb_eArgError, "invalid source encoding");
11377 }
11378
11379 pm_options_frozen_string_literal_init(&result->options);
11380 pm_string_constant_init(&result->input, RSTRING_PTR(source), RSTRING_LEN(source));
11381 pm_options_encoding_set(&result->options, rb_enc_name(encoding));
11382
11383 result->node.filepath_encoding = rb_enc_get(filepath);
11384 pm_options_filepath_set(&result->options, RSTRING_PTR(filepath));
11385 RB_GC_GUARD(filepath);
11386
11387 pm_parser_init(&result->parser, pm_string_source(&result->input), pm_string_length(&result->input), &result->options);
11388 pm_node_t *node = pm_parse(&result->parser);
11389
11390 return pm_parse_process(result, node, script_lines);
11391}
11392
11396static char *
11397pm_parse_stdin_fgets(char *string, int size, void *stream)
11398{
11399 RUBY_ASSERT(size > 0);
11400
11401 VALUE line = rb_funcall((VALUE) stream, rb_intern("gets"), 1, INT2FIX(size - 1));
11402 if (NIL_P(line)) {
11403 return NULL;
11404 }
11405
11406 const char *cstr = RSTRING_PTR(line);
11407 long length = RSTRING_LEN(line);
11408
11409 memcpy(string, cstr, length);
11410 string[length] = '\0';
11411
11412 return string;
11413}
11414
11415// We need access to this function when we're done parsing stdin.
11416void rb_reset_argf_lineno(long n);
11417
11423VALUE
11424pm_parse_stdin(pm_parse_result_t *result)
11425{
11426 pm_options_frozen_string_literal_init(&result->options);
11427
11428 pm_buffer_t buffer;
11429 pm_node_t *node = pm_parse_stream(&result->parser, &buffer, (void *) rb_stdin, pm_parse_stdin_fgets, &result->options);
11430
11431 // Copy the allocated buffer contents into the input string so that it gets
11432 // freed. At this point we've handed over ownership, so we don't need to
11433 // free the buffer itself.
11434 pm_string_owned_init(&result->input, (uint8_t *) pm_buffer_value(&buffer), pm_buffer_length(&buffer));
11435
11436 // When we're done parsing, we reset $. because we don't want the fact that
11437 // we went through an IO object to be visible to the user.
11438 rb_reset_argf_lineno(0);
11439
11440 return pm_parse_process(result, node, NULL);
11441}
11442
11443#undef NEW_ISEQ
11444#define NEW_ISEQ OLD_ISEQ
11445
11446#undef NEW_CHILD_ISEQ
11447#define NEW_CHILD_ISEQ OLD_CHILD_ISEQ
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
@ PM_INTERPOLATED_STRING_NODE_FLAGS_MUTABLE
mutable by virtue of a frozen_string_literal: false comment or --disable-frozen-string-literal; only ...
Definition ast.h:7830
@ PM_INTERPOLATED_STRING_NODE_FLAGS_FROZEN
frozen by virtue of a frozen_string_literal: true comment or --enable-frozen-string-literal; only for...
Definition ast.h:7827
@ PM_RANGE_FLAGS_EXCLUDE_END
... operator
Definition ast.h:7870
pm_node_type
This enum represents every type of node in the Ruby syntax tree.
Definition ast.h:572
@ PM_DEFINED_NODE
DefinedNode.
Definition ast.h:709
@ PM_PRE_EXECUTION_NODE
PreExecutionNode.
Definition ast.h:931
@ PM_RETRY_NODE
RetryNode.
Definition ast.h:964
@ PM_REDO_NODE
RedoNode.
Definition ast.h:943
@ PM_CONSTANT_PATH_WRITE_NODE
ConstantPathWriteNode.
Definition ast.h:694
@ PM_INDEX_AND_WRITE_NODE
IndexAndWriteNode.
Definition ast.h:787
@ PM_SOURCE_LINE_NODE
SourceLineNode.
Definition ast.h:985
@ PM_UNLESS_NODE
UnlessNode.
Definition ast.h:1009
@ PM_EMBEDDED_VARIABLE_NODE
EmbeddedVariableNode.
Definition ast.h:718
@ PM_GLOBAL_VARIABLE_OPERATOR_WRITE_NODE
GlobalVariableOperatorWriteNode.
Definition ast.h:751
@ PM_CALL_NODE
CallNode.
Definition ast.h:628
@ PM_NIL_NODE
NilNode.
Definition ast.h:895
@ PM_GLOBAL_VARIABLE_READ_NODE
GlobalVariableReadNode.
Definition ast.h:757
@ PM_RATIONAL_NODE
RationalNode.
Definition ast.h:940
@ PM_YIELD_NODE
YieldNode.
Definition ast.h:1024
@ PM_LOCAL_VARIABLE_AND_WRITE_NODE
LocalVariableAndWriteNode.
Definition ast.h:850
@ PM_CONSTANT_AND_WRITE_NODE
ConstantAndWriteNode.
Definition ast.h:670
@ PM_CLASS_NODE
ClassNode.
Definition ast.h:649
@ PM_FIND_PATTERN_NODE
FindPatternNode.
Definition ast.h:727
@ PM_CALL_OPERATOR_WRITE_NODE
CallOperatorWriteNode.
Definition ast.h:631
@ PM_MATCH_WRITE_NODE
MatchWriteNode.
Definition ast.h:877
@ PM_ARRAY_NODE
ArrayNode.
Definition ast.h:589
@ PM_CONSTANT_PATH_TARGET_NODE
ConstantPathTargetNode.
Definition ast.h:691
@ PM_PROGRAM_NODE
ProgramNode.
Definition ast.h:934
@ PM_OR_NODE
OrNode.
Definition ast.h:913
@ PM_MULTI_WRITE_NODE
MultiWriteNode.
Definition ast.h:889
@ PM_IF_NODE
IfNode.
Definition ast.h:772
@ PM_IMPLICIT_NODE
ImplicitNode.
Definition ast.h:778
@ PM_ARGUMENTS_NODE
ArgumentsNode.
Definition ast.h:586
@ PM_FORWARDING_SUPER_NODE
ForwardingSuperNode.
Definition ast.h:745
@ PM_WHILE_NODE
WhileNode.
Definition ast.h:1018
@ PM_INTERPOLATED_STRING_NODE
InterpolatedStringNode.
Definition ast.h:826
@ PM_FALSE_NODE
FalseNode.
Definition ast.h:724
@ PM_FORWARDING_PARAMETER_NODE
ForwardingParameterNode.
Definition ast.h:742
@ PM_BLOCK_LOCAL_VARIABLE_NODE
BlockLocalVariableNode.
Definition ast.h:610
@ PM_HASH_NODE
HashNode.
Definition ast.h:766
@ PM_UNTIL_NODE
UntilNode.
Definition ast.h:1012
@ PM_MATCH_PREDICATE_NODE
MatchPredicateNode.
Definition ast.h:871
@ PM_X_STRING_NODE
XStringNode.
Definition ast.h:1021
@ PM_LOCAL_VARIABLE_OPERATOR_WRITE_NODE
LocalVariableOperatorWriteNode.
Definition ast.h:853
@ PM_LOCAL_VARIABLE_OR_WRITE_NODE
LocalVariableOrWriteNode.
Definition ast.h:856
@ PM_INSTANCE_VARIABLE_AND_WRITE_NODE
InstanceVariableAndWriteNode.
Definition ast.h:799
@ PM_GLOBAL_VARIABLE_TARGET_NODE
GlobalVariableTargetNode.
Definition ast.h:760
@ PM_AND_NODE
AndNode.
Definition ast.h:583
@ PM_CONSTANT_TARGET_NODE
ConstantTargetNode.
Definition ast.h:700
@ PM_IT_LOCAL_VARIABLE_READ_NODE
ItLocalVariableReadNode.
Definition ast.h:835
@ PM_CONSTANT_PATH_AND_WRITE_NODE
ConstantPathAndWriteNode.
Definition ast.h:679
@ PM_IN_NODE
InNode.
Definition ast.h:784
@ PM_BLOCK_PARAMETER_NODE
BlockParameterNode.
Definition ast.h:616
@ PM_CAPTURE_PATTERN_NODE
CapturePatternNode.
Definition ast.h:640
@ PM_SOURCE_FILE_NODE
SourceFileNode.
Definition ast.h:982
@ PM_NO_KEYWORDS_PARAMETER_NODE
NoKeywordsParameterNode.
Definition ast.h:898
@ PM_CONSTANT_PATH_OPERATOR_WRITE_NODE
ConstantPathOperatorWriteNode.
Definition ast.h:685
@ PM_MULTI_TARGET_NODE
MultiTargetNode.
Definition ast.h:886
@ PM_SPLAT_NODE
SplatNode.
Definition ast.h:988
@ PM_LAMBDA_NODE
LambdaNode.
Definition ast.h:847
@ PM_CLASS_VARIABLE_READ_NODE
ClassVariableReadNode.
Definition ast.h:661
@ PM_REQUIRED_KEYWORD_PARAMETER_NODE
RequiredKeywordParameterNode.
Definition ast.h:949
@ PM_CALL_TARGET_NODE
CallTargetNode.
Definition ast.h:637
@ PM_ELSE_NODE
ElseNode.
Definition ast.h:712
@ PM_INTERPOLATED_MATCH_LAST_LINE_NODE
InterpolatedMatchLastLineNode.
Definition ast.h:820
@ PM_WHEN_NODE
WhenNode.
Definition ast.h:1015
@ PM_NUMBERED_PARAMETERS_NODE
NumberedParametersNode.
Definition ast.h:901
@ PM_SYMBOL_NODE
SymbolNode.
Definition ast.h:1000
@ PM_RESCUE_MODIFIER_NODE
RescueModifierNode.
Definition ast.h:955
@ PM_ALIAS_METHOD_NODE
AliasMethodNode.
Definition ast.h:577
@ PM_MATCH_REQUIRED_NODE
MatchRequiredNode.
Definition ast.h:874
@ PM_FORWARDING_ARGUMENTS_NODE
ForwardingArgumentsNode.
Definition ast.h:739
@ PM_BACK_REFERENCE_READ_NODE
BackReferenceReadNode.
Definition ast.h:601
@ PM_SCOPE_NODE
A special kind of node used for compilation.
Definition ast.h:1027
@ PM_BLOCK_ARGUMENT_NODE
BlockArgumentNode.
Definition ast.h:607
@ PM_MISSING_NODE
MissingNode.
Definition ast.h:880
@ PM_SELF_NODE
SelfNode.
Definition ast.h:970
@ PM_IMPLICIT_REST_NODE
ImplicitRestNode.
Definition ast.h:781
@ PM_TRUE_NODE
TrueNode.
Definition ast.h:1003
@ PM_ASSOC_SPLAT_NODE
AssocSplatNode.
Definition ast.h:598
@ PM_CLASS_VARIABLE_AND_WRITE_NODE
ClassVariableAndWriteNode.
Definition ast.h:652
@ PM_RANGE_NODE
RangeNode.
Definition ast.h:937
@ PM_INSTANCE_VARIABLE_OPERATOR_WRITE_NODE
InstanceVariableOperatorWriteNode.
Definition ast.h:802
@ PM_LOCAL_VARIABLE_READ_NODE
LocalVariableReadNode.
Definition ast.h:859
@ PM_SHAREABLE_CONSTANT_NODE
ShareableConstantNode.
Definition ast.h:973
@ PM_NEXT_NODE
NextNode.
Definition ast.h:892
@ PM_INSTANCE_VARIABLE_OR_WRITE_NODE
InstanceVariableOrWriteNode.
Definition ast.h:805
@ PM_REGULAR_EXPRESSION_NODE
RegularExpressionNode.
Definition ast.h:946
@ PM_CLASS_VARIABLE_OR_WRITE_NODE
ClassVariableOrWriteNode.
Definition ast.h:658
@ PM_BLOCK_PARAMETERS_NODE
BlockParametersNode.
Definition ast.h:619
@ PM_CONSTANT_WRITE_NODE
ConstantWriteNode.
Definition ast.h:703
@ PM_HASH_PATTERN_NODE
HashPatternNode.
Definition ast.h:769
@ PM_INDEX_OPERATOR_WRITE_NODE
IndexOperatorWriteNode.
Definition ast.h:790
@ PM_UNDEF_NODE
UndefNode.
Definition ast.h:1006
@ PM_ALTERNATION_PATTERN_NODE
AlternationPatternNode.
Definition ast.h:580
@ PM_ENSURE_NODE
EnsureNode.
Definition ast.h:721
@ PM_LOCAL_VARIABLE_WRITE_NODE
LocalVariableWriteNode.
Definition ast.h:865
@ PM_SINGLETON_CLASS_NODE
SingletonClassNode.
Definition ast.h:976
@ PM_KEYWORD_HASH_NODE
KeywordHashNode.
Definition ast.h:841
@ PM_PARENTHESES_NODE
ParenthesesNode.
Definition ast.h:919
@ PM_FOR_NODE
ForNode.
Definition ast.h:736
@ PM_CLASS_VARIABLE_WRITE_NODE
ClassVariableWriteNode.
Definition ast.h:667
@ PM_POST_EXECUTION_NODE
PostExecutionNode.
Definition ast.h:928
@ PM_CONSTANT_OPERATOR_WRITE_NODE
ConstantOperatorWriteNode.
Definition ast.h:673
@ PM_RETURN_NODE
ReturnNode.
Definition ast.h:967
@ PM_MODULE_NODE
ModuleNode.
Definition ast.h:883
@ PM_ARRAY_PATTERN_NODE
ArrayPatternNode.
Definition ast.h:592
@ PM_SUPER_NODE
SuperNode.
Definition ast.h:997
@ PM_MATCH_LAST_LINE_NODE
MatchLastLineNode.
Definition ast.h:868
@ PM_CONSTANT_PATH_NODE
ConstantPathNode.
Definition ast.h:682
@ PM_INTERPOLATED_SYMBOL_NODE
InterpolatedSymbolNode.
Definition ast.h:829
@ PM_CALL_AND_WRITE_NODE
CallAndWriteNode.
Definition ast.h:625
@ PM_OPTIONAL_KEYWORD_PARAMETER_NODE
OptionalKeywordParameterNode.
Definition ast.h:907
@ PM_CLASS_VARIABLE_TARGET_NODE
ClassVariableTargetNode.
Definition ast.h:664
@ PM_CASE_MATCH_NODE
CaseMatchNode.
Definition ast.h:643
@ PM_BREAK_NODE
BreakNode.
Definition ast.h:622
@ PM_CALL_OR_WRITE_NODE
CallOrWriteNode.
Definition ast.h:634
@ PM_IMAGINARY_NODE
ImaginaryNode.
Definition ast.h:775
@ PM_DEF_NODE
DefNode.
Definition ast.h:706
@ PM_CONSTANT_READ_NODE
ConstantReadNode.
Definition ast.h:697
@ PM_GLOBAL_VARIABLE_WRITE_NODE
GlobalVariableWriteNode.
Definition ast.h:763
@ PM_SOURCE_ENCODING_NODE
SourceEncodingNode.
Definition ast.h:979
@ PM_BEGIN_NODE
BeginNode.
Definition ast.h:604
@ PM_INTERPOLATED_X_STRING_NODE
InterpolatedXStringNode.
Definition ast.h:832
@ PM_INSTANCE_VARIABLE_READ_NODE
InstanceVariableReadNode.
Definition ast.h:808
@ PM_FLIP_FLOP_NODE
FlipFlopNode.
Definition ast.h:730
@ PM_PINNED_VARIABLE_NODE
PinnedVariableNode.
Definition ast.h:925
@ PM_REQUIRED_PARAMETER_NODE
RequiredParameterNode.
Definition ast.h:952
@ PM_INSTANCE_VARIABLE_WRITE_NODE
InstanceVariableWriteNode.
Definition ast.h:814
@ PM_INSTANCE_VARIABLE_TARGET_NODE
InstanceVariableTargetNode.
Definition ast.h:811
@ PM_GLOBAL_VARIABLE_AND_WRITE_NODE
GlobalVariableAndWriteNode.
Definition ast.h:748
@ PM_CASE_NODE
CaseNode.
Definition ast.h:646
@ PM_RESCUE_NODE
RescueNode.
Definition ast.h:958
@ PM_FLOAT_NODE
FloatNode.
Definition ast.h:733
@ PM_ASSOC_NODE
AssocNode.
Definition ast.h:595
@ PM_IT_PARAMETERS_NODE
ItParametersNode.
Definition ast.h:838
@ PM_INTEGER_NODE
IntegerNode.
Definition ast.h:817
@ PM_LOCAL_VARIABLE_TARGET_NODE
LocalVariableTargetNode.
Definition ast.h:862
@ PM_STRING_NODE
StringNode.
Definition ast.h:994
@ PM_INDEX_OR_WRITE_NODE
IndexOrWriteNode.
Definition ast.h:793
@ PM_ALIAS_GLOBAL_VARIABLE_NODE
AliasGlobalVariableNode.
Definition ast.h:574
@ PM_PARAMETERS_NODE
ParametersNode.
Definition ast.h:916
@ PM_NUMBERED_REFERENCE_READ_NODE
NumberedReferenceReadNode.
Definition ast.h:904
@ PM_CONSTANT_PATH_OR_WRITE_NODE
ConstantPathOrWriteNode.
Definition ast.h:688
@ PM_GLOBAL_VARIABLE_OR_WRITE_NODE
GlobalVariableOrWriteNode.
Definition ast.h:754
@ PM_CONSTANT_OR_WRITE_NODE
ConstantOrWriteNode.
Definition ast.h:676
@ PM_STATEMENTS_NODE
StatementsNode.
Definition ast.h:991
@ PM_OPTIONAL_PARAMETER_NODE
OptionalParameterNode.
Definition ast.h:910
@ PM_PINNED_EXPRESSION_NODE
PinnedExpressionNode.
Definition ast.h:922
@ PM_BLOCK_NODE
BlockNode.
Definition ast.h:613
@ PM_CLASS_VARIABLE_OPERATOR_WRITE_NODE
ClassVariableOperatorWriteNode.
Definition ast.h:655
@ PM_REST_PARAMETER_NODE
RestParameterNode.
Definition ast.h:961
@ PM_EMBEDDED_STATEMENTS_NODE
EmbeddedStatementsNode.
Definition ast.h:715
@ PM_INTERPOLATED_REGULAR_EXPRESSION_NODE
InterpolatedRegularExpressionNode.
Definition ast.h:823
@ PM_INDEX_TARGET_NODE
IndexTargetNode.
Definition ast.h:796
@ PM_KEYWORD_REST_PARAMETER_NODE
KeywordRestParameterNode.
Definition ast.h:844
static const pm_node_flags_t PM_NODE_FLAG_NEWLINE
We store the flags enum in every node in the tree.
Definition ast.h:1046
@ PM_SYMBOL_FLAGS_FORCED_UTF8_ENCODING
internal bytes forced the encoding to UTF-8
Definition ast.h:7947
@ PM_SYMBOL_FLAGS_FORCED_US_ASCII_ENCODING
internal bytes forced the encoding to US-ASCII
Definition ast.h:7953
@ PM_SYMBOL_FLAGS_FORCED_BINARY_ENCODING
internal bytes forced the encoding to binary
Definition ast.h:7950
@ PM_STRING_FLAGS_FROZEN
frozen by virtue of a frozen_string_literal: true comment or --enable-frozen-string-literal
Definition ast.h:7936
@ PM_STRING_FLAGS_FORCED_BINARY_ENCODING
internal bytes forced the encoding to binary
Definition ast.h:7933
@ PM_STRING_FLAGS_MUTABLE
mutable by virtue of a frozen_string_literal: false comment or --disable-frozen-string-literal
Definition ast.h:7939
@ PM_STRING_FLAGS_FORCED_UTF8_ENCODING
internal bytes forced the encoding to UTF-8
Definition ast.h:7930
@ PM_ARGUMENTS_NODE_FLAGS_CONTAINS_SPLAT
if the arguments contain a splat
Definition ast.h:7763
@ PM_ARGUMENTS_NODE_FLAGS_CONTAINS_FORWARDING
if the arguments contain forwarding
Definition ast.h:7754
@ PM_ARGUMENTS_NODE_FLAGS_CONTAINS_KEYWORD_SPLAT
if the arguments contain a keyword splat
Definition ast.h:7760
@ PM_ARGUMENTS_NODE_FLAGS_CONTAINS_MULTIPLE_SPLATS
if the arguments contain multiple splats
Definition ast.h:7766
#define PM_NODE_FLAG_P(node, flag)
Return true if the given flag is set on the given node.
Definition ast.h:1063
#define PM_NODE_TYPE_P(node, type)
Return true if the type of the given node matches the given type.
Definition ast.h:1058
#define PM_NODE_TYPE(node)
Cast the type to an enum to allow the compiler to provide exhaustiveness checking.
Definition ast.h:1053
@ PM_PARENTHESES_NODE_FLAGS_MULTIPLE_STATEMENTS
parentheses that contain multiple potentially void statements
Definition ast.h:7862
@ PM_CALL_NODE_FLAGS_IGNORE_VISIBILITY
a call that ignores method visibility
Definition ast.h:7791
@ PM_CALL_NODE_FLAGS_SAFE_NAVIGATION
&.
Definition ast.h:7782
@ PM_CALL_NODE_FLAGS_ATTRIBUTE_WRITE
a call that is an attribute write, so the value being written should be returned
Definition ast.h:7788
@ PM_CALL_NODE_FLAGS_VARIABLE_CALL
a call that could have been a local variable
Definition ast.h:7785
@ PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_EVERYTHING
constant writes that should be modified with shareable constant value experimental everything
Definition ast.h:7919
@ PM_SHAREABLE_CONSTANT_NODE_FLAGS_LITERAL
constant writes that should be modified with shareable constant value literal
Definition ast.h:7916
@ PM_SHAREABLE_CONSTANT_NODE_FLAGS_EXPERIMENTAL_COPY
constant writes that should be modified with shareable constant value experimental copy
Definition ast.h:7922
uint16_t pm_node_type_t
This is the type of node embedded in the node struct.
Definition ast.h:1034
@ PM_KEYWORD_HASH_NODE_FLAGS_SYMBOL_KEYS
a keyword hash which only has AssocNode elements all with symbol keys, which means the elements can b...
Definition ast.h:7838
@ PM_REGULAR_EXPRESSION_FLAGS_FORCED_BINARY_ENCODING
internal bytes forced the encoding to binary
Definition ast.h:7905
@ PM_REGULAR_EXPRESSION_FLAGS_EUC_JP
e - forces the EUC-JP encoding
Definition ast.h:7890
@ PM_REGULAR_EXPRESSION_FLAGS_IGNORE_CASE
i - ignores the case of characters when matching
Definition ast.h:7878
@ PM_REGULAR_EXPRESSION_FLAGS_ASCII_8BIT
n - forces the ASCII-8BIT encoding
Definition ast.h:7893
@ PM_REGULAR_EXPRESSION_FLAGS_MULTI_LINE
m - allows $ to match the end of lines within strings
Definition ast.h:7884
@ PM_REGULAR_EXPRESSION_FLAGS_EXTENDED
x - ignores whitespace and allows comments in regular expressions
Definition ast.h:7881
@ PM_REGULAR_EXPRESSION_FLAGS_ONCE
o - only interpolates values into the regular expression once
Definition ast.h:7887
@ PM_REGULAR_EXPRESSION_FLAGS_WINDOWS_31J
s - forces the Windows-31J encoding
Definition ast.h:7896
@ PM_REGULAR_EXPRESSION_FLAGS_UTF_8
u - forces the UTF-8 encoding
Definition ast.h:7899
uint16_t pm_node_flags_t
These are the flags embedded in the node struct.
Definition ast.h:1040
@ PM_PARAMETER_FLAGS_REPEATED_PARAMETER
a parameter name that has been repeated in the method signature
Definition ast.h:7854
@ PM_ENCODING_FLAGS_FORCED_BINARY_ENCODING
internal bytes forced the encoding to binary
Definition ast.h:7802
@ PM_ENCODING_FLAGS_FORCED_UTF8_ENCODING
internal bytes forced the encoding to UTF-8
Definition ast.h:7799
@ PM_LOOP_FLAGS_BEGIN_MODIFIER
a loop after a begin statement, so the body is executed first before the condition
Definition ast.h:7846
@ PM_WARNING_LEVEL_VERBOSE
For warnings which should be emitted if $VERBOSE == true.
Definition diagnostic.h:408
@ PM_ERROR_LEVEL_ARGUMENT
For errors that should raise an argument error.
Definition diagnostic.h:394
@ PM_ERROR_LEVEL_LOAD
For errors that should raise a load error.
Definition diagnostic.h:397
@ PM_ERROR_LEVEL_SYNTAX
For errors that should raise a syntax error.
Definition diagnostic.h:391
#define RUBY_EVENT_END
Encountered an end of a class clause.
Definition event.h:40
#define RUBY_EVENT_B_RETURN
Encountered a next statement.
Definition event.h:56
#define RUBY_EVENT_CLASS
Encountered a new class.
Definition event.h:39
#define RUBY_EVENT_LINE
Encountered a new line.
Definition event.h:38
#define RUBY_EVENT_RETURN
Encountered a return statement.
Definition event.h:42
#define RUBY_EVENT_B_CALL
Encountered an yield statement.
Definition event.h:55
#define RUBY_EVENT_CALL
A method, written in Ruby, is called.
Definition event.h:41
#define RUBY_EVENT_RESCUE
Encountered a rescue statement.
Definition event.h:61
#define rb_str_new2
Old name of rb_str_new_cstr.
Definition string.h:1675
#define ALLOCV
Old name of RB_ALLOCV.
Definition memory.h:404
#define ALLOC
Old name of RB_ALLOC.
Definition memory.h:400
#define RFLOAT_VALUE
Old name of rb_float_value.
Definition double.h:28
#define T_STRING
Old name of RUBY_T_STRING.
Definition value_type.h:78
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define rb_str_cat2
Old name of rb_str_cat_cstr.
Definition string.h:1683
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define OBJ_FREEZE
Old name of RB_OBJ_FREEZE.
Definition fl_type.h:135
#define ULONG2NUM
Old name of RB_ULONG2NUM.
Definition long.h:60
#define FIXABLE
Old name of RB_FIXABLE.
Definition fixnum.h:25
#define xmalloc
Old name of ruby_xmalloc.
Definition xmalloc.h:53
#define LONG2FIX
Old name of RB_INT2FIX.
Definition long.h:49
#define ZALLOC_N
Old name of RB_ZALLOC_N.
Definition memory.h:401
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define ALLOC_N
Old name of RB_ALLOC_N.
Definition memory.h:399
#define rb_exc_new3
Old name of rb_exc_new_str.
Definition error.h:38
#define Qtrue
Old name of RUBY_Qtrue.
#define INT2NUM
Old name of RB_INT2NUM.
Definition int.h:43
#define Qnil
Old name of RUBY_Qnil.
#define Qfalse
Old name of RUBY_Qfalse.
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
#define DBL2NUM
Old name of rb_float_new.
Definition double.h:29
#define xcalloc
Old name of ruby_xcalloc.
Definition xmalloc.h:55
#define NUM2LONG
Old name of RB_NUM2LONG.
Definition long.h:51
#define UINT2NUM
Old name of RB_UINT2NUM.
Definition int.h:46
#define CONST_ID
Old name of RUBY_CONST_ID.
Definition symbol.h:47
#define ruby_debug
This variable controls whether the interpreter is in debug mode.
Definition error.h:486
VALUE rb_eNotImpError
NotImplementedError exception.
Definition error.c:1440
void rb_exc_raise(VALUE mesg)
Raises an exception in the current thread.
Definition eval.c:675
VALUE rb_eStandardError
StandardError exception.
Definition error.c:1427
VALUE rb_eLoadError
LoadError exception.
Definition error.c:1448
VALUE rb_eTypeError
TypeError exception.
Definition error.c:1430
VALUE rb_eNoMatchingPatternError
NoMatchingPatternError exception.
Definition error.c:1443
void rb_warn(const char *fmt,...)
Identical to rb_warning(), except it reports unless $VERBOSE is nil.
Definition error.c:466
VALUE rb_exc_new(VALUE etype, const char *ptr, long len)
Creates an instance of the passed exception class.
Definition error.c:1468
VALUE rb_eNoMatchingPatternKeyError
NoMatchingPatternKeyError exception.
Definition error.c:1444
VALUE rb_exc_new_str(VALUE etype, VALUE str)
Identical to rb_exc_new_cstr(), except it takes a Ruby's string instead of C's.
Definition error.c:1481
VALUE rb_eSyntaxError
SyntaxError exception.
Definition error.c:1447
VALUE rb_syserr_new(int n, const char *mesg)
Creates an exception object that represents the given C errno.
Definition error.c:3891
VALUE rb_cArray
Array class.
Definition array.c:40
VALUE rb_obj_hide(VALUE obj)
Make the object invisible from Ruby code.
Definition object.c:104
VALUE rb_stdin
STDIN constant.
Definition io.c:201
VALUE rb_obj_freeze(VALUE obj)
Just calls rb_obj_freeze_inline() inside.
Definition object.c:1260
#define RB_OBJ_WRITTEN(old, oldv, young)
Identical to RB_OBJ_WRITE(), except it doesn't write any values, but only a WB declaration.
Definition gc.h:615
#define RB_OBJ_WRITE(old, slot, young)
Declaration of a "back" pointer.
Definition gc.h:603
int rb_enc_str_coderange(VALUE str)
Scans the passed string to collect its code range.
Definition string.c:909
VALUE rb_enc_interned_str(const char *ptr, long len, rb_encoding *enc)
Identical to rb_enc_str_new(), except it returns a "f"string.
Definition string.c:12568
VALUE rb_enc_str_new_cstr(const char *ptr, rb_encoding *enc)
Identical to rb_enc_str_new(), except it assumes the passed pointer is a pointer to a C string.
Definition string.c:1107
VALUE rb_funcall(VALUE recv, ID mid, int n,...)
Calls a method.
Definition vm_eval.c:1099
VALUE rb_io_fdopen(int fd, int flags, const char *path)
Creates an IO instance whose backend is the given file descriptor.
Definition io.c:9357
VALUE rb_range_new(VALUE beg, VALUE end, int excl)
Creates a new Range.
Definition range.c:68
VALUE rb_rational_new(VALUE num, VALUE den)
Constructs a Rational, with reduction.
Definition rational.c:1974
VALUE rb_str_append(VALUE dst, VALUE src)
Identical to rb_str_buf_append(), except it converts the right hand side before concatenating.
Definition string.c:3695
VALUE rb_str_tmp_new(long len)
Allocates a "temporary" string.
Definition string.c:1688
#define rb_str_new(str, len)
Allocates an instance of rb_cString.
Definition string.h:1498
#define rb_exc_new_cstr(exc, str)
Identical to rb_exc_new(), except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1670
#define rb_str_buf_new_cstr(str)
Identical to rb_str_new_cstr, except done differently.
Definition string.h:1639
VALUE rb_str_concat(VALUE dst, VALUE src)
Identical to rb_str_append(), except it also accepts an integer as a codepoint.
Definition string.c:3937
VALUE rb_str_freeze(VALUE str)
This is the implementation of String#freeze.
Definition string.c:3195
#define rb_str_new_cstr(str)
Identical to rb_str_new, except it assumes the passed pointer is a pointer to a C string.
Definition string.h:1514
VALUE rb_obj_as_string(VALUE obj)
Try converting an object to its stringised representation using its to_s method, if any.
Definition string.c:1792
VALUE rb_ivar_set(VALUE obj, ID name, VALUE val)
Identical to rb_iv_set(), except it accepts the name as an ID instead of a C string.
Definition variable.c:1924
VALUE rb_const_get_at(VALUE space, ID name)
Identical to rb_const_defined_at(), except it returns the actual defined value.
Definition variable.c:3199
int rb_const_defined_at(VALUE space, ID name)
Identical to rb_const_defined(), except it doesn't look for parent classes.
Definition variable.c:3521
static ID rb_intern_const(const char *str)
This is a "tiny optimisation" over rb_intern().
Definition symbol.h:284
VALUE rb_id2sym(ID id)
Allocates an instance of rb_cSymbol that has the given id.
Definition symbol.c:967
VALUE rb_sym2str(VALUE symbol)
Obtain a frozen string representation of a symbol (not including the leading colon).
Definition symbol.c:986
@ RUBY_IO_READABLE
IO::READABLE
Definition io.h:82
VALUE rb_io_wait(VALUE io, VALUE events, VALUE timeout)
Blocks until the passed IO is ready for the passed events.
Definition io.c:1453
int len
Length of the buffer.
Definition io.h:8
VALUE rb_ractor_make_shareable(VALUE obj)
Destructively transforms the passed object so that multiple Ractors can share it.
Definition ractor.c:3101
#define DECIMAL_SIZE_OF(expr)
An approximation of decimal representation size.
Definition util.h:48
#define RB_INT2NUM
Just another name of rb_int2num_inline.
Definition int.h:37
#define RB_GC_GUARD(v)
Prevents premature destruction of local objects.
Definition memory.h:167
VALUE type(ANYARGS)
ANYARGS-ed function type.
uint32_t pm_constant_id_t
A constant id is a unique identifier for a constant in the constant pool.
pm_string_init_result_t
Represents the result of calling pm_string_mapped_init or pm_string_file_init.
Definition pm_string.h:105
@ PM_STRING_INIT_SUCCESS
Indicates that the string was successfully initialized.
Definition pm_string.h:107
@ PM_STRING_INIT_ERROR_GENERIC
Indicates a generic error from a string_*_init function, where the type of error should be read from ...
Definition pm_string.h:112
@ PM_STRING_INIT_ERROR_DIRECTORY
Indicates that the file that was attempted to be opened was a directory.
Definition pm_string.h:116
#define PM_ENCODING_US_ASCII_ENTRY
This is the US-ASCII encoding.
Definition encoding.h:252
#define PM_NODE_LIST_FOREACH(list, index, node)
Loop through each node in the node list, writing each node to the given pm_node_t pointer.
Definition node.h:17
The main header file for the prism parser.
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define RARRAY_CONST_PTR
Just another name of rb_array_const_ptr.
Definition rarray.h:52
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
#define RTEST
This is an old name of RB_TEST.
AliasGlobalVariableNode.
Definition ast.h:1107
struct pm_node * old_name
AliasGlobalVariableNode::old_name.
Definition ast.h:1130
struct pm_node * new_name
AliasGlobalVariableNode::new_name.
Definition ast.h:1120
AliasMethodNode.
Definition ast.h:1155
struct pm_node * old_name
AliasMethodNode::old_name.
Definition ast.h:1190
struct pm_node * new_name
AliasMethodNode::new_name.
Definition ast.h:1174
AlternationPatternNode.
Definition ast.h:1215
struct pm_node * left
AlternationPatternNode::left.
Definition ast.h:1228
struct pm_node * right
AlternationPatternNode::right.
Definition ast.h:1238
AndNode.
Definition ast.h:1263
struct pm_node * left
AndNode::left.
Definition ast.h:1279
struct pm_node * right
AndNode::right.
Definition ast.h:1292
ArgumentsNode.
Definition ast.h:1324
pm_node_t base
The embedded base node.
Definition ast.h:1326
struct pm_node_list arguments
ArgumentsNode::arguments.
Definition ast.h:1337
ArrayNode.
Definition ast.h:1355
struct pm_node_list elements
ArrayNode::elements.
Definition ast.h:1365
ArrayPatternNode.
Definition ast.h:1416
struct pm_node_list requireds
ArrayPatternNode::requireds.
Definition ast.h:1434
struct pm_node * rest
ArrayPatternNode::rest.
Definition ast.h:1444
struct pm_node * constant
ArrayPatternNode::constant.
Definition ast.h:1424
struct pm_node_list posts
ArrayPatternNode::posts.
Definition ast.h:1454
AssocNode.
Definition ast.h:1489
struct pm_node * value
AssocNode::value.
Definition ast.h:1521
struct pm_node * key
AssocNode::key.
Definition ast.h:1508
AssocSplatNode.
Definition ast.h:1546
struct pm_node * value
AssocSplatNode::value.
Definition ast.h:1559
BackReferenceReadNode.
Definition ast.h:1584
pm_node_t base
The embedded base node.
Definition ast.h:1586
BeginNode.
Definition ast.h:1615
struct pm_ensure_node * ensure_clause
BeginNode::ensure_clause.
Definition ast.h:1668
struct pm_rescue_node * rescue_clause
BeginNode::rescue_clause.
Definition ast.h:1648
struct pm_statements_node * statements
BeginNode::statements.
Definition ast.h:1638
struct pm_else_node * else_clause
BeginNode::else_clause.
Definition ast.h:1658
BlockArgumentNode.
Definition ast.h:1693
struct pm_node * expression
BlockArgumentNode::expression.
Definition ast.h:1706
BlockLocalVariableNode.
Definition ast.h:1734
BlockNode.
Definition ast.h:1762
struct pm_node * parameters
BlockNode::parameters.
Definition ast.h:1789
struct pm_node * body
BlockNode::body.
Definition ast.h:1799
pm_constant_id_list_t locals
BlockNode::locals.
Definition ast.h:1775
BlockParameterNode.
Definition ast.h:1838
BlockParametersNode.
Definition ast.h:1892
BreakNode.
Definition ast.h:1966
struct pm_arguments_node * arguments
BreakNode::arguments.
Definition ast.h:1979
A pm_buffer_t is a simple memory buffer that stores data in a contiguous block of memory.
Definition pm_buffer.h:22
CallAndWriteNode.
Definition ast.h:2010
struct pm_node * value
CallAndWriteNode::value.
Definition ast.h:2083
pm_constant_id_t read_name
CallAndWriteNode::read_name.
Definition ast.h:2053
pm_constant_id_t write_name
CallAndWriteNode::write_name.
Definition ast.h:2063
struct pm_node * receiver
CallAndWriteNode::receiver.
Definition ast.h:2023
CallNode.
Definition ast.h:2119
pm_location_t closing_loc
CallNode::closing_loc.
Definition ast.h:2200
struct pm_node * receiver
CallNode::receiver.
Definition ast.h:2138
pm_constant_id_t name
CallNode::name.
Definition ast.h:2161
pm_node_t base
The embedded base node.
Definition ast.h:2121
pm_location_t message_loc
CallNode::message_loc.
Definition ast.h:2171
struct pm_arguments_node * arguments
CallNode::arguments.
Definition ast.h:2190
struct pm_node * block
CallNode::block.
Definition ast.h:2210
CallOperatorWriteNode.
Definition ast.h:2231
pm_constant_id_t read_name
CallOperatorWriteNode::read_name.
Definition ast.h:2274
pm_constant_id_t binary_operator
CallOperatorWriteNode::binary_operator.
Definition ast.h:2294
struct pm_node * receiver
CallOperatorWriteNode::receiver.
Definition ast.h:2244
pm_constant_id_t write_name
CallOperatorWriteNode::write_name.
Definition ast.h:2284
struct pm_node * value
CallOperatorWriteNode::value.
Definition ast.h:2314
CallOrWriteNode.
Definition ast.h:2335
struct pm_node * receiver
CallOrWriteNode::receiver.
Definition ast.h:2348
struct pm_node * value
CallOrWriteNode::value.
Definition ast.h:2408
pm_constant_id_t write_name
CallOrWriteNode::write_name.
Definition ast.h:2388
pm_constant_id_t read_name
CallOrWriteNode::read_name.
Definition ast.h:2378
CallTargetNode.
Definition ast.h:2437
pm_constant_id_t name
CallTargetNode::name.
Definition ast.h:2470
struct pm_node * receiver
CallTargetNode::receiver.
Definition ast.h:2450
CapturePatternNode.
Definition ast.h:2495
struct pm_local_variable_target_node * target
CapturePatternNode::target.
Definition ast.h:2518
struct pm_node * value
CapturePatternNode::value.
Definition ast.h:2508
CaseMatchNode.
Definition ast.h:2545
struct pm_node_list conditions
CaseMatchNode::conditions.
Definition ast.h:2568
struct pm_else_node * else_clause
CaseMatchNode::else_clause.
Definition ast.h:2578
struct pm_node * predicate
CaseMatchNode::predicate.
Definition ast.h:2558
CaseNode.
Definition ast.h:2615
struct pm_node * predicate
CaseNode::predicate.
Definition ast.h:2628
struct pm_else_node * else_clause
CaseNode::else_clause.
Definition ast.h:2648
struct pm_node_list conditions
CaseNode::conditions.
Definition ast.h:2638
ClassNode.
Definition ast.h:2683
struct pm_node * constant_path
ClassNode::constant_path.
Definition ast.h:2701
pm_constant_id_list_t locals
ClassNode::locals.
Definition ast.h:2691
pm_constant_id_t name
ClassNode::name.
Definition ast.h:2726
struct pm_node * body
ClassNode::body.
Definition ast.h:2716
struct pm_node * superclass
ClassNode::superclass.
Definition ast.h:2711
ClassVariableAndWriteNode.
Definition ast.h:2741
struct pm_node * value
ClassVariableAndWriteNode::value.
Definition ast.h:2784
pm_constant_id_t name
ClassVariableAndWriteNode::name.
Definition ast.h:2754
ClassVariableOperatorWriteNode.
Definition ast.h:2799
pm_constant_id_t name
ClassVariableOperatorWriteNode::name.
Definition ast.h:2807
pm_constant_id_t binary_operator
ClassVariableOperatorWriteNode::binary_operator.
Definition ast.h:2827
struct pm_node * value
ClassVariableOperatorWriteNode::value.
Definition ast.h:2822
ClassVariableOrWriteNode.
Definition ast.h:2842
pm_constant_id_t name
ClassVariableOrWriteNode::name.
Definition ast.h:2850
struct pm_node * value
ClassVariableOrWriteNode::value.
Definition ast.h:2865
ClassVariableReadNode.
Definition ast.h:2880
pm_constant_id_t name
ClassVariableReadNode::name.
Definition ast.h:2894
ClassVariableTargetNode.
Definition ast.h:2909
pm_constant_id_t name
ClassVariableTargetNode::name.
Definition ast.h:2917
ClassVariableWriteNode.
Definition ast.h:2932
struct pm_node * value
ClassVariableWriteNode::value.
Definition ast.h:2969
pm_constant_id_t name
ClassVariableWriteNode::name.
Definition ast.h:2946
ConstantAndWriteNode.
Definition ast.h:2994
pm_location_t name_loc
ConstantAndWriteNode::name_loc.
Definition ast.h:3007
pm_constant_id_t name
ConstantAndWriteNode::name.
Definition ast.h:3002
struct pm_node * value
ConstantAndWriteNode::value.
Definition ast.h:3017
A list of constant IDs.
size_t size
The number of constant ids in the list.
size_t capacity
The number of constant ids that have been allocated in the list.
pm_constant_id_t * ids
The constant ids in the list.
ConstantOperatorWriteNode.
Definition ast.h:3032
pm_constant_id_t name
ConstantOperatorWriteNode::name.
Definition ast.h:3040
pm_location_t name_loc
ConstantOperatorWriteNode::name_loc.
Definition ast.h:3045
pm_constant_id_t binary_operator
ConstantOperatorWriteNode::binary_operator.
Definition ast.h:3060
struct pm_node * value
ConstantOperatorWriteNode::value.
Definition ast.h:3055
ConstantOrWriteNode.
Definition ast.h:3075
pm_location_t name_loc
ConstantOrWriteNode::name_loc.
Definition ast.h:3088
pm_constant_id_t name
ConstantOrWriteNode::name.
Definition ast.h:3083
struct pm_node * value
ConstantOrWriteNode::value.
Definition ast.h:3098
ConstantPathAndWriteNode.
Definition ast.h:3113
struct pm_constant_path_node * target
ConstantPathAndWriteNode::target.
Definition ast.h:3121
struct pm_node * value
ConstantPathAndWriteNode::value.
Definition ast.h:3131
ConstantPathNode.
Definition ast.h:3146
pm_constant_id_t name
ConstantPathNode::name.
Definition ast.h:3172
struct pm_node * parent
ConstantPathNode::parent.
Definition ast.h:3165
ConstantPathOperatorWriteNode.
Definition ast.h:3213
struct pm_constant_path_node * target
ConstantPathOperatorWriteNode::target.
Definition ast.h:3221
struct pm_node * value
ConstantPathOperatorWriteNode::value.
Definition ast.h:3231
pm_constant_id_t binary_operator
ConstantPathOperatorWriteNode::binary_operator.
Definition ast.h:3236
ConstantPathOrWriteNode.
Definition ast.h:3251
struct pm_node * value
ConstantPathOrWriteNode::value.
Definition ast.h:3269
struct pm_constant_path_node * target
ConstantPathOrWriteNode::target.
Definition ast.h:3259
ConstantPathTargetNode.
Definition ast.h:3284
struct pm_node * parent
ConstantPathTargetNode::parent.
Definition ast.h:3292
pm_constant_id_t name
ConstantPathTargetNode::name.
Definition ast.h:3297
ConstantPathWriteNode.
Definition ast.h:3328
struct pm_constant_path_node * target
ConstantPathWriteNode::target.
Definition ast.h:3344
struct pm_node * value
ConstantPathWriteNode::value.
Definition ast.h:3364
uint32_t size
The number of buckets in the hash map.
pm_constant_t * constants
The constants that are stored in the buckets.
ConstantReadNode.
Definition ast.h:3379
pm_node_t base
The embedded base node.
Definition ast.h:3381
pm_constant_id_t name
ConstantReadNode::name.
Definition ast.h:3393
A constant in the pool which effectively stores a string.
size_t length
The length of the string.
const uint8_t * start
A pointer to the start of the string.
ConstantTargetNode.
Definition ast.h:3408
pm_constant_id_t name
ConstantTargetNode::name.
Definition ast.h:3416
ConstantWriteNode.
Definition ast.h:3431
struct pm_node * value
ConstantWriteNode::value.
Definition ast.h:3468
pm_constant_id_t name
ConstantWriteNode::name.
Definition ast.h:3445
DefNode.
Definition ast.h:3494
struct pm_parameters_node * parameters
DefNode::parameters.
Definition ast.h:3517
pm_constant_id_t name
DefNode::name.
Definition ast.h:3502
struct pm_node * body
DefNode::body.
Definition ast.h:3522
struct pm_node * receiver
DefNode::receiver.
Definition ast.h:3512
pm_node_t base
The embedded base node.
Definition ast.h:3496
pm_constant_id_list_t locals
DefNode::locals.
Definition ast.h:3527
DefinedNode.
Definition ast.h:3572
struct pm_node * value
DefinedNode::value.
Definition ast.h:3585
This struct represents a diagnostic generated during parsing.
Definition diagnostic.h:359
pm_location_t location
The location of the diagnostic in the source.
Definition diagnostic.h:364
const char * message
The message associated with the diagnostic.
Definition diagnostic.h:370
pm_list_node_t node
The embedded base node.
Definition diagnostic.h:361
uint8_t level
The level of the diagnostic, see pm_error_level_t and pm_warning_level_t for possible values.
Definition diagnostic.h:383
ElseNode.
Definition ast.h:3610
struct pm_statements_node * statements
ElseNode::statements.
Definition ast.h:3623
EmbeddedStatementsNode.
Definition ast.h:3643
struct pm_statements_node * statements
EmbeddedStatementsNode::statements.
Definition ast.h:3656
EmbeddedVariableNode.
Definition ast.h:3676
struct pm_node * variable
EmbeddedVariableNode::variable.
Definition ast.h:3689
This struct defines the functions necessary to implement the encoding interface so we can determine h...
Definition encoding.h:23
size_t(* char_width)(const uint8_t *b, ptrdiff_t n)
Return the number of bytes that the next character takes if it is valid in the encoding.
Definition encoding.h:29
const char * name
The name of the encoding.
Definition encoding.h:56
EnsureNode.
Definition ast.h:3708
struct pm_statements_node * statements
EnsureNode::statements.
Definition ast.h:3721
FindPatternNode.
Definition ast.h:3765
struct pm_node * constant
FindPatternNode::constant.
Definition ast.h:3773
struct pm_node * right
FindPatternNode::right.
Definition ast.h:3788
struct pm_node_list requireds
FindPatternNode::requireds.
Definition ast.h:3783
struct pm_splat_node * left
FindPatternNode::left.
Definition ast.h:3778
FlipFlopNode.
Definition ast.h:3816
pm_node_t base
The embedded base node.
Definition ast.h:3818
struct pm_node * left
FlipFlopNode::left.
Definition ast.h:3824
struct pm_node * right
FlipFlopNode::right.
Definition ast.h:3829
FloatNode.
Definition ast.h:3849
double value
FloatNode::value.
Definition ast.h:3859
ForNode.
Definition ast.h:3874
struct pm_statements_node * statements
ForNode::statements.
Definition ast.h:3909
struct pm_node * collection
ForNode::collection.
Definition ast.h:3897
ForwardingSuperNode.
Definition ast.h:4003
struct pm_block_node * block
ForwardingSuperNode::block.
Definition ast.h:4011
GlobalVariableAndWriteNode.
Definition ast.h:4026
struct pm_node * value
GlobalVariableAndWriteNode::value.
Definition ast.h:4049
pm_constant_id_t name
GlobalVariableAndWriteNode::name.
Definition ast.h:4034
GlobalVariableOperatorWriteNode.
Definition ast.h:4064
pm_constant_id_t name
GlobalVariableOperatorWriteNode::name.
Definition ast.h:4072
pm_constant_id_t binary_operator
GlobalVariableOperatorWriteNode::binary_operator.
Definition ast.h:4092
struct pm_node * value
GlobalVariableOperatorWriteNode::value.
Definition ast.h:4087
GlobalVariableOrWriteNode.
Definition ast.h:4107
pm_constant_id_t name
GlobalVariableOrWriteNode::name.
Definition ast.h:4115
struct pm_node * value
GlobalVariableOrWriteNode::value.
Definition ast.h:4130
GlobalVariableReadNode.
Definition ast.h:4145
pm_constant_id_t name
GlobalVariableReadNode::name.
Definition ast.h:4159
GlobalVariableTargetNode.
Definition ast.h:4174
pm_constant_id_t name
GlobalVariableTargetNode::name.
Definition ast.h:4182
GlobalVariableWriteNode.
Definition ast.h:4197
struct pm_node * value
GlobalVariableWriteNode::value.
Definition ast.h:4234
pm_constant_id_t name
GlobalVariableWriteNode::name.
Definition ast.h:4211
HashNode.
Definition ast.h:4259
struct pm_node_list elements
HashNode::elements.
Definition ast.h:4285
HashPatternNode.
Definition ast.h:4313
struct pm_node_list elements
HashPatternNode::elements.
Definition ast.h:4326
struct pm_node * rest
HashPatternNode::rest.
Definition ast.h:4331
struct pm_node * constant
HashPatternNode::constant.
Definition ast.h:4321
IfNode.
Definition ast.h:4362
struct pm_node * predicate
IfNode::predicate.
Definition ast.h:4395
struct pm_statements_node * statements
IfNode::statements.
Definition ast.h:4422
ImaginaryNode.
Definition ast.h:4468
struct pm_node * numeric
ImaginaryNode::numeric.
Definition ast.h:4476
ImplicitNode.
Definition ast.h:4497
struct pm_node * value
ImplicitNode::value.
Definition ast.h:4505
InNode.
Definition ast.h:4547
struct pm_statements_node * statements
InNode::statements.
Definition ast.h:4560
struct pm_node * pattern
InNode::pattern.
Definition ast.h:4555
IndexAndWriteNode.
Definition ast.h:4591
struct pm_arguments_node * arguments
IndexAndWriteNode::arguments.
Definition ast.h:4614
struct pm_node * receiver
IndexAndWriteNode::receiver.
Definition ast.h:4599
struct pm_block_argument_node * block
IndexAndWriteNode::block.
Definition ast.h:4624
struct pm_node * value
IndexAndWriteNode::value.
Definition ast.h:4634
IndexOperatorWriteNode.
Definition ast.h:4655
struct pm_block_argument_node * block
IndexOperatorWriteNode::block.
Definition ast.h:4688
struct pm_node * value
IndexOperatorWriteNode::value.
Definition ast.h:4703
struct pm_arguments_node * arguments
IndexOperatorWriteNode::arguments.
Definition ast.h:4678
pm_constant_id_t binary_operator
IndexOperatorWriteNode::binary_operator.
Definition ast.h:4693
struct pm_node * receiver
IndexOperatorWriteNode::receiver.
Definition ast.h:4663
IndexOrWriteNode.
Definition ast.h:4724
struct pm_block_argument_node * block
IndexOrWriteNode::block.
Definition ast.h:4757
struct pm_node * receiver
IndexOrWriteNode::receiver.
Definition ast.h:4732
struct pm_node * value
IndexOrWriteNode::value.
Definition ast.h:4767
struct pm_arguments_node * arguments
IndexOrWriteNode::arguments.
Definition ast.h:4747
IndexTargetNode.
Definition ast.h:4796
struct pm_node * receiver
IndexTargetNode::receiver.
Definition ast.h:4804
struct pm_arguments_node * arguments
IndexTargetNode::arguments.
Definition ast.h:4814
struct pm_block_argument_node * block
IndexTargetNode::block.
Definition ast.h:4824
InstanceVariableAndWriteNode.
Definition ast.h:4839
struct pm_node * value
InstanceVariableAndWriteNode::value.
Definition ast.h:4862
pm_constant_id_t name
InstanceVariableAndWriteNode::name.
Definition ast.h:4847
InstanceVariableOperatorWriteNode.
Definition ast.h:4877
struct pm_node * value
InstanceVariableOperatorWriteNode::value.
Definition ast.h:4900
pm_constant_id_t binary_operator
InstanceVariableOperatorWriteNode::binary_operator.
Definition ast.h:4905
pm_constant_id_t name
InstanceVariableOperatorWriteNode::name.
Definition ast.h:4885
InstanceVariableOrWriteNode.
Definition ast.h:4920
struct pm_node * value
InstanceVariableOrWriteNode::value.
Definition ast.h:4943
pm_constant_id_t name
InstanceVariableOrWriteNode::name.
Definition ast.h:4928
InstanceVariableReadNode.
Definition ast.h:4958
pm_constant_id_t name
InstanceVariableReadNode::name.
Definition ast.h:4972
InstanceVariableTargetNode.
Definition ast.h:4987
pm_constant_id_t name
InstanceVariableTargetNode::name.
Definition ast.h:4995
InstanceVariableWriteNode.
Definition ast.h:5010
pm_constant_id_t name
InstanceVariableWriteNode::name.
Definition ast.h:5024
struct pm_node * value
InstanceVariableWriteNode::value.
Definition ast.h:5047
IntegerNode.
Definition ast.h:5078
pm_integer_t value
IntegerNode::value.
Definition ast.h:5088
A structure represents an arbitrary-sized integer.
Definition pm_integer.h:20
size_t length
The number of allocated values.
Definition pm_integer.h:25
uint32_t value
Embedded value for small integer.
Definition pm_integer.h:36
uint32_t * values
List of 32-bit integers.
Definition pm_integer.h:30
bool negative
Whether or not the integer is negative.
Definition pm_integer.h:42
InterpolatedMatchLastLineNode.
Definition ast.h:5116
InterpolatedRegularExpressionNode.
Definition ast.h:5162
InterpolatedStringNode.
Definition ast.h:5199
struct pm_node_list parts
InterpolatedStringNode::parts.
Definition ast.h:5212
InterpolatedSymbolNode.
Definition ast.h:5232
struct pm_node_list parts
InterpolatedSymbolNode::parts.
Definition ast.h:5245
InterpolatedXStringNode.
Definition ast.h:5265
struct pm_node_list parts
InterpolatedXStringNode::parts.
Definition ast.h:5278
KeywordHashNode.
Definition ast.h:5337
struct pm_node_list elements
KeywordHashNode::elements.
Definition ast.h:5345
KeywordRestParameterNode.
Definition ast.h:5364
LambdaNode.
Definition ast.h:5397
struct pm_node * body
LambdaNode::body.
Definition ast.h:5430
pm_location_t opening_loc
LambdaNode::opening_loc.
Definition ast.h:5415
struct pm_node * parameters
LambdaNode::parameters.
Definition ast.h:5425
pm_location_t operator_loc
LambdaNode::operator_loc.
Definition ast.h:5410
pm_constant_id_list_t locals
LambdaNode::locals.
Definition ast.h:5405
A line and column in a string.
uint32_t column
The column number.
int32_t line
The line number.
This struct represents an abstract linked list that provides common functionality.
Definition pm_list.h:46
struct pm_list_node * next
A pointer to the next node in the list.
Definition pm_list.h:48
This represents the overall linked list.
Definition pm_list.h:55
pm_list_node_t * head
A pointer to the head of the list.
Definition pm_list.h:60
size_t size
The size of the list.
Definition pm_list.h:57
the getlocal and setlocal instructions require two parameters.
LocalVariableAndWriteNode.
Definition ast.h:5445
pm_constant_id_t name
LocalVariableAndWriteNode::name.
Definition ast.h:5468
uint32_t depth
LocalVariableAndWriteNode::depth.
Definition ast.h:5473
struct pm_node * value
LocalVariableAndWriteNode::value.
Definition ast.h:5463
LocalVariableOperatorWriteNode.
Definition ast.h:5488
uint32_t depth
LocalVariableOperatorWriteNode::depth.
Definition ast.h:5521
pm_constant_id_t binary_operator
LocalVariableOperatorWriteNode::binary_operator.
Definition ast.h:5516
struct pm_node * value
LocalVariableOperatorWriteNode::value.
Definition ast.h:5506
pm_constant_id_t name
LocalVariableOperatorWriteNode::name.
Definition ast.h:5511
LocalVariableOrWriteNode.
Definition ast.h:5536
uint32_t depth
LocalVariableOrWriteNode::depth.
Definition ast.h:5564
struct pm_node * value
LocalVariableOrWriteNode::value.
Definition ast.h:5554
pm_constant_id_t name
LocalVariableOrWriteNode::name.
Definition ast.h:5559
LocalVariableReadNode.
Definition ast.h:5579
uint32_t depth
LocalVariableReadNode::depth.
Definition ast.h:5610
pm_constant_id_t name
LocalVariableReadNode::name.
Definition ast.h:5597
LocalVariableTargetNode.
Definition ast.h:5625
uint32_t depth
LocalVariableTargetNode::depth.
Definition ast.h:5638
pm_constant_id_t name
LocalVariableTargetNode::name.
Definition ast.h:5633
LocalVariableWriteNode.
Definition ast.h:5653
struct pm_node * value
LocalVariableWriteNode::value.
Definition ast.h:5707
uint32_t depth
LocalVariableWriteNode::depth.
Definition ast.h:5680
pm_constant_id_t name
LocalVariableWriteNode::name.
Definition ast.h:5667
This represents a range of bytes in the source string to which a node or token corresponds.
Definition ast.h:545
const uint8_t * start
A pointer to the start location of the range in the source.
Definition ast.h:547
const uint8_t * end
A pointer to the end location of the range in the source.
Definition ast.h:550
MatchLastLineNode.
Definition ast.h:5745
MatchPredicateNode.
Definition ast.h:5783
struct pm_node * pattern
MatchPredicateNode::pattern.
Definition ast.h:5796
struct pm_node * value
MatchPredicateNode::value.
Definition ast.h:5791
MatchRequiredNode.
Definition ast.h:5816
struct pm_node * value
MatchRequiredNode::value.
Definition ast.h:5824
struct pm_node * pattern
MatchRequiredNode::pattern.
Definition ast.h:5829
MatchWriteNode.
Definition ast.h:5849
struct pm_node_list targets
MatchWriteNode::targets.
Definition ast.h:5862
struct pm_call_node * call
MatchWriteNode::call.
Definition ast.h:5857
ModuleNode.
Definition ast.h:5892
struct pm_node * constant_path
ModuleNode::constant_path.
Definition ast.h:5910
struct pm_node * body
ModuleNode::body.
Definition ast.h:5915
pm_constant_id_list_t locals
ModuleNode::locals.
Definition ast.h:5900
pm_constant_id_t name
ModuleNode::name.
Definition ast.h:5925
MultiTargetNode.
Definition ast.h:5945
struct pm_node_list lefts
MultiTargetNode::lefts.
Definition ast.h:5963
struct pm_node * rest
MultiTargetNode::rest.
Definition ast.h:5983
struct pm_node_list rights
MultiTargetNode::rights.
Definition ast.h:5993
This is a node in the multi target state linked list.
As we're compiling a multi target, we need to track additional information whenever there is a parent...
MultiWriteNode.
Definition ast.h:6028
struct pm_node * value
MultiWriteNode::value.
Definition ast.h:6116
struct pm_node * rest
MultiWriteNode::rest.
Definition ast.h:6066
struct pm_node_list rights
MultiWriteNode::rights.
Definition ast.h:6076
struct pm_node_list lefts
MultiWriteNode::lefts.
Definition ast.h:6046
A list of offsets of newlines in a string.
const uint8_t * start
A pointer to the start of the source string.
size_t * offsets
The list of offsets.
size_t size
The number of offsets in the list.
NextNode.
Definition ast.h:6131
struct pm_arguments_node * arguments
NextNode::arguments.
Definition ast.h:6139
A list of nodes in the source, most often used for lists of children.
Definition ast.h:558
size_t size
The number of nodes in the list.
Definition ast.h:560
struct pm_node ** nodes
The nodes in the list.
Definition ast.h:566
This compiler defines its own concept of the location of a node.
int32_t line
This is the line number of a node.
uint32_t node_id
This is a unique identifier for the node.
This is the base structure that represents a node in the syntax tree.
Definition ast.h:1069
pm_node_type_t type
This represents the type of the node.
Definition ast.h:1074
uint32_t node_id
The unique identifier for this node, which is deterministic based on the source.
Definition ast.h:1086
pm_node_flags_t flags
This represents any flags on the node.
Definition ast.h:1080
pm_location_t location
This is the location of the node in the source.
Definition ast.h:1092
NumberedParametersNode.
Definition ast.h:6206
NumberedReferenceReadNode.
Definition ast.h:6229
uint32_t number
NumberedReferenceReadNode::number.
Definition ast.h:6245
OptionalKeywordParameterNode.
Definition ast.h:6264
pm_constant_id_t name
OptionalKeywordParameterNode::name.
Definition ast.h:6272
struct pm_node * value
OptionalKeywordParameterNode::value.
Definition ast.h:6282
OptionalParameterNode.
Definition ast.h:6301
struct pm_node * value
OptionalParameterNode::value.
Definition ast.h:6324
pm_constant_id_t name
OptionalParameterNode::name.
Definition ast.h:6309
The options that can be passed to the parser.
Definition options.h:98
OrNode.
Definition ast.h:6339
struct pm_node * left
OrNode::left.
Definition ast.h:6355
struct pm_node * right
OrNode::right.
Definition ast.h:6368
ParametersNode.
Definition ast.h:6394
struct pm_node * rest
ParametersNode::rest.
Definition ast.h:6412
struct pm_node_list requireds
ParametersNode::requireds.
Definition ast.h:6402
struct pm_block_parameter_node * block
ParametersNode::block.
Definition ast.h:6432
struct pm_node_list optionals
ParametersNode::optionals.
Definition ast.h:6407
struct pm_node_list posts
ParametersNode::posts.
Definition ast.h:6417
pm_node_t base
The embedded base node.
Definition ast.h:6396
struct pm_node * keyword_rest
ParametersNode::keyword_rest.
Definition ast.h:6427
struct pm_node_list keywords
ParametersNode::keywords.
Definition ast.h:6422
ParenthesesNode.
Definition ast.h:6450
struct pm_node * body
ParenthesesNode::body.
Definition ast.h:6458
The format that will be used to format the errors into the output.
size_t blank_prefix_length
The length of the blank prefix.
const char * blank_prefix
The prefix that will be used for blank lines.
size_t divider_length
The length of the divider.
const char * number_prefix
The prefix that will be used for line numbers.
const char * divider
The divider that will be used between sections of source code.
An error that is going to be formatted into the output.
pm_diagnostic_t * error
A pointer to the diagnostic that was generated during parsing.
uint32_t column_end
The column end of the diagnostic message.
int32_t line
The start line of the diagnostic message.
uint32_t column_start
The column start of the diagnostic message.
bool parsed
Whether or not this parse result has performed its parsing yet.
pm_scope_node_t node
The resulting scope node that will hold the generated AST.
pm_string_t input
The input that represents the source to be parsed.
pm_parser_t parser
The parser that will do the actual parsing.
pm_options_t options
The options that will be passed to the parser.
This struct represents the overall parser.
Definition parser.h:640
const pm_encoding_t * encoding
The encoding functions for the current file is attached to the parser as it's parsing so that it can ...
Definition parser.h:755
const uint8_t * end
The pointer to the end of the source.
Definition parser.h:694
pm_constant_pool_t constant_pool
This constant pool keeps all of the constants defined throughout the file so that we can reference th...
Definition parser.h:786
const uint8_t * start
The pointer to the start of the source.
Definition parser.h:691
pm_list_t error_list
The list of errors that have been found while parsing.
Definition parser.h:734
pm_list_t warning_list
The list of warnings that have been found while parsing.
Definition parser.h:731
int32_t start_line
The line number at the start of the parse.
Definition parser.h:809
pm_string_t filepath
This is the path of the file being parsed.
Definition parser.h:780
pm_newline_list_t newline_list
This is the list of newline offsets in the source file.
Definition parser.h:789
PinnedExpressionNode.
Definition ast.h:6483
PinnedVariableNode.
Definition ast.h:6521
struct pm_node * variable
PinnedVariableNode::variable.
Definition ast.h:6529
PostExecutionNode.
Definition ast.h:6549
struct pm_statements_node * statements
PostExecutionNode::statements.
Definition ast.h:6557
PreExecutionNode.
Definition ast.h:6587
struct pm_statements_node * statements
PreExecutionNode::statements.
Definition ast.h:6595
ProgramNode.
Definition ast.h:6622
struct pm_statements_node * statements
ProgramNode::statements.
Definition ast.h:6635
RangeNode.
Definition ast.h:6656
struct pm_node * right
RangeNode::right.
Definition ast.h:6686
struct pm_node * left
RangeNode::left.
Definition ast.h:6672
RationalNode.
Definition ast.h:6714
pm_integer_t denominator
RationalNode::denominator.
Definition ast.h:6735
pm_integer_t numerator
RationalNode::numerator.
Definition ast.h:6726
RegularExpressionNode.
Definition ast.h:6781
RequiredKeywordParameterNode.
Definition ast.h:6823
RequiredParameterNode.
Definition ast.h:6855
pm_constant_id_t name
RequiredParameterNode::name.
Definition ast.h:6863
RescueModifierNode.
Definition ast.h:6878
struct pm_node * rescue_expression
RescueModifierNode::rescue_expression.
Definition ast.h:6896
struct pm_node * expression
RescueModifierNode::expression.
Definition ast.h:6886
RescueNode.
Definition ast.h:6916
struct pm_rescue_node * subsequent
RescueNode::subsequent.
Definition ast.h:6954
struct pm_node * reference
RescueNode::reference.
Definition ast.h:6939
struct pm_node_list exceptions
RescueNode::exceptions.
Definition ast.h:6929
struct pm_statements_node * statements
RescueNode::statements.
Definition ast.h:6949
RestParameterNode.
Definition ast.h:6973
ReturnNode.
Definition ast.h:7024
struct pm_arguments_node * arguments
ReturnNode::arguments.
Definition ast.h:7037
rb_encoding * filepath_encoding
This is the encoding of the actual filepath object that will be used when a FILE node is compiled or ...
struct iseq_link_anchor * pre_execution_anchor
This will only be set on the top-level scope node.
VALUE * script_lines
This is a pointer to the list of script lines for the ISEQs that will be associated with this scope n...
ShareableConstantNode.
Definition ast.h:7076
struct pm_node * write
ShareableConstantNode::write.
Definition ast.h:7086
pm_node_t base
The embedded base node.
Definition ast.h:7078
SingletonClassNode.
Definition ast.h:7101
pm_constant_id_list_t locals
SingletonClassNode::locals.
Definition ast.h:7109
struct pm_node * expression
SingletonClassNode::expression.
Definition ast.h:7124
struct pm_node * body
SingletonClassNode::body.
Definition ast.h:7129
SourceFileNode.
Definition ast.h:7173
pm_string_t filepath
SourceFileNode::filepath.
Definition ast.h:7183
SplatNode.
Definition ast.h:7216
struct pm_node * expression
SplatNode::expression.
Definition ast.h:7229
StatementsNode.
Definition ast.h:7244
struct pm_node_list body
StatementsNode::body.
Definition ast.h:7252
pm_node_t base
The embedded base node.
Definition ast.h:7246
StringNode.
Definition ast.h:7279
pm_string_t unescaped
StringNode::unescaped.
Definition ast.h:7302
A generic string type that can have various ownership semantics.
Definition pm_string.h:33
SuperNode.
Definition ast.h:7320
struct pm_arguments_node * arguments
SuperNode::arguments.
Definition ast.h:7338
struct pm_node * block
SuperNode::block.
Definition ast.h:7348
SymbolNode.
Definition ast.h:7371
pm_string_t unescaped
SymbolNode::unescaped.
Definition ast.h:7394
pm_node_t base
The embedded base node.
Definition ast.h:7373
UndefNode.
Definition ast.h:7427
struct pm_node_list names
UndefNode::names.
Definition ast.h:7435
UnlessNode.
Definition ast.h:7458
struct pm_statements_node * statements
UnlessNode::statements.
Definition ast.h:7508
struct pm_node * predicate
UnlessNode::predicate.
Definition ast.h:7487
struct pm_else_node * else_clause
UnlessNode::else_clause.
Definition ast.h:7518
UntilNode.
Definition ast.h:7549
pm_node_t base
The embedded base node.
Definition ast.h:7551
WhenNode.
Definition ast.h:7594
WhileNode.
Definition ast.h:7638
pm_node_t base
The embedded base node.
Definition ast.h:7640
XStringNode.
Definition ast.h:7685
pm_string_t unescaped
XStringNode::unescaped.
Definition ast.h:7708
YieldNode.
Definition ast.h:7723
struct pm_arguments_node * arguments
YieldNode::arguments.
Definition ast.h:7741
struct rb_iseq_constant_body::@155 param
parameter information
Definition st.h:79
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376