module GC::Profiler
The GC
profiler provides access to information on GC
runs including time, length and object space size.
Example:
GC::Profiler.enable require 'rdoc/rdoc' GC::Profiler.report GC::Profiler.disable
See also GC.count
, GC.malloc_allocated_size
and GC.malloc_allocations
Public Class Methods
Clears the GC
profiler data.
static VALUE gc_profile_clear(void) { rb_objspace_t *objspace = &rb_objspace; if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2; objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size); if (!objspace->profile.records) { rb_memerror(); } } MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size); objspace->profile.next_index = 0; objspace->profile.current_record = 0; return Qnil; }
Stops the GC
profiler.
static VALUE gc_profile_disable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = FALSE; objspace->profile.current_record = 0; return Qnil; }
Starts the GC
profiler.
static VALUE gc_profile_enable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = TRUE; objspace->profile.current_record = 0; return Qnil; }
The current status of GC
profile mode.
static VALUE gc_profile_enable_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return objspace->profile.run ? Qtrue : Qfalse; }
Returns an Array
of individual raw profile data Hashes ordered from earliest to latest by :GC_INVOKE_TIME
.
For example:
[ { :GC_TIME=>1.3000000000000858e-05, :GC_INVOKE_TIME=>0.010634999999999999, :HEAP_USE_SIZE=>289640, :HEAP_TOTAL_SIZE=>588960, :HEAP_TOTAL_OBJECTS=>14724, :GC_IS_MARKED=>false }, # ... ]
The keys mean:
:GC_TIME
:GC_INVOKE_TIME
-
Time
elapsed in seconds from startup to when theGC
was invoked :HEAP_USE_SIZE
-
Total bytes of heap used
:HEAP_TOTAL_SIZE
-
Total size of heap in bytes
:HEAP_TOTAL_OBJECTS
-
Total number of objects
:GC_IS_MARKED
-
Returns
true
if theGC
is in mark phase
If ruby was built with GC_PROFILE_MORE_DETAIL
, you will also have access to the following hash keys:
:GC_MARK_TIME
:GC_SWEEP_TIME
:ALLOCATE_INCREASE
:ALLOCATE_LIMIT
:HEAP_USE_PAGES
:HEAP_LIVE_OBJECTS
:HEAP_FREE_OBJECTS
:HAVE_FINALIZE
static VALUE gc_profile_record_get(void) { VALUE prof; VALUE gc_profile = rb_ary_new(); size_t i; rb_objspace_t *objspace = (&rb_objspace); if (!objspace->profile.run) { return Qnil; } for (i =0; i < objspace->profile.next_index; i++) { gc_profile_record *record = &objspace->profile.records[i]; prof = rb_hash_new(); rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(0, rb_hash_new(), record->flags)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue); #if GC_PROFILE_MORE_DETAIL rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse); #endif #if RGENGC_PROFILE > 0 rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects)); #endif rb_ary_push(gc_profile, prof); } return gc_profile; }
Writes the GC::Profiler.result
to $stdout
or the given IO
object.
static VALUE gc_profile_report(int argc, VALUE *argv, VALUE self) { VALUE out; out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]); gc_profile_dump_on(out, rb_io_write); return Qnil; }
Returns a profile data report such as:
GC 1 invokes. Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) 1 0.012 159240 212940 10647 0.00000000000001530000
static VALUE gc_profile_result(void) { VALUE str = rb_str_buf_new(0); gc_profile_dump_on(str, rb_str_buf_append); return str; }
The total time used for garbage collection in seconds
static VALUE gc_profile_total_time(VALUE self) { double time = 0; rb_objspace_t *objspace = &rb_objspace; if (objspace->profile.run && objspace->profile.next_index > 0) { size_t i; size_t count = objspace->profile.next_index; for (i = 0; i < count; i++) { time += objspace->profile.records[i].gc_time; } } return DBL2NUM(time); }