class Random
Random
provides an interface to Ruby’s pseudo-random number generator, or PRNG. The PRNG produces a deterministic sequence of bits which approximate true randomness. The sequence may be represented by integers, floats, or binary strings.
The generator may be initialized with either a system-generated or user-supplied seed value by using Random.srand
.
The class method Random.rand
provides the base functionality of Kernel.rand
along with better handling of floating point values. These are both interfaces to the Ruby system PRNG.
Random.new
will create a new PRNG with a state independent of the Ruby system PRNG, allowing multiple generators with different seed values or sequence positions to exist simultaneously. Random
objects can be marshaled, allowing sequences to be saved and resumed.
PRNGs are currently implemented as a modified Mersenne Twister with a period of 2**19937-1. As this algorithm is not for cryptographical use, you must use SecureRandom
for security purpose, instead of this PRNG.
See also Random::Formatter
module that adds convenience methods to generate various forms of random data.
Public Class Methods
Source
static VALUE random_s_bytes(VALUE obj, VALUE len) { rb_random_t *rnd = rand_start(default_rand()); return rand_bytes(&random_mt_if, rnd, NUM2LONG(rb_to_int(len))); }
Returns a random binary string. The argument size
specifies the length of the returned string.
Source
static VALUE random_init(int argc, VALUE *argv, VALUE obj) { rb_random_t *rnd = try_get_rnd(obj); const rb_random_interface_t *rng = rb_rand_if(obj); if (!rng) { rb_raise(rb_eTypeError, "undefined random interface: %s", RTYPEDDATA_TYPE(obj)->wrap_struct_name); } unsigned int major = rng->version.major; unsigned int minor = rng->version.minor; if (major != RUBY_RANDOM_INTERFACE_VERSION_MAJOR) { rb_raise(rb_eTypeError, "Random interface version " STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MAJOR) "." STRINGIZE(RUBY_RANDOM_INTERFACE_VERSION_MINOR) " " "expected: %d.%d", major, minor); } argc = rb_check_arity(argc, 0, 1); rb_check_frozen(obj); if (argc == 0) { rnd->seed = rand_init_default(rng, rnd); } else { rnd->seed = rand_init(rng, rnd, rb_to_int(argv[0])); } return obj; }
Creates a new PRNG using seed
to set the initial state. If seed
is omitted, the generator is initialized with Random.new_seed
.
See Random.srand
for more information on the use of seed values.
Source
static VALUE random_seed(VALUE _) { VALUE v; with_random_seed(DEFAULT_SEED_CNT, 1, true) { v = make_seed_value(seedbuf, DEFAULT_SEED_CNT); } return v; }
Returns an arbitrary seed value. This is used by Random.new
when no seed value is specified as an argument.
Random.new_seed #=> 115032730400174366788466674494640623225
Source
static VALUE random_s_rand(int argc, VALUE *argv, VALUE obj) { VALUE v = rand_random(argc, argv, Qnil, rand_start(default_rand())); check_random_number(v, argv); return v; }
Returns a random number using the Ruby system PRNG.
See also Random#rand
.
Source
static VALUE random_s_seed(VALUE obj) { rb_random_mt_t *rnd = rand_mt_start(default_rand()); return rnd->base.seed; }
Returns the seed value used to initialize the Ruby system PRNG. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.
Random.seed #=> 1234 prng1 = Random.new(Random.seed) prng1.seed #=> 1234 prng1.rand(100) #=> 47 Random.seed #=> 1234 Random.rand(100) #=> 47
Source
static VALUE rb_f_srand(int argc, VALUE *argv, VALUE obj) { VALUE seed, old; rb_random_mt_t *r = rand_mt_start(default_rand()); if (rb_check_arity(argc, 0, 1) == 0) { seed = random_seed(obj); } else { seed = rb_to_int(argv[0]); } old = r->base.seed; rand_init(&random_mt_if, &r->base, seed); r->base.seed = seed; return old; }
Seeds the system pseudo-random number generator, with number
. The previous seed value is returned.
If number
is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.
srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.
srand 1234 # => 268519324636777531569100071560086917274 [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319] [ rand(10), rand(1000) ] # => [4, 664] srand 1234 # => 1234 [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
Source
static VALUE random_raw_seed(VALUE self, VALUE size) { long n = NUM2ULONG(size); VALUE buf = rb_str_new(0, n); if (n == 0) return buf; if (fill_random_bytes(RSTRING_PTR(buf), n, TRUE)) rb_raise(rb_eRuntimeError, "failed to get urandom"); return buf; }
Returns a string, using platform providing features. Returned value is expected to be a cryptographically secure pseudo-random number in binary form. This method raises a RuntimeError
if the feature provided by platform failed to prepare the result.
In 2017, Linux manpage random(7) writes that “no cryptographic primitive available today can hope to promise more than 256 bits of security”. So it might be questionable to pass size > 32 to this method.
Random.urandom(8) #=> "\x78\x41\xBA\xAF\x7D\xEA\xD8\xEA"
Public Instance Methods
Source
static VALUE rand_mt_equal(VALUE self, VALUE other) { rb_random_mt_t *r1, *r2; if (rb_obj_class(self) != rb_obj_class(other)) return Qfalse; r1 = get_rnd_mt(self); r2 = get_rnd_mt(other); if (memcmp(r1->mt.state, r2->mt.state, sizeof(r1->mt.state))) return Qfalse; if ((r1->mt.next - r1->mt.state) != (r2->mt.next - r2->mt.state)) return Qfalse; if (r1->mt.left != r2->mt.left) return Qfalse; return rb_equal(r1->base.seed, r2->base.seed); }
Returns true if the two generators have the same internal state, otherwise false. Equivalent generators will return the same sequence of pseudo-random numbers. Two generators will generally have the same state only if they were initialized with the same seed
Random.new == Random.new # => false Random.new(1234) == Random.new(1234) # => true
and have the same invocation history.
prng1 = Random.new(1234) prng2 = Random.new(1234) prng1 == prng2 # => true prng1.rand # => 0.1915194503788923 prng1 == prng2 # => false prng2.rand # => 0.1915194503788923 prng1 == prng2 # => true
Source
static VALUE random_bytes(VALUE obj, VALUE len) { rb_random_t *rnd = try_get_rnd(obj); return rand_bytes(rb_rand_if(obj), rnd, NUM2LONG(rb_to_int(len))); }
Returns a random binary string containing size
bytes.
random_string = Random.new.bytes(10) # => "\xD7:R\xAB?\x83\xCE\xFAkO" random_string.size # => 10
Source
static VALUE random_rand(int argc, VALUE *argv, VALUE obj) { VALUE v = rand_random(argc, argv, obj, try_get_rnd(obj)); check_random_number(v, argv); return v; }
When max
is an Integer
, rand
returns a random integer greater than or equal to zero and less than max
. Unlike Kernel.rand
, when max
is a negative integer or zero, rand
raises an ArgumentError
.
prng = Random.new prng.rand(100) # => 42
When max
is a Float
, rand
returns a random floating point number between 0.0 and max
, including 0.0 and excluding max
.
prng.rand(1.5) # => 1.4600282860034115
When range
is a Range
, rand
returns a random number where range.member?(number) == true
.
prng.rand(5..9) # => one of [5, 6, 7, 8, 9] prng.rand(5...9) # => one of [5, 6, 7, 8] prng.rand(5.0..9.0) # => between 5.0 and 9.0, including 9.0 prng.rand(5.0...9.0) # => between 5.0 and 9.0, excluding 9.0
Both the beginning and ending values of the range must respond to subtract (-
) and add (+
)methods, or rand will raise an ArgumentError
.
Source
static VALUE random_get_seed(VALUE obj) { return get_rnd(obj)->seed; }
Returns the seed value used to initialize the generator. This may be used to initialize another generator with the same state at a later time, causing it to produce the same sequence of numbers.
prng1 = Random.new(1234) prng1.seed #=> 1234 prng1.rand(100) #=> 47 prng2 = Random.new(prng1.seed) prng2.rand(100) #=> 47