module Math

When mathn is required, the Math module changes as follows:

Standard Math module behaviour:

Math.sqrt(4/9)     # => 0.0
Math.sqrt(4.0/9.0) # => 0.666666666666667
Math.sqrt(- 4/9)   # => Errno::EDOM: Numerical argument out of domain - sqrt

After require 'mathn', this is changed to:

require 'mathn'
Math.sqrt(4/9)      # => 2/3
Math.sqrt(4.0/9.0)  # => 0.666666666666667
Math.sqrt(- 4/9)    # => Complex(0, 2/3)

The Math module contains module functions for basic trigonometric and transcendental functions. See class Float for a list of constants that define Ruby's floating point accuracy.

Domains and codomains are given only for real (not complex) numbers.

Constants

E

Definition of the mathematical constant E (e) as a Float number.

PI

Definition of the mathematical constant PI as a Float number.

Public Class Methods

acos(x) → Float click to toggle source

Computes the arc cosine of x. Returns 0..PI.

Domain: [-1, 1]

Codomain: [0, PI]

Math.acos(0) == Math::PI/2  #=> true
static VALUE
math_acos(VALUE obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("acos");
    return DBL2NUM(acos(d));
}
acosh(x) → Float click to toggle source

Computes the inverse hyperbolic cosine of x.

Domain: [1, INFINITY)

Codomain: [0, INFINITY)

Math.acosh(1) #=> 0.0
static VALUE
math_acosh(VALUE obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < 1.0) domain_error("acosh");
    return DBL2NUM(acosh(d));
}
asin(x) → Float click to toggle source

Computes the arc sine of x. Returns -PI/2..PI/2.

Domain: [-1, -1]

Codomain: [-PI/2, PI/2]

Math.asin(1) == Math::PI/2  #=> true
static VALUE
math_asin(VALUE obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d < -1.0 || 1.0 < d) domain_error("asin");
    return DBL2NUM(asin(d));
}
asinh(x) → Float click to toggle source

Computes the inverse hyperbolic sine of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.asinh(1) #=> 0.881373587019543
static VALUE
math_asinh(VALUE obj, VALUE x)
{
    return DBL2NUM(asinh(Get_Double(x)));
}
atan(x) → Float click to toggle source

Computes the arc tangent of x. Returns -PI/2..PI/2.

Domain: (-INFINITY, INFINITY)

Codomain: (-PI/2, PI/2)

Math.atan(0) #=> 0.0
static VALUE
math_atan(VALUE obj, VALUE x)
{
    return DBL2NUM(atan(Get_Double(x)));
}
atan2(y, x) → Float click to toggle source

Computes the arc tangent given y and x. Returns a Float in the range -PI..PI. Return value is a angle in radians between the positive x-axis of cartesian plane and the point given by the coordinates (x, y) on it.

Domain: (-INFINITY, INFINITY)

Codomain: [-PI, PI]

Math.atan2(-0.0, -1.0) #=> -3.141592653589793
Math.atan2(-1.0, -1.0) #=> -2.356194490192345
Math.atan2(-1.0, 0.0)  #=> -1.5707963267948966
Math.atan2(-1.0, 1.0)  #=> -0.7853981633974483
Math.atan2(-0.0, 1.0)  #=> -0.0
Math.atan2(0.0, 1.0)   #=> 0.0
Math.atan2(1.0, 1.0)   #=> 0.7853981633974483
Math.atan2(1.0, 0.0)   #=> 1.5707963267948966
Math.atan2(1.0, -1.0)  #=> 2.356194490192345
Math.atan2(0.0, -1.0)  #=> 3.141592653589793
Math.atan2(INFINITY, INFINITY)   #=> 0.7853981633974483
Math.atan2(INFINITY, -INFINITY)  #=> 2.356194490192345
Math.atan2(-INFINITY, INFINITY)  #=> -0.7853981633974483
Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345
static VALUE
math_atan2(VALUE obj, VALUE y, VALUE x)
{
    double dx, dy;
    dx = Get_Double(x);
    dy = Get_Double(y);
    if (dx == 0.0 && dy == 0.0) {
        if (!signbit(dx))
            return DBL2NUM(dy);
        if (!signbit(dy))
            return DBL2NUM(M_PI);
        return DBL2NUM(-M_PI);
    }
#ifndef ATAN2_INF_C99
    if (isinf(dx) && isinf(dy)) {
        /* optimization for FLONUM */
        if (dx < 0.0) {
            const double dz = (3.0 * M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
        else {
            const double dz = (M_PI / 4.0);
            return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz);
        }
    }
#endif
    return DBL2NUM(atan2(dy, dx));
}
atanh(x) → Float click to toggle source

Computes the inverse hyperbolic tangent of x.

Domain: (-1, 1)

Codomain: (-INFINITY, INFINITY)

Math.atanh(1) #=> Infinity
static VALUE
math_atanh(VALUE obj, VALUE x)
{
    double d;

    d = Get_Double(x);
    /* check for domain error */
    if (d <  -1.0 || +1.0 <  d) domain_error("atanh");
    /* check for pole error */
    if (d == -1.0) return DBL2NUM(-INFINITY);
    if (d == +1.0) return DBL2NUM(+INFINITY);
    return DBL2NUM(atanh(d));
}
cbrt(x) → Float click to toggle source

Returns the cube root of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

-9.upto(9) {|x|
  p [x, Math.cbrt(x), Math.cbrt(x)**3]
}
#=> [-9, -2.0800838230519, -9.0]
#   [-8, -2.0, -8.0]
#   [-7, -1.91293118277239, -7.0]
#   [-6, -1.81712059283214, -6.0]
#   [-5, -1.7099759466767, -5.0]
#   [-4, -1.5874010519682, -4.0]
#   [-3, -1.44224957030741, -3.0]
#   [-2, -1.25992104989487, -2.0]
#   [-1, -1.0, -1.0]
#   [0, 0.0, 0.0]
#   [1, 1.0, 1.0]
#   [2, 1.25992104989487, 2.0]
#   [3, 1.44224957030741, 3.0]
#   [4, 1.5874010519682, 4.0]
#   [5, 1.7099759466767, 5.0]
#   [6, 1.81712059283214, 6.0]
#   [7, 1.91293118277239, 7.0]
#   [8, 2.0, 8.0]
#   [9, 2.0800838230519, 9.0]
static VALUE
math_cbrt(VALUE obj, VALUE x)
{
    return DBL2NUM(cbrt(Get_Double(x)));
}
cos(x) → Float click to toggle source

Computes the cosine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.cos(Math::PI) #=> -1.0
static VALUE
math_cos(VALUE obj, VALUE x)
{
    return DBL2NUM(cos(Get_Double(x)));
}
cosh(x) → Float click to toggle source

Computes the hyperbolic cosine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: [1, INFINITY)

Math.cosh(0) #=> 1.0
static VALUE
math_cosh(VALUE obj, VALUE x)
{
    return DBL2NUM(cosh(Get_Double(x)));
}
erf(x) → Float click to toggle source

Calculates the error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.erf(0) #=> 0.0
static VALUE
math_erf(VALUE obj, VALUE x)
{
    return DBL2NUM(erf(Get_Double(x)));
}
erfc(x) → Float click to toggle source

Calculates the complementary error function of x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, 2)

Math.erfc(0) #=> 1.0
static VALUE
math_erfc(VALUE obj, VALUE x)
{
    return DBL2NUM(erfc(Get_Double(x)));
}
exp(x) → Float click to toggle source

Returns e**x.

Domain: (-INFINITY, INFINITY)

Codomain: (0, INFINITY)

Math.exp(0)       #=> 1.0
Math.exp(1)       #=> 2.718281828459045
Math.exp(1.5)     #=> 4.4816890703380645
static VALUE
math_exp(VALUE obj, VALUE x)
{
    return DBL2NUM(exp(Get_Double(x)));
}
frexp(x) → [fraction, exponent] click to toggle source

Returns a two-element array containing the normalized fraction (a Float) and exponent (a Fixnum) of x.

fraction, exponent = Math.frexp(1234)   #=> [0.6025390625, 11]
fraction * 2**exponent                  #=> 1234.0
static VALUE
math_frexp(VALUE obj, VALUE x)
{
    double d;
    int exp;

    d = frexp(Get_Double(x), &exp);
    return rb_assoc_new(DBL2NUM(d), INT2NUM(exp));
}
gamma(x) → Float click to toggle source

Calculates the gamma function of x.

Note that gamma(n) is same as fact(n-1) for integer n > 0. However gamma(n) returns float and can be an approximation.

def fact(n) (1..n).inject(1) {|r,i| r*i } end
1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] }
#=> [1, 1.0, 1]
#   [2, 1.0, 1]
#   [3, 2.0, 2]
#   [4, 6.0, 6]
#   [5, 24.0, 24]
#   [6, 120.0, 120]
#   [7, 720.0, 720]
#   [8, 5040.0, 5040]
#   [9, 40320.0, 40320]
#   [10, 362880.0, 362880]
#   [11, 3628800.0, 3628800]
#   [12, 39916800.0, 39916800]
#   [13, 479001600.0, 479001600]
#   [14, 6227020800.0, 6227020800]
#   [15, 87178291200.0, 87178291200]
#   [16, 1307674368000.0, 1307674368000]
#   [17, 20922789888000.0, 20922789888000]
#   [18, 355687428096000.0, 355687428096000]
#   [19, 6.402373705728e+15, 6402373705728000]
#   [20, 1.21645100408832e+17, 121645100408832000]
#   [21, 2.43290200817664e+18, 2432902008176640000]
#   [22, 5.109094217170944e+19, 51090942171709440000]
#   [23, 1.1240007277776077e+21, 1124000727777607680000]
#   [24, 2.5852016738885062e+22, 25852016738884976640000]
#   [25, 6.204484017332391e+23, 620448401733239439360000]
#   [26, 1.5511210043330954e+25, 15511210043330985984000000]
static VALUE
math_gamma(VALUE obj, VALUE x)
{
    static const double fact_table[] = {
        /* fact(0) */ 1.0,
        /* fact(1) */ 1.0,
        /* fact(2) */ 2.0,
        /* fact(3) */ 6.0,
        /* fact(4) */ 24.0,
        /* fact(5) */ 120.0,
        /* fact(6) */ 720.0,
        /* fact(7) */ 5040.0,
        /* fact(8) */ 40320.0,
        /* fact(9) */ 362880.0,
        /* fact(10) */ 3628800.0,
        /* fact(11) */ 39916800.0,
        /* fact(12) */ 479001600.0,
        /* fact(13) */ 6227020800.0,
        /* fact(14) */ 87178291200.0,
        /* fact(15) */ 1307674368000.0,
        /* fact(16) */ 20922789888000.0,
        /* fact(17) */ 355687428096000.0,
        /* fact(18) */ 6402373705728000.0,
        /* fact(19) */ 121645100408832000.0,
        /* fact(20) */ 2432902008176640000.0,
        /* fact(21) */ 51090942171709440000.0,
        /* fact(22) */ 1124000727777607680000.0,
        /* fact(23)=25852016738884976640000 needs 56bit mantissa which is
         * impossible to represent exactly in IEEE 754 double which have
         * 53bit mantissa. */
    };
    enum {NFACT_TABLE = numberof(fact_table)};
    double d;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d) && signbit(d)) domain_error("gamma");
    if (d == floor(d)) {
        if (d < 0.0) domain_error("gamma");
        if (1.0 <= d && d <= (double)NFACT_TABLE) {
            return DBL2NUM(fact_table[(int)d - 1]);
        }
    }
    return DBL2NUM(tgamma(d));
}
hypot(x, y) → Float click to toggle source

Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4)   #=> 5.0
static VALUE
math_hypot(VALUE obj, VALUE x, VALUE y)
{
    return DBL2NUM(hypot(Get_Double(x), Get_Double(y)));
}
ldexp(fraction, exponent) → float click to toggle source

Returns the value of fraction*(2**exponent).

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent)   #=> 1234.0
static VALUE
math_ldexp(VALUE obj, VALUE x, VALUE n)
{
    return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n)));
}
lgamma(x) → [float, -1 or 1] click to toggle source

Calculates the logarithmic gamma of x and the sign of gamma of x.

::lgamma is same as

[Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1]

but avoid overflow by ::gamma for large x.

Math.lgamma(0) #=> [Infinity, 1]
static VALUE
math_lgamma(VALUE obj, VALUE x)
{
    double d;
    int sign=1;
    VALUE v;
    d = Get_Double(x);
    /* check for domain error */
    if (isinf(d)) {
        if (signbit(d)) domain_error("lgamma");
        return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1));
    }
    v = DBL2NUM(lgamma_r(d, &sign));
    return rb_assoc_new(v, INT2FIX(sign));
}
log(x) → Float click to toggle source
log(x, base) → Float

Returns the logarithm of x. If additional second argument is given, it will be the base of logarithm. Otherwise it is e (for the natural logarithm).

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log(0)          #=> -Infinity
Math.log(1)          #=> 0.0
Math.log(Math::E)    #=> 1.0
Math.log(Math::E**3) #=> 3.0
Math.log(12, 3)      #=> 2.2618595071429146
static VALUE
math_log(int argc, const VALUE *argv, VALUE obj)
{
    VALUE x, base;
    double d;

    rb_scan_args(argc, argv, "11", &x, &base);
    d = math_log1(x);
    if (argc == 2) {
        d /= math_log1(base);
    }
    return DBL2NUM(d);
}
log10(x) → Float click to toggle source

Returns the base 10 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log10(1)       #=> 0.0
Math.log10(10)      #=> 1.0
Math.log10(10**100) #=> 100.0
static VALUE
math_log10(VALUE obj, VALUE x)
{
    double d;
    size_t numbits;

    if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
            DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
        numbits -= DBL_MANT_DIG;
        x = rb_big_rshift(x, SIZET2NUM(numbits));
    }
    else {
        numbits = 0;
    }

    d = Get_Double(x);
    /* check for domain error */
    if (d < 0.0) domain_error("log10");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-INFINITY);

    return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */
}
log2(x) → Float click to toggle source

Returns the base 2 logarithm of x.

Domain: (0, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.log2(1)      #=> 0.0
Math.log2(2)      #=> 1.0
Math.log2(32768)  #=> 15.0
Math.log2(65536)  #=> 16.0
static VALUE
math_log2(VALUE obj, VALUE x)
{
    double d;
    size_t numbits;

    if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) &&
            DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) {
        numbits -= DBL_MANT_DIG;
        x = rb_big_rshift(x, SIZET2NUM(numbits));
    }
    else {
        numbits = 0;
    }

    d = Get_Double(x);
    /* check for domain error */
    if (d < 0.0) domain_error("log2");
    /* check for pole error */
    if (d == 0.0) return DBL2NUM(-INFINITY);

    return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */
}
rsqrt(a) click to toggle source

Compute square root of a non negative number. This method is internally used by Math.sqrt.

# File lib/mathn.rb, line 142
def rsqrt(a)
  if a.kind_of?(Float)
    sqrt!(a)
  elsif a.kind_of?(Rational)
    rsqrt(a.numerator)/rsqrt(a.denominator)
  else
    src = a
    max = 2 ** 32
    byte_a = [src & 0xffffffff]
    # ruby's bug
    while (src >= max) and (src >>= 32)
      byte_a.unshift src & 0xffffffff
    end

    answer = 0
    main = 0
    side = 0
    for elm in byte_a
      main = (main << 32) + elm
      side <<= 16
      if answer != 0
        if main * 4  < side * side
          applo = main.div(side)
        else
          applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
        end
      else
        applo = sqrt!(main).to_i + 1
      end

      while (x = (side + applo) * applo) > main
        applo -= 1
      end
      main -= x
      answer = (answer << 16) + applo
      side += applo * 2
    end
    if main == 0
      answer
    else
      sqrt!(a)
    end
  end
end
sin(x) → Float click to toggle source

Computes the sine of x (expressed in radians). Returns a Float in the range -1.0..1.0.

Domain: (-INFINITY, INFINITY)

Codomain: [-1, 1]

Math.sin(Math::PI/2) #=> 1.0
static VALUE
math_sin(VALUE obj, VALUE x)
{
    return DBL2NUM(sin(Get_Double(x)));
}
sinh(x) → Float click to toggle source

Computes the hyperbolic sine of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.sinh(0) #=> 0.0
static VALUE
math_sinh(VALUE obj, VALUE x)
{
    return DBL2NUM(sinh(Get_Double(x)));
}
sqrt(a) click to toggle source

Computes the square root of a. It makes use of Complex and Rational to have no rounding errors if possible.

Math.sqrt(4/9)      # => 2/3
Math.sqrt(- 4/9)    # => Complex(0, 2/3)
Math.sqrt(4.0/9.0)  # => 0.666666666666667
# File lib/mathn.rb, line 119
def sqrt(a)
  if a.kind_of?(Complex)
    abs = sqrt(a.real*a.real + a.imag*a.imag)
    x = sqrt((a.real + abs)/Rational(2))
    y = sqrt((-a.real + abs)/Rational(2))
    if a.imag >= 0
      Complex(x, y)
    else
      Complex(x, -y)
    end
  elsif a.respond_to?(:nan?) and a.nan?
    a
  elsif a >= 0
    rsqrt(a)
  else
    Complex(0,rsqrt(-a))
  end
end
tan(x) → Float click to toggle source

Computes the tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-INFINITY, INFINITY)

Math.tan(0) #=> 0.0
static VALUE
math_tan(VALUE obj, VALUE x)
{
    return DBL2NUM(tan(Get_Double(x)));
}
tanh(x) → Float click to toggle source

Computes the hyperbolic tangent of x (expressed in radians).

Domain: (-INFINITY, INFINITY)

Codomain: (-1, 1)

Math.tanh(0) #=> 0.0
static VALUE
math_tanh(VALUE obj, VALUE x)
{
    return DBL2NUM(tanh(Get_Double(x)));
}

Private Instance Methods

rsqrt(a) click to toggle source

Compute square root of a non negative number. This method is internally used by Math.sqrt.

# File lib/mathn.rb, line 142
def rsqrt(a)
  if a.kind_of?(Float)
    sqrt!(a)
  elsif a.kind_of?(Rational)
    rsqrt(a.numerator)/rsqrt(a.denominator)
  else
    src = a
    max = 2 ** 32
    byte_a = [src & 0xffffffff]
    # ruby's bug
    while (src >= max) and (src >>= 32)
      byte_a.unshift src & 0xffffffff
    end

    answer = 0
    main = 0
    side = 0
    for elm in byte_a
      main = (main << 32) + elm
      side <<= 16
      if answer != 0
        if main * 4  < side * side
          applo = main.div(side)
        else
          applo = ((sqrt!(side * side + 4 * main) - side)/2.0).to_i + 1
        end
      else
        applo = sqrt!(main).to_i + 1
      end

      while (x = (side + applo) * applo) > main
        applo -= 1
      end
      main -= x
      answer = (answer << 16) + applo
      side += applo * 2
    end
    if main == 0
      answer
    else
      sqrt!(a)
    end
  end
end
sqrt(a) click to toggle source

Computes the square root of a. It makes use of Complex and Rational to have no rounding errors if possible.

Math.sqrt(4/9)      # => 2/3
Math.sqrt(- 4/9)    # => Complex(0, 2/3)
Math.sqrt(4.0/9.0)  # => 0.666666666666667
# File lib/mathn.rb, line 119
def sqrt(a)
  if a.kind_of?(Complex)
    abs = sqrt(a.real*a.real + a.imag*a.imag)
    x = sqrt((a.real + abs)/Rational(2))
    y = sqrt((-a.real + abs)/Rational(2))
    if a.imag >= 0
      Complex(x, y)
    else
      Complex(x, -y)
    end
  elsif a.respond_to?(:nan?) and a.nan?
    a
  elsif a >= 0
    rsqrt(a)
  else
    Complex(0,rsqrt(-a))
  end
end