class Module

A Module is a collection of methods and constants. The methods in a module may be instance methods or module methods. Instance methods appear as methods in a class when the module is included, module methods do not. Conversely, module methods may be called without creating an encapsulating object, while instance methods may not. (See Module#module_function.)

In the descriptions that follow, the parameter sym refers to a symbol, which is either a quoted string or a Symbol (such as :name).

module Mod
  include Math
  CONST = 1
  def meth
    #  ...
  end
end
Mod.class              #=> Module
Mod.constants          #=> [:CONST, :PI, :E]
Mod.instance_methods   #=> [:meth]

Public Class Methods

constants → array click to toggle source
constants(inherited) → array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
        return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
        klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            data = rb_mod_const_at(CREF_CLASS(cref), data);
            if (!cbase) {
                cbase = klass;
            }
        }
        cref = CREF_NEXT(cref);
    }

    if (cbase) {
        data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}
nesting → array click to toggle source

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"
static VALUE
rb_mod_nesting(VALUE _)
{
    VALUE ary = rb_ary_new();
    const rb_cref_t *cref = rb_vm_cref();

    while (cref && CREF_NEXT(cref)) {
        VALUE klass = CREF_CLASS(cref);
        if (!CREF_PUSHED_BY_EVAL(cref) &&
            !NIL_P(klass)) {
            rb_ary_push(ary, klass);
        }
        cref = CREF_NEXT(cref);
    }
    return ary;
}
new → mod click to toggle source
new {|mod| block } → mod

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module like module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
        rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}
used_modules → array click to toggle source

Returns an array of all modules used in the current scope. The ordering of modules in the resulting array is not defined.

module A
  refine Object do
  end
end

module B
  refine Object do
  end
end

using A
using B
p Module.used_modules

produces:

[B, A]
static VALUE
rb_mod_s_used_modules(VALUE _)
{
    const rb_cref_t *cref = rb_vm_cref();
    VALUE ary = rb_ary_new();

    while (cref) {
        if (!NIL_P(CREF_REFINEMENTS(cref))) {
            rb_hash_foreach(CREF_REFINEMENTS(cref), used_modules_i, ary);
        }
        cref = CREF_NEXT(cref);
    }

    return rb_funcall(ary, rb_intern("uniq"), 0);
}

Public Instance Methods

mod < other → true, false, or nil click to toggle source

Returns true if mod is a subclass of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}
mod <= other → true, false, or nil click to toggle source

Returns true if mod is a subclass of other or is the same as other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “A < B”.)

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
        rb_raise(rb_eTypeError, "compared with non class/module");
    }
    if (class_search_ancestor(mod, RCLASS_ORIGIN(arg))) {
        return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, mod)) {
        return Qfalse;
    }
    return Qnil;
}
module <=> other_module → -1, 0, +1, or nil click to toggle source

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
        return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
        return INT2FIX(-1);
    }
    return INT2FIX(1);
}
obj == other → true or false click to toggle source
equal?(other) → true or false
eql?(other) → true or false

Equality — At the Object level, #== returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike #==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For any pair of objects where eql? returns true, the hash value of both objects must be equal. So any subclass that overrides eql? should also override hash appropriately.

For objects of class Object, eql? is synonymous with #==. Subclasses normally continue this tradition by aliasing eql? to their overridden #== method, but there are exceptions. Numeric types, for example, perform type conversion across #==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false
MJIT_FUNC_EXPORTED VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}
mod === obj → true or false click to toggle source

Case Equality—Returns true if obj is an instance of mod or an instance of one of mod's descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}
mod > other → true, false, or nil click to toggle source

Returns true if mod is an ancestor of other. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}
mod >= other → true, false, or nil click to toggle source

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there's no relationship between the two. (Think of the relationship in terms of the class definition: “class A < B” implies “B > A”.)

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
        rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}
alias_method(new_name, old_name) → self click to toggle source

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99
static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
        rb_print_undef_str(mod, oldname);
    }
    rb_alias(mod, rb_to_id(newname), oldid);
    return mod;
}
ancestors → array click to toggle source

Returns a list of modules included/prepended in mod (including mod itself).

module Mod
  include Math
  include Comparable
  prepend Enumerable
end

Mod.ancestors        #=> [Enumerable, Mod, Comparable, Math]
Math.ancestors       #=> [Math]
Enumerable.ancestors #=> [Enumerable]
VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
        if (p != RCLASS_ORIGIN(p)) continue;
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
        else {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}
attr(name, ...) → nil click to toggle source
attr(name, true) → nil
attr(name, false) → nil

The first form is equivalent to attr_reader. The second form is equivalent to attr_accessor(name) but deprecated. The last form is equivalent to attr_reader(name) but deprecated.

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
        rb_warning("optional boolean argument is obsoleted");
        rb_attr(klass, id_for_attr(klass, argv[0]), 1, RTEST(argv[1]), TRUE);
        return Qnil;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}
attr_accessor(symbol, ...) → nil click to toggle source
attr_accessor(string, ...) → nil

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols.

module Mod
  attr_accessor(:one, :two)
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]
static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
        rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, TRUE, TRUE);
    }
    return Qnil;
}
attr_reader(symbol, ...) → nil click to toggle source
attr(symbol, ...) → nil
attr_reader(string, ...) → nil
attr(string, ...) → nil

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name'' on each name in turn. String arguments are converted to symbols.

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
        rb_attr(klass, id_for_attr(klass, argv[i]), TRUE, FALSE, TRUE);
    }
    return Qnil;
}
attr_writer(symbol, ...) → nil click to toggle source
attr_writer(string, ...) → nil

Creates an accessor method to allow assignment to the attribute symbol.id2name. String arguments are converted to symbols.

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
        rb_attr(klass, id_for_attr(klass, argv[i]), FALSE, TRUE, TRUE);
    }
    return Qnil;
}
autoload(module, filename) → nil click to toggle source

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"
static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload_str(mod, id, file);
    return Qnil;
}
autoload?(name, inherit=true) → String or nil click to toggle source

Returns filename to be loaded if name is registered as autoload in the namespace of mod or one of its ancestors.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

If inherit is false, the lookup only checks the autoloads in the receiver:

class A
  autoload :CONST, "const.rb"
end

class B < A
end

B.autoload?(:CONST)          #=> "const.rb", found in A (ancestor)
B.autoload?(:CONST, false)   #=> nil, not found in B itself
static VALUE
rb_mod_autoload_p(int argc, VALUE *argv, VALUE mod)
{
    int recur = (rb_check_arity(argc, 1, 2) == 1) ? TRUE : RTEST(argv[1]);
    VALUE sym = argv[0];

    ID id = rb_check_id(&sym);
    if (!id) {
        return Qnil;
    }
    return rb_autoload_at_p(mod, id, recur);
}
class_eval(string [, filename [, lineno]]) → obj click to toggle source
class_eval {|mod| block } → obj

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class
static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}
class_exec(arg...) {|var...| block } → obj click to toggle source

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!
static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}
class_variable_defined?(symbol) → true or false click to toggle source
class_variable_defined?(string) → true or false

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false
static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
        return Qfalse;
    }
    return rb_cvar_defined(obj, id);
}
class_variable_get(symbol) → obj click to toggle source
class_variable_get(string) → obj

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99
static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = id_for_var(obj, iv, class);

    if (!id) {
        rb_name_err_raise("uninitialized class variable %1$s in %2$s",
                          obj, iv);
    }
    return rb_cvar_get(obj, id);
}
class_variable_set(symbol, obj) → obj click to toggle source
class_variable_set(string, obj) → obj

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101
static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_var(obj, iv, class);
    if (!id) id = rb_intern_str(iv);
    rb_cvar_set(obj, id, val);
    return val;
}
class_variables(inherit=true) → array click to toggle source

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]
VALUE
rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;
    st_table *tbl;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);
    if (inherit) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}
const_defined?(sym, inherit=true) → true or false click to toggle source
const_defined?(str, inherit=true) → true or false

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qfalse;
        return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qfalse;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }

#if 0
        mod = rb_const_search(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
        if (mod == Qundef) return Qfalse;
#else
        if (!RTEST(recur)) {
            if (!rb_const_defined_at(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            if (!rb_const_defined(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get(mod, id);
        }
        else {
            if (!rb_const_defined_from(mod, id))
                return Qfalse;
            if (p == pend) return Qtrue;
            mod = rb_const_get_from(mod, id);
        }
#endif

        if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }
    }

    return Qtrue;
}
const_get(sym, inherit=true) → obj click to toggle source
const_get(str, inherit=true) → obj

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get 'foobar' #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return rb_const_missing(mod, name);
        return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
            rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                     QUOTE(name));
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
                part = rb_str_intern(part);
                mod = rb_const_missing(mod, part);
                continue;
            }
            else {
                rb_mod_const_missing(mod, part);
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
#if 0
        mod = rb_const_get_0(mod, id, beglen > 0 || !RTEST(recur), RTEST(recur), FALSE);
#else
        if (!RTEST(recur)) {
            mod = rb_const_get_at(mod, id);
        }
        else if (beglen == 0) {
            mod = rb_const_get(mod, id);
        }
        else {
            mod = rb_const_get_from(mod, id);
        }
#endif
    }

    return mod;
}
const_missing(sym) → obj click to toggle source

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end
VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    VALUE ref = GET_EC()->private_const_reference;
    rb_vm_pop_cfunc_frame();
    if (ref) {
	rb_name_err_raise("private constant %2$s::%1$s referenced",
			  ref, name);
    }
    uninitialized_constant(klass, name);

    UNREACHABLE_RETURN(Qnil);
}
const_set(sym, obj) → obj click to toggle source
const_set(str, obj) → obj

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_var(mod, name, const);
    if (!id) id = rb_intern_str(name);
    rb_const_set(mod, id, value);

    return value;
}
const_source_location(sym, inherit=true) → [String, Integer] click to toggle source
const_source_location(str, inherit=true) → [String, Integer]

Returns the Ruby source filename and line number containing first definition of constant specified. If the named constant is not found, nil is returned. If the constant is found, but its source location can not be extracted (constant is defined in C code), empty array is returned.

inherit specifies whether to lookup in mod.ancestors (true by default).

# test.rb:
class A
  C1 = 1
end

module M
  C2 = 2
end

class B < A
  include M
  C3 = 3
end

class A # continuation of A definition
end

p B.const_source_location('C3')           # => ["test.rb", 11]
p B.const_source_location('C2')           # => ["test.rb", 6]
p B.const_source_location('C1')           # => ["test.rb", 2]

p B.const_source_location('C2', false)    # => nil  -- don't lookup in ancestors

p Object.const_source_location('B')       # => ["test.rb", 9]
p Object.const_source_location('A')       # => ["test.rb", 1]  -- note it is first entry, not "continuation"

p B.const_source_location('A')            # => ["test.rb", 1]  -- because Object is in ancestors
p M.const_source_location('A')            # => ["test.rb", 1]  -- Object is not ancestor, but additionally checked for modules

p Object.const_source_location('A::C1')   # => ["test.rb", 2]  -- nesting is supported
p Object.const_source_location('String')  # => []  -- constant is defined in C code
static VALUE
rb_mod_const_source_location(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur, loc = Qnil;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    recur = (argc == 1) ? Qtrue : argv[1];

    if (SYMBOL_P(name)) {
        if (!rb_is_const_sym(name)) goto wrong_name;
        id = rb_check_id(&name);
        if (!id) return Qnil;
        return RTEST(recur) ? rb_const_source_location(mod, id) : rb_const_source_location_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
        rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
        rb_name_err_raise(wrong_constant_name, mod, name);
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
        mod = rb_cObject;
        p += 2;
        pbeg = p;
    }

    while (p < pend) {
        VALUE part;
        long len, beglen;

        while (p < pend && *p != ':') p++;

        if (pbeg == p) goto wrong_name;

        id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
        beglen = pbeg-path;

        if (p < pend && p[0] == ':') {
            if (p + 2 >= pend || p[1] != ':') goto wrong_name;
            p += 2;
            pbeg = p;
        }

        if (!id) {
            part = rb_str_subseq(name, beglen, len);
            OBJ_FREEZE(part);
            if (!rb_is_const_name(part)) {
                name = part;
                goto wrong_name;
            }
            else {
                return Qnil;
            }
        }
        if (!rb_is_const_id(id)) {
            name = ID2SYM(id);
            goto wrong_name;
        }
        if (p < pend) {
            if (RTEST(recur)) {
                mod = rb_const_get(mod, id);
            }
            else {
                mod = rb_const_get_at(mod, id);
            }
            if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
                rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
                         QUOTE(name));
            }
        }
        else {
            if (RTEST(recur)) {
                loc = rb_const_source_location(mod, id);
            }
            else {
                loc = rb_const_source_location_at(mod, id);
            }
            break;
        }
        recur = Qfalse;
    }

    return loc;
}
constants(inherit=true) → array click to toggle source

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

The implementation makes no guarantees about the order in which the constants are yielded.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module#const_defined?.

VALUE
rb_mod_constants(int argc, const VALUE *argv, VALUE mod)
{
    bool inherit = true;

    if (rb_check_arity(argc, 0, 1)) inherit = RTEST(argv[0]);

    if (inherit) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}
define_method(symbol, method) → symbol click to toggle source
define_method(symbol) { block } → symbol

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. If a block or the method parameter has parameters, they're used as method parameters. This block is evaluated using instance_eval.

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.define_method(name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
  define_method(:flint) {|name| puts "I'm #{name}!"}
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.flint('Dino')
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
I'm Dino!
#<B:0x401b39e8>
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    ID id;
    VALUE body;
    VALUE name;
    const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod);
    const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE};
    const rb_scope_visibility_t *scope_visi = &default_scope_visi;
    int is_method = FALSE;

    if (cref) {
        scope_visi = CREF_SCOPE_VISI(cref);
    }

    rb_check_arity(argc, 1, 2);
    name = argv[0];
    id = rb_check_id(&name);
    if (argc == 1) {
#if PROC_NEW_REQUIRES_BLOCK
        body = rb_block_lambda();
#else
        const rb_execution_context_t *ec = GET_EC();
        VALUE block_handler = rb_vm_frame_block_handler(ec->cfp);
        if (block_handler == VM_BLOCK_HANDLER_NONE) rb_raise(rb_eArgError, proc_without_block);

        switch (vm_block_handler_type(block_handler)) {
          case block_handler_type_proc:
            body = VM_BH_TO_PROC(block_handler);
            break;
          case block_handler_type_symbol:
            body = rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler));
            break;
          case block_handler_type_iseq:
          case block_handler_type_ifunc:
            body = rb_vm_make_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc);
        }
#endif
    }
    else {
        body = argv[1];

        if (rb_obj_is_method(body)) {
            is_method = TRUE;
        }
        else if (rb_obj_is_proc(body)) {
            is_method = FALSE;
        }
        else {
            rb_raise(rb_eTypeError,
                     "wrong argument type %s (expected Proc/Method/UnboundMethod)",
                     rb_obj_classname(body));
        }
    }
    if (!id) id = rb_to_id(name);

    if (is_method) {
        struct METHOD *method = (struct METHOD *)DATA_PTR(body);
        if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) &&
            !RTEST(rb_class_inherited_p(mod, method->me->owner))) {
            if (FL_TEST(method->me->owner, FL_SINGLETON)) {
                rb_raise(rb_eTypeError,
                         "can't bind singleton method to a different class");
            }
            else {
                rb_raise(rb_eTypeError,
                         "bind argument must be a subclass of % "PRIsVALUE,
                         method->me->owner);
            }
        }
        rb_method_entry_set(mod, id, method->me, scope_visi->method_visi);
        if (scope_visi->module_func) {
            rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC);
        }
        RB_GC_GUARD(body);
    }
    else {
        VALUE procval = rb_proc_dup(body);
        if (vm_proc_iseq(procval) != NULL) {
            rb_proc_t *proc;
            GetProcPtr(procval, proc);
            proc->is_lambda = TRUE;
            proc->is_from_method = TRUE;
        }
        rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi);
        if (scope_visi->module_func) {
            rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC);
        }
    }

    return ID2SYM(id);
}
deprecate_constant(symbol, ...) → mod click to toggle source

Makes a list of existing constants deprecated. Attempt to refer to them will produce a warning.

module HTTP
  NotFound = Exception.new
  NOT_FOUND = NotFound # previous version of the library used this name

  deprecate_constant :NOT_FOUND
end

HTTP::NOT_FOUND
# warning: constant HTTP::NOT_FOUND is deprecated
VALUE
rb_mod_deprecate_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_DEPRECATED, CONST_DEPRECATED);
    return obj;
}
freeze → mod click to toggle source

Prevents further modifications to mod.

This method returns self.

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}
include(module, ...) → self click to toggle source

Invokes Module.append_features on each parameter in reverse order.

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
        Check_Type(argv[i], T_MODULE);
    while (argc--) {
        rb_funcall(argv[argc], id_append_features, 1, module);
        rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}
include?(module) → true or false click to toggle source

Returns true if module is included in mod or one of mod's ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false
VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}
included_modules → array click to toggle source

Returns the list of modules included in mod.

module Mixin
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> []
Outer.included_modules   #=> [Mixin]
VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}
inspect()
Alias for: to_s
instance_method(symbol) → unbound_method click to toggle source

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
instance_methods(include_super=true) → array click to toggle source

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. If the optional parameter is false, the methods of any ancestors are not included.

module A
  def method1()  end
end
class B
  include A
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods(false)                   #=> [:method1]
B.instance_methods(false)                   #=> [:method2]
B.instance_methods(true).include?(:method1) #=> true
C.instance_methods(false)                   #=> [:method3]
C.instance_methods.include?(:method2)       #=> true
VALUE
rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}
method_defined?(symbol, inherit=true) → true or false click to toggle source
method_defined?(string, inherit=true) → true or false

Returns true if the named method is defined by mod. If inherit is set, the lookup will also search mod's ancestors. Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
  def protected_method1()  end
  protected :protected_method1
end
class B
  def method2()  end
  def private_method2()  end
  private :private_method2
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.method_defined? "method1"             #=> true
C.method_defined? "method2"             #=> true
C.method_defined? "method2", true       #=> true
C.method_defined? "method2", false      #=> false
C.method_defined? "method3"             #=> true
C.method_defined? "protected_method1"   #=> true
C.method_defined? "method4"             #=> false
C.method_defined? "private_method2"     #=> false
static VALUE
rb_mod_method_defined(int argc, VALUE *argv, VALUE mod)
{
    rb_method_visibility_t visi = check_definition_visibility(mod, argc, argv);
    return (visi == METHOD_VISI_PUBLIC || visi == METHOD_VISI_PROTECTED) ? Qtrue : Qfalse;
}
module_eval(string [, filename [, lineno]]) → obj click to toggle source
module_eval {|mod| block } → obj

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class
static VALUE
rb_mod_module_eval_internal(int argc, const VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod, RB_PASS_CALLED_KEYWORDS);
}
module_exec(arg...) {|var...| block } → obj click to toggle source

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!
static VALUE
rb_mod_module_exec_internal(int argc, const VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, argc, argv, RB_PASS_CALLED_KEYWORDS);
}
name → string click to toggle source

Returns the name of the module mod. Returns nil for anonymous modules.

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    return classname(mod, &permanent);
}
prepend(module, ...) → self click to toggle source

Invokes Module.prepend_features on each parameter in reverse order.

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");

    rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
    for (i = 0; i < argc; i++)
        Check_Type(argv[i], T_MODULE);
    while (argc--) {
        rb_funcall(argv[argc], id_prepend_features, 1, module);
        rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}
private_class_method(symbol, ...) → mod click to toggle source
private_class_method(string, ...) → mod

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end
static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PRIVATE);
    return obj;
}
private_constant(symbol, ...) → mod click to toggle source

Makes a list of existing constants private.

VALUE
rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE, CONST_VISIBILITY_MASK);
    return obj;
}
private_instance_methods(include_super=true) → array click to toggle source

Returns a list of the private instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]
VALUE
rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}
private_method_defined?(symbol, inherit=true) → true or false click to toggle source
private_method_defined?(string, inherit=true) → true or false

Returns true if the named private method is defined by mod. If inherit is set, the lookup will also search mod's ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                   #=> true
C.private_method_defined? "method1"          #=> false
C.private_method_defined? "method2"          #=> true
C.private_method_defined? "method2", true    #=> true
C.private_method_defined? "method2", false   #=> false
C.method_defined? "method2"                  #=> false
static VALUE
rb_mod_private_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PRIVATE);
}
protected_instance_methods(include_super=true) → array click to toggle source

Returns a list of the protected instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

VALUE
rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}
protected_method_defined?(symbol, inherit=true) → true or false click to toggle source
protected_method_defined?(string, inherit=true) → true or false

Returns true if the named protected method is defined mod. If inherit is set, the lookup will also search mod's ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                    #=> true
C.protected_method_defined? "method1"         #=> false
C.protected_method_defined? "method2"         #=> true
C.protected_method_defined? "method2", true   #=> true
C.protected_method_defined? "method2", false  #=> false
C.method_defined? "method2"                   #=> true
static VALUE
rb_mod_protected_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PROTECTED);
}
public_class_method(symbol, ...) → mod click to toggle source
public_class_method(string, ...) → mod

Makes a list of existing class methods public.

String arguments are converted to symbols.

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, METHOD_VISI_PUBLIC);
    return obj;
}
public_constant(symbol, ...) → mod click to toggle source

Makes a list of existing constants public.

VALUE
rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC, CONST_VISIBILITY_MASK);
    return obj;
}
public_instance_method(symbol) → unbound_method click to toggle source

Similar to instance_method, searches public method only.

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
        rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
public_instance_methods(include_super=true) → array click to toggle source

Returns a list of the public instance methods defined in mod. If the optional parameter is false, the methods of any ancestors are not included.

VALUE
rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}
public_method_defined?(symbol, inherit=true) → true or false click to toggle source
public_method_defined?(string, inherit=true) → true or false

Returns true if the named public method is defined by mod. If inherit is set, the lookup will also search mod's ancestors. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1                 #=> true
C.public_method_defined? "method1"         #=> true
C.public_method_defined? "method1", true   #=> true
C.public_method_defined? "method1", false  #=> true
C.public_method_defined? "method2"         #=> false
C.method_defined? "method2"                #=> true
static VALUE
rb_mod_public_method_defined(int argc, VALUE *argv, VALUE mod)
{
    return check_definition(mod, argc, argv, METHOD_VISI_PUBLIC);
}
remove_class_variable(sym) → obj click to toggle source

Removes the definition of the sym, returning that constant's value.

class Dummy
  @@var = 99
  puts @@var
  remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil
VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = id_for_var_message(mod, name, class, "wrong class variable name %1$s");
    st_data_t val, n = id;

    if (!id) {
      not_defined:
	rb_name_err_raise("class variable %1$s not defined for %2$s",
			  mod, name);
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_err_raise("cannot remove %1$s for %2$s", mod, ID2SYM(id));
    }
    goto not_defined;
}
remove_method(symbol) → self click to toggle source
remove_method(string) → self

Removes the method identified by symbol from the current class. For an example, see Module#undef_method. String arguments are converted to symbols.

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID id = rb_check_id(&v);
        if (!id) {
            rb_name_err_raise("method `%1$s' not defined in %2$s",
                              mod, v);
        }
        remove_method(mod, id);
    }
    return mod;
}
singleton_class? → true or false click to toggle source

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true
static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
        return Qtrue;
    return Qfalse;
}
to_s → string click to toggle source

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.

static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
        VALUE s = rb_usascii_str_new2("#<Class:");
        VALUE v = rb_ivar_get(klass, id__attached__);

        if (CLASS_OR_MODULE_P(v)) {
            rb_str_append(s, rb_inspect(v));
        }
        else {
            rb_str_append(s, rb_any_to_s(v));
        }
        rb_str_cat2(s, ">");

        return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
        VALUE s = rb_usascii_str_new2("#<refinement:");

        rb_str_concat(s, rb_inspect(refined_class));
        rb_str_cat2(s, "@");
        CONST_ID(id_defined_at, "__defined_at__");
        defined_at = rb_attr_get(klass, id_defined_at);
        rb_str_concat(s, rb_inspect(defined_at));
        rb_str_cat2(s, ">");
        return s;
    }
    return rb_class_name(klass);
}
Also aliased as: inspect
undef_method(symbol) → self click to toggle source
undef_method(string) → self

Prevents the current class from responding to calls to the named method. Contrast this with remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID id = rb_check_id(&v);
        if (!id) {
            rb_method_name_error(mod, v);
        }
        rb_undef(mod, id);
    }
    return mod;
}

Private Instance Methods

append_features(mod) → mod click to toggle source

When this module is included in another, Ruby calls append_features in this module, passing it the receiving module in mod. Ruby's default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
        Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}
extend_object(obj) → obj click to toggle source

Extends the specified object by adding this module's constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}
extended(othermod) click to toggle source

The equivalent of included, but for extended modules.

module A
  def self.extended(mod)
    puts "#{self} extended in #{mod}"
  end
end
module Enumerable
  extend A
end
 # => prints "A extended in Enumerable"
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
included(othermod) click to toggle source

Callback invoked whenever the receiver is included in another module or class. This should be used in preference to Module.append_features if your code wants to perform some action when a module is included in another.

module A
  def A.included(mod)
    puts "#{self} included in #{mod}"
  end
end
module Enumerable
  include A
end
 # => prints "A included in Enumerable"
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
method_added(method_name) click to toggle source

Invoked as a callback whenever an instance method is added to the receiver.

module Chatty
  def self.method_added(method_name)
    puts "Adding #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
end

produces:

Adding :some_instance_method
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
method_removed(method_name) click to toggle source

Invoked as a callback whenever an instance method is removed from the receiver.

module Chatty
  def self.method_removed(method_name)
    puts "Removing #{method_name.inspect}"
  end
  def self.some_class_method() end
  def some_instance_method() end
  class << self
    remove_method :some_class_method
  end
  remove_method :some_instance_method
end

produces:

Removing :some_instance_method
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
method_undefined(p1) click to toggle source
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
module_function(symbol, ...) → self click to toggle source
module_function(string, ...) → self

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"
static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
        rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
        rb_scope_module_func_set();
        return module;
    }

    set_method_visibility(module, argc, argv, METHOD_VISI_PRIVATE);

    for (i = 0; i < argc; i++) {
        VALUE m = module;

        id = rb_to_id(argv[i]);
        for (;;) {
            me = search_method(m, id, 0);
            if (me == 0) {
                me = search_method(rb_cObject, id, 0);
            }
            if (UNDEFINED_METHOD_ENTRY_P(me)) {
                rb_print_undef(module, id, METHOD_VISI_UNDEF);
            }
            if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
                break; /* normal case: need not to follow 'super' link */
            }
            m = RCLASS_SUPER(m);
            if (!m)
                break;
        }
        rb_method_entry_set(rb_singleton_class(module), id, me, METHOD_VISI_PUBLIC);
    }
    return module;
}
prepend_features(mod) → mod click to toggle source

When this module is prepended in another, Ruby calls prepend_features in this module, passing it the receiving module in mod. Ruby's default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
        Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}
prepended(othermod) click to toggle source

The equivalent of included, but for prepended modules.

module A
  def self.prepended(mod)
    puts "#{self} prepended to #{mod}"
  end
end
module Enumerable
  prepend A
end
 # => prints "A prepended to Enumerable"
static VALUE
rb_obj_dummy1(VALUE _x, VALUE _y)
{
    return rb_obj_dummy();
}
private → self click to toggle source
private(symbol, ...) → self
private(string, ...) → self

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Note that to show a private method on RDoc, use :doc:.

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PRIVATE);
}
protected → self click to toggle source
protected(symbol, ...) → self
protected(string, ...) → self

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.

If a method has protected visibility, it is callable only where self of the context is the same as the method. (method definition or instance_eval). This behavior is different from Java's protected method. Usually private should be used.

Note that a protected method is slow because it can't use inline cache.

To show a private method on RDoc, use :doc: instead of this.

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PROTECTED);
}
public → self click to toggle source
public(symbol, ...) → self
public(string, ...) → self

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, METHOD_VISI_PUBLIC);
}
refine(mod) { block } → module click to toggle source

Refine mod in the receiver.

Returns a module, where refined methods are defined.

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    VALUE block_handler = rb_vm_frame_block_handler(th->ec->cfp);

    if (block_handler == VM_BLOCK_HANDLER_NONE) {
        rb_raise(rb_eArgError, "no block given");
    }
    if (vm_block_handler_type(block_handler) != block_handler_type_iseq) {
        rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine");
    }

    ensure_class_or_module(klass);
    if (RB_TYPE_P(klass, T_MODULE)) {
        FL_SET(klass, RCLASS_REFINED_BY_ANY);
    }
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
        refinements = hidden_identity_hash_new();
        rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
        activated_refinements = hidden_identity_hash_new();
        rb_ivar_set(module, id_activated_refinements,
                    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
        VALUE superclass = refinement_superclass(klass);
        refinement = rb_module_new();
        RCLASS_SET_SUPER(refinement, superclass);
        FL_SET(refinement, RMODULE_IS_REFINEMENT);
        CONST_ID(id_refined_class, "__refined_class__");
        rb_ivar_set(refinement, id_refined_class, klass);
        CONST_ID(id_defined_at, "__defined_at__");
        rb_ivar_set(refinement, id_defined_at, module);
        rb_hash_aset(refinements, klass, refinement);
        add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}
remove_const(sym) → obj click to toggle source

Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = id_for_var(mod, name, a, constant);

    if (!id) {
        undefined_constant(mod, name);
    }
    return rb_const_remove(mod, id);
}
ruby2_keywords(method_name, ...) → nil click to toggle source

For the given method names, marks the method as passing keywords through a normal argument splat. This should only be called on methods that accept an argument splat (*args) but not explicit keywords or a keyword splat. It marks the method such that if the method is called with keyword arguments, the final hash argument is marked with a special flag such that if it is the final element of a normal argument splat to another method call, and that method call does not include explicit keywords or a keyword splat, the final element is interpreted as keywords. In other words, keywords will be passed through the method to other methods.

This should only be used for methods that delegate keywords to another method, and only for backwards compatibility with Ruby versions before 2.7.

This method will probably be removed at some point, as it exists only for backwards compatibility. As it does not exist in Ruby versions before 2.7, check that the module responds to this method before calling it. Also, be aware that if this method is removed, the behavior of the method will change so that it does not pass through keywords.

module Mod
  def foo(meth, *args, &block)
    send(:"do_#{meth}", *args, &block)
  end
  ruby2_keywords(:foo) if respond_to?(:ruby2_keywords, true)
end
static VALUE
rb_mod_ruby2_keywords(int argc, VALUE *argv, VALUE module)
{
    int i;
    VALUE origin_class = RCLASS_ORIGIN(module);

    rb_check_frozen(module);

    for (i = 0; i < argc; i++) {
        VALUE v = argv[i];
        ID name = rb_check_id(&v);
        rb_method_entry_t *me;
        VALUE defined_class;

        if (!name) {
            rb_print_undef_str(module, v);
        }

        me = search_method(origin_class, name, &defined_class);
        if (!me && RB_TYPE_P(module, T_MODULE)) {
            me = search_method(rb_cObject, name, &defined_class);
        }

        if (UNDEFINED_METHOD_ENTRY_P(me) ||
            UNDEFINED_REFINED_METHOD_P(me->def)) {
            rb_print_undef(module, name, METHOD_VISI_UNDEF);
        }

        if (module == defined_class || origin_class == defined_class) {
            switch (me->def->type) {
              case VM_METHOD_TYPE_ISEQ:
                if (me->def->body.iseq.iseqptr->body->param.flags.has_rest &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kw &&
                        !me->def->body.iseq.iseqptr->body->param.flags.has_kwrest) {
                    me->def->body.iseq.iseqptr->body->param.flags.ruby2_keywords = 1;
                    rb_clear_method_cache_by_class(module);
                }
                else {
                    rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                }
                break;
              case VM_METHOD_TYPE_BMETHOD: {
                VALUE procval = me->def->body.bmethod.proc;
                if (vm_block_handler_type(procval) == block_handler_type_proc) {
                    procval = vm_proc_to_block_handler(VM_BH_TO_PROC(procval));
                }

                if (vm_block_handler_type(procval) == block_handler_type_iseq) {
                    const struct rb_captured_block *captured = VM_BH_TO_ISEQ_BLOCK(procval);
                    const rb_iseq_t *iseq = rb_iseq_check(captured->code.iseq);
                    if (iseq->body->param.flags.has_rest &&
                            !iseq->body->param.flags.has_kw &&
                            !iseq->body->param.flags.has_kwrest) {
                        iseq->body->param.flags.ruby2_keywords = 1;
                        rb_clear_method_cache_by_class(module);
                    }
                    else {
                        rb_warn("Skipping set of ruby2_keywords flag for %s (method accepts keywords or method does not accept argument splat)", rb_id2name(name));
                    }
                    break;
                }
              }
              /* fallthrough */
              default:
                rb_warn("Skipping set of ruby2_keywords flag for %s (method not defined in Ruby)", rb_id2name(name));
                break;
            }
        }
        else {
            rb_warn("Skipping set of ruby2_keywords flag for %s (can only set in method defining module)", rb_id2name(name));
        }
    }
    return Qnil;
}
using(module) → self click to toggle source

Import class refinements from module into the current class or module definition.

static VALUE
mod_using(VALUE self, VALUE module)
{
    rb_control_frame_t *prev_cfp = previous_frame(GET_EC());

    if (prev_frame_func()) {
        rb_raise(rb_eRuntimeError,
                 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
        rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    if (rb_block_given_p()) {
        ignored_block(module, "Module#");
    }
    rb_using_module(rb_vm_cref_replace_with_duplicated_cref(), module);
    return self;
}