module Kernel
RubyGems adds the gem
method to allow activation of specific gem versions and overrides the require
method on Kernel
to make gems appear as if they live on the $LOAD_PATH
. See the documentation of these methods for further detail.
The Kernel
module is included by class Object
, so its methods are available in every Ruby object.
The Kernel
instance methods are documented in class Object
while the module methods are documented here. These methods are called without a receiver and thus can be called in functional form:
sprintf "%.1f", 1.234 #=> "1.2"
Public Class Methods
Returns uri
converted to an URI
object.
# File lib/uri/common.rb, line 670 def URI(uri) if uri.is_a?(URI::Generic) uri elsif uri = String.try_convert(uri) URI.parse(uri) else raise ArgumentError, "bad argument (expected URI object or URI string)" end end
prints arguments in pretty form.
pp returns argument(s).
# File lib/pp.rb, line 602 def pp(*objs) objs.each {|obj| PP.pp(obj) } objs.size <= 1 ? objs.first : objs end
Public Instance Methods
Returns arg
as an Array
.
First tries to call to_ary
on arg
, then to_a
. If arg
does not respond to to_ary
or to_a
, returns an Array
of length 1 containing arg
.
If to_ary
or to_a
returns something other than an Array
, raises a TypeError
.
Array(["a", "b"]) #=> ["a", "b"] Array(1..5) #=> [1, 2, 3, 4, 5] Array(key: :value) #=> [[:key, :value]] Array(nil) #=> [] Array(1) #=> [1]
static VALUE rb_f_array(VALUE obj, VALUE arg) { return rb_Array(arg); }
Create a new BigDecimal
object.
- initial
-
The initial value, as an
Integer
, aFloat
, aRational
, aBigDecimal
, or aString
.If it is a
String
, spaces are ignored and unrecognized characters terminate the value. - digits
-
The number of significant digits, as an
Integer
. If omitted or 0, the number of significant digits is determined from the initial value.The actual number of significant digits used in computation is usually larger than the specified number.
- exception
-
Whether an exception should be raised on invalid arguments.
true
by default, if passedfalse
, just returnsnil
for invalid.
Exceptions¶ ↑
TypeError
-
If the
initial
type is neitherInteger
,Float
,Rational
, norBigDecimal
, this exception is raised. TypeError
-
If the
digits
is not anInteger
, this exception is raised. ArgumentError
-
If
initial
is aFloat
, and thedigits
is larger than Float::DIG + 1, this exception is raised. ArgumentError
-
If the
initial
is aFloat
orRational
, and thedigits
value is omitted, this exception is raised.
static VALUE f_BigDecimal(int argc, VALUE *argv, VALUE self) { ENTER(1); Real *pv; VALUE obj; if (argc > 0 && CLASS_OF(argv[0]) == rb_cBigDecimal) { if (argc == 1 || (argc == 2 && RB_TYPE_P(argv[1], T_HASH))) return argv[0]; } obj = TypedData_Wrap_Struct(rb_cBigDecimal, &BigDecimal_data_type, 0); pv = VpNewVarArg(argc, argv); if (pv == NULL) return Qnil; SAVE(pv); if (ToValue(pv)) pv = VpCopy(NULL, pv); RTYPEDDATA_DATA(obj) = pv; RB_OBJ_FREEZE(obj); return pv->obj = obj; }
Returns x+i*y;
Complex(1, 2) #=> (1+2i) Complex('1+2i') #=> (1+2i) Complex(nil) #=> TypeError Complex(1, nil) #=> TypeError Complex(1, nil, exception: false) #=> nil Complex('1+2', exception: false) #=> nil
Syntax of string form:
string form = extra spaces , complex , extra spaces ; complex = real part | [ sign ] , imaginary part | real part , sign , imaginary part | rational , "@" , rational ; real part = rational ; imaginary part = imaginary unit | unsigned rational , imaginary unit ; rational = [ sign ] , unsigned rational ; unsigned rational = numerator | numerator , "/" , denominator ; numerator = integer part | fractional part | integer part , fractional part ; denominator = digits ; integer part = digits ; fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ; imaginary unit = "i" | "I" | "j" | "J" ; sign = "-" | "+" ; digits = digit , { digit | "_" , digit }; digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; extra spaces = ? \s* ? ;
See String#to_c
.
static VALUE nucomp_f_complex(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, opts = Qnil; int raise = TRUE; if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { a2 = Qundef; } if (!NIL_P(opts)) { raise = rb_opts_exception_p(opts, raise); } if (argc > 0 && CLASS_OF(a1) == rb_cComplex && a2 == Qundef) { return a1; } return nucomp_convert(rb_cComplex, a1, a2, raise); }
Returns arg converted to a float. Numeric
types are converted directly, and with exception to String
and nil
the rest are converted using arg.to_f
. Converting a String
with invalid characters will result in a ArgumentError
. Converting nil
generates a TypeError
. Exceptions can be suppressed by passing exception: false
.
Float(1) #=> 1.0 Float("123.456") #=> 123.456 Float("123.0_badstring") #=> ArgumentError: invalid value for Float(): "123.0_badstring" Float(nil) #=> TypeError: can't convert nil into Float Float("123.0_badstring", exception: false) #=> nil
# File kernel.rb, line 171 def Float(arg, exception: true) Primitive.rb_f_float(arg, exception) end
Converts arg to an Integer
. Numeric
types are converted directly (with floating point numbers being truncated). base (0, or between 2 and 36) is a base for integer string representation. If arg is a String
, when base is omitted or equals zero, radix indicators (0
, 0b
, and 0x
) are honored. In any case, strings should consist only of one or more digits, except for that a sign, one underscore between two digits, and leading/trailing spaces are optional. This behavior is different from that of String#to_i
. Non string values will be converted by first trying to_int
, then to_i
.
Passing nil
raises a TypeError
, while passing a String
that does not conform with numeric representation raises an ArgumentError
. This behavior can be altered by passing exception: false
, in this case a not convertible value will return nil
.
Integer(123.999) #=> 123 Integer("0x1a") #=> 26 Integer(Time.new) #=> 1204973019 Integer("0930", 10) #=> 930 Integer("111", 2) #=> 7 Integer(" +1_0 ") #=> 10 Integer(nil) #=> TypeError: can't convert nil into Integer Integer("x") #=> ArgumentError: invalid value for Integer(): "x" Integer("x", exception: false) #=> nil
static VALUE rb_f_integer(int argc, VALUE *argv, VALUE obj) { VALUE arg = Qnil, opts = Qnil; int base = 0; if (argc > 1) { int narg = 1; VALUE vbase = rb_check_to_int(argv[1]); if (!NIL_P(vbase)) { base = NUM2INT(vbase); narg = 2; } if (argc > narg) { VALUE hash = rb_check_hash_type(argv[argc-1]); if (!NIL_P(hash)) { opts = rb_extract_keywords(&hash); if (!hash) --argc; } } } rb_check_arity(argc, 1, 2); arg = argv[0]; return rb_convert_to_integer(arg, base, opts_exception_p(opts)); }
Creates a new Pathname
object from the given string, path
, and returns pathname object.
In order to use this constructor, you must first require the Pathname
standard library extension.
require 'pathname' Pathname("/home/zzak") #=> #<Pathname:/home/zzak>
See also Pathname::new
for more information.
static VALUE path_f_pathname(VALUE self, VALUE str) { if (CLASS_OF(str) == rb_cPathname) return str; return rb_class_new_instance(1, &str, rb_cPathname); }
Returns x/y
or arg
as a Rational
.
Rational(2, 3) #=> (2/3) Rational(5) #=> (5/1) Rational(0.5) #=> (1/2) Rational(0.3) #=> (5404319552844595/18014398509481984) Rational("2/3") #=> (2/3) Rational("0.3") #=> (3/10) Rational("10 cents") #=> ArgumentError Rational(nil) #=> TypeError Rational(1, nil) #=> TypeError Rational("10 cents", exception: false) #=> nil
Syntax of the string form:
string form = extra spaces , rational , extra spaces ; rational = [ sign ] , unsigned rational ; unsigned rational = numerator | numerator , "/" , denominator ; numerator = integer part | fractional part | integer part , fractional part ; denominator = digits ; integer part = digits ; fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ; sign = "-" | "+" ; digits = digit , { digit | "_" , digit } ; digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ; extra spaces = ? \s* ? ;
See also String#to_r
.
static VALUE nurat_f_rational(int argc, VALUE *argv, VALUE klass) { VALUE a1, a2, opts = Qnil; int raise = TRUE; if (rb_scan_args(argc, argv, "11:", &a1, &a2, &opts) == 1) { a2 = Qundef; } if (!NIL_P(opts)) { raise = rb_opts_exception_p(opts, raise); } return nurat_convert(rb_cRational, a1, a2, raise); }
Returns arg as a String
.
First tries to call its to_str
method, then its to_s
method.
String(self) #=> "main" String(self.class) #=> "Object" String(123456) #=> "123456"
static VALUE rb_f_string(VALUE obj, VALUE arg) { return rb_String(arg); }
Returns the called name of the current method as a Symbol
. If called outside of a method, it returns nil
.
static VALUE rb_f_callee_name(VALUE _) { ID fname = prev_frame_callee(); /* need *callee* ID */ if (fname) { return ID2SYM(fname); } else { return Qnil; } }
Returns the canonicalized absolute path of the directory of the file from which this method is called. It means symlinks in the path is resolved. If __FILE__
is nil
, it returns nil
. The return value equals to File.dirname(File.realpath(__FILE__))
.
static VALUE f_current_dirname(VALUE _) { VALUE base = rb_current_realfilepath(); if (NIL_P(base)) { return Qnil; } base = rb_file_dirname(base); return base; }
Returns the name at the definition of the current method as a Symbol
. If called outside of a method, it returns nil
.
static VALUE rb_f_method_name(VALUE _) { ID fname = prev_frame_func(); /* need *method* ID */ if (fname) { return ID2SYM(fname); } else { return Qnil; } }
Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}
uses this method. Sets $?
to the process status.
`date` #=> "Wed Apr 9 08:56:30 CDT 2003\n" `ls testdir`.split[1] #=> "main.rb" `echo oops && exit 99` #=> "oops\n" $?.exitstatus #=> 99
static VALUE rb_f_backquote(VALUE obj, VALUE str) { VALUE port; VALUE result; rb_io_t *fptr; SafeStringValue(str); rb_last_status_clear(); port = pipe_open_s(str, "r", FMODE_READABLE|DEFAULT_TEXTMODE, NULL); if (NIL_P(port)) return rb_str_new(0,0); GetOpenFile(port, fptr); result = read_all(fptr, remain_size(fptr), Qnil); rb_io_close(port); RFILE(port)->fptr = NULL; rb_io_fptr_finalize(fptr); rb_gc_force_recycle(port); /* also guards from premature GC */ return result; }
Terminate execution immediately, effectively by calling Kernel.exit(false)
. If msg is given, it is written to STDERR prior to terminating.
static VALUE f_abort(int c, const VALUE *a, VALUE _) { rb_f_abort(c, a); UNREACHABLE_RETURN(Qnil); }
Converts block to a Proc
object (and therefore binds it at the point of call) and registers it for execution when the program exits. If multiple handlers are registered, they are executed in reverse order of registration.
def do_at_exit(str1) at_exit { print str1 } end at_exit { puts "cruel world" } do_at_exit("goodbye ") exit
produces:
goodbye cruel world
static VALUE rb_f_at_exit(VALUE _) { VALUE proc; if (!rb_block_given_p()) { rb_raise(rb_eArgError, "called without a block"); } proc = rb_block_proc(); rb_set_end_proc(rb_call_end_proc, proc); return proc; }
Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String
or a symbol) is accessed.
autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")
static VALUE rb_f_autoload(VALUE obj, VALUE sym, VALUE file) { VALUE klass = rb_class_real(rb_vm_cbase()); if (!klass) { rb_raise(rb_eTypeError, "Can not set autoload on singleton class"); } return rb_mod_autoload(klass, sym, file); }
Returns filename to be loaded if name is registered as autoload
.
autoload(:B, "b") autoload?(:B) #=> "b"
static VALUE rb_f_autoload_p(int argc, VALUE *argv, VALUE obj) { /* use rb_vm_cbase() as same as rb_f_autoload. */ VALUE klass = rb_vm_cbase(); if (NIL_P(klass)) { return Qnil; } return rb_mod_autoload_p(argc, argv, klass); }
Returns a Binding
object, describing the variable and method bindings at the point of call. This object can be used when calling eval
to execute the evaluated command in this environment. See also the description of class Binding
.
def get_binding(param) binding end b = get_binding("hello") eval("param", b) #=> "hello"
static VALUE rb_f_binding(VALUE self) { return rb_binding_new(); }
Returns true
if yield
would execute a block in the current context. The iterator?
form is mildly deprecated.
def try if block_given? yield else "no block" end end try #=> "no block" try { "hello" } #=> "hello" try do "hello" end #=> "hello"
static VALUE rb_f_block_given_p(VALUE _) { rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; cfp = vm_get_ruby_level_caller_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp)); if (cfp != NULL && VM_CF_BLOCK_HANDLER(cfp) != VM_BLOCK_HANDLER_NONE) { return Qtrue; } else { return Qfalse; } }
Generates a Continuation
object, which it passes to the associated block. You need to require 'continuation'
before using this method. Performing a cont.call
will cause the callcc
to return (as will falling through the end of the block). The value returned by the callcc
is the value of the block, or the value passed to cont.call
. See class Continuation
for more details. Also see Kernel#throw
for an alternative mechanism for unwinding a call stack.
static VALUE rb_callcc(VALUE self) { volatile int called; volatile VALUE val = cont_capture(&called); if (called) { return val; } else { return rb_yield(val); } }
Returns the current execution stack—an array containing strings in the form file:line
or file:line: in `method'
.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
def a(skip) caller(skip) end def b(skip) a(skip) end def c(skip) b(skip) end c(0) #=> ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'", "prog:10:in `<main>'"] c(1) #=> ["prog:5:in `b'", "prog:8:in `c'", "prog:11:in `<main>'"] c(2) #=> ["prog:8:in `c'", "prog:12:in `<main>'"] c(3) #=> ["prog:13:in `<main>'"] c(4) #=> [] c(5) #=> nil
static VALUE rb_f_caller(int argc, VALUE *argv, VALUE _) { return ec_backtrace_to_ary(GET_EC(), argc, argv, 1, 1, 1); }
Returns the current execution stack—an array containing backtrace location objects.
See Thread::Backtrace::Location
for more information.
The optional start parameter determines the number of initial stack entries to omit from the top of the stack.
A second optional length
parameter can be used to limit how many entries are returned from the stack.
Returns nil
if start is greater than the size of current execution stack.
Optionally you can pass a range, which will return an array containing the entries within the specified range.
static VALUE rb_f_caller_locations(int argc, VALUE *argv, VALUE _) { return ec_backtrace_to_ary(GET_EC(), argc, argv, 1, 1, 0); }
catch
executes its block. If throw
is not called, the block executes normally, and catch
returns the value of the last expression evaluated.
catch(1) { 123 } # => 123
If throw(tag2, val)
is called, Ruby searches up its stack for a catch
block whose tag
has the same object_id
as tag2. When found, the block stops executing and returns val (or nil
if no second argument was given to throw
).
catch(1) { throw(1, 456) } # => 456 catch(1) { throw(1) } # => nil
When tag
is passed as the first argument, catch
yields it as the parameter of the block.
catch(1) {|x| x + 2 } # => 3
When no tag
is given, catch
yields a new unique object (as from Object.new
) as the block parameter. This object can then be used as the argument to throw
, and will match the correct catch
block.
catch do |obj_A| catch do |obj_B| throw(obj_B, 123) puts "This puts is not reached" end puts "This puts is displayed" 456 end # => 456 catch do |obj_A| catch do |obj_B| throw(obj_A, 123) puts "This puts is still not reached" end puts "Now this puts is also not reached" 456 end # => 123
static VALUE rb_f_catch(int argc, VALUE *argv, VALUE self) { VALUE tag = rb_check_arity(argc, 0, 1) ? argv[0] : rb_obj_alloc(rb_cObject); return rb_catch_obj(tag, catch_i, 0); }
Equivalent to $_ = $_.chomp(string)
. See String#chomp
. Available only when -p/-n command line option specified.
static VALUE rb_f_chomp(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("chomp"), argc, argv); rb_lastline_set(str); return str; }
Equivalent to ($_.dup).chop!
, except nil
is never returned. See String#chop!
. Available only when -p/-n command line option specified.
static VALUE rb_f_chop(VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("chop"), 0, 0); rb_lastline_set(str); return str; }
Returns the class of obj. This method must always be called with an explicit receiver, as class
is also a reserved word in Ruby.
1.class #=> Integer self.class #=> Object
# File kernel.rb, line 18 def class Primitive.attr! 'inline' Primitive.cexpr! 'rb_obj_class(self)' end
Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects they reference. clone
copies the frozen value state of obj, unless the :freeze
keyword argument is given with a false or true value. See also the discussion under Object#dup
.
class Klass attr_accessor :str end s1 = Klass.new #=> #<Klass:0x401b3a38> s1.str = "Hello" #=> "Hello" s2 = s1.clone #=> #<Klass:0x401b3998 @str="Hello"> s2.str[1,4] = "i" #=> "i" s1.inspect #=> "#<Klass:0x401b3a38 @str=\"Hi\">" s2.inspect #=> "#<Klass:0x401b3998 @str=\"Hi\">"
This method may have class-specific behavior. If so, that behavior will be documented under the #initialize_copy
method of the class.
# File kernel.rb, line 47 def clone(freeze: nil) Primitive.rb_obj_clone2(freeze) end
Evaluates the Ruby expression(s) in string. If binding is given, which must be a Binding
object, the evaluation is performed in its context. If the optional filename and lineno parameters are present, they will be used when reporting syntax errors.
def get_binding(str) return binding end str = "hello" eval "str + ' Fred'" #=> "hello Fred" eval "str + ' Fred'", get_binding("bye") #=> "bye Fred"
VALUE rb_f_eval(int argc, const VALUE *argv, VALUE self) { VALUE src, scope, vfile, vline; VALUE file = Qundef; int line = 1; rb_scan_args(argc, argv, "13", &src, &scope, &vfile, &vline); SafeStringValue(src); if (argc >= 3) { StringValue(vfile); } if (argc >= 4) { line = NUM2INT(vline); } if (!NIL_P(vfile)) file = vfile; if (NIL_P(scope)) return eval_string_with_cref(self, src, NULL, file, line); else return eval_string_with_scope(scope, src, file, line); }
Replaces the current process by running the given external command, which can take one of the following forms:
exec(commandline)
-
command line string which is passed to the standard shell
exec(cmdname, arg1, ...)
-
command name and one or more arguments (no shell)
exec([cmdname, argv0], arg1, ...)
-
command name, argv and zero or more arguments (no shell)
In the first form, the string is taken as a command line that is subject to shell expansion before being executed.
The standard shell always means "/bin/sh"
on Unix-like systems, same as ENV["RUBYSHELL"]
(or ENV["COMSPEC"]
on Windows NT series), and similar.
If the string from the first form (exec("command")
) follows these simple rules:
-
no meta characters
-
no shell reserved word and no special built-in
-
Ruby invokes the command directly without shell
You can force shell invocation by adding “;” to the string (because “;” is a meta character).
Note that this behavior is observable by pid obtained (return value of spawn() and IO#pid
for IO.popen
) is the pid of the invoked command, not shell.
In the second form (exec("command1", "arg1", ...)
), the first is taken as a command name and the rest are passed as parameters to command with no shell expansion.
In the third form (exec(["command", "argv0"], "arg1", ...)
), starting a two-element array at the beginning of the command, the first element is the command to be executed, and the second argument is used as the argv[0]
value, which may show up in process listings.
In order to execute the command, one of the exec(2)
system calls are used, so the running command may inherit some of the environment of the original program (including open file descriptors).
This behavior is modified by the given env
and options
parameters. See ::spawn for details.
If the command fails to execute (typically Errno::ENOENT when it was not found) a SystemCallError
exception is raised.
This method modifies process attributes according to given options
before exec(2)
system call. See ::spawn for more details about the given options
.
The modified attributes may be retained when exec(2)
system call fails.
For example, hard resource limits are not restorable.
Consider to create a child process using ::spawn or Kernel#system
if this is not acceptable.
exec "echo *" # echoes list of files in current directory # never get here exec "echo", "*" # echoes an asterisk # never get here
static VALUE f_exec(int c, const VALUE *a, VALUE _) { rb_f_exec(c, a); UNREACHABLE_RETURN(Qnil); }
Initiates the termination of the Ruby script by raising the SystemExit
exception. This exception may be caught. The optional parameter is used to return a status code to the invoking environment. true
and FALSE
of status means success and failure respectively. The interpretation of other integer values are system dependent.
begin exit puts "never get here" rescue SystemExit puts "rescued a SystemExit exception" end puts "after begin block"
produces:
rescued a SystemExit exception after begin block
Just prior to termination, Ruby executes any at_exit
functions (see Kernel::at_exit) and runs any object finalizers (see ObjectSpace::define_finalizer
).
at_exit { puts "at_exit function" } ObjectSpace.define_finalizer("string", proc { puts "in finalizer" }) exit
produces:
at_exit function in finalizer
static VALUE f_exit(int c, const VALUE *a, VALUE _) { rb_f_exit(c, a); UNREACHABLE_RETURN(Qnil); }
Exits the process immediately. No exit handlers are run. status is returned to the underlying system as the exit status.
Process.exit!(true)
static VALUE rb_f_exit_bang(int argc, VALUE *argv, VALUE obj) { int istatus; if (rb_check_arity(argc, 0, 1) == 1) { istatus = exit_status_code(argv[0]); } else { istatus = EXIT_FAILURE; } _exit(istatus); UNREACHABLE_RETURN(Qnil); }
With no arguments, raises the exception in $!
or raises a RuntimeError
if $!
is nil
. With a single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be an Exception
class (or another object that returns an Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception (accessible via Exception#message
), and the third parameter is an array of callback information (accessible via Exception#backtrace
). The cause
of the generated exception (accessible via Exception#cause
) is automatically set to the “current” exception ($!
), if any. An alternative value, either an Exception
object or nil
, can be specified via the :cause
argument.
Exceptions are caught by the rescue
clause of begin...end
blocks.
raise "Failed to create socket" raise ArgumentError, "No parameters", caller
Creates a subprocess. If a block is specified, that block is run in the subprocess, and the subprocess terminates with a status of zero. Otherwise, the fork
call returns twice, once in the parent, returning the process ID of the child, and once in the child, returning nil. The child process can exit using Kernel.exit!
to avoid running any at_exit
functions. The parent process should use Process.wait
to collect the termination statuses of its children or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
The thread calling fork is the only thread in the created child process. fork doesn't copy other threads.
If fork is not usable, Process.respond_to?(:fork) returns false.
Note that fork(2) is not available on some platforms like Windows and NetBSD 4. Therefore you should use spawn() instead of fork().
static VALUE rb_f_fork(VALUE obj) { rb_pid_t pid; switch (pid = rb_fork_ruby(NULL)) { case 0: rb_thread_atfork(); if (rb_block_given_p()) { int status; rb_protect(rb_yield, Qundef, &status); ruby_stop(status); } return Qnil; case -1: rb_sys_fail("fork(2)"); return Qnil; default: return PIDT2NUM(pid); } }
Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.
The syntax of a format sequence is as follows.
%[flags][width][.precision]type
A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf
argument is to be interpreted, while the flags modify that interpretation.
The field type characters are:
Field | Integer Format ------+-------------------------------------------------------------- b | Convert argument as a binary number. | Negative numbers will be displayed as a two's complement | prefixed with `..1'. B | Equivalent to `b', but uses an uppercase 0B for prefix | in the alternative format by #. d | Convert argument as a decimal number. i | Identical to `d'. o | Convert argument as an octal number. | Negative numbers will be displayed as a two's complement | prefixed with `..7'. u | Identical to `d'. x | Convert argument as a hexadecimal number. | Negative numbers will be displayed as a two's complement | prefixed with `..f' (representing an infinite string of | leading 'ff's). X | Equivalent to `x', but uses uppercase letters. Field | Float Format ------+-------------------------------------------------------------- e | Convert floating point argument into exponential notation | with one digit before the decimal point as [-]d.dddddde[+-]dd. | The precision specifies the number of digits after the decimal | point (defaulting to six). E | Equivalent to `e', but uses an uppercase E to indicate | the exponent. f | Convert floating point argument as [-]ddd.dddddd, | where the precision specifies the number of digits after | the decimal point. g | Convert a floating point number using exponential form | if the exponent is less than -4 or greater than or | equal to the precision, or in dd.dddd form otherwise. | The precision specifies the number of significant digits. G | Equivalent to `g', but use an uppercase `E' in exponent form. a | Convert floating point argument as [-]0xh.hhhhp[+-]dd, | which is consisted from optional sign, "0x", fraction part | as hexadecimal, "p", and exponential part as decimal. A | Equivalent to `a', but use uppercase `X' and `P'. Field | Other Format ------+-------------------------------------------------------------- c | Argument is the numeric code for a single character or | a single character string itself. p | The valuing of argument.inspect. s | Argument is a string to be substituted. If the format | sequence contains a precision, at most that many characters | will be copied. % | A percent sign itself will be displayed. No argument taken.
The flags modifies the behavior of the formats. The flag characters are:
Flag | Applies to | Meaning ---------+---------------+----------------------------------------- space | bBdiouxX | Leave a space at the start of | aAeEfgG | non-negative numbers. | (numeric fmt) | For `o', `x', `X', `b' and `B', use | | a minus sign with absolute value for | | negative values. ---------+---------------+----------------------------------------- (digit)$ | all | Specifies the absolute argument number | | for this field. Absolute and relative | | argument numbers cannot be mixed in a | | sprintf string. ---------+---------------+----------------------------------------- # | bBoxX | Use an alternative format. | aAeEfgG | For the conversions `o', increase the precision | | until the first digit will be `0' if | | it is not formatted as complements. | | For the conversions `x', `X', `b' and `B' | | on non-zero, prefix the result with ``0x'', | | ``0X'', ``0b'' and ``0B'', respectively. | | For `a', `A', `e', `E', `f', `g', and 'G', | | force a decimal point to be added, | | even if no digits follow. | | For `g' and 'G', do not remove trailing zeros. ---------+---------------+----------------------------------------- + | bBdiouxX | Add a leading plus sign to non-negative | aAeEfgG | numbers. | (numeric fmt) | For `o', `x', `X', `b' and `B', use | | a minus sign with absolute value for | | negative values. ---------+---------------+----------------------------------------- - | all | Left-justify the result of this conversion. ---------+---------------+----------------------------------------- 0 (zero) | bBdiouxX | Pad with zeros, not spaces. | aAeEfgG | For `o', `x', `X', `b' and `B', radix-1 | (numeric fmt) | is used for negative numbers formatted as | | complements. ---------+---------------+----------------------------------------- * | all | Use the next argument as the field width. | | If negative, left-justify the result. If the | | asterisk is followed by a number and a dollar | | sign, use the indicated argument as the width.
Examples of flags:
# `+' and space flag specifies the sign of non-negative numbers. sprintf("%d", 123) #=> "123" sprintf("%+d", 123) #=> "+123" sprintf("% d", 123) #=> " 123" # `#' flag for `o' increases number of digits to show `0'. # `+' and space flag changes format of negative numbers. sprintf("%o", 123) #=> "173" sprintf("%#o", 123) #=> "0173" sprintf("%+o", -123) #=> "-173" sprintf("%o", -123) #=> "..7605" sprintf("%#o", -123) #=> "..7605" # `#' flag for `x' add a prefix `0x' for non-zero numbers. # `+' and space flag disables complements for negative numbers. sprintf("%x", 123) #=> "7b" sprintf("%#x", 123) #=> "0x7b" sprintf("%+x", -123) #=> "-7b" sprintf("%x", -123) #=> "..f85" sprintf("%#x", -123) #=> "0x..f85" sprintf("%#x", 0) #=> "0" # `#' for `X' uses the prefix `0X'. sprintf("%X", 123) #=> "7B" sprintf("%#X", 123) #=> "0X7B" # `#' flag for `b' add a prefix `0b' for non-zero numbers. # `+' and space flag disables complements for negative numbers. sprintf("%b", 123) #=> "1111011" sprintf("%#b", 123) #=> "0b1111011" sprintf("%+b", -123) #=> "-1111011" sprintf("%b", -123) #=> "..10000101" sprintf("%#b", -123) #=> "0b..10000101" sprintf("%#b", 0) #=> "0" # `#' for `B' uses the prefix `0B'. sprintf("%B", 123) #=> "1111011" sprintf("%#B", 123) #=> "0B1111011" # `#' for `e' forces to show the decimal point. sprintf("%.0e", 1) #=> "1e+00" sprintf("%#.0e", 1) #=> "1.e+00" # `#' for `f' forces to show the decimal point. sprintf("%.0f", 1234) #=> "1234" sprintf("%#.0f", 1234) #=> "1234." # `#' for `g' forces to show the decimal point. # It also disables stripping lowest zeros. sprintf("%g", 123.4) #=> "123.4" sprintf("%#g", 123.4) #=> "123.400" sprintf("%g", 123456) #=> "123456" sprintf("%#g", 123456) #=> "123456."
The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.
Examples of width:
# padding is done by spaces, width=20 # 0 or radix-1. <------------------> sprintf("%20d", 123) #=> " 123" sprintf("%+20d", 123) #=> " +123" sprintf("%020d", 123) #=> "00000000000000000123" sprintf("%+020d", 123) #=> "+0000000000000000123" sprintf("% 020d", 123) #=> " 0000000000000000123" sprintf("%-20d", 123) #=> "123 " sprintf("%-+20d", 123) #=> "+123 " sprintf("%- 20d", 123) #=> " 123 " sprintf("%020x", -123) #=> "..ffffffffffffffff85"
For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s
will always contribute exactly ten characters to the result.)
Examples of precisions:
# precision for `d', 'o', 'x' and 'b' is # minimum number of digits <------> sprintf("%20.8d", 123) #=> " 00000123" sprintf("%20.8o", 123) #=> " 00000173" sprintf("%20.8x", 123) #=> " 0000007b" sprintf("%20.8b", 123) #=> " 01111011" sprintf("%20.8d", -123) #=> " -00000123" sprintf("%20.8o", -123) #=> " ..777605" sprintf("%20.8x", -123) #=> " ..ffff85" sprintf("%20.8b", -11) #=> " ..110101" # "0x" and "0b" for `#x' and `#b' is not counted for # precision but "0" for `#o' is counted. <------> sprintf("%#20.8d", 123) #=> " 00000123" sprintf("%#20.8o", 123) #=> " 00000173" sprintf("%#20.8x", 123) #=> " 0x0000007b" sprintf("%#20.8b", 123) #=> " 0b01111011" sprintf("%#20.8d", -123) #=> " -00000123" sprintf("%#20.8o", -123) #=> " ..777605" sprintf("%#20.8x", -123) #=> " 0x..ffff85" sprintf("%#20.8b", -11) #=> " 0b..110101" # precision for `e' is number of # digits after the decimal point <------> sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03" # precision for `f' is number of # digits after the decimal point <------> sprintf("%20.8f", 1234.56789) #=> " 1234.56789000" # precision for `g' is number of # significant digits <-------> sprintf("%20.8g", 1234.56789) #=> " 1234.5679" # <-------> sprintf("%20.8g", 123456789) #=> " 1.2345679e+08" # precision for `s' is # maximum number of characters <------> sprintf("%20.8s", "string test") #=> " string t"
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b" sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'" sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello" sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8" sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23" sprintf("%u", -123) #=> "-123"
For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %{name} style doesn't.
Examples:
sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 }) #=> 1 : 2.000000 sprintf("%{foo}f", { :foo => 1 }) # => "1f"
Returns the freeze status of obj.
a = [ "a", "b", "c" ] a.freeze #=> ["a", "b", "c"] a.frozen? #=> true
# File kernel.rb, line 67 def frozen? Primitive.attr! 'inline' Primitive.cexpr! 'rb_obj_frozen_p(self)' end
Returns (and assigns to $_
) the next line from the list of files in ARGV
(or $*
), or from standard input if no files are present on the command line. Returns nil
at end of file. The optional argument specifies the record separator. The separator is included with the contents of each record. A separator of nil
reads the entire contents, and a zero-length separator reads the input one paragraph at a time, where paragraphs are divided by two consecutive newlines. If the first argument is an integer, or optional second argument is given, the returning string would not be longer than the given value in bytes. If multiple filenames are present in ARGV
, gets(nil)
will read the contents one file at a time.
ARGV << "testfile" print while gets
produces:
This is line one This is line two This is line three And so on...
The style of programming using $_
as an implicit parameter is gradually losing favor in the Ruby community.
static VALUE rb_f_gets(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_gets(argc, argv, argf); } return rb_funcallv(argf, idGets, argc, argv); }
Returns an array of the names of global variables. This includes special regexp global variables such as $~
and $+
, but does not include the numbered regexp global variables ($1
, $2
, etc.).
global_variables.grep /std/ #=> [:$stdin, :$stdout, :$stderr]
static VALUE f_global_variables(VALUE _) { return rb_f_global_variables(); }
Equivalent to $_.gsub...
, except that $_
will be updated if substitution occurs. Available only when -p/-n command line option specified.
static VALUE rb_f_gsub(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("gsub"), argc, argv); rb_lastline_set(str); return str; }
Deprecated. Use block_given? instead.
static VALUE rb_f_iterator_p(VALUE self) { rb_warn_deprecated("iterator?", "block_given?"); return rb_f_block_given_p(self); }
Loads and executes the Ruby program in the file filename.
If the filename is an absolute path (e.g. starts with '/'), the file will be loaded directly using the absolute path.
If the filename is an explicit relative path (e.g. starts with './' or '../'), the file will be loaded using the relative path from the current directory.
Otherwise, the file will be searched for in the library directories listed in $LOAD_PATH
($:
). If the file is found in a directory, it will attempt to load the file relative to that directory. If the file is not found in any of the directories in $LOAD_PATH
, the file will be loaded using the relative path from the current directory.
If the file doesn't exist when there is an attempt to load it, a LoadError
will be raised.
If the optional wrap parameter is true
, the loaded script will be executed under an anonymous module, protecting the calling program's global namespace. In no circumstance will any local variables in the loaded file be propagated to the loading environment.
static VALUE rb_f_load(int argc, VALUE *argv, VALUE _) { VALUE fname, wrap, path, orig_fname; rb_scan_args(argc, argv, "11", &fname, &wrap); orig_fname = rb_get_path_check_to_string(fname); fname = rb_str_encode_ospath(orig_fname); RUBY_DTRACE_HOOK(LOAD_ENTRY, RSTRING_PTR(orig_fname)); path = rb_find_file(fname); if (!path) { if (!rb_file_load_ok(RSTRING_PTR(fname))) load_failed(orig_fname); path = fname; } rb_load_internal(path, RTEST(wrap)); RUBY_DTRACE_HOOK(LOAD_RETURN, RSTRING_PTR(orig_fname)); return Qtrue; }
Returns the names of the current local variables.
fred = 1 for i in 1..10 # ... end local_variables #=> [:fred, :i]
static VALUE rb_f_local_variables(VALUE _) { struct local_var_list vars; rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = vm_get_ruby_level_caller_cfp(ec, RUBY_VM_PREVIOUS_CONTROL_FRAME(ec->cfp)); unsigned int i; local_var_list_init(&vars); while (cfp) { if (cfp->iseq) { for (i = 0; i < cfp->iseq->body->local_table_size; i++) { local_var_list_add(&vars, cfp->iseq->body->local_table[i]); } } if (!VM_ENV_LOCAL_P(cfp->ep)) { /* block */ const VALUE *ep = VM_CF_PREV_EP(cfp); if (vm_collect_local_variables_in_heap(ep, &vars)) { break; } else { while (cfp->ep != ep) { cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); } } } else { break; } } return local_var_list_finish(&vars); }
Repeatedly executes the block.
If no block is given, an enumerator is returned instead.
loop do print "Input: " line = gets break if !line or line =~ /^qQ/ # ... end
StopIteration
raised in the block breaks the loop. In this case, loop returns the “result” value stored in the exception.
enum = Enumerator.new { |y| y << "one" y << "two" :ok } result = loop { puts enum.next } #=> :ok
static VALUE rb_f_loop(VALUE self) { RETURN_SIZED_ENUMERATOR(self, 0, 0, rb_f_loop_size); return rb_rescue2(loop_i, (VALUE)0, loop_stop, (VALUE)0, rb_eStopIteration, (VALUE)0); }
Creates an IO
object connected to the given stream, file, or subprocess.
If path
does not start with a pipe character (|
), treat it as the name of a file to open using the specified mode (defaulting to “r”).
The mode
is either a string or an integer. If it is an integer, it must be bitwise-or of open(2) flags, such as File::RDWR or File::EXCL. If it is a string, it is either “fmode”, “fmode:ext_enc”, or “fmode:ext_enc:int_enc”.
See the documentation of IO.new
for full documentation of the mode
string directives.
If a file is being created, its initial permissions may be set using the perm
parameter. See File.new
and the open(2) and chmod(2) man pages for a description of permissions.
If a block is specified, it will be invoked with the IO
object as a parameter, and the IO
will be automatically closed when the block terminates. The call returns the value of the block.
If path
starts with a pipe character ("|"
), a subprocess is created, connected to the caller by a pair of pipes. The returned IO
object may be used to write to the standard input and read from the standard output of this subprocess.
If the command following the pipe is a single minus sign ("|-"
), Ruby forks, and this subprocess is connected to the parent. If the command is not "-"
, the subprocess runs the command.
When the subprocess is Ruby (opened via "|-"
), the open
call returns nil
. If a block is associated with the open call, that block will run twice — once in the parent and once in the child.
The block parameter will be an IO
object in the parent and nil
in the child. The parent's IO
object will be connected to the child's $stdin and $stdout. The subprocess will be terminated at the end of the block.
Examples¶ ↑
Reading from “testfile”:
open("testfile") do |f| print f.gets end
Produces:
This is line one
Open a subprocess and read its output:
cmd = open("|date") print cmd.gets cmd.close
Produces:
Wed Apr 9 08:56:31 CDT 2003
Open a subprocess running the same Ruby program:
f = open("|-", "w+") if f.nil? puts "in Child" exit else puts "Got: #{f.gets}" end
Produces:
Got: in Child
Open a subprocess using a block to receive the IO
object:
open "|-" do |f| if f then # parent process puts "Got: #{f.gets}" else # child process puts "in Child" end end
Produces:
Got: in Child
static VALUE rb_f_open(int argc, VALUE *argv, VALUE _) { ID to_open = 0; int redirect = FALSE; if (argc >= 1) { CONST_ID(to_open, "to_open"); if (rb_respond_to(argv[0], to_open)) { redirect = TRUE; } else { VALUE tmp = argv[0]; FilePathValue(tmp); if (NIL_P(tmp)) { redirect = TRUE; } else { VALUE cmd = check_pipe_command(tmp); if (!NIL_P(cmd)) { argv[0] = cmd; return rb_io_s_popen(argc, argv, rb_cIO); } } } } if (redirect) { VALUE io = rb_funcallv_kw(argv[0], to_open, argc-1, argv+1, RB_PASS_CALLED_KEYWORDS); if (rb_block_given_p()) { return rb_ensure(rb_yield, io, io_close, io); } return io; } return rb_io_s_open(argc, argv, rb_cFile); }
For each object, directly writes obj.inspect
followed by a newline to the program's standard output.
S = Struct.new(:name, :state) s = S['dave', 'TX'] p s
produces:
#<S name="dave", state="TX">
static VALUE rb_f_p(int argc, VALUE *argv, VALUE self) { int i; for (i=0; i<argc; i++) { VALUE inspected = rb_obj_as_string(rb_inspect(argv[i])); rb_uninterruptible(rb_p_write, inspected); } return rb_p_result(argc, argv); }
Prints each object in turn to $stdout
. If the output field separator ($,
) is not nil
, its contents will appear between each field. If the output record separator ($\
) is not nil
, it will be appended to the output. If no arguments are given, prints $_
. Objects that aren't strings will be converted by calling their to_s
method.
print "cat", [1,2,3], 99, "\n" $, = ", " $\ = "\n" print "cat", [1,2,3], 99
produces:
cat12399 cat, 1, 2, 3, 99
static VALUE rb_f_print(int argc, const VALUE *argv, VALUE _) { rb_io_print(argc, argv, rb_ractor_stdout()); return Qnil; }
Equivalent to:
io.write(sprintf(string, obj, ...))
or
$stdout.write(sprintf(string, obj, ...))
static VALUE rb_f_printf(int argc, VALUE *argv, VALUE _) { VALUE out; if (argc == 0) return Qnil; if (RB_TYPE_P(argv[0], T_STRING)) { out = rb_ractor_stdout(); } else { out = argv[0]; argv++; argc--; } rb_io_write(out, rb_f_sprintf(argc, argv)); return Qnil; }
Equivalent to Proc.new
.
static VALUE f_proc(VALUE _) { return proc_new(rb_cProc, FALSE, TRUE); }
Equivalent to:
$stdout.putc(int)
Refer to the documentation for IO#putc
for important information regarding multi-byte characters.
static VALUE rb_f_putc(VALUE recv, VALUE ch) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_putc(recv, ch); } return rb_funcallv(r_stdout, rb_intern("putc"), 1, &ch); }
Equivalent to
$stdout.puts(obj, ...)
static VALUE rb_f_puts(int argc, VALUE *argv, VALUE recv) { VALUE r_stdout = rb_ractor_stdout(); if (recv == r_stdout) { return rb_io_puts(argc, argv, recv); } return rb_funcallv(r_stdout, rb_intern("puts"), argc, argv); }
With no arguments, raises the exception in $!
or raises a RuntimeError
if $!
is nil
. With a single String
argument, raises a RuntimeError
with the string as a message. Otherwise, the first parameter should be an Exception
class (or another object that returns an Exception
object when sent an exception
message). The optional second parameter sets the message associated with the exception (accessible via Exception#message
), and the third parameter is an array of callback information (accessible via Exception#backtrace
). The cause
of the generated exception (accessible via Exception#cause
) is automatically set to the “current” exception ($!
), if any. An alternative value, either an Exception
object or nil
, can be specified via the :cause
argument.
Exceptions are caught by the rescue
clause of begin...end
blocks.
raise "Failed to create socket" raise ArgumentError, "No parameters", caller
static VALUE f_raise(int c, VALUE *v, VALUE _) { return rb_f_raise(c, v); }
If called without an argument, or if max.to_i.abs == 0
, rand returns a pseudo-random floating point number between 0.0 and 1.0, including 0.0 and excluding 1.0.
rand #=> 0.2725926052826416
When max.abs
is greater than or equal to 1, rand
returns a pseudo-random integer greater than or equal to 0 and less than max.to_i.abs
.
rand(100) #=> 12
When max
is a Range
, rand
returns a random number where range.member?(number) == true.
Negative or floating point values for max
are allowed, but may give surprising results.
rand(-100) # => 87 rand(-0.5) # => 0.8130921818028143 rand(1.9) # equivalent to rand(1), which is always 0
Kernel.srand
may be used to ensure that sequences of random numbers are reproducible between different runs of a program.
See also Random.rand
.
static VALUE rb_f_rand(int argc, VALUE *argv, VALUE obj) { VALUE vmax; rb_random_t *rnd = rand_start(default_rand()); if (rb_check_arity(argc, 0, 1) && !NIL_P(vmax = argv[0])) { VALUE v = rand_range(obj, rnd, vmax); if (v != Qfalse) return v; vmax = rb_to_int(vmax); if (vmax != INT2FIX(0)) { v = rand_int(obj, rnd, vmax, 0); if (!NIL_P(v)) return v; } } return DBL2NUM(random_real(obj, rnd, TRUE)); }
Equivalent to Kernel::gets, except readline
raises EOFError
at end of file.
static VALUE rb_f_readline(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readline(argc, argv, argf); } return rb_funcallv(argf, rb_intern("readline"), argc, argv); }
Returns an array containing the lines returned by calling Kernel.gets(sep)
until the end of file.
static VALUE rb_f_readlines(int argc, VALUE *argv, VALUE recv) { if (recv == argf) { return argf_readlines(argc, argv, argf); } return rb_funcallv(argf, rb_intern("readlines"), argc, argv); }
Loads the given name
, returning true
if successful and false
if the feature is already loaded.
If the filename neither resolves to an absolute path nor starts with './' or '../', the file will be searched for in the library directories listed in $LOAD_PATH
($:
). If the filename starts with './' or '../', resolution is based on Dir.pwd
.
If the filename has the extension “.rb”, it is loaded as a source file; if the extension is “.so”, “.o”, or “.dll”, or the default shared library extension on the current platform, Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries adding “.rb”, “.so”, and so on to the name until found. If the file named cannot be found, a LoadError
will be raised.
For Ruby extensions the filename given may use any shared library extension. For example, on Linux the socket extension is “socket.so” and require 'socket.dll'
will load the socket extension.
The absolute path of the loaded file is added to $LOADED_FEATURES
($"
). A file will not be loaded again if its path already appears in $"
. For example, require 'a'; require './a'
will not load a.rb
again.
require "my-library.rb" require "db-driver"
Any constants or globals within the loaded source file will be available in the calling program's global namespace. However, local variables will not be propagated to the loading environment.
VALUE rb_f_require(VALUE obj, VALUE fname) { return rb_require_string(fname); }
Ruby tries to load the library named string relative to the requiring file's path. If the file's path cannot be determined a LoadError
is raised. If a file is loaded true
is returned and false otherwise.
VALUE rb_f_require_relative(VALUE obj, VALUE fname) { VALUE base = rb_current_realfilepath(); if (NIL_P(base)) { rb_loaderror("cannot infer basepath"); } base = rb_file_dirname(base); return rb_require_string(rb_file_absolute_path(fname, base)); }
Calls select(2) system call. It monitors given arrays of IO
objects, waits until one or more of IO
objects are ready for reading, are ready for writing, and have pending exceptions respectively, and returns an array that contains arrays of those IO
objects. It will return nil
if optional timeout value is given and no IO
object is ready in timeout seconds.
IO.select
peeks the buffer of IO
objects for testing readability. If the IO
buffer is not empty, IO.select
immediately notifies readability. This “peek” only happens for IO
objects. It does not happen for IO-like objects such as OpenSSL::SSL::SSLSocket
.
The best way to use IO.select
is invoking it after nonblocking methods such as read_nonblock, write_nonblock, etc. The methods raise an exception which is extended by IO::WaitReadable
or IO::WaitWritable
. The modules notify how the caller should wait with IO.select
. If IO::WaitReadable
is raised, the caller should wait for reading. If IO::WaitWritable
is raised, the caller should wait for writing.
So, blocking read (readpartial) can be emulated using read_nonblock and IO.select
as follows:
begin result = io_like.read_nonblock(maxlen) rescue IO::WaitReadable IO.select([io_like]) retry rescue IO::WaitWritable IO.select(nil, [io_like]) retry end
Especially, the combination of nonblocking methods and IO.select
is preferred for IO
like objects such as OpenSSL::SSL::SSLSocket
. It has to_io method to return underlying IO
object. IO.select
calls to_io to obtain the file descriptor to wait.
This means that readability notified by IO.select
doesn't mean readability from OpenSSL::SSL::SSLSocket
object.
The most likely situation is that OpenSSL::SSL::SSLSocket
buffers some data. IO.select
doesn't see the buffer. So IO.select
can block when OpenSSL::SSL::SSLSocket#readpartial
doesn't block.
However, several more complicated situations exist.
SSL is a protocol which is sequence of records. The record consists of multiple bytes. So, the remote side of SSL sends a partial record, IO.select
notifies readability but OpenSSL::SSL::SSLSocket
cannot decrypt a byte and OpenSSL::SSL::SSLSocket#readpartial
will block.
Also, the remote side can request SSL renegotiation which forces the local SSL engine to write some data. This means OpenSSL::SSL::SSLSocket#readpartial
may invoke write system call and it can block. In such a situation, OpenSSL::SSL::SSLSocket#read_nonblock
raises IO::WaitWritable
instead of blocking. So, the caller should wait for ready for writability as above example.
The combination of nonblocking methods and IO.select
is also useful for streams such as tty, pipe socket socket when multiple processes read from a stream.
Finally, Linux kernel developers don't guarantee that readability of select(2) means readability of following read(2) even for a single process. See select(2) manual on GNU/Linux system.
Invoking IO.select
before IO#readpartial
works well as usual. However it is not the best way to use IO.select
.
The writability notified by select(2) doesn't show how many bytes are writable. IO#write
method blocks until given whole string is written. So, IO#write(two or more bytes)
can block after writability is notified by IO.select
. IO#write_nonblock
is required to avoid the blocking.
Blocking write (write) can be emulated using write_nonblock and IO.select
as follows: IO::WaitReadable
should also be rescued for SSL renegotiation in OpenSSL::SSL::SSLSocket
.
while 0 < string.bytesize begin written = io_like.write_nonblock(string) rescue IO::WaitReadable IO.select([io_like]) retry rescue IO::WaitWritable IO.select(nil, [io_like]) retry end string = string.byteslice(written..-1) end
Parameters¶ ↑
- read_array
-
an array of
IO
objects that wait until ready for read - write_array
-
an array of
IO
objects that wait until ready for write - error_array
-
an array of
IO
objects that wait for exceptions - timeout
-
a numeric value in second
Example¶ ↑
rp, wp = IO.pipe mesg = "ping " 100.times { # IO.select follows IO#read. Not the best way to use IO.select. rs, ws, = IO.select([rp], [wp]) if r = rs[0] ret = r.read(5) print ret case ret when /ping/ mesg = "pong\n" when /pong/ mesg = "ping " end end if w = ws[0] w.write(mesg) end }
produces:
ping pong ping pong ping pong (snipped) ping
static VALUE rb_f_select(int argc, VALUE *argv, VALUE obj) { VALUE timeout; struct select_args args; struct timeval timerec; int i; rb_scan_args(argc, argv, "13", &args.read, &args.write, &args.except, &timeout); if (NIL_P(timeout)) { args.timeout = 0; } else { timerec = rb_time_interval(timeout); args.timeout = &timerec; } for (i = 0; i < numberof(args.fdsets); ++i) rb_fd_init(&args.fdsets[i]); return rb_ensure(select_call, (VALUE)&args, select_end, (VALUE)&args); }
Establishes proc as the handler for tracing, or disables tracing if the parameter is nil
.
Note: this method is obsolete, please use TracePoint
instead.
proc takes up to six parameters:
-
an event name
-
a filename
-
a line number
-
an object id
-
a binding
-
the name of a class
proc is invoked whenever an event occurs.
Events are:
c-call
-
call a C-language routine
c-return
-
return from a C-language routine
call
-
call a Ruby method
class
-
start a class or module definition
end
-
finish a class or module definition
line
-
execute code on a new line
raise
-
raise an exception
return
-
return from a Ruby method
Tracing is disabled within the context of proc.
class Test def test a = 1 b = 2 end end set_trace_func proc { |event, file, line, id, binding, classname| printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname } t = Test.new t.test line prog.rb:11 false c-call prog.rb:11 new Class c-call prog.rb:11 initialize Object c-return prog.rb:11 initialize Object c-return prog.rb:11 new Class line prog.rb:12 false call prog.rb:2 test Test line prog.rb:3 test Test line prog.rb:4 test Test return prog.rb:4 test Test
static VALUE set_trace_func(VALUE obj, VALUE trace) { rb_remove_event_hook(call_trace_func); if (NIL_P(trace)) { return Qnil; } if (!rb_obj_is_proc(trace)) { rb_raise(rb_eTypeError, "trace_func needs to be Proc"); } rb_add_event_hook(call_trace_func, RUBY_EVENT_ALL, trace); return trace; }
Suspends the current thread for duration seconds (which may be any number, including a Float
with fractional seconds). Returns the actual number of seconds slept (rounded), which may be less than that asked for if another thread calls Thread#run
. Called without an argument, sleep() will sleep forever.
Time.new #=> 2008-03-08 19:56:19 +0900 sleep 1.2 #=> 1 Time.new #=> 2008-03-08 19:56:20 +0900 sleep 1.9 #=> 2 Time.new #=> 2008-03-08 19:56:22 +0900
static VALUE rb_f_sleep(int argc, VALUE *argv, VALUE _) { time_t beg = time(0); VALUE scheduler = rb_scheduler_current(); if (scheduler != Qnil) { rb_scheduler_kernel_sleepv(scheduler, argc, argv); } else { if (argc == 0) { rb_thread_sleep_forever(); } else { rb_check_arity(argc, 0, 1); rb_thread_wait_for(rb_time_interval(argv[0])); } } time_t end = time(0) - beg; return TIMET2NUM(end); }
spawn executes specified command and return its pid.
pid = spawn("tar xf ruby-2.0.0-p195.tar.bz2") Process.wait pid pid = spawn(RbConfig.ruby, "-eputs'Hello, world!'") Process.wait pid
This method is similar to Kernel#system
but it doesn't wait for the command to finish.
The parent process should use Process.wait
to collect the termination status of its child or use Process.detach
to register disinterest in their status; otherwise, the operating system may accumulate zombie processes.
spawn has bunch of options to specify process attributes:
env: hash name => val : set the environment variable name => nil : unset the environment variable the keys and the values except for +nil+ must be strings. command...: commandline : command line string which is passed to the standard shell cmdname, arg1, ... : command name and one or more arguments (This form does not use the shell. See below for caveats.) [cmdname, argv0], arg1, ... : command name, argv[0] and zero or more arguments (no shell) options: hash clearing environment variables: :unsetenv_others => true : clear environment variables except specified by env :unsetenv_others => false : don't clear (default) process group: :pgroup => true or 0 : make a new process group :pgroup => pgid : join the specified process group :pgroup => nil : don't change the process group (default) create new process group: Windows only :new_pgroup => true : the new process is the root process of a new process group :new_pgroup => false : don't create a new process group (default) resource limit: resourcename is core, cpu, data, etc. See Process.setrlimit. :rlimit_resourcename => limit :rlimit_resourcename => [cur_limit, max_limit] umask: :umask => int redirection: key: FD : single file descriptor in child process [FD, FD, ...] : multiple file descriptor in child process value: FD : redirect to the file descriptor in parent process string : redirect to file with open(string, "r" or "w") [string] : redirect to file with open(string, File::RDONLY) [string, open_mode] : redirect to file with open(string, open_mode, 0644) [string, open_mode, perm] : redirect to file with open(string, open_mode, perm) [:child, FD] : redirect to the redirected file descriptor :close : close the file descriptor in child process FD is one of follows :in : the file descriptor 0 which is the standard input :out : the file descriptor 1 which is the standard output :err : the file descriptor 2 which is the standard error integer : the file descriptor of specified the integer io : the file descriptor specified as io.fileno file descriptor inheritance: close non-redirected non-standard fds (3, 4, 5, ...) or not :close_others => false : inherit current directory: :chdir => str
The cmdname, arg1, ...
form does not use the shell. However, on different OSes, different things are provided as built-in commands. An example of this is +'echo'+, which is a built-in on Windows, but is a normal program on Linux and Mac OS X. This means that Process.spawn 'echo', '%Path%'
will display the contents of the %Path%
environment variable on Windows, but Process.spawn 'echo', '$PATH'
prints the literal $PATH
.
If a hash is given as env
, the environment is updated by env
before exec(2)
in the child process. If a pair in env
has nil as the value, the variable is deleted.
# set FOO as BAR and unset BAZ. pid = spawn({"FOO"=>"BAR", "BAZ"=>nil}, command)
If a hash is given as options
, it specifies process group, create new process group, resource limit, current directory, umask and redirects for the child process. Also, it can be specified to clear environment variables.
The :unsetenv_others
key in options
specifies to clear environment variables, other than specified by env
.
pid = spawn(command, :unsetenv_others=>true) # no environment variable pid = spawn({"FOO"=>"BAR"}, command, :unsetenv_others=>true) # FOO only
The :pgroup
key in options
specifies a process group. The corresponding value should be true, zero, a positive integer, or nil. true and zero cause the process to be a process leader of a new process group. A non-zero positive integer causes the process to join the provided process group. The default value, nil, causes the process to remain in the same process group.
pid = spawn(command, :pgroup=>true) # process leader pid = spawn(command, :pgroup=>10) # belongs to the process group 10
The :new_pgroup
key in options
specifies to pass CREATE_NEW_PROCESS_GROUP
flag to CreateProcessW()
that is Windows API. This option is only for Windows. true means the new process is the root process of the new process group. The new process has CTRL+C disabled. This flag is necessary for Process.kill(:SIGINT, pid)
on the subprocess. :new_pgroup is false by default.
pid = spawn(command, :new_pgroup=>true) # new process group pid = spawn(command, :new_pgroup=>false) # same process group
The :rlimit_
foo key specifies a resource limit. foo should be one of resource types such as core
. The corresponding value should be an integer or an array which have one or two integers: same as cur_limit and max_limit arguments for Process.setrlimit
.
cur, max = Process.getrlimit(:CORE) pid = spawn(command, :rlimit_core=>[0,max]) # disable core temporary. pid = spawn(command, :rlimit_core=>max) # enable core dump pid = spawn(command, :rlimit_core=>0) # never dump core.
The :umask
key in options
specifies the umask.
pid = spawn(command, :umask=>077)
The :in, :out, :err, an integer, an IO
and an array key specifies a redirection. The redirection maps a file descriptor in the child process.
For example, stderr can be merged into stdout as follows:
pid = spawn(command, :err=>:out) pid = spawn(command, 2=>1) pid = spawn(command, STDERR=>:out) pid = spawn(command, STDERR=>STDOUT)
The hash keys specifies a file descriptor in the child process started by spawn
. :err, 2 and STDERR specifies the standard error stream (stderr).
The hash values specifies a file descriptor in the parent process which invokes spawn
. :out, 1 and STDOUT specifies the standard output stream (stdout).
In the above example, the standard output in the child process is not specified. So it is inherited from the parent process.
The standard input stream (stdin) can be specified by :in, 0 and STDIN.
A filename can be specified as a hash value.
pid = spawn(command, :in=>"/dev/null") # read mode pid = spawn(command, :out=>"/dev/null") # write mode pid = spawn(command, :err=>"log") # write mode pid = spawn(command, [:out, :err]=>"/dev/null") # write mode pid = spawn(command, 3=>"/dev/null") # read mode
For stdout and stderr (and combination of them), it is opened in write mode. Otherwise read mode is used.
For specifying flags and permission of file creation explicitly, an array is used instead.
pid = spawn(command, :in=>["file"]) # read mode is assumed pid = spawn(command, :in=>["file", "r"]) pid = spawn(command, :out=>["log", "w"]) # 0644 assumed pid = spawn(command, :out=>["log", "w", 0600]) pid = spawn(command, :out=>["log", File::WRONLY|File::EXCL|File::CREAT, 0600])
The array specifies a filename, flags and permission. The flags can be a string or an integer. If the flags is omitted or nil, File::RDONLY is assumed. The permission should be an integer. If the permission is omitted or nil, 0644 is assumed.
If an array of IOs and integers are specified as a hash key, all the elements are redirected.
# stdout and stderr is redirected to log file. # The file "log" is opened just once. pid = spawn(command, [:out, :err]=>["log", "w"])
Another way to merge multiple file descriptors is [:child, fd]. [:child, fd] means the file descriptor in the child process. This is different from fd. For example, :err=>:out means redirecting child stderr to parent stdout. But :err=>[:child, :out] means redirecting child stderr to child stdout. They differ if stdout is redirected in the child process as follows.
# stdout and stderr is redirected to log file. # The file "log" is opened just once. pid = spawn(command, :out=>["log", "w"], :err=>[:child, :out])
[:child, :out] can be used to merge stderr into stdout in IO.popen
. In this case, IO.popen
redirects stdout to a pipe in the child process and [:child, :out] refers the redirected stdout.
io = IO.popen(["sh", "-c", "echo out; echo err >&2", :err=>[:child, :out]]) p io.read #=> "out\nerr\n"
The :chdir
key in options
specifies the current directory.
pid = spawn(command, :chdir=>"/var/tmp")
spawn closes all non-standard unspecified descriptors by default. The “standard” descriptors are 0, 1 and 2. This behavior is specified by :close_others option. :close_others doesn't affect the standard descriptors which are closed only if :close is specified explicitly.
pid = spawn(command, :close_others=>true) # close 3,4,5,... (default) pid = spawn(command, :close_others=>false) # don't close 3,4,5,...
:close_others is false by default for spawn and IO.popen
.
Note that fds which close-on-exec flag is already set are closed regardless of :close_others option.
So IO.pipe
and spawn can be used as IO.popen
.
# similar to r = IO.popen(command) r, w = IO.pipe pid = spawn(command, :out=>w) # r, w is closed in the child process. w.close
:close is specified as a hash value to close a fd individually.
f = open(foo) system(command, f=>:close) # don't inherit f.
If a file descriptor need to be inherited, io=>io can be used.
# valgrind has --log-fd option for log destination. # log_w=>log_w indicates log_w.fileno inherits to child process. log_r, log_w = IO.pipe pid = spawn("valgrind", "--log-fd=#{log_w.fileno}", "echo", "a", log_w=>log_w) log_w.close p log_r.read
It is also possible to exchange file descriptors.
pid = spawn(command, :out=>:err, :err=>:out)
The hash keys specify file descriptors in the child process. The hash values specifies file descriptors in the parent process. So the above specifies exchanging stdout and stderr. Internally, spawn
uses an extra file descriptor to resolve such cyclic file descriptor mapping.
See Kernel.exec
for the standard shell.
static VALUE rb_f_spawn(int argc, VALUE *argv, VALUE _) { rb_pid_t pid; char errmsg[CHILD_ERRMSG_BUFLEN] = { '\0' }; VALUE execarg_obj, fail_str; struct rb_execarg *eargp; execarg_obj = rb_execarg_new(argc, argv, TRUE, FALSE); eargp = rb_execarg_get(execarg_obj); fail_str = eargp->use_shell ? eargp->invoke.sh.shell_script : eargp->invoke.cmd.command_name; pid = rb_execarg_spawn(execarg_obj, errmsg, sizeof(errmsg)); if (pid == -1) { int err = errno; rb_exec_fail(eargp, err, errmsg); RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, fail_str); } #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) return PIDT2NUM(pid); #else return Qnil; #endif }
Returns the string resulting from applying format_string to any additional arguments. Within the format string, any characters other than format sequences are copied to the result.
The syntax of a format sequence is as follows.
%[flags][width][.precision]type
A format sequence consists of a percent sign, followed by optional flags, width, and precision indicators, then terminated with a field type character. The field type controls how the corresponding sprintf
argument is to be interpreted, while the flags modify that interpretation.
The field type characters are:
Field | Integer Format ------+-------------------------------------------------------------- b | Convert argument as a binary number. | Negative numbers will be displayed as a two's complement | prefixed with `..1'. B | Equivalent to `b', but uses an uppercase 0B for prefix | in the alternative format by #. d | Convert argument as a decimal number. i | Identical to `d'. o | Convert argument as an octal number. | Negative numbers will be displayed as a two's complement | prefixed with `..7'. u | Identical to `d'. x | Convert argument as a hexadecimal number. | Negative numbers will be displayed as a two's complement | prefixed with `..f' (representing an infinite string of | leading 'ff's). X | Equivalent to `x', but uses uppercase letters. Field | Float Format ------+-------------------------------------------------------------- e | Convert floating point argument into exponential notation | with one digit before the decimal point as [-]d.dddddde[+-]dd. | The precision specifies the number of digits after the decimal | point (defaulting to six). E | Equivalent to `e', but uses an uppercase E to indicate | the exponent. f | Convert floating point argument as [-]ddd.dddddd, | where the precision specifies the number of digits after | the decimal point. g | Convert a floating point number using exponential form | if the exponent is less than -4 or greater than or | equal to the precision, or in dd.dddd form otherwise. | The precision specifies the number of significant digits. G | Equivalent to `g', but use an uppercase `E' in exponent form. a | Convert floating point argument as [-]0xh.hhhhp[+-]dd, | which is consisted from optional sign, "0x", fraction part | as hexadecimal, "p", and exponential part as decimal. A | Equivalent to `a', but use uppercase `X' and `P'. Field | Other Format ------+-------------------------------------------------------------- c | Argument is the numeric code for a single character or | a single character string itself. p | The valuing of argument.inspect. s | Argument is a string to be substituted. If the format | sequence contains a precision, at most that many characters | will be copied. % | A percent sign itself will be displayed. No argument taken.
The flags modifies the behavior of the formats. The flag characters are:
Flag | Applies to | Meaning ---------+---------------+----------------------------------------- space | bBdiouxX | Leave a space at the start of | aAeEfgG | non-negative numbers. | (numeric fmt) | For `o', `x', `X', `b' and `B', use | | a minus sign with absolute value for | | negative values. ---------+---------------+----------------------------------------- (digit)$ | all | Specifies the absolute argument number | | for this field. Absolute and relative | | argument numbers cannot be mixed in a | | sprintf string. ---------+---------------+----------------------------------------- # | bBoxX | Use an alternative format. | aAeEfgG | For the conversions `o', increase the precision | | until the first digit will be `0' if | | it is not formatted as complements. | | For the conversions `x', `X', `b' and `B' | | on non-zero, prefix the result with ``0x'', | | ``0X'', ``0b'' and ``0B'', respectively. | | For `a', `A', `e', `E', `f', `g', and 'G', | | force a decimal point to be added, | | even if no digits follow. | | For `g' and 'G', do not remove trailing zeros. ---------+---------------+----------------------------------------- + | bBdiouxX | Add a leading plus sign to non-negative | aAeEfgG | numbers. | (numeric fmt) | For `o', `x', `X', `b' and `B', use | | a minus sign with absolute value for | | negative values. ---------+---------------+----------------------------------------- - | all | Left-justify the result of this conversion. ---------+---------------+----------------------------------------- 0 (zero) | bBdiouxX | Pad with zeros, not spaces. | aAeEfgG | For `o', `x', `X', `b' and `B', radix-1 | (numeric fmt) | is used for negative numbers formatted as | | complements. ---------+---------------+----------------------------------------- * | all | Use the next argument as the field width. | | If negative, left-justify the result. If the | | asterisk is followed by a number and a dollar | | sign, use the indicated argument as the width.
Examples of flags:
# `+' and space flag specifies the sign of non-negative numbers. sprintf("%d", 123) #=> "123" sprintf("%+d", 123) #=> "+123" sprintf("% d", 123) #=> " 123" # `#' flag for `o' increases number of digits to show `0'. # `+' and space flag changes format of negative numbers. sprintf("%o", 123) #=> "173" sprintf("%#o", 123) #=> "0173" sprintf("%+o", -123) #=> "-173" sprintf("%o", -123) #=> "..7605" sprintf("%#o", -123) #=> "..7605" # `#' flag for `x' add a prefix `0x' for non-zero numbers. # `+' and space flag disables complements for negative numbers. sprintf("%x", 123) #=> "7b" sprintf("%#x", 123) #=> "0x7b" sprintf("%+x", -123) #=> "-7b" sprintf("%x", -123) #=> "..f85" sprintf("%#x", -123) #=> "0x..f85" sprintf("%#x", 0) #=> "0" # `#' for `X' uses the prefix `0X'. sprintf("%X", 123) #=> "7B" sprintf("%#X", 123) #=> "0X7B" # `#' flag for `b' add a prefix `0b' for non-zero numbers. # `+' and space flag disables complements for negative numbers. sprintf("%b", 123) #=> "1111011" sprintf("%#b", 123) #=> "0b1111011" sprintf("%+b", -123) #=> "-1111011" sprintf("%b", -123) #=> "..10000101" sprintf("%#b", -123) #=> "0b..10000101" sprintf("%#b", 0) #=> "0" # `#' for `B' uses the prefix `0B'. sprintf("%B", 123) #=> "1111011" sprintf("%#B", 123) #=> "0B1111011" # `#' for `e' forces to show the decimal point. sprintf("%.0e", 1) #=> "1e+00" sprintf("%#.0e", 1) #=> "1.e+00" # `#' for `f' forces to show the decimal point. sprintf("%.0f", 1234) #=> "1234" sprintf("%#.0f", 1234) #=> "1234." # `#' for `g' forces to show the decimal point. # It also disables stripping lowest zeros. sprintf("%g", 123.4) #=> "123.4" sprintf("%#g", 123.4) #=> "123.400" sprintf("%g", 123456) #=> "123456" sprintf("%#g", 123456) #=> "123456."
The field width is an optional integer, followed optionally by a period and a precision. The width specifies the minimum number of characters that will be written to the result for this field.
Examples of width:
# padding is done by spaces, width=20 # 0 or radix-1. <------------------> sprintf("%20d", 123) #=> " 123" sprintf("%+20d", 123) #=> " +123" sprintf("%020d", 123) #=> "00000000000000000123" sprintf("%+020d", 123) #=> "+0000000000000000123" sprintf("% 020d", 123) #=> " 0000000000000000123" sprintf("%-20d", 123) #=> "123 " sprintf("%-+20d", 123) #=> "+123 " sprintf("%- 20d", 123) #=> " 123 " sprintf("%020x", -123) #=> "..ffffffffffffffff85"
For numeric fields, the precision controls the number of decimal places displayed. For string fields, the precision determines the maximum number of characters to be copied from the string. (Thus, the format sequence %10.10s
will always contribute exactly ten characters to the result.)
Examples of precisions:
# precision for `d', 'o', 'x' and 'b' is # minimum number of digits <------> sprintf("%20.8d", 123) #=> " 00000123" sprintf("%20.8o", 123) #=> " 00000173" sprintf("%20.8x", 123) #=> " 0000007b" sprintf("%20.8b", 123) #=> " 01111011" sprintf("%20.8d", -123) #=> " -00000123" sprintf("%20.8o", -123) #=> " ..777605" sprintf("%20.8x", -123) #=> " ..ffff85" sprintf("%20.8b", -11) #=> " ..110101" # "0x" and "0b" for `#x' and `#b' is not counted for # precision but "0" for `#o' is counted. <------> sprintf("%#20.8d", 123) #=> " 00000123" sprintf("%#20.8o", 123) #=> " 00000173" sprintf("%#20.8x", 123) #=> " 0x0000007b" sprintf("%#20.8b", 123) #=> " 0b01111011" sprintf("%#20.8d", -123) #=> " -00000123" sprintf("%#20.8o", -123) #=> " ..777605" sprintf("%#20.8x", -123) #=> " 0x..ffff85" sprintf("%#20.8b", -11) #=> " 0b..110101" # precision for `e' is number of # digits after the decimal point <------> sprintf("%20.8e", 1234.56789) #=> " 1.23456789e+03" # precision for `f' is number of # digits after the decimal point <------> sprintf("%20.8f", 1234.56789) #=> " 1234.56789000" # precision for `g' is number of # significant digits <-------> sprintf("%20.8g", 1234.56789) #=> " 1234.5679" # <-------> sprintf("%20.8g", 123456789) #=> " 1.2345679e+08" # precision for `s' is # maximum number of characters <------> sprintf("%20.8s", "string test") #=> " string t"
Examples:
sprintf("%d %04x", 123, 123) #=> "123 007b" sprintf("%08b '%4s'", 123, 123) #=> "01111011 ' 123'" sprintf("%1$*2$s %2$d %1$s", "hello", 8) #=> " hello 8 hello" sprintf("%1$*2$s %2$d", "hello", -8) #=> "hello -8" sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) #=> "+1.23: 1.23:1.23" sprintf("%u", -123) #=> "-123"
For more complex formatting, Ruby supports a reference by name. %<name>s style uses format style, but %{name} style doesn't.
Examples:
sprintf("%<foo>d : %<bar>f", { :foo => 1, :bar => 2 }) #=> 1 : 2.000000 sprintf("%{foo}f", { :foo => 1 }) # => "1f"
static VALUE f_sprintf(int c, const VALUE *v, VALUE _) { return rb_f_sprintf(c, v); }
Seeds the system pseudo-random number generator, with number
. The previous seed value is returned.
If number
is omitted, seeds the generator using a source of entropy provided by the operating system, if available (/dev/urandom on Unix systems or the RSA cryptographic provider on Windows), which is then combined with the time, the process id, and a sequence number.
srand may be used to ensure repeatable sequences of pseudo-random numbers between different runs of the program. By setting the seed to a known value, programs can be made deterministic during testing.
srand 1234 # => 268519324636777531569100071560086917274 [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319] [ rand(10), rand(1000) ] # => [4, 664] srand 1234 # => 1234 [ rand, rand ] # => [0.1915194503788923, 0.6221087710398319]
static VALUE rb_f_srand(int argc, VALUE *argv, VALUE obj) { VALUE seed, old; rb_random_mt_t *r = rand_mt_start(default_rand()); if (rb_check_arity(argc, 0, 1) == 0) { seed = random_seed(obj); } else { seed = rb_to_int(argv[0]); } old = r->base.seed; rand_init(&random_mt_if, &r->base, seed); r->base.seed = seed; return old; }
Equivalent to $_.sub(args)
, except that $_
will be updated if substitution occurs. Available only when -p/-n command line option specified.
static VALUE rb_f_sub(int argc, VALUE *argv, VALUE _) { VALUE str = rb_funcall_passing_block(uscore_get(), rb_intern("sub"), argc, argv); rb_lastline_set(str); return str; }
Calls the operating system function identified by num and returns the result of the function or raises SystemCallError
if it failed.
Arguments for the function can follow num. They must be either String
objects or Integer
objects. A String
object is passed as a pointer to the byte sequence. An Integer
object is passed as an integer whose bit size is same as a pointer. Up to nine parameters may be passed.
The function identified by num is system dependent. On some Unix systems, the numbers may be obtained from a header file called syscall.h
.
syscall 4, 1, "hello\n", 6 # '4' is write(2) on our box
produces:
hello
Calling syscall
on a platform which does not have any way to an arbitrary system function just fails with NotImplementedError
.
Note: syscall
is essentially unsafe and unportable. Feel free to shoot your foot. The DL (Fiddle
) library is preferred for safer and a bit more portable programming.
static VALUE rb_f_syscall(int argc, VALUE *argv, VALUE _) { VALUE arg[8]; #if SIZEOF_VOIDP == 8 && defined(HAVE___SYSCALL) && SIZEOF_INT != 8 /* mainly *BSD */ # define SYSCALL __syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) # if SIZEOF_LONG == 8 long num, retval = -1; # elif SIZEOF_LONG_LONG == 8 long long num, retval = -1; # else # error ---->> it is asserted that __syscall takes the first argument and returns retval in 64bit signed integer. <<---- # endif #elif defined(__linux__) # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2LONG(x) # define RETVAL2NUM(x) LONG2NUM(x) /* * Linux man page says, syscall(2) function prototype is below. * * int syscall(int number, ...); * * But, it's incorrect. Actual one takes and returned long. (see unistd.h) */ long num, retval = -1; #else # define SYSCALL syscall # define NUM2SYSCALLID(x) NUM2INT(x) # define RETVAL2NUM(x) INT2NUM(x) int num, retval = -1; #endif int i; if (RTEST(ruby_verbose)) { rb_category_warning(RB_WARN_CATEGORY_DEPRECATED, "We plan to remove a syscall function at future release. DL(Fiddle) provides safer alternative."); } if (argc == 0) rb_raise(rb_eArgError, "too few arguments for syscall"); if (argc > numberof(arg)) rb_raise(rb_eArgError, "too many arguments for syscall"); num = NUM2SYSCALLID(argv[0]); ++argv; for (i = argc - 1; i--; ) { VALUE v = rb_check_string_type(argv[i]); if (!NIL_P(v)) { SafeStringValue(v); rb_str_modify(v); arg[i] = (VALUE)StringValueCStr(v); } else { arg[i] = (VALUE)NUM2LONG(argv[i]); } } switch (argc) { case 1: retval = SYSCALL(num); break; case 2: retval = SYSCALL(num, arg[0]); break; case 3: retval = SYSCALL(num, arg[0],arg[1]); break; case 4: retval = SYSCALL(num, arg[0],arg[1],arg[2]); break; case 5: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3]); break; case 6: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4]); break; case 7: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5]); break; case 8: retval = SYSCALL(num, arg[0],arg[1],arg[2],arg[3],arg[4],arg[5],arg[6]); break; } if (retval == -1) rb_sys_fail(0); return RETVAL2NUM(retval); #undef SYSCALL #undef NUM2SYSCALLID #undef RETVAL2NUM }
Executes command… in a subshell. command… is one of following forms.
commandline
-
command line string which is passed to the standard shell
cmdname, arg1, ...
-
command name and one or more arguments (no shell)
[cmdname, argv0], arg1, ...
-
command name,
argv[0]
and zero or more arguments (no shell)
system returns true
if the command gives zero exit status, false
for non zero exit status. Returns nil
if command execution fails. An error status is available in $?
.
If the exception: true
argument is passed, the method raises an exception instead of returning false
or nil
.
The arguments are processed in the same way as for Kernel#spawn
.
The hash arguments, env and options, are same as exec
and spawn
. See Kernel#spawn
for details.
system("echo *") system("echo", "*")
produces:
config.h main.rb *
Error handling:
system("cat nonexistent.txt") # => false system("catt nonexistent.txt") # => nil system("cat nonexistent.txt", exception: true) # RuntimeError (Command failed with exit 1: cat) system("catt nonexistent.txt", exception: true) # Errno::ENOENT (No such file or directory - catt)
See Kernel#exec
for the standard shell.
static VALUE rb_f_system(int argc, VALUE *argv, VALUE _) { /* * n.b. using alloca for now to simplify future Thread::Light code * when we need to use malloc for non-native Fiber */ struct waitpid_state *w = alloca(sizeof(struct waitpid_state)); rb_pid_t pid; /* may be different from waitpid_state.pid on exec failure */ VALUE execarg_obj; struct rb_execarg *eargp; int exec_errnum; execarg_obj = rb_execarg_new(argc, argv, TRUE, TRUE); eargp = rb_execarg_get(execarg_obj); w->ec = GET_EC(); waitpid_state_init(w, 0, 0); eargp->waitpid_state = w; pid = rb_execarg_spawn(execarg_obj, 0, 0); exec_errnum = pid < 0 ? errno : 0; #if defined(HAVE_WORKING_FORK) || defined(HAVE_SPAWNV) if (w->pid > 0) { /* `pid' (not w->pid) may be < 0 here if execve failed in child */ if (WAITPID_USE_SIGCHLD) { rb_ensure(waitpid_sleep, (VALUE)w, waitpid_cleanup, (VALUE)w); } else { waitpid_no_SIGCHLD(w); } rb_last_status_set(w->status, w->ret); } #endif if (w->pid < 0 /* fork failure */ || pid < 0 /* exec failure */) { if (eargp->exception) { int err = exec_errnum ? exec_errnum : w->errnum; VALUE command = eargp->invoke.sh.shell_script; RB_GC_GUARD(execarg_obj); rb_syserr_fail_str(err, command); } else { return Qnil; } } if (w->status == EXIT_SUCCESS) return Qtrue; if (eargp->exception) { VALUE command = eargp->invoke.sh.shell_script; VALUE str = rb_str_new_cstr("Command failed with"); rb_str_cat_cstr(pst_message_status(str, w->status), ": "); rb_str_append(str, command); RB_GC_GUARD(execarg_obj); rb_exc_raise(rb_exc_new_str(rb_eRuntimeError, str)); } else { return Qfalse; } }
Yields self to the block, and then returns self. The primary purpose of this method is to “tap into” a method chain, in order to perform operations on intermediate results within the chain.
(1..10) .tap {|x| puts "original: #{x}" } .to_a .tap {|x| puts "array: #{x}" } .select {|x| x.even? } .tap {|x| puts "evens: #{x}" } .map {|x| x*x } .tap {|x| puts "squares: #{x}" }
# File kernel.rb, line 89 def tap yield(self) self end
Uses the character cmd
to perform various tests on file1
(first table below) or on file1
and file2
(second table).
File
tests on a single file:
Cmd Returns Meaning "A" | Time | Last access time for file1 "b" | boolean | True if file1 is a block device "c" | boolean | True if file1 is a character device "C" | Time | Last change time for file1 "d" | boolean | True if file1 exists and is a directory "e" | boolean | True if file1 exists "f" | boolean | True if file1 exists and is a regular file "g" | boolean | True if file1 has the \CF{setgid} bit | | set (false under NT) "G" | boolean | True if file1 exists and has a group | | ownership equal to the caller's group "k" | boolean | True if file1 exists and has the sticky bit set "l" | boolean | True if file1 exists and is a symbolic link "M" | Time | Last modification time for file1 "o" | boolean | True if file1 exists and is owned by | | the caller's effective uid "O" | boolean | True if file1 exists and is owned by | | the caller's real uid "p" | boolean | True if file1 exists and is a fifo "r" | boolean | True if file1 is readable by the effective | | uid/gid of the caller "R" | boolean | True if file is readable by the real | | uid/gid of the caller "s" | int/nil | If file1 has nonzero size, return the size, | | otherwise return nil "S" | boolean | True if file1 exists and is a socket "u" | boolean | True if file1 has the setuid bit set "w" | boolean | True if file1 exists and is writable by | | the effective uid/gid "W" | boolean | True if file1 exists and is writable by | | the real uid/gid "x" | boolean | True if file1 exists and is executable by | | the effective uid/gid "X" | boolean | True if file1 exists and is executable by | | the real uid/gid "z" | boolean | True if file1 exists and has a zero length
Tests that take two files:
"-" | boolean | True if file1 and file2 are identical "=" | boolean | True if the modification times of file1 | | and file2 are equal "<" | boolean | True if the modification time of file1 | | is prior to that of file2 ">" | boolean | True if the modification time of file1 | | is after that of file2
static VALUE rb_f_test(int argc, VALUE *argv, VALUE _) { int cmd; if (argc == 0) rb_check_arity(argc, 2, 3); cmd = NUM2CHR(argv[0]); if (cmd == 0) { goto unknown; } if (strchr("bcdefgGkloOprRsSuwWxXz", cmd)) { CHECK(1); switch (cmd) { case 'b': return rb_file_blockdev_p(0, argv[1]); case 'c': return rb_file_chardev_p(0, argv[1]); case 'd': return rb_file_directory_p(0, argv[1]); case 'e': return rb_file_exist_p(0, argv[1]); case 'f': return rb_file_file_p(0, argv[1]); case 'g': return rb_file_sgid_p(0, argv[1]); case 'G': return rb_file_grpowned_p(0, argv[1]); case 'k': return rb_file_sticky_p(0, argv[1]); case 'l': return rb_file_symlink_p(0, argv[1]); case 'o': return rb_file_owned_p(0, argv[1]); case 'O': return rb_file_rowned_p(0, argv[1]); case 'p': return rb_file_pipe_p(0, argv[1]); case 'r': return rb_file_readable_p(0, argv[1]); case 'R': return rb_file_readable_real_p(0, argv[1]); case 's': return rb_file_size_p(0, argv[1]); case 'S': return rb_file_socket_p(0, argv[1]); case 'u': return rb_file_suid_p(0, argv[1]); case 'w': return rb_file_writable_p(0, argv[1]); case 'W': return rb_file_writable_real_p(0, argv[1]); case 'x': return rb_file_executable_p(0, argv[1]); case 'X': return rb_file_executable_real_p(0, argv[1]); case 'z': return rb_file_zero_p(0, argv[1]); } } if (strchr("MAC", cmd)) { struct stat st; VALUE fname = argv[1]; CHECK(1); if (rb_stat(fname, &st) == -1) { int e = errno; FilePathValue(fname); rb_syserr_fail_path(e, fname); } switch (cmd) { case 'A': return stat_atime(&st); case 'M': return stat_mtime(&st); case 'C': return stat_ctime(&st); } } if (cmd == '-') { CHECK(2); return rb_file_identical_p(0, argv[1], argv[2]); } if (strchr("=<>", cmd)) { struct stat st1, st2; struct timespec t1, t2; CHECK(2); if (rb_stat(argv[1], &st1) < 0) return Qfalse; if (rb_stat(argv[2], &st2) < 0) return Qfalse; t1 = stat_mtimespec(&st1); t2 = stat_mtimespec(&st2); switch (cmd) { case '=': if (t1.tv_sec == t2.tv_sec && t1.tv_nsec == t2.tv_nsec) return Qtrue; return Qfalse; case '>': if (t1.tv_sec > t2.tv_sec) return Qtrue; if (t1.tv_sec == t2.tv_sec && t1.tv_nsec > t2.tv_nsec) return Qtrue; return Qfalse; case '<': if (t1.tv_sec < t2.tv_sec) return Qtrue; if (t1.tv_sec == t2.tv_sec && t1.tv_nsec < t2.tv_nsec) return Qtrue; return Qfalse; } } unknown: /* unknown command */ if (ISPRINT(cmd)) { rb_raise(rb_eArgError, "unknown command '%s%c'", cmd == '\'' || cmd == '\\' ? "\\" : "", cmd); } else { rb_raise(rb_eArgError, "unknown command \"\\x%02X\"", cmd); } UNREACHABLE_RETURN(Qundef); }
Yields self to the block and returns the result of the block.
3.next.then {|x| x**x }.to_s #=> "256"
Good usage for then
is value piping in method chains:
require 'open-uri' require 'json' construct_url(arguments). then {|url| open(url).read }. then {|response| JSON.parse(response) }
When called without block, the method returns Enumerator
, which can be used, for example, for conditional circuit-breaking:
# meets condition, no-op 1.then.detect(&:odd?) # => 1 # does not meet condition, drop value 2.then.detect(&:odd?) # => nil
# File kernel.rb, line 120 def then unless Primitive.block_given_p return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, rb_obj_size)' end yield(self) end
Transfers control to the end of the active catch
block waiting for tag. Raises UncaughtThrowError
if there is no catch
block for the tag. The optional second parameter supplies a return value for the catch
block, which otherwise defaults to nil
. For examples, see Kernel::catch.
static VALUE rb_f_throw(int argc, VALUE *argv, VALUE _) { VALUE tag, value; rb_scan_args(argc, argv, "11", &tag, &value); rb_throw_obj(tag, value); UNREACHABLE_RETURN(Qnil); }
Controls tracing of assignments to global variables. The parameter symbol
identifies the variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc
object) or block is executed whenever the variable is assigned. The block or Proc
object receives the variable's new value as a parameter. Also see Kernel::untrace_var.
trace_var :$_, proc {|v| puts "$_ is now '#{v}'" } $_ = "hello" $_ = ' there'
produces:
$_ is now 'hello' $_ is now ' there'
static VALUE f_trace_var(int c, const VALUE *a, VALUE _) { return rb_f_trace_var(c, a); }
Specifies the handling of signals. The first parameter is a signal name (a string such as “SIGALRM'', “SIGUSR1'', and so on) or a signal number. The characters “SIG'' may be omitted from the signal name. The command or block specifies code to be run when the signal is raised. If the command is the string “IGNORE'' or “SIG_IGN'', the signal will be ignored. If the command is “DEFAULT'' or “SIG_DFL'', the Ruby's default handler will be invoked. If the command is “EXIT'', the script will be terminated by the signal. If the command is “SYSTEM_DEFAULT'', the operating system's default handler will be invoked. Otherwise, the given command or block will be run. The special signal name “EXIT'' or signal number zero will be invoked just prior to program termination. trap returns the previous handler for the given signal.
Signal.trap(0, proc { puts "Terminating: #{$$}" }) Signal.trap("CLD") { puts "Child died" } fork && Process.wait
produces:
Terminating: 27461 Child died Terminating: 27460
static VALUE sig_trap(int argc, VALUE *argv, VALUE _) { int sig; sighandler_t func; VALUE cmd; rb_check_arity(argc, 1, 2); sig = trap_signm(argv[0]); if (reserved_signal_p(sig)) { const char *name = signo2signm(sig); if (name) rb_raise(rb_eArgError, "can't trap reserved signal: SIG%s", name); else rb_raise(rb_eArgError, "can't trap reserved signal: %d", sig); } if (argc == 1) { cmd = rb_block_proc(); func = sighandler; } else { cmd = argv[1]; func = trap_handler(&cmd, sig); } if (rb_obj_is_proc(cmd) && !rb_ractor_main_p() && !rb_ractor_shareable_p(cmd)) { cmd = rb_proc_isolate(cmd); } return trap(sig, func, cmd); }
Removes tracing for the specified command on the given global variable and returns nil
. If no command is specified, removes all tracing for that variable and returns an array containing the commands actually removed.
static VALUE f_untrace_var(int c, const VALUE *a, VALUE _) { return rb_f_untrace_var(c, a); }
If warnings have been disabled (for example with the -W0
flag), does nothing. Otherwise, converts each of the messages to strings, appends a newline character to the string if the string does not end in a newline, and calls Warning.warn
with the string.
warn("warning 1", "warning 2") <em>produces:</em> warning 1 warning 2
If the uplevel
keyword argument is given, the string will be prepended with information for the given caller frame in the same format used by the rb_warn
C function.
# In baz.rb def foo warn("invalid call to foo", uplevel: 1) end def bar foo end bar <em>produces:</em> baz.rb:6: warning: invalid call to foo
If category
keyword argument is given, passes the category to Warning.warn
. The category given must be be one of the following categories:
- :deprecated
-
Used for warning for deprecated functionality that may be removed in the future.
- :experimental
-
Used for experimental features that may change in future releases.
# File warning.rb, line 50 def warn(*msgs, uplevel: nil, category: nil) Primitive.rb_warn_m(msgs, uplevel, category) end
Yields self to the block and returns the result of the block.
"my string".yield_self {|s| s.upcase } #=> "MY STRING"
Good usage for then
is value piping in method chains:
require 'open-uri' require 'json' construct_url(arguments). then {|url| open(url).read }. then {|response| JSON.parse(response) }
# File kernel.rb, line 144 def yield_self unless Primitive.block_given_p return Primitive.cexpr! 'SIZED_ENUMERATOR(self, 0, 0, rb_obj_size)' end yield(self) end
Private Instance Methods
If object is string-like, parse the string and return the parsed result as a Ruby data structure. Otherwise, generate a JSON
text from the Ruby data structure object and return it.
The opts argument is passed through to generate/parse respectively. See generate and parse for their documentation.
# File ext/json/lib/json/common.rb, line 685 def JSON(object, *args) if object.respond_to? :to_str JSON.parse(object.to_str, args.first) else JSON.generate(object, args.first) end end
Returns uri
converted to an URI
object.
# File lib/uri/common.rb, line 670 def URI(uri) if uri.is_a?(URI::Generic) uri elsif uri = String.try_convert(uri) URI.parse(uri) else raise ArgumentError, "bad argument (expected URI object or URI string)" end end
Use Kernel#gem
to activate a specific version of gem_name
.
requirements
is a list of version requirements that the specified gem must match, most commonly “= example.version.number”. See Gem::Requirement
for how to specify a version requirement.
If you will be activating the latest version of a gem, there is no need to call Kernel#gem
, Kernel#require
will do the right thing for you.
Kernel#gem
returns true if the gem was activated, otherwise false. If the gem could not be found, didn't match the version requirements, or a different version was already activated, an exception will be raised.
Kernel#gem
should be called before any require statements (otherwise RubyGems may load a conflicting library version).
Kernel#gem
only loads prerelease versions when prerelease requirements
are given:
gem 'rake', '>= 1.1.a', '< 2'
In older RubyGems versions, the environment variable GEM_SKIP could be used to skip activation of specified gems, for example to test out changes that haven't been installed yet. Now RubyGems defers to -I and the RUBYLIB environment variable to skip activation of a gem.
Example:
GEM_SKIP=libA:libB ruby -I../libA -I../libB ./mycode.rb
# File lib/rubygems/core_ext/kernel_gem.rb, line 41 def gem(gem_name, *requirements) # :doc: skip_list = (ENV['GEM_SKIP'] || "").split(/:/) raise Gem::LoadError, "skipping #{gem_name}" if skip_list.include? gem_name if gem_name.kind_of? Gem::Dependency unless Gem::Deprecate.skip warn "#{Gem.location_of_caller.join ':'}:Warning: Kernel.gem no longer "\ "accepts a Gem::Dependency object, please pass the name "\ "and requirements directly" end requirements = gem_name.requirement gem_name = gem_name.name end dep = Gem::Dependency.new(gem_name, *requirements) loaded = Gem.loaded_specs[gem_name] return false if loaded && dep.matches_spec?(loaded) spec = dep.to_spec if spec if Gem::LOADED_SPECS_MUTEX.owned? spec.activate else Gem::LOADED_SPECS_MUTEX.synchronize { spec.activate } end end end
Outputs objs to STDOUT as JSON
strings in the shortest form, that is in one line.
# File ext/json/lib/json/common.rb, line 663 def j(*objs) objs.each do |obj| puts JSON::generate(obj, :allow_nan => true, :max_nesting => false) end nil end
Outputs objs to STDOUT as JSON
strings in a pretty format, with indentation and over many lines.
# File ext/json/lib/json/common.rb, line 672 def jj(*objs) objs.each do |obj| puts JSON::pretty_generate(obj, :allow_nan => true, :max_nesting => false) end nil end
prints arguments in pretty form.
pp returns argument(s).
# File lib/pp.rb, line 602 def pp(*objs) objs.each {|obj| PP.pp(obj) } objs.size <= 1 ? objs.first : objs end
An alias for Psych.dump_stream
meant to be used with IRB.
# File ext/psych/lib/psych/y.rb, line 5 def y *objects puts Psych.dump_stream(*objects) end