class UnboundMethod
Ruby supports two forms of objectified methods. Class
Method
is used to represent methods that are associated with a particular object: these method objects are bound to that object. Bound method objects for an object can be created using Object#method
.
Ruby also supports unbound methods; methods objects that are not associated with a particular object. These can be created either by calling Module#instance_method
or by calling unbind on a bound method object. The result of both of these is an UnboundMethod
object.
Unbound methods can only be called after they are bound to an object. That object must be a kind_of? the method’s original class.
class Square def area @side * @side end def initialize(side) @side = side end end area_un = Square.instance_method(:area) s = Square.new(12) area = area_un.bind(s) area.call #=> 144
Unbound methods are a reference to the method at the time it was objectified: subsequent changes to the underlying class will not affect the unbound method.
class Test def test :original end end um = Test.instance_method(:test) class Test def test :modified end end t = Test.new t.test #=> :modified um.bind(t).call #=> :original
Public Instance Methods
Two method objects are equal if they are bound to the same object and refer to the same method definition and the classes defining the methods are the same class or module.
static VALUE method_eq(VALUE method, VALUE other) { struct METHOD *m1, *m2; VALUE klass1, klass2; if (!rb_obj_is_method(other)) return Qfalse; if (CLASS_OF(method) != CLASS_OF(other)) return Qfalse; Check_TypedStruct(method, &method_data_type); m1 = (struct METHOD *)DATA_PTR(method); m2 = (struct METHOD *)DATA_PTR(other); klass1 = method_entry_defined_class(m1->me); klass2 = method_entry_defined_class(m2->me); if (!rb_method_entry_eq(m1->me, m2->me) || klass1 != klass2 || m1->klass != m2->klass || m1->recv != m2->recv) { return Qfalse; } return Qtrue; }
Returns an indication of the number of arguments accepted by a method. Returns a nonnegative integer for methods that take a fixed number of arguments. For Ruby methods that take a variable number of arguments, returns -n-1, where n is the number of required arguments. Keyword arguments will be considered as a single additional argument, that argument being mandatory if any keyword argument is mandatory. For methods written in C, returns -1 if the call takes a variable number of arguments.
class C def one; end def two(a); end def three(*a); end def four(a, b); end def five(a, b, *c); end def six(a, b, *c, &d); end def seven(a, b, x:0); end def eight(x:, y:); end def nine(x:, y:, **z); end def ten(*a, x:, y:); end end c = C.new c.method(:one).arity #=> 0 c.method(:two).arity #=> 1 c.method(:three).arity #=> -1 c.method(:four).arity #=> 2 c.method(:five).arity #=> -3 c.method(:six).arity #=> -3 c.method(:seven).arity #=> -3 c.method(:eight).arity #=> 1 c.method(:nine).arity #=> 1 c.method(:ten).arity #=> -2 "cat".method(:size).arity #=> 0 "cat".method(:replace).arity #=> 1 "cat".method(:squeeze).arity #=> -1 "cat".method(:count).arity #=> -1
static VALUE method_arity_m(VALUE method) { int n = method_arity(method); return INT2FIX(n); }
Bind umeth to obj. If Klass was the class from which umeth was obtained, obj.kind_of?(Klass)
must be true.
class A def test puts "In test, class = #{self.class}" end end class B < A end class C < B end um = B.instance_method(:test) bm = um.bind(C.new) bm.call bm = um.bind(B.new) bm.call bm = um.bind(A.new) bm.call
produces:
In test, class = C In test, class = B prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) from prog.rb:16
static VALUE umethod_bind(VALUE method, VALUE recv) { VALUE methclass, klass, iclass; const rb_method_entry_t *me; const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me); struct METHOD *bound; method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); RB_OBJ_WRITE(method, &bound->recv, recv); RB_OBJ_WRITE(method, &bound->klass, klass); RB_OBJ_WRITE(method, &bound->iclass, iclass); RB_OBJ_WRITE(method, &bound->owner, methclass); RB_OBJ_WRITE(method, &bound->me, me); return method; }
Bind umeth to recv and then invokes the method with the specified arguments. This is semantically equivalent to umeth.bind(recv).call(args, ...)
.
static VALUE umethod_bind_call(int argc, VALUE *argv, VALUE method) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); VALUE recv = argv[0]; argc--; argv++; VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil; rb_execution_context_t *ec = GET_EC(); const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(recv), data->me->called_id); if (data->me == (const rb_method_entry_t *)cme) { vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); return rb_vm_call_kw(ec, recv, cme->called_id, argc, argv, cme, RB_PASS_CALLED_KEYWORDS); } else { VALUE methclass, klass, iclass; const rb_method_entry_t *me; convert_umethod_to_method_components(data, recv, &methclass, &klass, &iclass, &me); struct METHOD bound = { recv, klass, 0, methclass, me }; return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS); } }
Returns a clone of this method.
class A def foo return "bar" end end m = A.new.method(:foo) m.call # => "bar" n = m.clone.call # => "bar"
static VALUE method_clone(VALUE self) { VALUE clone; struct METHOD *orig, *data; TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); CLONESETUP(clone, self); RB_OBJ_WRITE(clone, &data->recv, orig->recv); RB_OBJ_WRITE(clone, &data->klass, orig->klass); RB_OBJ_WRITE(clone, &data->iclass, orig->iclass); RB_OBJ_WRITE(clone, &data->owner, orig->owner); RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); return clone; }
Two method objects are equal if they are bound to the same object and refer to the same method definition and the classes defining the methods are the same class or module.
Returns a hash value corresponding to the method object.
See also Object#hash
.
static VALUE method_hash(VALUE method) { struct METHOD *m; st_index_t hash; TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); hash = rb_hash_start((st_index_t)m->recv); hash = rb_hash_method_entry(hash, m->me); hash = rb_hash_end(hash); return ST2FIX(hash); }
Returns a human-readable description of the underlying method.
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
In the latter case, the method description includes the “owner” of the original method (Enumerable
module, which is included into Range
).
inspect
also provides, when possible, method argument names (call sequence) and source location.
require 'net/http' Net::HTTP.method(:get).inspect #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
...
in argument definition means argument is optional (has some default value).
For methods defined in C (language core and extensions), location and argument names can’t be extracted, and only generic information is provided in form of *
(any number of arguments) or _
(some positional argument).
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" "cat".method(:+).inspect #=> "#<Method: String#+(_)>""
static VALUE method_inspect(VALUE method) { struct METHOD *data; VALUE str; const char *sharp = "#"; VALUE mklass; VALUE defined_class; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method)); mklass = data->iclass; if (!mklass) mklass = data->klass; if (RB_TYPE_P(mklass, T_ICLASS)) { /* TODO: I'm not sure why mklass is T_ICLASS. * UnboundMethod#bind() can set it as T_ICLASS at convert_umethod_to_method_components() * but not sure it is needed. */ mklass = RBASIC_CLASS(mklass); } if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { defined_class = data->me->def->body.alias.original_me->owner; } else { defined_class = method_entry_defined_class(data->me); } if (RB_TYPE_P(defined_class, T_ICLASS)) { defined_class = RBASIC_CLASS(defined_class); } if (FL_TEST(mklass, FL_SINGLETON)) { VALUE v = rb_ivar_get(mklass, attached); if (data->recv == Qundef) { rb_str_buf_append(str, rb_inspect(mklass)); } else if (data->recv == v) { rb_str_buf_append(str, rb_inspect(v)); sharp = "."; } else { rb_str_buf_append(str, rb_inspect(data->recv)); rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_inspect(v)); rb_str_buf_cat2(str, ")"); sharp = "."; } } else { mklass = data->klass; if (FL_TEST(mklass, FL_SINGLETON)) { VALUE v = rb_ivar_get(mklass, attached); if (!(RB_TYPE_P(v, T_CLASS) || RB_TYPE_P(v, T_MODULE))) { do { mklass = RCLASS_SUPER(mklass); } while (RB_TYPE_P(mklass, T_ICLASS)); } } rb_str_buf_append(str, rb_inspect(mklass)); if (defined_class != mklass) { rb_str_catf(str, "(% "PRIsVALUE")", defined_class); } } rb_str_buf_cat2(str, sharp); rb_str_append(str, rb_id2str(data->me->called_id)); if (data->me->called_id != data->me->def->original_id) { rb_str_catf(str, "(%"PRIsVALUE")", rb_id2str(data->me->def->original_id)); } if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { rb_str_buf_cat2(str, " (not-implemented)"); } // parameter information { VALUE params = rb_method_parameters(method); VALUE pair, name, kind; const VALUE req = ID2SYM(rb_intern("req")); const VALUE opt = ID2SYM(rb_intern("opt")); const VALUE keyreq = ID2SYM(rb_intern("keyreq")); const VALUE key = ID2SYM(rb_intern("key")); const VALUE rest = ID2SYM(rb_intern("rest")); const VALUE keyrest = ID2SYM(rb_intern("keyrest")); const VALUE block = ID2SYM(rb_intern("block")); const VALUE nokey = ID2SYM(rb_intern("nokey")); int forwarding = 0; rb_str_buf_cat2(str, "("); for (int i = 0; i < RARRAY_LEN(params); i++) { pair = RARRAY_AREF(params, i); kind = RARRAY_AREF(pair, 0); name = RARRAY_AREF(pair, 1); // FIXME: in tests it turns out that kind, name = [:req] produces name to be false. Why?.. if (NIL_P(name) || name == Qfalse) { // FIXME: can it be reduced to switch/case? if (kind == req || kind == opt) { name = rb_str_new2("_"); } else if (kind == rest || kind == keyrest) { name = rb_str_new2(""); } else if (kind == block) { name = rb_str_new2("block"); } else if (kind == nokey) { name = rb_str_new2("nil"); } } if (kind == req) { rb_str_catf(str, "%"PRIsVALUE, name); } else if (kind == opt) { rb_str_catf(str, "%"PRIsVALUE"=...", name); } else if (kind == keyreq) { rb_str_catf(str, "%"PRIsVALUE":", name); } else if (kind == key) { rb_str_catf(str, "%"PRIsVALUE": ...", name); } else if (kind == rest) { if (name == ID2SYM('*')) { forwarding = 1; rb_str_cat_cstr(str, "..."); } else { rb_str_catf(str, "*%"PRIsVALUE, name); } } else if (kind == keyrest) { if (name != ID2SYM(idPow)) { rb_str_catf(str, "**%"PRIsVALUE, name); } else if (i > 0) { rb_str_set_len(str, RSTRING_LEN(str) - 2); } } else if (kind == block) { if (name == ID2SYM('&')) { if (forwarding) { rb_str_set_len(str, RSTRING_LEN(str) - 2); } else { rb_str_cat_cstr(str, "..."); } } else { rb_str_catf(str, "&%"PRIsVALUE, name); } } else if (kind == nokey) { rb_str_buf_cat2(str, "**nil"); } if (i < RARRAY_LEN(params) - 1) { rb_str_buf_cat2(str, ", "); } } rb_str_buf_cat2(str, ")"); } { // source location VALUE loc = rb_method_location(method); if (!NIL_P(loc)) { rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); } } rb_str_buf_cat2(str, ">"); return str; }
Returns the name of the method.
static VALUE method_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->called_id); }
Returns the original name of the method.
class C def foo; end alias bar foo end C.instance_method(:bar).original_name # => :foo
static VALUE method_original_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->def->original_id); }
Returns the class or module on which this method is defined. In other words,
meth.owner.instance_methods(false).include?(meth.name) # => true
holds as long as the method is not removed/undefined/replaced, (with private_instance_methods instead of instance_methods if the method is private).
See also Method#receiver
.
(1..3).method(:map).owner #=> Enumerable
static VALUE method_owner(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->owner; }
Returns the parameter information of this method.
def foo(bar); end method(:foo).parameters #=> [[:req, :bar]] def foo(bar, baz, bat, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] def foo(bar, *args); end method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] def foo(bar, baz, *args, &blk); end method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]]
static VALUE rb_method_parameters(VALUE method) { return method_def_parameters(rb_method_def(method)); }
Returns whether the method is private.
static VALUE method_private_p(VALUE method) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return RBOOL(METHOD_ENTRY_VISI(data->me) == METHOD_VISI_PRIVATE); }
Returns whether the method is protected.
static VALUE method_protected_p(VALUE method) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return RBOOL(METHOD_ENTRY_VISI(data->me) == METHOD_VISI_PROTECTED); }
Returns whether the method is public.
static VALUE method_public_p(VALUE method) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return RBOOL(METHOD_ENTRY_VISI(data->me) == METHOD_VISI_PUBLIC); }
Returns the Ruby source filename and line number containing this method or nil if this method was not defined in Ruby (i.e. native).
VALUE rb_method_location(VALUE method) { return method_def_location(rb_method_def(method)); }
Returns a Method
of superclass which would be called when super is used or nil if there is no method on superclass.
static VALUE method_super_method(VALUE method) { const struct METHOD *data; VALUE super_class, iclass; ID mid; const rb_method_entry_t *me; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); iclass = data->iclass; if (!iclass) return Qnil; if (data->me->def->type == VM_METHOD_TYPE_ALIAS && data->me->defined_class) { super_class = RCLASS_SUPER(rb_find_defined_class_by_owner(data->me->defined_class, data->me->def->body.alias.original_me->owner)); mid = data->me->def->body.alias.original_me->def->original_id; } else { super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass)); mid = data->me->def->original_id; } if (!super_class) return Qnil; me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass); if (!me) return Qnil; return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE); }
Returns a human-readable description of the underlying method.
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map()>"
In the latter case, the method description includes the “owner” of the original method (Enumerable
module, which is included into Range
).
inspect
also provides, when possible, method argument names (call sequence) and source location.
require 'net/http' Net::HTTP.method(:get).inspect #=> "#<Method: Net::HTTP.get(uri_or_host, path=..., port=...) <skip>/lib/ruby/2.7.0/net/http.rb:457>"
...
in argument definition means argument is optional (has some default value).
For methods defined in C (language core and extensions), location and argument names can’t be extracted, and only generic information is provided in form of *
(any number of arguments) or _
(some positional argument).
"cat".method(:count).inspect #=> "#<Method: String#count(*)>" "cat".method(:+).inspect #=> "#<Method: String#+(_)>""