class OpenSSL::PKey::RSA
RSA
is an asymmetric public key algorithm that has been formalized in RFC 3447. It is in widespread use in public key infrastructures (PKI) where certificates (cf. OpenSSL::X509::Certificate
) often are issued on the basis of a public/private RSA
key pair. RSA
is used in a wide field of applications such as secure (symmetric) key exchange, e.g. when establishing a secure TLS/SSL connection. It is also used in various digital signature schemes.
Public Class Methods
Generates an RSA
keypair. size is an integer representing the desired key size. Keys smaller than 1024 should be considered insecure. exponent is an odd number normally 3, 17, or 65537.
static VALUE ossl_rsa_s_generate(int argc, VALUE *argv, VALUE klass) { /* why does this method exist? why can't initialize take an optional exponent? */ RSA *rsa; VALUE size, exp; VALUE obj; rb_scan_args(argc, argv, "11", &size, &exp); rsa = rsa_generate(NUM2INT(size), NIL_P(exp) ? RSA_F4 : NUM2ULONG(exp)); /* err handled by rsa_instance */ obj = rsa_instance(klass, rsa); if (obj == Qfalse) { RSA_free(rsa); ossl_raise(eRSAError, NULL); } return obj; }
Generates or loads an RSA
keypair. If an integer key_size is given it represents the desired key size. Keys less than 1024 bits should be considered insecure.
A key can instead be loaded from an encoded_key which must be PEM or DER encoded. A pass_phrase can be used to decrypt the key. If none is given OpenSSL
will prompt for the pass phrase.
Examples¶ ↑
OpenSSL::PKey::RSA.new 2048 OpenSSL::PKey::RSA.new File.read 'rsa.pem' OpenSSL::PKey::RSA.new File.read('rsa.pem'), 'my pass phrase'
static VALUE ossl_rsa_initialize(int argc, VALUE *argv, VALUE self) { EVP_PKEY *pkey; RSA *rsa; BIO *in; VALUE arg, pass; GetPKey(self, pkey); if(rb_scan_args(argc, argv, "02", &arg, &pass) == 0) { rsa = RSA_new(); } else if (RB_INTEGER_TYPE_P(arg)) { rsa = rsa_generate(NUM2INT(arg), NIL_P(pass) ? RSA_F4 : NUM2ULONG(pass)); if (!rsa) ossl_raise(eRSAError, NULL); } else { pass = ossl_pem_passwd_value(pass); arg = ossl_to_der_if_possible(arg); in = ossl_obj2bio(&arg); rsa = PEM_read_bio_RSAPrivateKey(in, NULL, ossl_pem_passwd_cb, (void *)pass); if (!rsa) { OSSL_BIO_reset(in); rsa = PEM_read_bio_RSA_PUBKEY(in, NULL, NULL, NULL); } if (!rsa) { OSSL_BIO_reset(in); rsa = d2i_RSAPrivateKey_bio(in, NULL); } if (!rsa) { OSSL_BIO_reset(in); rsa = d2i_RSA_PUBKEY_bio(in, NULL); } if (!rsa) { OSSL_BIO_reset(in); rsa = PEM_read_bio_RSAPublicKey(in, NULL, NULL, NULL); } if (!rsa) { OSSL_BIO_reset(in); rsa = d2i_RSAPublicKey_bio(in, NULL); } BIO_free(in); if (!rsa) { ossl_raise(eRSAError, "Neither PUB key nor PRIV key"); } } if (!EVP_PKEY_assign_RSA(pkey, rsa)) { RSA_free(rsa); ossl_raise(eRSAError, NULL); } return self; }
Public Instance Methods
static VALUE ossl_rsa_blinding_off(VALUE self) { RSA *rsa; GetRSA(self, rsa); RSA_blinding_off(rsa); return self; }
static VALUE ossl_rsa_blinding_on(VALUE self) { RSA *rsa; GetRSA(self, rsa); if (RSA_blinding_on(rsa, ossl_bn_ctx) != 1) { ossl_raise(eRSAError, NULL); } return self; }
Outputs this keypair in PEM encoding. If cipher and pass_phrase are given they will be used to encrypt the key. cipher must be an OpenSSL::Cipher
instance.
static VALUE ossl_rsa_export(int argc, VALUE *argv, VALUE self) { RSA *rsa; BIO *out; const EVP_CIPHER *ciph = NULL; VALUE cipher, pass, str; GetRSA(self, rsa); rb_scan_args(argc, argv, "02", &cipher, &pass); if (!NIL_P(cipher)) { ciph = ossl_evp_get_cipherbyname(cipher); pass = ossl_pem_passwd_value(pass); } if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eRSAError, NULL); } if (RSA_HAS_PRIVATE(rsa)) { if (!PEM_write_bio_RSAPrivateKey(out, rsa, ciph, NULL, 0, ossl_pem_passwd_cb, (void *)pass)) { BIO_free(out); ossl_raise(eRSAError, NULL); } } else { if (!PEM_write_bio_RSA_PUBKEY(out, rsa)) { BIO_free(out); ossl_raise(eRSAError, NULL); } } str = ossl_membio2str(out); return str; }
static VALUE ossl_rsa_initialize_copy(VALUE self, VALUE other) { EVP_PKEY *pkey; RSA *rsa, *rsa_new; GetPKey(self, pkey); if (EVP_PKEY_base_id(pkey) != EVP_PKEY_NONE) ossl_raise(eRSAError, "RSA already initialized"); GetRSA(other, rsa); rsa_new = ASN1_dup((i2d_of_void *)i2d_RSAPrivateKey, (d2i_of_void *)d2i_RSAPrivateKey, (char *)rsa); if (!rsa_new) ossl_raise(eRSAError, "ASN1_dup"); EVP_PKEY_assign_RSA(pkey, rsa_new); return self; }
THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
Stores all parameters of key to the hash. The hash has keys 'n', 'e', 'd', 'p', 'q', 'dmp1', 'dmq1', 'iqmp'.
Don't use :-)) (It's up to you)
static VALUE ossl_rsa_get_params(VALUE self) { RSA *rsa; VALUE hash; const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp; GetRSA(self, rsa); RSA_get0_key(rsa, &n, &e, &d); RSA_get0_factors(rsa, &p, &q); RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp); hash = rb_hash_new(); rb_hash_aset(hash, rb_str_new2("n"), ossl_bn_new(n)); rb_hash_aset(hash, rb_str_new2("e"), ossl_bn_new(e)); rb_hash_aset(hash, rb_str_new2("d"), ossl_bn_new(d)); rb_hash_aset(hash, rb_str_new2("p"), ossl_bn_new(p)); rb_hash_aset(hash, rb_str_new2("q"), ossl_bn_new(q)); rb_hash_aset(hash, rb_str_new2("dmp1"), ossl_bn_new(dmp1)); rb_hash_aset(hash, rb_str_new2("dmq1"), ossl_bn_new(dmq1)); rb_hash_aset(hash, rb_str_new2("iqmp"), ossl_bn_new(iqmp)); return hash; }
Does this keypair contain a private key?
static VALUE ossl_rsa_is_private(VALUE self) { RSA *rsa; GetRSA(self, rsa); return RSA_PRIVATE(self, rsa) ? Qtrue : Qfalse; }
Decrypt string, which has been encrypted with the public key, with the private key. padding defaults to PKCS1_PADDING.
static VALUE ossl_rsa_private_decrypt(int argc, VALUE *argv, VALUE self) { RSA *rsa; const BIGNUM *rsa_n; int buf_len, pad; VALUE str, buffer, padding; GetRSA(self, rsa); RSA_get0_key(rsa, &rsa_n, NULL, NULL); if (!rsa_n) ossl_raise(eRSAError, "incomplete RSA"); if (!RSA_PRIVATE(self, rsa)) ossl_raise(eRSAError, "private key needed."); rb_scan_args(argc, argv, "11", &buffer, &padding); pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); StringValue(buffer); str = rb_str_new(0, RSA_size(rsa)); buf_len = RSA_private_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), (unsigned char *)RSTRING_PTR(str), rsa, pad); if (buf_len < 0) ossl_raise(eRSAError, NULL); rb_str_set_len(str, buf_len); return str; }
Encrypt string with the private key. padding defaults to PKCS1_PADDING. The encrypted string output can be decrypted using public_decrypt
.
static VALUE ossl_rsa_private_encrypt(int argc, VALUE *argv, VALUE self) { RSA *rsa; const BIGNUM *rsa_n; int buf_len, pad; VALUE str, buffer, padding; GetRSA(self, rsa); RSA_get0_key(rsa, &rsa_n, NULL, NULL); if (!rsa_n) ossl_raise(eRSAError, "incomplete RSA"); if (!RSA_PRIVATE(self, rsa)) ossl_raise(eRSAError, "private key needed."); rb_scan_args(argc, argv, "11", &buffer, &padding); pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); StringValue(buffer); str = rb_str_new(0, RSA_size(rsa)); buf_len = RSA_private_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), (unsigned char *)RSTRING_PTR(str), rsa, pad); if (buf_len < 0) ossl_raise(eRSAError, NULL); rb_str_set_len(str, buf_len); return str; }
The return value is always true
since every private key is also a public key.
static VALUE ossl_rsa_is_public(VALUE self) { RSA *rsa; GetRSA(self, rsa); /* * This method should check for n and e. BUG. */ (void)rsa; return Qtrue; }
Decrypt string, which has been encrypted with the private key, with the public key. padding defaults to PKCS1_PADDING.
static VALUE ossl_rsa_public_decrypt(int argc, VALUE *argv, VALUE self) { RSA *rsa; const BIGNUM *rsa_n; int buf_len, pad; VALUE str, buffer, padding; GetRSA(self, rsa); RSA_get0_key(rsa, &rsa_n, NULL, NULL); if (!rsa_n) ossl_raise(eRSAError, "incomplete RSA"); rb_scan_args(argc, argv, "11", &buffer, &padding); pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); StringValue(buffer); str = rb_str_new(0, RSA_size(rsa)); buf_len = RSA_public_decrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), (unsigned char *)RSTRING_PTR(str), rsa, pad); if (buf_len < 0) ossl_raise(eRSAError, NULL); rb_str_set_len(str, buf_len); return str; }
Encrypt string with the public key. padding defaults to PKCS1_PADDING. The encrypted string output can be decrypted using private_decrypt
.
static VALUE ossl_rsa_public_encrypt(int argc, VALUE *argv, VALUE self) { RSA *rsa; const BIGNUM *rsa_n; int buf_len, pad; VALUE str, buffer, padding; GetRSA(self, rsa); RSA_get0_key(rsa, &rsa_n, NULL, NULL); if (!rsa_n) ossl_raise(eRSAError, "incomplete RSA"); rb_scan_args(argc, argv, "11", &buffer, &padding); pad = (argc == 1) ? RSA_PKCS1_PADDING : NUM2INT(padding); StringValue(buffer); str = rb_str_new(0, RSA_size(rsa)); buf_len = RSA_public_encrypt(RSTRING_LENINT(buffer), (unsigned char *)RSTRING_PTR(buffer), (unsigned char *)RSTRING_PTR(str), rsa, pad); if (buf_len < 0) ossl_raise(eRSAError, NULL); rb_str_set_len(str, buf_len); return str; }
Makes new RSA
instance containing the public key from the private key.
static VALUE ossl_rsa_to_public_key(VALUE self) { EVP_PKEY *pkey; RSA *rsa; VALUE obj; GetPKeyRSA(self, pkey); /* err check performed by rsa_instance */ rsa = RSAPublicKey_dup(EVP_PKEY_get0_RSA(pkey)); obj = rsa_instance(rb_obj_class(self), rsa); if (obj == Qfalse) { RSA_free(rsa); ossl_raise(eRSAError, NULL); } return obj; }
Sets dmp1, dmq1, iqmp for the RSA
instance. They are calculated by d mod (p - 1)
, d mod (q - 1)
and q^(-1) mod p
respectively.
Sets p, q for the RSA
instance.
Sets n, e, d for the RSA
instance.
Signs data using the Probabilistic Signature Scheme (RSA-PSS) and returns the calculated signature.
RSAError
will be raised if an error occurs.
See verify_pss
for the verification operation.
Parameters¶ ↑
- digest
-
A
String
containing the message digest algorithm name. - data
-
A
String
. The data to be signed. - salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:max
means the maximum possible length for the combination of the private key and the selected message digest algorithm. - mgf1_hash
-
The hash algorithm used in MGF1 (the currently supported mask generation function (MGF)).
Example¶ ↑
data = "Sign me!" pkey = OpenSSL::PKey::RSA.new(2048) signature = pkey.sign_pss("SHA256", data, salt_length: :max, mgf1_hash: "SHA256") pub_key = pkey.public_key puts pub_key.verify_pss("SHA256", signature, data, salt_length: :auto, mgf1_hash: "SHA256") # => true
static VALUE ossl_rsa_sign_pss(int argc, VALUE *argv, VALUE self) { VALUE digest, data, options, kwargs[2], signature; static ID kwargs_ids[2]; EVP_PKEY *pkey; EVP_PKEY_CTX *pkey_ctx; const EVP_MD *md, *mgf1md; EVP_MD_CTX *md_ctx; size_t buf_len; int salt_len; if (!kwargs_ids[0]) { kwargs_ids[0] = rb_intern_const("salt_length"); kwargs_ids[1] = rb_intern_const("mgf1_hash"); } rb_scan_args(argc, argv, "2:", &digest, &data, &options); rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs); if (kwargs[0] == ID2SYM(rb_intern("max"))) salt_len = -2; /* RSA_PSS_SALTLEN_MAX_SIGN */ else if (kwargs[0] == ID2SYM(rb_intern("digest"))) salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */ else salt_len = NUM2INT(kwargs[0]); mgf1md = ossl_evp_get_digestbyname(kwargs[1]); pkey = GetPrivPKeyPtr(self); buf_len = EVP_PKEY_size(pkey); md = ossl_evp_get_digestbyname(digest); StringValue(data); signature = rb_str_new(NULL, (long)buf_len); md_ctx = EVP_MD_CTX_new(); if (!md_ctx) goto err; if (EVP_DigestSignInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1) goto err; if (EVP_DigestSignUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1) goto err; if (EVP_DigestSignFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), &buf_len) != 1) goto err; rb_str_set_len(signature, (long)buf_len); EVP_MD_CTX_free(md_ctx); return signature; err: EVP_MD_CTX_free(md_ctx); ossl_raise(eRSAError, NULL); }
Outputs this keypair in DER encoding.
static VALUE ossl_rsa_to_der(VALUE self) { RSA *rsa; int (*i2d_func)(const RSA *, unsigned char **); unsigned char *p; long len; VALUE str; GetRSA(self, rsa); if (RSA_HAS_PRIVATE(rsa)) i2d_func = i2d_RSAPrivateKey; else i2d_func = (int (*)(const RSA *, unsigned char **))i2d_RSA_PUBKEY; if((len = i2d_func(rsa, NULL)) <= 0) ossl_raise(eRSAError, NULL); str = rb_str_new(0, len); p = (unsigned char *)RSTRING_PTR(str); if(i2d_func(rsa, &p) < 0) ossl_raise(eRSAError, NULL); ossl_str_adjust(str, p); return str; }
THIS METHOD IS INSECURE, PRIVATE INFORMATION CAN LEAK OUT!!!
Dumps all parameters of a keypair to a String
Don't use :-)) (It's up to you)
static VALUE ossl_rsa_to_text(VALUE self) { RSA *rsa; BIO *out; VALUE str; GetRSA(self, rsa); if (!(out = BIO_new(BIO_s_mem()))) { ossl_raise(eRSAError, NULL); } if (!RSA_print(out, rsa, 0)) { /* offset = 0 */ BIO_free(out); ossl_raise(eRSAError, NULL); } str = ossl_membio2str(out); return str; }
Verifies data using the Probabilistic Signature Scheme (RSA-PSS).
The return value is true
if the signature is valid, false
otherwise. RSAError
will be raised if an error occurs.
See sign_pss
for the signing operation and an example code.
Parameters¶ ↑
- digest
-
A
String
containing the message digest algorithm name. - data
-
A
String
. The data to be signed. - salt_length
-
The length in octets of the salt. Two special values are reserved:
:digest
means the digest length, and:auto
means automatically determining the length based on the signature. - mgf1_hash
-
The hash algorithm used in MGF1.
static VALUE ossl_rsa_verify_pss(int argc, VALUE *argv, VALUE self) { VALUE digest, signature, data, options, kwargs[2]; static ID kwargs_ids[2]; EVP_PKEY *pkey; EVP_PKEY_CTX *pkey_ctx; const EVP_MD *md, *mgf1md; EVP_MD_CTX *md_ctx; int result, salt_len; if (!kwargs_ids[0]) { kwargs_ids[0] = rb_intern_const("salt_length"); kwargs_ids[1] = rb_intern_const("mgf1_hash"); } rb_scan_args(argc, argv, "3:", &digest, &signature, &data, &options); rb_get_kwargs(options, kwargs_ids, 2, 0, kwargs); if (kwargs[0] == ID2SYM(rb_intern("auto"))) salt_len = -2; /* RSA_PSS_SALTLEN_AUTO */ else if (kwargs[0] == ID2SYM(rb_intern("digest"))) salt_len = -1; /* RSA_PSS_SALTLEN_DIGEST */ else salt_len = NUM2INT(kwargs[0]); mgf1md = ossl_evp_get_digestbyname(kwargs[1]); GetPKey(self, pkey); md = ossl_evp_get_digestbyname(digest); StringValue(signature); StringValue(data); md_ctx = EVP_MD_CTX_new(); if (!md_ctx) goto err; if (EVP_DigestVerifyInit(md_ctx, &pkey_ctx, md, NULL, pkey) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, salt_len) != 1) goto err; if (EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1md) != 1) goto err; if (EVP_DigestVerifyUpdate(md_ctx, RSTRING_PTR(data), RSTRING_LEN(data)) != 1) goto err; result = EVP_DigestVerifyFinal(md_ctx, (unsigned char *)RSTRING_PTR(signature), RSTRING_LEN(signature)); switch (result) { case 0: ossl_clear_error(); EVP_MD_CTX_free(md_ctx); return Qfalse; case 1: EVP_MD_CTX_free(md_ctx); return Qtrue; default: goto err; } err: EVP_MD_CTX_free(md_ctx); ossl_raise(eRSAError, NULL); }