Ruby 3.5.0dev (2025-04-04 revision 6b5e187d0eb07994fee7b5f0336da388a793dcbb)
yjit.c (6b5e187d0eb07994fee7b5f0336da388a793dcbb)
1// This part of YJIT helps interfacing with the rest of CRuby and with the OS.
2// Sometimes our FFI binding generation tool gives undesirable outputs when it
3// sees C features that Rust doesn't support well. We mitigate that by binding
4// functions which have simple parameter types. The boilerplate C functions for
5// that purpose are in this file.
6// Similarly, we wrap OS facilities we need in simple functions to help with
7// FFI and to avoid the need to use external crates.io Rust libraries.
8
9#include "internal.h"
10#include "internal/sanitizers.h"
11#include "internal/string.h"
12#include "internal/hash.h"
13#include "internal/variable.h"
14#include "internal/compile.h"
15#include "internal/class.h"
16#include "internal/fixnum.h"
17#include "internal/numeric.h"
18#include "internal/gc.h"
19#include "vm_core.h"
20#include "vm_callinfo.h"
21#include "builtin.h"
22#include "insns.inc"
23#include "insns_info.inc"
24#include "vm_sync.h"
25#include "yjit.h"
26#include "vm_insnhelper.h"
27#include "probes.h"
28#include "probes_helper.h"
29#include "iseq.h"
30#include "ruby/debug.h"
31#include "internal/cont.h"
32
33// For mmapp(), sysconf()
34#ifndef _WIN32
35#include <unistd.h>
36#include <sys/mman.h>
37#endif
38
39#include <errno.h>
40
41// Field offsets for the RObject struct
42enum robject_offsets {
43 ROBJECT_OFFSET_AS_HEAP_IVPTR = offsetof(struct RObject, as.heap.ivptr),
44 ROBJECT_OFFSET_AS_ARY = offsetof(struct RObject, as.ary),
45};
46
47// Field offsets for the RString struct
48enum rstring_offsets {
49 RUBY_OFFSET_RSTRING_LEN = offsetof(struct RString, len)
50};
51
52// We need size_t to have a known size to simplify code generation and FFI.
53// TODO(alan): check this in configure.ac to fail fast on 32 bit platforms.
54STATIC_ASSERT(64b_size_t, SIZE_MAX == UINT64_MAX);
55// I don't know any C implementation that has uint64_t and puts padding bits
56// into size_t but the standard seems to allow it.
57STATIC_ASSERT(size_t_no_padding_bits, sizeof(size_t) == sizeof(uint64_t));
58
59// This build config impacts the pointer tagging scheme and we only want to
60// support one scheme for simplicity.
61STATIC_ASSERT(pointer_tagging_scheme, USE_FLONUM);
62
63// NOTE: We can trust that uint8_t has no "padding bits" since the C spec
64// guarantees it. Wording about padding bits is more explicit in C11 compared
65// to C99. See C11 7.20.1.1p2. All this is to say we have _some_ standards backing to
66// use a Rust `*mut u8` to represent a C `uint8_t *`.
67//
68// If we don't want to trust that we can interpreter the C standard correctly, we
69// could outsource that work to the Rust standard library by sticking to fundamental
70// types in C such as int, long, etc. and use `std::os::raw::c_long` and friends on
71// the Rust side.
72//
73// What's up with the long prefix? Even though we build with `-fvisibility=hidden`
74// we are sometimes a static library where the option doesn't prevent name collision.
75// The "_yjit_" part is for trying to be informative. We might want different
76// suffixes for symbols meant for Rust and symbols meant for broader CRuby.
77
78bool
79rb_yjit_mark_writable(void *mem_block, uint32_t mem_size)
80{
81 return mprotect(mem_block, mem_size, PROT_READ | PROT_WRITE) == 0;
82}
83
84void
85rb_yjit_mark_executable(void *mem_block, uint32_t mem_size)
86{
87 // Do not call mprotect when mem_size is zero. Some platforms may return
88 // an error for it. https://github.com/Shopify/ruby/issues/450
89 if (mem_size == 0) {
90 return;
91 }
92 if (mprotect(mem_block, mem_size, PROT_READ | PROT_EXEC)) {
93 rb_bug("Couldn't make JIT page (%p, %lu bytes) executable, errno: %s",
94 mem_block, (unsigned long)mem_size, strerror(errno));
95 }
96}
97
98// Free the specified memory block.
99bool
100rb_yjit_mark_unused(void *mem_block, uint32_t mem_size)
101{
102 // On Linux, you need to use madvise MADV_DONTNEED to free memory.
103 // We might not need to call this on macOS, but it's not really documented.
104 // We generally prefer to do the same thing on both to ease testing too.
105 madvise(mem_block, mem_size, MADV_DONTNEED);
106
107 // On macOS, mprotect PROT_NONE seems to reduce RSS.
108 // We also call this on Linux to avoid executing unused pages.
109 return mprotect(mem_block, mem_size, PROT_NONE) == 0;
110}
111
112long
113rb_yjit_array_len(VALUE a)
114{
115 return rb_array_len(a);
116}
117
118// `start` is inclusive and `end` is exclusive.
119void
120rb_yjit_icache_invalidate(void *start, void *end)
121{
122 // Clear/invalidate the instruction cache. Compiles to nothing on x86_64
123 // but required on ARM before running freshly written code.
124 // On Darwin it's the same as calling sys_icache_invalidate().
125#ifdef __GNUC__
126 __builtin___clear_cache(start, end);
127#elif defined(__aarch64__)
128#error No instruction cache clear available with this compiler on Aarch64!
129#endif
130}
131
132# define PTR2NUM(x) (rb_int2inum((intptr_t)(void *)(x)))
133
134// For a given raw_sample (frame), set the hash with the caller's
135// name, file, and line number. Return the hash with collected frame_info.
136static void
137rb_yjit_add_frame(VALUE hash, VALUE frame)
138{
139 VALUE frame_id = PTR2NUM(frame);
140
141 if (RTEST(rb_hash_aref(hash, frame_id))) {
142 return;
143 }
144 else {
145 VALUE frame_info = rb_hash_new();
146 // Full label for the frame
148 // Absolute path of the frame from rb_iseq_realpath
150 // Line number of the frame
152
153 // If absolute path isn't available use the rb_iseq_path
154 if (NIL_P(file)) {
155 file = rb_profile_frame_path(frame);
156 }
157
158 rb_hash_aset(frame_info, ID2SYM(rb_intern("name")), name);
159 rb_hash_aset(frame_info, ID2SYM(rb_intern("file")), file);
160 rb_hash_aset(frame_info, ID2SYM(rb_intern("samples")), INT2NUM(0));
161 rb_hash_aset(frame_info, ID2SYM(rb_intern("total_samples")), INT2NUM(0));
162 rb_hash_aset(frame_info, ID2SYM(rb_intern("edges")), rb_hash_new());
163 rb_hash_aset(frame_info, ID2SYM(rb_intern("lines")), rb_hash_new());
164
165 if (line != INT2FIX(0)) {
166 rb_hash_aset(frame_info, ID2SYM(rb_intern("line")), line);
167 }
168
169 rb_hash_aset(hash, frame_id, frame_info);
170 }
171}
172
173// Parses the YjitExitLocations raw_samples and line_samples collected by
174// rb_yjit_record_exit_stack and turns them into 3 hashes (raw, lines, and frames) to
175// be used by RubyVM::YJIT.exit_locations. yjit_raw_samples represents the raw frames information
176// (without name, file, and line), and yjit_line_samples represents the line information
177// of the iseq caller.
178VALUE
179rb_yjit_exit_locations_dict(VALUE *yjit_raw_samples, int *yjit_line_samples, int samples_len)
180{
181 VALUE result = rb_hash_new();
182 VALUE raw_samples = rb_ary_new_capa(samples_len);
183 VALUE line_samples = rb_ary_new_capa(samples_len);
184 VALUE frames = rb_hash_new();
185 int idx = 0;
186
187 // While the index is less than samples_len, parse yjit_raw_samples and
188 // yjit_line_samples, then add casted values to raw_samples and line_samples array.
189 while (idx < samples_len) {
190 int num = (int)yjit_raw_samples[idx];
191 int line_num = (int)yjit_line_samples[idx];
192 idx++;
193
194 // + 1 as we append an additional sample for the insn
195 rb_ary_push(raw_samples, SIZET2NUM(num + 1));
196 rb_ary_push(line_samples, INT2NUM(line_num + 1));
197
198 // Loop through the length of samples_len and add data to the
199 // frames hash. Also push the current value onto the raw_samples
200 // and line_samples array respectively.
201 for (int o = 0; o < num; o++) {
202 rb_yjit_add_frame(frames, yjit_raw_samples[idx]);
203 rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
204 rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
205 idx++;
206 }
207
208 rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
209 rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
210 idx++;
211
212 rb_ary_push(raw_samples, SIZET2NUM(yjit_raw_samples[idx]));
213 rb_ary_push(line_samples, INT2NUM(yjit_line_samples[idx]));
214 idx++;
215 }
216
217 // Set add the raw_samples, line_samples, and frames to the results
218 // hash.
219 rb_hash_aset(result, ID2SYM(rb_intern("raw")), raw_samples);
220 rb_hash_aset(result, ID2SYM(rb_intern("lines")), line_samples);
221 rb_hash_aset(result, ID2SYM(rb_intern("frames")), frames);
222
223 return result;
224}
225
226uint32_t
227rb_yjit_get_page_size(void)
228{
229#if defined(_SC_PAGESIZE)
230 long page_size = sysconf(_SC_PAGESIZE);
231 if (page_size <= 0) rb_bug("yjit: failed to get page size");
232
233 // 1 GiB limit. x86 CPUs with PDPE1GB can do this and anything larger is unexpected.
234 // Though our design sort of assume we have fine grained control over memory protection
235 // which require small page sizes.
236 if (page_size > 0x40000000l) rb_bug("yjit page size too large");
237
238 return (uint32_t)page_size;
239#else
240#error "YJIT supports POSIX only for now"
241#endif
242}
243
244#if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
245// Align the current write position to a multiple of bytes
246static uint8_t *
247align_ptr(uint8_t *ptr, uint32_t multiple)
248{
249 // Compute the pointer modulo the given alignment boundary
250 uint32_t rem = ((uint32_t)(uintptr_t)ptr) % multiple;
251
252 // If the pointer is already aligned, stop
253 if (rem == 0)
254 return ptr;
255
256 // Pad the pointer by the necessary amount to align it
257 uint32_t pad = multiple - rem;
258
259 return ptr + pad;
260}
261#endif
262
263// Address space reservation. Memory pages are mapped on an as needed basis.
264// See the Rust mm module for details.
265uint8_t *
266rb_yjit_reserve_addr_space(uint32_t mem_size)
267{
268#ifndef _WIN32
269 uint8_t *mem_block;
270
271 // On Linux
272 #if defined(MAP_FIXED_NOREPLACE) && defined(_SC_PAGESIZE)
273 uint32_t const page_size = (uint32_t)sysconf(_SC_PAGESIZE);
274 uint8_t *const cfunc_sample_addr = (void *)(uintptr_t)&rb_yjit_reserve_addr_space;
275 uint8_t *const probe_region_end = cfunc_sample_addr + INT32_MAX;
276 // Align the requested address to page size
277 uint8_t *req_addr = align_ptr(cfunc_sample_addr, page_size);
278
279 // Probe for addresses close to this function using MAP_FIXED_NOREPLACE
280 // to improve odds of being in range for 32-bit relative call instructions.
281 do {
282 mem_block = mmap(
283 req_addr,
284 mem_size,
285 PROT_NONE,
286 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED_NOREPLACE,
287 -1,
288 0
289 );
290
291 // If we succeeded, stop
292 if (mem_block != MAP_FAILED) {
293 ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_yjit_reserve_addr_space");
294 break;
295 }
296
297 // -4MiB. Downwards to probe away from the heap. (On x86/A64 Linux
298 // main_code_addr < heap_addr, and in case we are in a shared
299 // library mapped higher than the heap, downwards is still better
300 // since it's towards the end of the heap rather than the stack.)
301 req_addr -= 4 * 1024 * 1024;
302 } while (req_addr < probe_region_end);
303
304 // On MacOS and other platforms
305 #else
306 // Try to map a chunk of memory as executable
307 mem_block = mmap(
308 (void *)rb_yjit_reserve_addr_space,
309 mem_size,
310 PROT_NONE,
311 MAP_PRIVATE | MAP_ANONYMOUS,
312 -1,
313 0
314 );
315 #endif
316
317 // Fallback
318 if (mem_block == MAP_FAILED) {
319 // Try again without the address hint (e.g., valgrind)
320 mem_block = mmap(
321 NULL,
322 mem_size,
323 PROT_NONE,
324 MAP_PRIVATE | MAP_ANONYMOUS,
325 -1,
326 0
327 );
328
329 if (mem_block != MAP_FAILED) {
330 ruby_annotate_mmap(mem_block, mem_size, "Ruby:rb_yjit_reserve_addr_space:fallback");
331 }
332 }
333
334 // Check that the memory mapping was successful
335 if (mem_block == MAP_FAILED) {
336 perror("ruby: yjit: mmap:");
337 if(errno == ENOMEM) {
338 // No crash report if it's only insufficient memory
339 exit(EXIT_FAILURE);
340 }
341 rb_bug("mmap failed");
342 }
343
344 return mem_block;
345#else
346 // Windows not supported for now
347 return NULL;
348#endif
349}
350
351// Is anyone listening for :c_call and :c_return event currently?
352bool
353rb_c_method_tracing_currently_enabled(const rb_execution_context_t *ec)
354{
355 rb_event_flag_t tracing_events;
356 if (rb_multi_ractor_p()) {
357 tracing_events = ruby_vm_event_enabled_global_flags;
358 }
359 else {
360 // At the time of writing, events are never removed from
361 // ruby_vm_event_enabled_global_flags so always checking using it would
362 // mean we don't compile even after tracing is disabled.
363 tracing_events = rb_ec_ractor_hooks(ec)->events;
364 }
365
366 return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN);
367}
368
369// The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event
370// like the interpreter. When tracing for c_return is enabled, we patch the code after
371// the C method return to call into this to fire the event.
372void
373rb_full_cfunc_return(rb_execution_context_t *ec, VALUE return_value)
374{
375 rb_control_frame_t *cfp = ec->cfp;
376 RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp);
377 const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp);
378
379 RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp));
380 RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC);
381
382 // CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this
383
384 // Pop the C func's frame and fire the c_return TracePoint event
385 // Note that this is the same order as vm_call_cfunc_with_frame().
386 rb_vm_pop_frame(ec);
387 EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value);
388 // Note, this deviates from the interpreter in that users need to enable
389 // a c_return TracePoint for this DTrace hook to work. A reasonable change
390 // since the Ruby return event works this way as well.
391 RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id);
392
393 // Push return value into the caller's stack. We know that it's a frame that
394 // uses cfp->sp because we are patching a call done with gen_send_cfunc().
395 ec->cfp->sp[0] = return_value;
396 ec->cfp->sp++;
397}
398
399unsigned int
400rb_iseq_encoded_size(const rb_iseq_t *iseq)
401{
402 return iseq->body->iseq_size;
403}
404
405// TODO(alan): consider using an opaque pointer for the payload rather than a void pointer
406void *
407rb_iseq_get_yjit_payload(const rb_iseq_t *iseq)
408{
409 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
410 if (iseq->body) {
411 return iseq->body->yjit_payload;
412 }
413 else {
414 // Body is NULL when constructing the iseq.
415 return NULL;
416 }
417}
418
419void
420rb_iseq_set_yjit_payload(const rb_iseq_t *iseq, void *payload)
421{
422 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
423 RUBY_ASSERT_ALWAYS(iseq->body);
424 RUBY_ASSERT_ALWAYS(NULL == iseq->body->yjit_payload);
425 iseq->body->yjit_payload = payload;
426}
427
428void
429rb_iseq_reset_jit_func(const rb_iseq_t *iseq)
430{
431 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
432 iseq->body->jit_entry = NULL;
433 iseq->body->jit_exception = NULL;
434 // Enable re-compiling this ISEQ. Event when it's invalidated for TracePoint,
435 // we'd like to re-compile ISEQs that haven't been converted to trace_* insns.
436 iseq->body->jit_entry_calls = 0;
437 iseq->body->jit_exception_calls = 0;
438}
439
440// Get the PC for a given index in an iseq
441VALUE *
442rb_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx)
443{
444 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(iseq, imemo_iseq));
445 RUBY_ASSERT_ALWAYS(insn_idx < iseq->body->iseq_size);
446 VALUE *encoded = iseq->body->iseq_encoded;
447 VALUE *pc = &encoded[insn_idx];
448 return pc;
449}
450
451// Get the opcode given a program counter. Can return trace opcode variants.
452int
453rb_iseq_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc)
454{
455 // YJIT should only use iseqs after AST to bytecode compilation
456 RUBY_ASSERT_ALWAYS(FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED));
457
458 const VALUE at_pc = *pc;
459 return rb_vm_insn_addr2opcode((const void *)at_pc);
460}
461
462unsigned long
463rb_RSTRING_LEN(VALUE str)
464{
465 return RSTRING_LEN(str);
466}
467
468char *
469rb_RSTRING_PTR(VALUE str)
470{
471 return RSTRING_PTR(str);
472}
473
474rb_proc_t *
475rb_yjit_get_proc_ptr(VALUE procv)
476{
477 rb_proc_t *proc;
478 GetProcPtr(procv, proc);
479 return proc;
480}
481
482// This is defined only as a named struct inside rb_iseq_constant_body.
483// By giving it a separate typedef, we make it nameable by rust-bindgen.
484// Bindgen's temp/anon name isn't guaranteed stable.
485typedef struct rb_iseq_param_keyword rb_seq_param_keyword_struct;
486
487const char *
488rb_insn_name(VALUE insn)
489{
490 return insn_name(insn);
491}
492
493unsigned int
494rb_vm_ci_argc(const struct rb_callinfo *ci)
495{
496 return vm_ci_argc(ci);
497}
498
499ID
500rb_vm_ci_mid(const struct rb_callinfo *ci)
501{
502 return vm_ci_mid(ci);
503}
504
505unsigned int
506rb_vm_ci_flag(const struct rb_callinfo *ci)
507{
508 return vm_ci_flag(ci);
509}
510
511const struct rb_callinfo_kwarg *
512rb_vm_ci_kwarg(const struct rb_callinfo *ci)
513{
514 return vm_ci_kwarg(ci);
515}
516
517int
518rb_get_cikw_keyword_len(const struct rb_callinfo_kwarg *cikw)
519{
520 return cikw->keyword_len;
521}
522
523VALUE
524rb_get_cikw_keywords_idx(const struct rb_callinfo_kwarg *cikw, int idx)
525{
526 return cikw->keywords[idx];
527}
528
529rb_method_visibility_t
530rb_METHOD_ENTRY_VISI(const rb_callable_method_entry_t *me)
531{
532 return METHOD_ENTRY_VISI(me);
533}
534
535rb_method_type_t
536rb_get_cme_def_type(const rb_callable_method_entry_t *cme)
537{
538 if (UNDEFINED_METHOD_ENTRY_P(cme)) {
539 return VM_METHOD_TYPE_UNDEF;
540 }
541 else {
542 return cme->def->type;
543 }
544}
545
546ID
547rb_get_cme_def_body_attr_id(const rb_callable_method_entry_t *cme)
548{
549 return cme->def->body.attr.id;
550}
551
552ID rb_get_symbol_id(VALUE namep);
553
554enum method_optimized_type
555rb_get_cme_def_body_optimized_type(const rb_callable_method_entry_t *cme)
556{
557 return cme->def->body.optimized.type;
558}
559
560unsigned int
561rb_get_cme_def_body_optimized_index(const rb_callable_method_entry_t *cme)
562{
563 return cme->def->body.optimized.index;
564}
565
567rb_get_cme_def_body_cfunc(const rb_callable_method_entry_t *cme)
568{
569 return UNALIGNED_MEMBER_PTR(cme->def, body.cfunc);
570}
571
572uintptr_t
573rb_get_def_method_serial(const rb_method_definition_t *def)
574{
575 return def->method_serial;
576}
577
578ID
579rb_get_def_original_id(const rb_method_definition_t *def)
580{
581 return def->original_id;
582}
583
584int
585rb_get_mct_argc(const rb_method_cfunc_t *mct)
586{
587 return mct->argc;
588}
589
590void *
591rb_get_mct_func(const rb_method_cfunc_t *mct)
592{
593 return (void*)(uintptr_t)mct->func; // this field is defined as type VALUE (*func)(ANYARGS)
594}
595
596const rb_iseq_t *
597rb_get_def_iseq_ptr(rb_method_definition_t *def)
598{
599 return def_iseq_ptr(def);
600}
601
602VALUE
603rb_get_def_bmethod_proc(rb_method_definition_t *def)
604{
605 RUBY_ASSERT(def->type == VM_METHOD_TYPE_BMETHOD);
606 return def->body.bmethod.proc;
607}
608
609const rb_iseq_t *
610rb_get_iseq_body_local_iseq(const rb_iseq_t *iseq)
611{
612 return iseq->body->local_iseq;
613}
614
615const rb_iseq_t *
616rb_get_iseq_body_parent_iseq(const rb_iseq_t *iseq)
617{
618 return iseq->body->parent_iseq;
619}
620
621unsigned int
622rb_get_iseq_body_local_table_size(const rb_iseq_t *iseq)
623{
624 return iseq->body->local_table_size;
625}
626
627VALUE *
628rb_get_iseq_body_iseq_encoded(const rb_iseq_t *iseq)
629{
630 return iseq->body->iseq_encoded;
631}
632
633unsigned
634rb_get_iseq_body_stack_max(const rb_iseq_t *iseq)
635{
636 return iseq->body->stack_max;
637}
638
639enum rb_iseq_type
640rb_get_iseq_body_type(const rb_iseq_t *iseq)
641{
642 return iseq->body->type;
643}
644
645bool
646rb_get_iseq_flags_has_lead(const rb_iseq_t *iseq)
647{
648 return iseq->body->param.flags.has_lead;
649}
650
651bool
652rb_get_iseq_flags_has_opt(const rb_iseq_t *iseq)
653{
654 return iseq->body->param.flags.has_opt;
655}
656
657bool
658rb_get_iseq_flags_has_kw(const rb_iseq_t *iseq)
659{
660 return iseq->body->param.flags.has_kw;
661}
662
663bool
664rb_get_iseq_flags_has_post(const rb_iseq_t *iseq)
665{
666 return iseq->body->param.flags.has_post;
667}
668
669bool
670rb_get_iseq_flags_has_kwrest(const rb_iseq_t *iseq)
671{
672 return iseq->body->param.flags.has_kwrest;
673}
674
675bool
676rb_get_iseq_flags_anon_kwrest(const rb_iseq_t *iseq)
677{
678 return iseq->body->param.flags.anon_kwrest;
679}
680
681bool
682rb_get_iseq_flags_has_rest(const rb_iseq_t *iseq)
683{
684 return iseq->body->param.flags.has_rest;
685}
686
687bool
688rb_get_iseq_flags_ruby2_keywords(const rb_iseq_t *iseq)
689{
690 return iseq->body->param.flags.ruby2_keywords;
691}
692
693bool
694rb_get_iseq_flags_has_block(const rb_iseq_t *iseq)
695{
696 return iseq->body->param.flags.has_block;
697}
698
699bool
700rb_get_iseq_flags_ambiguous_param0(const rb_iseq_t *iseq)
701{
702 return iseq->body->param.flags.ambiguous_param0;
703}
704
705bool
706rb_get_iseq_flags_accepts_no_kwarg(const rb_iseq_t *iseq)
707{
708 return iseq->body->param.flags.accepts_no_kwarg;
709}
710
711bool
712rb_get_iseq_flags_forwardable(const rb_iseq_t *iseq)
713{
714 return iseq->body->param.flags.forwardable;
715}
716
717const rb_seq_param_keyword_struct *
718rb_get_iseq_body_param_keyword(const rb_iseq_t *iseq)
719{
720 return iseq->body->param.keyword;
721}
722
723unsigned
724rb_get_iseq_body_param_size(const rb_iseq_t *iseq)
725{
726 return iseq->body->param.size;
727}
728
729int
730rb_get_iseq_body_param_lead_num(const rb_iseq_t *iseq)
731{
732 return iseq->body->param.lead_num;
733}
734
735int
736rb_get_iseq_body_param_opt_num(const rb_iseq_t *iseq)
737{
738 return iseq->body->param.opt_num;
739}
740
741const VALUE *
742rb_get_iseq_body_param_opt_table(const rb_iseq_t *iseq)
743{
744 return iseq->body->param.opt_table;
745}
746
747VALUE
748rb_optimized_call(VALUE *recv, rb_execution_context_t *ec, int argc, VALUE *argv, int kw_splat, VALUE block_handler)
749{
750 rb_proc_t *proc;
751 GetProcPtr(recv, proc);
752 return rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, block_handler);
753}
754
755unsigned int
756rb_yjit_iseq_builtin_attrs(const rb_iseq_t *iseq)
757{
758 return iseq->body->builtin_attrs;
759}
760
761// If true, the iseq has only opt_invokebuiltin_delegate(_leave) and leave insns.
762static bool
763invokebuiltin_delegate_leave_p(const rb_iseq_t *iseq)
764{
765 int insn1 = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]);
766 if ((int)iseq->body->iseq_size != insn_len(insn1) + insn_len(BIN(leave))) {
767 return false;
768 }
769 int insn2 = rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[insn_len(insn1)]);
770 return (insn1 == BIN(opt_invokebuiltin_delegate) || insn1 == BIN(opt_invokebuiltin_delegate_leave)) &&
771 insn2 == BIN(leave);
772}
773
774// Return an rb_builtin_function if the iseq contains only that builtin function.
775const struct rb_builtin_function *
776rb_yjit_builtin_function(const rb_iseq_t *iseq)
777{
778 if (invokebuiltin_delegate_leave_p(iseq)) {
779 return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1];
780 }
781 else {
782 return NULL;
783 }
784}
785
786VALUE
787rb_yjit_str_simple_append(VALUE str1, VALUE str2)
788{
789 return rb_str_cat(str1, RSTRING_PTR(str2), RSTRING_LEN(str2));
790}
791
793rb_get_ec_cfp(const rb_execution_context_t *ec)
794{
795 return ec->cfp;
796}
797
798const rb_iseq_t *
799rb_get_cfp_iseq(struct rb_control_frame_struct *cfp)
800{
801 return cfp->iseq;
802}
803
804VALUE *
805rb_get_cfp_pc(struct rb_control_frame_struct *cfp)
806{
807 return (VALUE*)cfp->pc;
808}
809
810VALUE *
811rb_get_cfp_sp(struct rb_control_frame_struct *cfp)
812{
813 return cfp->sp;
814}
815
816void
817rb_set_cfp_pc(struct rb_control_frame_struct *cfp, const VALUE *pc)
818{
819 cfp->pc = pc;
820}
821
822void
823rb_set_cfp_sp(struct rb_control_frame_struct *cfp, VALUE *sp)
824{
825 cfp->sp = sp;
826}
827
828VALUE
829rb_get_cfp_self(struct rb_control_frame_struct *cfp)
830{
831 return cfp->self;
832}
833
834VALUE *
835rb_get_cfp_ep(struct rb_control_frame_struct *cfp)
836{
837 return (VALUE*)cfp->ep;
838}
839
840const VALUE *
841rb_get_cfp_ep_level(struct rb_control_frame_struct *cfp, uint32_t lv)
842{
843 uint32_t i;
844 const VALUE *ep = (VALUE*)cfp->ep;
845 for (i = 0; i < lv; i++) {
846 ep = VM_ENV_PREV_EP(ep);
847 }
848 return ep;
849}
850
851extern VALUE *rb_vm_base_ptr(struct rb_control_frame_struct *cfp);
852
853VALUE
854rb_yarv_class_of(VALUE obj)
855{
856 return rb_class_of(obj);
857}
858
859// YJIT needs this function to never allocate and never raise
860VALUE
861rb_yarv_str_eql_internal(VALUE str1, VALUE str2)
862{
863 // We wrap this since it's static inline
864 return rb_str_eql_internal(str1, str2);
865}
866
867VALUE
868rb_str_neq_internal(VALUE str1, VALUE str2)
869{
870 return rb_str_eql_internal(str1, str2) == Qtrue ? Qfalse : Qtrue;
871}
872
873// YJIT needs this function to never allocate and never raise
874VALUE
875rb_yarv_ary_entry_internal(VALUE ary, long offset)
876{
877 return rb_ary_entry_internal(ary, offset);
878}
879
880extern VALUE rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary);
881
882VALUE
883rb_yjit_rb_ary_subseq_length(VALUE ary, long beg)
884{
885 long len = RARRAY_LEN(ary);
886 return rb_ary_subseq(ary, beg, len);
887}
888
889VALUE
890rb_yjit_fix_div_fix(VALUE recv, VALUE obj)
891{
892 return rb_fix_div_fix(recv, obj);
893}
894
895VALUE
896rb_yjit_fix_mod_fix(VALUE recv, VALUE obj)
897{
898 return rb_fix_mod_fix(recv, obj);
899}
900
901// Return non-zero when `obj` is an array and its last item is a
902// `ruby2_keywords` hash. We don't support this kind of splat.
903size_t
904rb_yjit_ruby2_keywords_splat_p(VALUE obj)
905{
906 if (!RB_TYPE_P(obj, T_ARRAY)) return 0;
907 long len = RARRAY_LEN(obj);
908 if (len == 0) return 0;
909 VALUE last = RARRAY_AREF(obj, len - 1);
910 if (!RB_TYPE_P(last, T_HASH)) return 0;
911 return FL_TEST_RAW(last, RHASH_PASS_AS_KEYWORDS);
912}
913
914// Checks to establish preconditions for rb_yjit_splat_varg_cfunc()
915VALUE
916rb_yjit_splat_varg_checks(VALUE *sp, VALUE splat_array, rb_control_frame_t *cfp)
917{
918 // We inserted a T_ARRAY guard before this call
919 long len = RARRAY_LEN(splat_array);
920
921 // Large splat arrays need a separate allocation
922 if (len < 0 || len > VM_ARGC_STACK_MAX) return Qfalse;
923
924 // Would we overflow if we put the contents of the array onto the stack?
925 if (sp + len > (VALUE *)(cfp - 2)) return Qfalse;
926
927 // Reject keywords hash since that requires duping it sometimes
928 if (len > 0) {
929 VALUE last_hash = RARRAY_AREF(splat_array, len - 1);
930 if (RB_TYPE_P(last_hash, T_HASH) &&
931 FL_TEST_RAW(last_hash, RHASH_PASS_AS_KEYWORDS)) {
932 return Qfalse;
933 }
934 }
935
936 return Qtrue;
937}
938
939// Push array elements to the stack for a C method that has a variable number
940// of parameters. Returns the number of arguments the splat array contributes.
941int
942rb_yjit_splat_varg_cfunc(VALUE *stack_splat_array)
943{
944 VALUE splat_array = *stack_splat_array;
945 int len;
946
947 // We already checked that length fits in `int`
948 RUBY_ASSERT(RB_TYPE_P(splat_array, T_ARRAY));
949 len = (int)RARRAY_LEN(splat_array);
950
951 // Push the contents of the array onto the stack
952 MEMCPY(stack_splat_array, RARRAY_CONST_PTR(splat_array), VALUE, len);
953
954 return len;
955}
956
957// Print the Ruby source location of some ISEQ for debugging purposes
958void
959rb_yjit_dump_iseq_loc(const rb_iseq_t *iseq, uint32_t insn_idx)
960{
961 char *ptr;
962 long len;
963 VALUE path = rb_iseq_path(iseq);
964 RSTRING_GETMEM(path, ptr, len);
965 fprintf(stderr, "%s %.*s:%u\n", __func__, (int)len, ptr, rb_iseq_line_no(iseq, insn_idx));
966}
967
968// Get the number of digits required to print an integer
969static int
970num_digits(int integer)
971{
972 int num = 1;
973 while (integer /= 10) {
974 num++;
975 }
976 return num;
977}
978
979// Allocate a C string that formats an ISEQ label like iseq_inspect()
980char *
981rb_yjit_iseq_inspect(const rb_iseq_t *iseq)
982{
983 const char *label = RSTRING_PTR(iseq->body->location.label);
984 const char *path = RSTRING_PTR(rb_iseq_path(iseq));
985 int lineno = iseq->body->location.code_location.beg_pos.lineno;
986
987 char *buf = ZALLOC_N(char, strlen(label) + strlen(path) + num_digits(lineno) + 3);
988 sprintf(buf, "%s@%s:%d", label, path, lineno);
989 return buf;
990}
991
992// The FL_TEST() macro
993VALUE
994rb_FL_TEST(VALUE obj, VALUE flags)
995{
996 return RB_FL_TEST(obj, flags);
997}
998
999// The FL_TEST_RAW() macro, normally an internal implementation detail
1000VALUE
1001rb_FL_TEST_RAW(VALUE obj, VALUE flags)
1002{
1003 return FL_TEST_RAW(obj, flags);
1004}
1005
1006// The RB_TYPE_P macro
1007bool
1008rb_RB_TYPE_P(VALUE obj, enum ruby_value_type t)
1009{
1010 return RB_TYPE_P(obj, t);
1011}
1012
1013long
1014rb_RSTRUCT_LEN(VALUE st)
1015{
1016 return RSTRUCT_LEN(st);
1017}
1018
1019// There are RSTRUCT_SETs in ruby/internal/core/rstruct.h and internal/struct.h
1020// with different types (int vs long) for k. Here we use the one from ruby/internal/core/rstruct.h,
1021// which takes an int.
1022void
1023rb_RSTRUCT_SET(VALUE st, int k, VALUE v)
1024{
1025 RSTRUCT_SET(st, k, v);
1026}
1027
1028const struct rb_callinfo *
1029rb_get_call_data_ci(const struct rb_call_data *cd)
1030{
1031 return cd->ci;
1032}
1033
1034bool
1035rb_BASIC_OP_UNREDEFINED_P(enum ruby_basic_operators bop, uint32_t klass)
1036{
1037 return BASIC_OP_UNREDEFINED_P(bop, klass);
1038}
1039
1040VALUE
1041rb_RCLASS_ORIGIN(VALUE c)
1042{
1043 return RCLASS_ORIGIN(c);
1044}
1045
1046// Return the string encoding index
1047int
1048rb_ENCODING_GET(VALUE obj)
1049{
1050 return RB_ENCODING_GET(obj);
1051}
1052
1053bool
1054rb_yjit_multi_ractor_p(void)
1055{
1056 return rb_multi_ractor_p();
1057}
1058
1059// For debug builds
1060void
1061rb_assert_iseq_handle(VALUE handle)
1062{
1063 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_iseq));
1064}
1065
1066int
1067rb_IMEMO_TYPE_P(VALUE imemo, enum imemo_type imemo_type)
1068{
1069 return IMEMO_TYPE_P(imemo, imemo_type);
1070}
1071
1072bool
1073rb_yjit_constcache_shareable(const struct iseq_inline_constant_cache_entry *ice)
1074{
1075 return (ice->flags & IMEMO_CONST_CACHE_SHAREABLE) != 0;
1076}
1077
1078void
1079rb_assert_cme_handle(VALUE handle)
1080{
1081 RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(handle));
1082 RUBY_ASSERT_ALWAYS(IMEMO_TYPE_P(handle, imemo_ment));
1083}
1084
1085// Used for passing a callback and other data over rb_objspace_each_objects
1087 rb_iseq_callback callback;
1088 void *data;
1089};
1090
1091// Heap-walking callback for rb_yjit_for_each_iseq().
1092static int
1093for_each_iseq_i(void *vstart, void *vend, size_t stride, void *data)
1094{
1095 const struct iseq_callback_data *callback_data = (struct iseq_callback_data *)data;
1096 VALUE v = (VALUE)vstart;
1097 for (; v != (VALUE)vend; v += stride) {
1098 void *ptr = rb_asan_poisoned_object_p(v);
1099 rb_asan_unpoison_object(v, false);
1100
1101 if (rb_obj_is_iseq(v)) {
1102 rb_iseq_t *iseq = (rb_iseq_t *)v;
1103 callback_data->callback(iseq, callback_data->data);
1104 }
1105
1106 asan_poison_object_if(ptr, v);
1107 }
1108 return 0;
1109}
1110
1111// Iterate through the whole GC heap and invoke a callback for each iseq.
1112// Used for global code invalidation.
1113void
1114rb_yjit_for_each_iseq(rb_iseq_callback callback, void *data)
1115{
1116 struct iseq_callback_data callback_data = { .callback = callback, .data = data };
1117 rb_objspace_each_objects(for_each_iseq_i, (void *)&callback_data);
1118}
1119
1120// For running write barriers from Rust. Required when we add a new edge in the
1121// object graph from `old` to `young`.
1122void
1123rb_yjit_obj_written(VALUE old, VALUE young, const char *file, int line)
1124{
1125 rb_obj_written(old, Qundef, young, file, line);
1126}
1127
1128// Acquire the VM lock and then signal all other Ruby threads (ractors) to
1129// contend for the VM lock, putting them to sleep. YJIT uses this to evict
1130// threads running inside generated code so among other things, it can
1131// safely change memory protection of regions housing generated code.
1132void
1133rb_yjit_vm_lock_then_barrier(unsigned int *recursive_lock_level, const char *file, int line)
1134{
1135 rb_vm_lock_enter(recursive_lock_level, file, line);
1136 rb_vm_barrier();
1137}
1138
1139// Release the VM lock. The lock level must point to the same integer used to
1140// acquire the lock.
1141void
1142rb_yjit_vm_unlock(unsigned int *recursive_lock_level, const char *file, int line)
1143{
1144 rb_vm_lock_leave(recursive_lock_level, file, line);
1145}
1146
1147void
1148rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception)
1149{
1150 RB_VM_LOCK_ENTER();
1151 rb_vm_barrier();
1152
1153 // Compile a block version starting at the current instruction
1154 uint8_t *rb_yjit_iseq_gen_entry_point(const rb_iseq_t *iseq, rb_execution_context_t *ec, bool jit_exception); // defined in Rust
1155 uintptr_t code_ptr = (uintptr_t)rb_yjit_iseq_gen_entry_point(iseq, ec, jit_exception);
1156
1157 if (jit_exception) {
1158 iseq->body->jit_exception = (rb_jit_func_t)code_ptr;
1159 }
1160 else {
1161 iseq->body->jit_entry = (rb_jit_func_t)code_ptr;
1162 }
1163
1164 RB_VM_LOCK_LEAVE();
1165}
1166
1167// GC root for interacting with the GC
1169 bool unused; // empty structs are not legal in C99
1170};
1171
1172// For dealing with refinements
1173void
1174rb_yjit_invalidate_all_method_lookup_assumptions(void)
1175{
1176 // It looks like Module#using actually doesn't need to invalidate all the
1177 // method caches, so we do nothing here for now.
1178}
1179
1180// Number of object shapes, which might be useful for investigating YJIT exit reasons.
1181VALUE
1182rb_object_shape_count(void)
1183{
1184 // next_shape_id starts from 0, so it's the same as the count
1185 return ULONG2NUM((unsigned long)GET_SHAPE_TREE()->next_shape_id);
1186}
1187
1188// Assert that we have the VM lock. Relevant mostly for multi ractor situations.
1189// The GC takes the lock before calling us, and this asserts that it indeed happens.
1190void
1191rb_yjit_assert_holding_vm_lock(void)
1192{
1193 ASSERT_vm_locking();
1194}
1195
1196// The number of stack slots that vm_sendish() pops for send and invokesuper.
1197size_t
1198rb_yjit_sendish_sp_pops(const struct rb_callinfo *ci)
1199{
1200 return 1 - sp_inc_of_sendish(ci); // + 1 to ignore return value push
1201}
1202
1203// The number of stack slots that vm_sendish() pops for invokeblock.
1204size_t
1205rb_yjit_invokeblock_sp_pops(const struct rb_callinfo *ci)
1206{
1207 return 1 - sp_inc_of_invokeblock(ci); // + 1 to ignore return value push
1208}
1209
1210// Setup jit_return to avoid returning a non-Qundef value on a non-FINISH frame.
1211// See [jit_compile_exception] for details.
1212void
1213rb_yjit_set_exception_return(rb_control_frame_t *cfp, void *leave_exit, void *leave_exception)
1214{
1215 if (VM_FRAME_FINISHED_P(cfp)) {
1216 // If it's a FINISH frame, just normally exit with a non-Qundef value.
1217 cfp->jit_return = leave_exit;
1218 }
1219 else if (cfp->jit_return) {
1220 while (!VM_FRAME_FINISHED_P(cfp)) {
1221 if (cfp->jit_return == leave_exit) {
1222 // Unlike jit_exec(), leave_exit is not safe on a non-FINISH frame on
1223 // jit_exec_exception(). See [jit_exec] and [jit_exec_exception] for
1224 // details. Exit to the interpreter with Qundef to let it keep executing
1225 // other Ruby frames.
1226 cfp->jit_return = leave_exception;
1227 return;
1228 }
1229 cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
1230 }
1231 }
1232 else {
1233 // If the caller was not JIT code, exit to the interpreter with Qundef
1234 // to keep executing Ruby frames with the interpreter.
1235 cfp->jit_return = leave_exception;
1236 }
1237}
1238
1239// Primitives used by yjit.rb
1240VALUE rb_yjit_stats_enabled_p(rb_execution_context_t *ec, VALUE self);
1241VALUE rb_yjit_print_stats_p(rb_execution_context_t *ec, VALUE self);
1242VALUE rb_yjit_log_enabled_p(rb_execution_context_t *c, VALUE self);
1243VALUE rb_yjit_print_log_p(rb_execution_context_t *c, VALUE self);
1244VALUE rb_yjit_trace_exit_locations_enabled_p(rb_execution_context_t *ec, VALUE self);
1245VALUE rb_yjit_get_stats(rb_execution_context_t *ec, VALUE self, VALUE key);
1246VALUE rb_yjit_reset_stats_bang(rb_execution_context_t *ec, VALUE self);
1247VALUE rb_yjit_get_log(rb_execution_context_t *ec, VALUE self);
1248VALUE rb_yjit_disasm_iseq(rb_execution_context_t *ec, VALUE self, VALUE iseq);
1249VALUE rb_yjit_insns_compiled(rb_execution_context_t *ec, VALUE self, VALUE iseq);
1250VALUE rb_yjit_code_gc(rb_execution_context_t *ec, VALUE self);
1251VALUE rb_yjit_simulate_oom_bang(rb_execution_context_t *ec, VALUE self);
1252VALUE rb_yjit_get_exit_locations(rb_execution_context_t *ec, VALUE self);
1253VALUE rb_yjit_enable(rb_execution_context_t *ec, VALUE self, VALUE gen_stats, VALUE print_stats, VALUE gen_compilation_log, VALUE print_compilation_log, VALUE mem_size, VALUE call_threshold);
1254VALUE rb_yjit_c_builtin_p(rb_execution_context_t *ec, VALUE self);
1255
1256// Allow YJIT_C_BUILTIN macro to force --yjit-c-builtin
1257#ifdef YJIT_C_BUILTIN
1258static VALUE yjit_c_builtin_p(rb_execution_context_t *ec, VALUE self) { return Qtrue; }
1259#else
1260#define yjit_c_builtin_p rb_yjit_c_builtin_p
1261#endif
1262
1263// Preprocessed yjit.rb generated during build
1264#include "yjit.rbinc"
#define RUBY_ASSERT_ALWAYS(expr,...)
A variant of RUBY_ASSERT that does not interface with RUBY_DEBUG.
Definition assert.h:199
#define RUBY_ASSERT(...)
Asserts that the given expression is truthy if and only if RUBY_DEBUG is truthy.
Definition assert.h:219
VALUE rb_profile_frame_full_label(VALUE frame)
Identical to rb_profile_frame_label(), except it returns a qualified result.
VALUE rb_profile_frame_absolute_path(VALUE frame)
Identical to rb_profile_frame_path(), except it tries to expand the returning path.
VALUE rb_profile_frame_path(VALUE frame)
Queries the path of the passed backtrace.
VALUE rb_profile_frame_first_lineno(VALUE frame)
Queries the first line of the method of the passed frame pointer.
#define RUBY_EVENT_C_CALL
A method, written in C, is called.
Definition event.h:43
#define RUBY_EVENT_C_RETURN
Return from a method, written in C.
Definition event.h:44
uint32_t rb_event_flag_t
Represents event(s).
Definition event.h:108
static VALUE RB_FL_TEST(VALUE obj, VALUE flags)
Tests if the given flag(s) are set or not.
Definition fl_type.h:495
#define Qundef
Old name of RUBY_Qundef.
#define INT2FIX
Old name of RB_INT2FIX.
Definition long.h:48
#define ID2SYM
Old name of RB_ID2SYM.
Definition symbol.h:44
#define ULONG2NUM
Old name of RB_ULONG2NUM.
Definition long.h:60
#define SIZET2NUM
Old name of RB_SIZE2NUM.
Definition size_t.h:62
#define ZALLOC_N
Old name of RB_ZALLOC_N.
Definition memory.h:401
#define T_HASH
Old name of RUBY_T_HASH.
Definition value_type.h:65
#define FL_TEST_RAW
Old name of RB_FL_TEST_RAW.
Definition fl_type.h:132
#define Qtrue
Old name of RUBY_Qtrue.
#define INT2NUM
Old name of RB_INT2NUM.
Definition int.h:43
#define Qfalse
Old name of RUBY_Qfalse.
#define T_ARRAY
Old name of RUBY_T_ARRAY.
Definition value_type.h:56
#define NIL_P
Old name of RB_NIL_P.
static VALUE rb_class_of(VALUE obj)
Object to class mapping function.
Definition globals.h:172
static int RB_ENCODING_GET(VALUE obj)
Just another name of rb_enc_get_index.
Definition encoding.h:195
Defines RBIMPL_HAS_BUILTIN.
VALUE rb_str_cat(VALUE dst, const char *src, long srclen)
Destructively appends the passed contents to the string.
Definition string.c:3463
int len
Length of the buffer.
Definition io.h:8
#define MEMCPY(p1, p2, type, n)
Handy macro to call memcpy.
Definition memory.h:372
#define RARRAY_LEN
Just another name of rb_array_len.
Definition rarray.h:51
static long rb_array_len(VALUE a)
Queries the length of the array.
Definition rarray.h:255
#define RARRAY_AREF(a, i)
Definition rarray.h:403
#define RARRAY_CONST_PTR
Just another name of rb_array_const_ptr.
Definition rarray.h:52
#define RSTRING_GETMEM(str, ptrvar, lenvar)
Convenient macro to obtain the contents and length at once.
Definition rstring.h:488
#define errno
Ractor-aware version of errno.
Definition ruby.h:388
#define RTEST
This is an old name of RB_TEST.
#define USE_FLONUM
Ruby's ordinal objects.
Definition robject.h:83
VALUE * ivptr
Pointer to a C array that holds instance variables.
Definition robject.h:97
struct RObject::@50::@51 heap
Object that use separated memory region for instance variables use this pattern.
Ruby's String.
Definition rstring.h:196
Definition vm_core.h:259
Definition method.h:63
struct rb_iseq_constant_body::@155 param
parameter information
uintptr_t ID
Type that represents a Ruby identifier such as a variable name.
Definition value.h:52
uintptr_t VALUE
Type that represents a Ruby object.
Definition value.h:40
static bool RB_TYPE_P(VALUE obj, enum ruby_value_type t)
Queries if the given object is of given type.
Definition value_type.h:376
ruby_value_type
C-level type of an object.
Definition value_type.h:113