module CMath

Trigonometric and transcendental functions for complex numbers.

CMath is a library that provides trigonometric and transcendental functions for complex numbers. The functions in this module accept integers, floating-point numbers or complex numbers as arguments.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two modules is that some users aren't interested in complex numbers, and perhaps don't even know what they are. They would rather have Math.sqrt raise an exception than return a complex number.

For more information you can see Complex class.

Usage

To start using this library, simply require cmath library:

require "cmath"

Public Class Methods

acos(z) click to toggle source

Returns the arc cosine of z

CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
# File lib/cmath.rb, line 280
def acos(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.acos(z)
    else
      (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
acosh(z) click to toggle source

returns the inverse hyperbolic cosine of z

CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
# File lib/cmath.rb, line 345
def acosh(z)
  begin
    if z.real? and z >= 1
      RealMath.acosh(z)
    else
      log(z + sqrt(z * z - 1.0))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
asin(z) click to toggle source

Returns the arc sine of z

CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
# File lib/cmath.rb, line 264
def asin(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.asin(z)
    else
      (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
asinh(z) click to toggle source

returns the inverse hyperbolic sine of z

CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
# File lib/cmath.rb, line 329
def asinh(z)
  begin
    if z.real?
      RealMath.asinh(z)
    else
      log(z + sqrt(1.0 + z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atan(z) click to toggle source

Returns the arc tangent of z

CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
# File lib/cmath.rb, line 296
def atan(z)
  begin
    if z.real?
      RealMath.atan(z)
    else
      1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atan2(y,x) click to toggle source

returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant

CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
# File lib/cmath.rb, line 313
def atan2(y,x)
  begin
    if y.real? and x.real?
      RealMath.atan2(y,x)
    else
      (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atanh(z) click to toggle source

returns the inverse hyperbolic tangent of z

CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
# File lib/cmath.rb, line 361
def atanh(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.atanh(z)
    else
      log((1.0 + z) / (1.0 - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
cbrt(z) click to toggle source

Returns the principal value of the cube root of z

CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
# File lib/cmath.rb, line 156
def cbrt(z)
  z ** (1.0/3)
end
cos(z) click to toggle source

Returns the cosine of z, where z is given in radians

CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
# File lib/cmath.rb, line 181
def cos(z)
  begin
    if z.real?
      RealMath.cos(z)
    else
      Complex(RealMath.cos(z.real) * RealMath.cosh(z.imag),
              -RealMath.sin(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
cosh(z) click to toggle source

Returns the hyperbolic cosine of z, where z is given in radians

CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
# File lib/cmath.rb, line 231
def cosh(z)
  begin
    if z.real?
      RealMath.cosh(z)
    else
      Complex(RealMath.cosh(z.real) * RealMath.cos(z.imag),
              RealMath.sinh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
exp(z) click to toggle source

Math::E raised to the z power

CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
# File lib/cmath.rb, line 61
def exp(z)
  begin
    if z.real?
      RealMath.exp(z)
    else
      ere = RealMath.exp(z.real)
      Complex(ere * RealMath.cos(z.imag),
              ere * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log(z, b=::Math::E) click to toggle source

Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.

CMath.log(1 + 4i)     #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
# File lib/cmath.rb, line 81
def log(z, b=::Math::E)
  begin
    if z.real? && z >= 0 && b >= 0
      RealMath.log(z, b)
    else
      Complex(RealMath.log(z.abs), z.arg) / log(b)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log10(z) click to toggle source

Returns the base 10 logarithm of z

CMath.log10(-1) #=> (0.0+1.3643763538418412i)
# File lib/cmath.rb, line 113
def log10(z)
  begin
    if z.real? and z >= 0
      RealMath.log10(z)
    else
      log(z) / RealMath.log(10)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log2(z) click to toggle source

Returns the base 2 logarithm of z

CMath.log2(-1) => (0.0+4.532360141827194i)
# File lib/cmath.rb, line 97
def log2(z)
  begin
    if z.real? and z >= 0
      RealMath.log2(z)
    else
      log(z) / RealMath.log(2)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sin(z) click to toggle source

Returns the sine of z, where z is given in radians

CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
# File lib/cmath.rb, line 164
def sin(z)
  begin
    if z.real?
      RealMath.sin(z)
    else
      Complex(RealMath.sin(z.real) * RealMath.cosh(z.imag),
              RealMath.cos(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sinh(z) click to toggle source

Returns the hyperbolic sine of z, where z is given in radians

CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
# File lib/cmath.rb, line 214
def sinh(z)
  begin
    if z.real?
      RealMath.sinh(z)
    else
      Complex(RealMath.sinh(z.real) * RealMath.cos(z.imag),
              RealMath.cosh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sqrt(z) click to toggle source

Returns the non-negative square root of Complex.

CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
# File lib/cmath.rb, line 129
def sqrt(z)
  begin
    if z.real?
      if z < 0
        Complex(0, RealMath.sqrt(-z))
      else
        RealMath.sqrt(z)
      end
    else
      if z.imag < 0 ||
          (z.imag == 0 && z.imag.to_s[0] == '-')
        sqrt(z.conjugate).conjugate
      else
        r = z.abs
        x = z.real
        Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0))
      end
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
tan(z) click to toggle source

Returns the tangent of z, where z is given in radians

CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
# File lib/cmath.rb, line 198
def tan(z)
  begin
    if z.real?
      RealMath.tan(z)
    else
      sin(z) / cos(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
tanh(z) click to toggle source

Returns the hyperbolic tangent of z, where z is given in radians

CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
# File lib/cmath.rb, line 248
def tanh(z)
  begin
    if z.real?
      RealMath.tanh(z)
    else
      sinh(z) / cosh(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end

Private Instance Methods

acos(z) click to toggle source

Returns the arc cosine of z

CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
# File lib/cmath.rb, line 280
def acos(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.acos(z)
    else
      (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
acosh(z) click to toggle source

returns the inverse hyperbolic cosine of z

CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
# File lib/cmath.rb, line 345
def acosh(z)
  begin
    if z.real? and z >= 1
      RealMath.acosh(z)
    else
      log(z + sqrt(z * z - 1.0))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
asin(z) click to toggle source

Returns the arc sine of z

CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
# File lib/cmath.rb, line 264
def asin(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.asin(z)
    else
      (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
asinh(z) click to toggle source

returns the inverse hyperbolic sine of z

CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
# File lib/cmath.rb, line 329
def asinh(z)
  begin
    if z.real?
      RealMath.asinh(z)
    else
      log(z + sqrt(1.0 + z * z))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atan(z) click to toggle source

Returns the arc tangent of z

CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
# File lib/cmath.rb, line 296
def atan(z)
  begin
    if z.real?
      RealMath.atan(z)
    else
      1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atan2(y,x) click to toggle source

returns the arc tangent of y divided by x using the signs of y and x to determine the quadrant

CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
# File lib/cmath.rb, line 313
def atan2(y,x)
  begin
    if y.real? and x.real?
      RealMath.atan2(y,x)
    else
      (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
atanh(z) click to toggle source

returns the inverse hyperbolic tangent of z

CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
# File lib/cmath.rb, line 361
def atanh(z)
  begin
    if z.real? and z >= -1 and z <= 1
      RealMath.atanh(z)
    else
      log((1.0 + z) / (1.0 - z)) / 2.0
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
cbrt(z) click to toggle source

Returns the principal value of the cube root of z

CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
# File lib/cmath.rb, line 156
def cbrt(z)
  z ** (1.0/3)
end
cos(z) click to toggle source

Returns the cosine of z, where z is given in radians

CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
# File lib/cmath.rb, line 181
def cos(z)
  begin
    if z.real?
      RealMath.cos(z)
    else
      Complex(RealMath.cos(z.real) * RealMath.cosh(z.imag),
              -RealMath.sin(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
cosh(z) click to toggle source

Returns the hyperbolic cosine of z, where z is given in radians

CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
# File lib/cmath.rb, line 231
def cosh(z)
  begin
    if z.real?
      RealMath.cosh(z)
    else
      Complex(RealMath.cosh(z.real) * RealMath.cos(z.imag),
              RealMath.sinh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
exp(z) click to toggle source

Math::E raised to the z power

CMath.exp(1.i * Math::PI) #=> (-1.0+1.2246467991473532e-16i)
# File lib/cmath.rb, line 61
def exp(z)
  begin
    if z.real?
      RealMath.exp(z)
    else
      ere = RealMath.exp(z.real)
      Complex(ere * RealMath.cos(z.imag),
              ere * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log(z, b=::Math::E) click to toggle source

Returns the natural logarithm of Complex. If a second argument is given, it will be the base of logarithm.

CMath.log(1 + 4i)     #=> (1.416606672028108+1.3258176636680326i)
CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
# File lib/cmath.rb, line 81
def log(z, b=::Math::E)
  begin
    if z.real? && z >= 0 && b >= 0
      RealMath.log(z, b)
    else
      Complex(RealMath.log(z.abs), z.arg) / log(b)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log10(z) click to toggle source

Returns the base 10 logarithm of z

CMath.log10(-1) #=> (0.0+1.3643763538418412i)
# File lib/cmath.rb, line 113
def log10(z)
  begin
    if z.real? and z >= 0
      RealMath.log10(z)
    else
      log(z) / RealMath.log(10)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
log2(z) click to toggle source

Returns the base 2 logarithm of z

CMath.log2(-1) => (0.0+4.532360141827194i)
# File lib/cmath.rb, line 97
def log2(z)
  begin
    if z.real? and z >= 0
      RealMath.log2(z)
    else
      log(z) / RealMath.log(2)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sin(z) click to toggle source

Returns the sine of z, where z is given in radians

CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
# File lib/cmath.rb, line 164
def sin(z)
  begin
    if z.real?
      RealMath.sin(z)
    else
      Complex(RealMath.sin(z.real) * RealMath.cosh(z.imag),
              RealMath.cos(z.real) * RealMath.sinh(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sinh(z) click to toggle source

Returns the hyperbolic sine of z, where z is given in radians

CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
# File lib/cmath.rb, line 214
def sinh(z)
  begin
    if z.real?
      RealMath.sinh(z)
    else
      Complex(RealMath.sinh(z.real) * RealMath.cos(z.imag),
              RealMath.cosh(z.real) * RealMath.sin(z.imag))
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
sqrt(z) click to toggle source

Returns the non-negative square root of Complex.

CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
# File lib/cmath.rb, line 129
def sqrt(z)
  begin
    if z.real?
      if z < 0
        Complex(0, RealMath.sqrt(-z))
      else
        RealMath.sqrt(z)
      end
    else
      if z.imag < 0 ||
          (z.imag == 0 && z.imag.to_s[0] == '-')
        sqrt(z.conjugate).conjugate
      else
        r = z.abs
        x = z.real
        Complex(RealMath.sqrt((r + x) / 2.0), RealMath.sqrt((r - x) / 2.0))
      end
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
tan(z) click to toggle source

Returns the tangent of z, where z is given in radians

CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
# File lib/cmath.rb, line 198
def tan(z)
  begin
    if z.real?
      RealMath.tan(z)
    else
      sin(z) / cos(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end
tanh(z) click to toggle source

Returns the hyperbolic tangent of z, where z is given in radians

CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
# File lib/cmath.rb, line 248
def tanh(z)
  begin
    if z.real?
      RealMath.tanh(z)
    else
      sinh(z) / cosh(z)
    end
  rescue NoMethodError
    handle_no_method_error
  end
end