class Module
A Module
is a collection of methods and constants. The methods
in a module may be instance methods or module methods. Instance methods
appear as methods in a class when the module is included, module methods do
not. Conversely, module methods may be called without creating an
encapsulating object, while instance methods may not. (See
Module#module_function
.)
In the descriptions that follow, the parameter sym refers to a
symbol, which is either a quoted string or a Symbol
(such as
:name
).
module Mod include Math CONST = 1 def meth # ... end end Mod.class #=> Module Mod.constants #=> [:CONST, :PI, :E] Mod.instance_methods #=> [:meth]
Public Class Methods
In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.
Module.constants.first(4) # => [:ARGF, :ARGV, :ArgumentError, :Array] Module.constants.include?(:SEEK_SET) # => false class IO Module.constants.include?(:SEEK_SET) # => true end
The second form calls the instance method constants
.
static VALUE rb_mod_s_constants(int argc, VALUE *argv, VALUE mod) { const NODE *cref = rb_vm_cref(); VALUE klass; VALUE cbase = 0; void *data = 0; if (argc > 0 || mod != rb_cModule) { return rb_mod_constants(argc, argv, mod); } while (cref) { klass = cref->nd_clss; if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) && !NIL_P(klass)) { data = rb_mod_const_at(cref->nd_clss, data); if (!cbase) { cbase = klass; } } cref = cref->nd_next; } if (cbase) { data = rb_mod_const_of(cbase, data); } return rb_const_list(data); }
Returns the list of Modules
nested at the point of call.
module M1 module M2 $a = Module.nesting end end $a #=> [M1::M2, M1] $a[0].name #=> "M1::M2"
static VALUE rb_mod_nesting(void) { VALUE ary = rb_ary_new(); const NODE *cref = rb_vm_cref(); while (cref && cref->nd_next) { VALUE klass = cref->nd_clss; if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) && !NIL_P(klass)) { rb_ary_push(ary, klass); } cref = cref->nd_next; } return ary; }
Creates a new anonymous module. If a block is given, it is passed the
module object, and the block is evaluated in the context of this module
using module_eval
.
fred = Module.new do def meth1 "hello" end def meth2 "bye" end end a = "my string" a.extend(fred) #=> "my string" a.meth1 #=> "hello" a.meth2 #=> "bye"
Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.
static VALUE rb_mod_initialize(VALUE module) { if (rb_block_given_p()) { rb_mod_module_exec(1, &module, module); } return Qnil; }
Public Instance Methods
Returns true if mod is a subclass of other. Returns
nil
if there's no relationship between the two. (Think of
the relationship in terms of the class definition: “class A<B” implies
“A<B”.)
static VALUE rb_mod_lt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_class_inherited_p(mod, arg); }
Returns true if mod is a subclass of other or is the same
as other. Returns nil
if there's no relationship
between the two. (Think of the relationship in terms of the class
definition: “class A<B” implies “A<B”.)
VALUE rb_class_inherited_p(VALUE mod, VALUE arg) { VALUE start = mod; if (mod == arg) return Qtrue; if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) { rb_raise(rb_eTypeError, "compared with non class/module"); } arg = RCLASS_ORIGIN(arg); if (class_search_ancestor(mod, arg)) { return Qtrue; } /* not mod < arg; check if mod > arg */ if (class_search_ancestor(arg, start)) { return Qfalse; } return Qnil; }
Comparison—Returns -1, 0, +1 or nil depending on whether
module
includes other_module
, they are the same,
or if module
is included by other_module
. This is
the basis for the tests in Comparable.
Returns nil
if module
has no relationship with
other_module
, if other_module
is not a module, or
if the two values are incomparable.
static VALUE rb_mod_cmp(VALUE mod, VALUE arg) { VALUE cmp; if (mod == arg) return INT2FIX(0); if (!CLASS_OR_MODULE_P(arg)) { return Qnil; } cmp = rb_class_inherited_p(mod, arg); if (NIL_P(cmp)) return Qnil; if (cmp) { return INT2FIX(-1); } return INT2FIX(1); }
Equality — At the Object
level, ==
returns
true
only if obj
and other
are the
same object. Typically, this method is overridden in descendant classes to
provide class-specific meaning.
Unlike ==
, the equal?
method should never be
overridden by subclasses as it is used to determine object identity (that
is, a.equal?(b)
if and only if a
is the same
object as b
):
obj = "a" other = obj.dup obj == other #=> true obj.equal? other #=> false obj.equal? obj #=> true
The eql?
method returns true
if obj
and other
refer to the same hash key. This is used by Hash to test members for equality. For objects of
class Object
, eql?
is synonymous with
==
. Subclasses normally continue this tradition by aliasing
eql?
to their overridden ==
method, but there are
exceptions. Numeric
types, for example, perform type
conversion across ==
, but not across eql?
, so:
1 == 1.0 #=> true 1.eql? 1.0 #=> false
VALUE rb_obj_equal(VALUE obj1, VALUE obj2) { if (obj1 == obj2) return Qtrue; return Qfalse; }
Case Equality—Returns true
if obj is an instance of
mod or one of mod's descendants. Of limited use for
modules, but can be used in case
statements to classify
objects by class.
static VALUE rb_mod_eqq(VALUE mod, VALUE arg) { return rb_obj_is_kind_of(arg, mod); }
Returns true if mod is an ancestor of other. Returns
nil
if there's no relationship between the two. (Think of
the relationship in terms of the class definition: “class A<B” implies
“B>A”.)
static VALUE rb_mod_gt(VALUE mod, VALUE arg) { if (mod == arg) return Qfalse; return rb_mod_ge(mod, arg); }
Returns true if mod is an ancestor of other, or the two
modules are the same. Returns nil
if there's no
relationship between the two. (Think of the relationship in terms of the
class definition: “class A<B” implies “B>A”.)
static VALUE rb_mod_ge(VALUE mod, VALUE arg) { if (!CLASS_OR_MODULE_P(arg)) { rb_raise(rb_eTypeError, "compared with non class/module"); } return rb_class_inherited_p(arg, mod); }
Returns a list of modules included/prepended in mod (including mod itself).
module Mod include Math include Comparable prepend Enumerable end Mod.ancestors #=> [Enumerable, Mod, Comparable, Math] Math.ancestors #=> [Math] Enumerable.ancestors #=> [Enumerable]
VALUE rb_mod_ancestors(VALUE mod) { VALUE p, ary = rb_ary_new(); for (p = mod; p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { rb_ary_push(ary, RBASIC(p)->klass); } else if (p == RCLASS_ORIGIN(p)) { rb_ary_push(ary, p); } } return ary; }
Registers filename to be loaded (using
Kernel::require
) the first time that module (which
may be a String
or a symbol) is accessed in the namespace of
mod.
module A end A.autoload(:B, "b") A::B.doit # autoloads "b"
static VALUE rb_mod_autoload(VALUE mod, VALUE sym, VALUE file) { ID id = rb_to_id(sym); FilePathValue(file); rb_autoload(mod, id, RSTRING_PTR(file)); return Qnil; }
Returns filename to be loaded if name is registered as
autoload
in the namespace of mod.
module A end A.autoload(:B, "b") A.autoload?(:B) #=> "b"
static VALUE rb_mod_autoload_p(VALUE mod, VALUE sym) { ID id = rb_check_id(&sym); if (!id) { return Qnil; } return rb_autoload_p(mod, id); }
Evaluates the string or block in the context of mod, except that
when a block is given, constant/class variable lookup is not affected. This
can be used to add methods to a class. module_eval
returns the
result of evaluating its argument. The optional filename and
lineno parameters set the text for error messages.
class Thing end a = %q{def hello() "Hello there!" end} Thing.module_eval(a) puts Thing.new.hello() Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there! dummy:123:in `module_eval': undefined local variable or method `code' for Thing:Class
VALUE rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod) { return specific_eval(argc, argv, mod, mod); }
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing end Thing.class_exec{ def hello() "Hello there!" end } puts Thing.new.hello()
produces:
Hello there!
VALUE rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod) { return yield_under(mod, mod, rb_ary_new4(argc, argv)); }
Returns true
if the given class variable is defined in
obj. String arguments are converted to symbols.
class Fred @@foo = 99 end Fred.class_variable_defined?(:@@foo) #=> true Fred.class_variable_defined?(:@@bar) #=> false
static VALUE rb_mod_cvar_defined(VALUE obj, VALUE iv) { ID id = rb_check_id(&iv); if (!id) { if (rb_is_class_name(iv)) { return Qfalse; } else { rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name", QUOTE(iv)); } } if (!rb_is_class_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name", QUOTE_ID(id)); } return rb_cvar_defined(obj, id); }
Returns the value of the given class variable (or throws a
NameError
exception). The @@
part of the variable
name should be included for regular class variables. String arguments are
converted to symbols.
class Fred @@foo = 99 end Fred.class_variable_get(:@@foo) #=> 99
static VALUE rb_mod_cvar_get(VALUE obj, VALUE iv) { ID id = rb_check_id(&iv); if (!id) { if (rb_is_class_name(iv)) { rb_name_error_str(iv, "uninitialized class variable %"PRIsVALUE" in %"PRIsVALUE"", iv, rb_class_name(obj)); } else { rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name", QUOTE(iv)); } } if (!rb_is_class_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name", QUOTE_ID(id)); } return rb_cvar_get(obj, id); }
Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.
class Fred @@foo = 99 def foo @@foo end end Fred.class_variable_set(:@@foo, 101) #=> 101 Fred.new.foo #=> 101
static VALUE rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val) { ID id = id_for_setter(iv, class, "`%"PRIsVALUE"' is not allowed as a class variable name"); rb_cvar_set(obj, id, val); return val; }
Returns an array of the names of class variables in mod. This
includes the names of class variables in any included modules, unless the
inherit parameter is set to false
.
class One @@var1 = 1 end class Two < One @@var2 = 2 end One.class_variables #=> [:@@var1] Two.class_variables #=> [:@@var2, :@@var1] Two.class_variables(false) #=> [:@@var2]
VALUE rb_mod_class_variables(int argc, const VALUE *argv, VALUE mod) { VALUE inherit; st_table *tbl; if (argc == 0) { inherit = Qtrue; } else { rb_scan_args(argc, argv, "01", &inherit); } if (RTEST(inherit)) { tbl = mod_cvar_of(mod, 0); } else { tbl = mod_cvar_at(mod, 0); } return cvar_list(tbl); }
Says whether mod or its ancestors have a constant with the given name:
Float.const_defined?(:EPSILON) #=> true, found in Float itself Float.const_defined?("String") #=> true, found in Object (ancestor) BasicObject.const_defined?(:Hash) #=> false
If mod is a Module
, additionally Object
and its ancestors are checked:
Math.const_defined?(:String) #=> true, found in Object
In each of the checked classes or modules, if the constant is not present
but there is an autoload for it, true
is returned directly
without autoloading:
module Admin autoload :User, 'admin/user' end Admin.const_defined?(:User) #=> true
If the constant is not found the callback const_missing
is
not called and the method returns false
.
If inherit
is false, the lookup only checks the constants in
the receiver:
IO.const_defined?(:SYNC) #=> true, found in File::Constants (ancestor) IO.const_defined?(:SYNC, false) #=> false, not found in IO itself
In this case, the same logic for autoloading applies.
If the argument is not a valid constant name a NameError
is
raised with the message “wrong constant name name”:
Hash.const_defined? 'foobar' #=> NameError: wrong constant name foobar
static VALUE rb_mod_const_defined(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return Qfalse; return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { wrong_name: rb_name_error_str(name, "wrong constant name % "PRIsVALUE, name); } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) { rb_name_error_str(part, "wrong constant name %"PRIsVALUE, QUOTE(part)); } else { return Qfalse; } } if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %"PRIsVALUE, QUOTE_ID(id)); } if (RTEST(recur)) { if (!rb_const_defined(mod, id)) return Qfalse; mod = rb_const_get(mod, id); } else { if (!rb_const_defined_at(mod, id)) return Qfalse; mod = rb_const_get_at(mod, id); } recur = Qfalse; if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } } return Qtrue; }
Checks for a constant with the given name in mod. If
inherit
is set, the lookup will also search the ancestors (and
Object
if mod is a Module
).
The value of the constant is returned if a definition is found, otherwise a
NameError
is raised.
Math.const_get(:PI) #=> 3.14159265358979
This method will recursively look up constant names if a namespaced class name is provided. For example:
module Foo; class Bar; end end Object.const_get 'Foo::Bar'
The inherit
flag is respected on each lookup. For example:
module Foo class Bar VAL = 10 end class Baz < Bar; end end Object.const_get 'Foo::Baz::VAL' # => 10 Object.const_get 'Foo::Baz::VAL', false # => NameError
If the argument is not a valid constant name a NameError
will
be raised with a warning “wrong constant name”.
Object.const_get 'foobar' #=> NameError: wrong constant name foobar
static VALUE rb_mod_const_get(int argc, VALUE *argv, VALUE mod) { VALUE name, recur; rb_encoding *enc; const char *pbeg, *p, *path, *pend; ID id; rb_check_arity(argc, 1, 2); name = argv[0]; recur = (argc == 1) ? Qtrue : argv[1]; if (SYMBOL_P(name)) { if (!rb_is_const_sym(name)) goto wrong_name; id = rb_check_id(&name); if (!id) return rb_const_missing(mod, name); return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); } path = StringValuePtr(name); enc = rb_enc_get(name); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)"); } pbeg = p = path; pend = path + RSTRING_LEN(name); if (p >= pend || !*p) { wrong_name: rb_name_error_str(name, "wrong constant name % "PRIsVALUE, name); } if (p + 2 < pend && p[0] == ':' && p[1] == ':') { mod = rb_cObject; p += 2; pbeg = p; } while (p < pend) { VALUE part; long len, beglen; while (p < pend && *p != ':') p++; if (pbeg == p) goto wrong_name; id = rb_check_id_cstr(pbeg, len = p-pbeg, enc); beglen = pbeg-path; if (p < pend && p[0] == ':') { if (p + 2 >= pend || p[1] != ':') goto wrong_name; p += 2; pbeg = p; } if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) { rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module", QUOTE(name)); } if (!id) { part = rb_str_subseq(name, beglen, len); OBJ_FREEZE(part); if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) { rb_name_error_str(part, "wrong constant name %"PRIsVALUE, QUOTE(part)); } else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) { part = rb_str_intern(part); mod = rb_const_missing(mod, part); continue; } else { rb_name_error_str(part, "uninitialized constant %"PRIsVALUE"% "PRIsVALUE, rb_str_subseq(name, 0, beglen), part); } } if (!rb_is_const_id(id)) { rb_name_error(id, "wrong constant name %"PRIsVALUE, QUOTE_ID(id)); } mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id); } return mod; }
Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:
def Foo.const_missing(name) name # return the constant name as Symbol end Foo::UNDEFINED_CONST #=> :UNDEFINED_CONST: symbol returned
In the next example when a reference is made to an undefined constant, it
attempts to load a file whose name is the lowercase version of the constant
(thus class Fred
is assumed to be in file
fred.rb
). If found, it returns the loaded class. It therefore
implements an autoload feature similar to Kernel#autoload and #autoload.
def Object.const_missing(name) @looked_for ||= {} str_name = name.to_s raise "Class not found: #{name}" if @looked_for[str_name] @looked_for[str_name] = 1 file = str_name.downcase require file klass = const_get(name) return klass if klass raise "Class not found: #{name}" end
VALUE rb_mod_const_missing(VALUE klass, VALUE name) { rb_vm_pop_cfunc_frame(); uninitialized_constant(klass, name); UNREACHABLE; }
Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.
Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) #=> 3.14285714285714 Math::HIGH_SCHOOL_PI - Math::PI #=> 0.00126448926734968
If sym
or str
is not a valid constant name a
NameError
will be raised with a warning “wrong constant name”.
Object.const_set('foobar', 42) #=> NameError: wrong constant name foobar
static VALUE rb_mod_const_set(VALUE mod, VALUE name, VALUE value) { ID id = id_for_setter(name, const, "wrong constant name %"PRIsVALUE); rb_const_set(mod, id, value); return value; }
Returns an array of the names of the constants accessible in mod.
This includes the names of constants in any included modules (example at
start of section), unless the inherit parameter is set to
false
.
The implementation makes no guarantees about the order in which the constants are yielded.
IO.constants.include?(:SYNC) #=> true IO.constants(false).include?(:SYNC) #=> false
Also see Module::const_defined?
.
VALUE rb_mod_constants(int argc, const VALUE *argv, VALUE mod) { VALUE inherit; if (argc == 0) { inherit = Qtrue; } else { rb_scan_args(argc, argv, "01", &inherit); } if (RTEST(inherit)) { return rb_const_list(rb_mod_const_of(mod, 0)); } else { return rb_local_constants(mod); } }
Prevents further modifications to mod.
This method returns self.
static VALUE rb_mod_freeze(VALUE mod) { rb_class_name(mod); return rb_obj_freeze(mod); }
Invokes Module.append_features
on each parameter in reverse
order.
static VALUE rb_mod_include(int argc, VALUE *argv, VALUE module) { int i; ID id_append_features, id_included; CONST_ID(id_append_features, "append_features"); CONST_ID(id_included, "included"); for (i = 0; i < argc; i++) Check_Type(argv[i], T_MODULE); while (argc--) { rb_funcall(argv[argc], id_append_features, 1, module); rb_funcall(argv[argc], id_included, 1, module); } return module; }
Returns true
if module is included in mod or
one of mod's ancestors.
module A end class B include A end class C < B end B.include?(A) #=> true C.include?(A) #=> true A.include?(A) #=> false
VALUE rb_mod_include_p(VALUE mod, VALUE mod2) { VALUE p; Check_Type(mod2, T_MODULE); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (BUILTIN_TYPE(p) == T_ICLASS) { if (RBASIC(p)->klass == mod2) return Qtrue; } } return Qfalse; }
Returns the list of modules included in mod.
module Mixin end module Outer include Mixin end Mixin.included_modules #=> [] Outer.included_modules #=> [Mixin]
VALUE rb_mod_included_modules(VALUE mod) { VALUE ary = rb_ary_new(); VALUE p; VALUE origin = RCLASS_ORIGIN(mod); for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) { if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) { VALUE m = RBASIC(p)->klass; if (RB_TYPE_P(m, T_MODULE)) rb_ary_push(ary, m); } } return ary; }
Returns an UnboundMethod
representing the given instance
method in mod.
class Interpreter def do_a() print "there, "; end def do_d() print "Hello "; end def do_e() print "!\n"; end def do_v() print "Dave"; end Dispatcher = { "a" => instance_method(:do_a), "d" => instance_method(:do_d), "e" => instance_method(:do_e), "v" => instance_method(:do_v) } def interpret(string) string.each_char {|b| Dispatcher[b].bind(self).call } end end interpreter = Interpreter.new interpreter.interpret('dave')
produces:
Hello there, Dave!
static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE); }
Returns an array containing the names of the public and protected instance
methods in the receiver. For a module, these are the public and protected
methods; for a class, they are the instance (not singleton) methods. If the
optional parameter is false
, the methods of any ancestors are
not included.
module A def method1() end end class B include A def method2() end end class C < B def method3() end end A.instance_methods(false) #=> [:method1] B.instance_methods(false) #=> [:method2] B.instance_methods(true).include?(:method1) #=> true C.instance_methods(false) #=> [:method3] C.instance_methods.include?(:method2) #=> true
VALUE rb_class_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_i); }
Returns true
if the named method is defined by mod
(or its included modules and, if mod is a class, its ancestors).
Public and protected methods are matched. String arguments are converted to
symbols.
module A def method1() end end class B def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.method_defined? "method1" #=> true C.method_defined? "method2" #=> true C.method_defined? "method3" #=> true C.method_defined? "method4" #=> false
static VALUE rb_mod_method_defined(VALUE mod, VALUE mid) { ID id = rb_check_id(&mid); if (!id || !rb_method_boundp(mod, id, 1)) { return Qfalse; } return Qtrue; }
Evaluates the string or block in the context of mod, except that
when a block is given, constant/class variable lookup is not affected. This
can be used to add methods to a class. module_eval
returns the
result of evaluating its argument. The optional filename and
lineno parameters set the text for error messages.
class Thing end a = %q{def hello() "Hello there!" end} Thing.module_eval(a) puts Thing.new.hello() Thing.module_eval("invalid code", "dummy", 123)
produces:
Hello there! dummy:123:in `module_eval': undefined local variable or method `code' for Thing:Class
VALUE rb_mod_module_eval(int argc, const VALUE *argv, VALUE mod) { return specific_eval(argc, argv, mod, mod); }
Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.
class Thing end Thing.class_exec{ def hello() "Hello there!" end } puts Thing.new.hello()
produces:
Hello there!
VALUE rb_mod_module_exec(int argc, const VALUE *argv, VALUE mod) { return yield_under(mod, mod, rb_ary_new4(argc, argv)); }
Returns the name of the module mod. Returns nil for anonymous modules.
VALUE rb_mod_name(VALUE mod) { int permanent; VALUE path = classname(mod, &permanent); if (!NIL_P(path)) return rb_str_dup(path); return path; }
Invokes Module.prepend_features
on each parameter in reverse
order.
static VALUE rb_mod_prepend(int argc, VALUE *argv, VALUE module) { int i; ID id_prepend_features, id_prepended; CONST_ID(id_prepend_features, "prepend_features"); CONST_ID(id_prepended, "prepended"); for (i = 0; i < argc; i++) Check_Type(argv[i], T_MODULE); while (argc--) { rb_funcall(argv[argc], id_prepend_features, 1, module); rb_funcall(argv[argc], id_prepended, 1, module); } return module; }
Makes existing class methods private. Often used to hide the default
constructor new
.
String arguments are converted to symbols.
class SimpleSingleton # Not thread safe private_class_method :new def SimpleSingleton.create(*args, &block) @me = new(*args, &block) if ! @me @me end end
static VALUE rb_mod_private_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PRIVATE); return obj; }
Makes a list of existing constants private.
VALUE rb_mod_private_constant(int argc, const VALUE *argv, VALUE obj) { set_const_visibility(obj, argc, argv, CONST_PRIVATE); return obj; }
Returns a list of the private instance methods defined in mod. If
the optional parameter is false
, the methods of any ancestors
are not included.
module Mod def method1() end private :method1 def method2() end end Mod.instance_methods #=> [:method2] Mod.private_instance_methods #=> [:method1]
VALUE rb_class_private_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i); }
Returns true
if the named private method is defined by _ mod_
(or its included modules and, if mod is a class, its ancestors).
String arguments are converted to symbols.
module A def method1() end end class B private def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.private_method_defined? "method1" #=> false C.private_method_defined? "method2" #=> true C.method_defined? "method2" #=> false
static VALUE rb_mod_private_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, mid, NOEX_PRIVATE); }
Returns a list of the protected instance methods defined in mod.
If the optional parameter is false
, the methods of any
ancestors are not included.
VALUE rb_class_protected_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i); }
Returns true
if the named protected method is defined by
mod (or its included modules and, if mod is a class, its
ancestors). String arguments are converted to symbols.
module A def method1() end end class B protected def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.protected_method_defined? "method1" #=> false C.protected_method_defined? "method2" #=> true C.method_defined? "method2" #=> true
static VALUE rb_mod_protected_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, mid, NOEX_PROTECTED); }
# File ext/psych/lib/psych/core_ext.rb, line 21 def psych_yaml_as url return if caller[0].end_with?('rubytypes.rb') if $VERBOSE warn "#{caller[0]}: yaml_as is deprecated, please use yaml_tag" end Psych.add_tag(url, self) end
Makes a list of existing class methods public.
String arguments are converted to symbols.
static VALUE rb_mod_public_method(int argc, VALUE *argv, VALUE obj) { set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PUBLIC); return obj; }
Makes a list of existing constants public.
VALUE rb_mod_public_constant(int argc, const VALUE *argv, VALUE obj) { set_const_visibility(obj, argc, argv, CONST_PUBLIC); return obj; }
Similar to instance_method, searches public method only.
static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE); }
Returns a list of the public instance methods defined in mod. If
the optional parameter is false
, the methods of any ancestors
are not included.
VALUE rb_class_public_instance_methods(int argc, const VALUE *argv, VALUE mod) { return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i); }
Returns true
if the named public method is defined by
mod (or its included modules and, if mod is a class, its
ancestors). String arguments are converted to symbols.
module A def method1() end end class B protected def method2() end end class C < B include A def method3() end end A.method_defined? :method1 #=> true C.public_method_defined? "method1" #=> true C.public_method_defined? "method2" #=> false C.method_defined? "method2" #=> true
static VALUE rb_mod_public_method_defined(VALUE mod, VALUE mid) { return check_definition(mod, mid, NOEX_PUBLIC); }
Removes the definition of the sym, returning that constant's value.
class Dummy @@var = 99 puts @@var remove_class_variable(:@@var) p(defined? @@var) end
produces:
99 nil
VALUE rb_mod_remove_cvar(VALUE mod, VALUE name) { const ID id = rb_check_id(&name); st_data_t val, n = id; if (!id) { if (rb_is_class_name(name)) { rb_name_error_str(name, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"", name, rb_class_name(mod)); } else { rb_name_error_str(name, "wrong class variable name %"PRIsVALUE"", QUOTE(name)); } } if (!rb_is_class_id(id)) { rb_name_error(id, "wrong class variable name %"PRIsVALUE"", QUOTE_ID(id)); } rb_check_frozen(mod); if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) { return (VALUE)val; } if (rb_cvar_defined(mod, id)) { rb_name_error(id, "cannot remove %"PRIsVALUE" for %"PRIsVALUE"", QUOTE_ID(id), rb_class_name(mod)); } rb_name_error(id, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"", QUOTE_ID(id), rb_class_name(mod)); UNREACHABLE; }
Returns true
if mod is a singleton class or
false
if it is an ordinary class or module.
class C end C.singleton_class? #=> false C.singleton_class.singleton_class? #=> true
static VALUE rb_mod_singleton_p(VALUE klass) { if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON)) return Qtrue; return Qfalse; }
Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we're attached to as well.
static VALUE rb_mod_to_s(VALUE klass) { ID id_defined_at; VALUE refined_class, defined_at; if (FL_TEST(klass, FL_SINGLETON)) { VALUE s = rb_usascii_str_new2("#<Class:"); VALUE v = rb_ivar_get(klass, id__attached__); if (CLASS_OR_MODULE_P(v)) { rb_str_append(s, rb_inspect(v)); } else { rb_str_append(s, rb_any_to_s(v)); } rb_str_cat2(s, ">"); return s; } refined_class = rb_refinement_module_get_refined_class(klass); if (!NIL_P(refined_class)) { VALUE s = rb_usascii_str_new2("#<refinement:"); rb_str_concat(s, rb_inspect(refined_class)); rb_str_cat2(s, "@"); CONST_ID(id_defined_at, "__defined_at__"); defined_at = rb_attr_get(klass, id_defined_at); rb_str_concat(s, rb_inspect(defined_at)); rb_str_cat2(s, ">"); return s; } return rb_str_dup(rb_class_name(klass)); }
Private Instance Methods
Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.
module Mod alias_method :orig_exit, :exit def exit(code=0) puts "Exiting with code #{code}" orig_exit(code) end end include Mod exit(99)
produces:
Exiting with code 99
static VALUE rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname) { ID oldid = rb_check_id(&oldname); if (!oldid) { rb_print_undef_str(mod, oldname); } rb_alias(mod, rb_to_id(newname), oldid); return mod; }
When this module is included in another, Ruby calls
append_features
in this module, passing it the receiving
module in mod. Ruby's default implementation is to add the
constants, methods, and module variables of this module to mod if
this module has not already been added to mod or one of its
ancestors. See also Module#include
.
static VALUE rb_mod_append_features(VALUE module, VALUE include) { if (!CLASS_OR_MODULE_P(include)) { Check_Type(include, T_CLASS); } rb_include_module(include, module); return module; }
VALUE rb_mod_attr(int argc, VALUE *argv, VALUE klass) { if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) { rb_warning("optional boolean argument is obsoleted"); rb_attr(klass, id_for_attr(argv[0]), 1, RTEST(argv[1]), TRUE); return Qnil; } return rb_mod_attr_reader(argc, argv, klass); }
Defines a named attribute for this module, where the name is
symbol.id2name
, creating an instance variable
(@name
) and a corresponding access method to read it. Also
creates a method called name=
to set the attribute. String
arguments are converted to symbols.
module Mod attr_accessor(:one, :two) end Mod.instance_methods.sort #=> [:one, :one=, :two, :two=]
static VALUE rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, id_for_attr(argv[i]), TRUE, TRUE, TRUE); } return Qnil; }
Creates instance variables and corresponding methods that return the value
of each instance variable. Equivalent to calling
“attr
:name'' on each name in turn. String
arguments are converted to symbols.
static VALUE rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, id_for_attr(argv[i]), TRUE, FALSE, TRUE); } return Qnil; }
Creates an accessor method to allow assignment to the attribute
symbol.id2name
. String arguments are converted to
symbols.
static VALUE rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass) { int i; for (i=0; i<argc; i++) { rb_attr(klass, id_for_attr(argv[i]), FALSE, TRUE, TRUE); } return Qnil; }
Defines an instance method in the receiver. The method parameter
can be a Proc
, a Method
or an
UnboundMethod
object. If a block is specified, it is used as
the method body. This block is evaluated using instance_eval
,
a point that is tricky to demonstrate because define_method
is
private. (This is why we resort to the send
hack in this
example.)
class A def fred puts "In Fred" end def create_method(name, &block) self.class.send(:define_method, name, &block) end define_method(:wilma) { puts "Charge it!" } end class B < A define_method(:barney, instance_method(:fred)) end a = B.new a.barney a.wilma a.create_method(:betty) { p self } a.betty
produces:
In Fred Charge it! #<B:0x401b39e8>
static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { ID id; VALUE body; int noex = NOEX_PUBLIC; const NODE *cref = rb_vm_cref_in_context(mod, mod); if (cref) { noex = (int)cref->nd_visi; } if (argc == 1) { id = rb_to_id(argv[0]); body = rb_block_lambda(); } else { rb_check_arity(argc, 1, 2); id = rb_to_id(argv[0]); body = argv[1]; if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) { rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)", rb_obj_classname(body)); } } if (rb_obj_is_method(body)) { struct METHOD *method = (struct METHOD *)DATA_PTR(body); VALUE rclass = method->rclass; if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) && !RTEST(rb_class_inherited_p(mod, rclass))) { if (FL_TEST(rclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't bind singleton method to a different class"); } else { rb_raise(rb_eTypeError, "bind argument must be a subclass of % "PRIsVALUE, rb_class_name(rclass)); } } rb_method_entry_set(mod, id, method->me, noex); if (noex == NOEX_MODFUNC) { rb_method_entry_set(rb_singleton_class(mod), id, method->me, NOEX_PUBLIC); } RB_GC_GUARD(body); } else if (rb_obj_is_proc(body)) { rb_proc_t *proc; body = proc_dup(body); GetProcPtr(body, proc); if (!RUBY_VM_IFUNC_P(proc->block.iseq)) { proc->block.iseq->defined_method_id = id; RB_OBJ_WRITE(proc->block.iseq->self, &proc->block.iseq->klass, mod); proc->is_lambda = TRUE; proc->is_from_method = TRUE; proc->block.klass = mod; } rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex); if (noex == NOEX_MODFUNC) { rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, NOEX_PUBLIC); } } else { /* type error */ rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)"); } return ID2SYM(id); }
Extends the specified object by adding this module's constants and
methods (which are added as singleton methods). This is the callback method
used by Object#extend
.
module Picky def Picky.extend_object(o) if String === o puts "Can't add Picky to a String" else puts "Picky added to #{o.class}" super end end end (s = Array.new).extend Picky # Call Object.extend (s = "quick brown fox").extend Picky
produces:
Picky added to Array Can't add Picky to a String
static VALUE rb_mod_extend_object(VALUE mod, VALUE obj) { rb_extend_object(obj, mod); return obj; }
The equivalent of included
, but for extended modules.
module A def self.extended(mod) puts "#{self} extended in #{mod}" end end module Enumerable extend A end # => prints "A extended in Enumerable"
static VALUE rb_obj_dummy(void) { return Qnil; }
Callback invoked whenever the receiver is included in another module or
class. This should be used in preference to
Module.append_features
if your code wants to perform some
action when a module is included in another.
module A def A.included(mod) puts "#{self} included in #{mod}" end end module Enumerable include A end # => prints "A included in Enumerable"
static VALUE rb_obj_dummy(void) { return Qnil; }
Invoked as a callback whenever an instance method is added to the receiver.
module Chatty def self.method_added(method_name) puts "Adding #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end end
produces:
Adding :some_instance_method
static VALUE rb_obj_dummy(void) { return Qnil; }
Invoked as a callback whenever an instance method is removed from the receiver.
module Chatty def self.method_removed(method_name) puts "Removing #{method_name.inspect}" end def self.some_class_method() end def some_instance_method() end class << self remove_method :some_class_method end remove_method :some_instance_method end
produces:
Removing :some_instance_method
static VALUE rb_obj_dummy(void) { return Qnil; }
Not documented
static VALUE rb_obj_dummy(void) { return Qnil; }
Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.
module Mod def one "This is one" end module_function :one end class Cls include Mod def call_one one end end Mod.one #=> "This is one" c = Cls.new c.call_one #=> "This is one" module Mod def one "This is the new one" end end Mod.one #=> "This is one" c.call_one #=> "This is the new one"
static VALUE rb_mod_modfunc(int argc, VALUE *argv, VALUE module) { int i; ID id; const rb_method_entry_t *me; if (!RB_TYPE_P(module, T_MODULE)) { rb_raise(rb_eTypeError, "module_function must be called for modules"); } if (argc == 0) { SCOPE_SET(NOEX_MODFUNC); return module; } set_method_visibility(module, argc, argv, NOEX_PRIVATE); for (i = 0; i < argc; i++) { VALUE m = module; id = rb_to_id(argv[i]); for (;;) { me = search_method(m, id, 0); if (me == 0) { me = search_method(rb_cObject, id, 0); } if (UNDEFINED_METHOD_ENTRY_P(me)) { rb_print_undef(module, id, 0); } if (me->def->type != VM_METHOD_TYPE_ZSUPER) { break; /* normal case: need not to follow 'super' link */ } m = RCLASS_SUPER(m); if (!m) break; } rb_method_entry_set(rb_singleton_class(module), id, me, NOEX_PUBLIC); } return module; }
When this module is prepended in another, Ruby calls
prepend_features
in this module, passing it the receiving
module in mod. Ruby's default implementation is to overlay the
constants, methods, and module variables of this module to mod if
this module has not already been added to mod or one of its
ancestors. See also Module#prepend
.
static VALUE rb_mod_prepend_features(VALUE module, VALUE prepend) { if (!CLASS_OR_MODULE_P(prepend)) { Check_Type(prepend, T_CLASS); } rb_prepend_module(prepend, module); return module; }
The equivalent of included
, but for prepended modules.
module A def self.prepended(mod) puts "#{self} prepended to #{mod}" end end module Enumerable prepend A end # => prints "A prepended to Enumerable"
static VALUE rb_obj_dummy(void) { return Qnil; }
With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.
module Mod def a() end def b() end private def c() end private :a end Mod.private_instance_methods #=> [:a, :c]
static VALUE rb_mod_private(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, NOEX_PRIVATE); }
With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.
static VALUE rb_mod_protected(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, NOEX_PROTECTED); }
With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.
static VALUE rb_mod_public(int argc, VALUE *argv, VALUE module) { return set_visibility(argc, argv, module, NOEX_PUBLIC); }
Refine klass in the receiver.
Returns an overlaid module.
static VALUE rb_mod_refine(VALUE module, VALUE klass) { VALUE refinement; ID id_refinements, id_activated_refinements, id_refined_class, id_defined_at; VALUE refinements, activated_refinements; rb_thread_t *th = GET_THREAD(); rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp); if (!block) { rb_raise(rb_eArgError, "no block given"); } if (block->proc) { rb_raise(rb_eArgError, "can't pass a Proc as a block to Module#refine"); } Check_Type(klass, T_CLASS); CONST_ID(id_refinements, "__refinements__"); refinements = rb_attr_get(module, id_refinements); if (NIL_P(refinements)) { refinements = hidden_identity_hash_new(); rb_ivar_set(module, id_refinements, refinements); } CONST_ID(id_activated_refinements, "__activated_refinements__"); activated_refinements = rb_attr_get(module, id_activated_refinements); if (NIL_P(activated_refinements)) { activated_refinements = hidden_identity_hash_new(); rb_ivar_set(module, id_activated_refinements, activated_refinements); } refinement = rb_hash_lookup(refinements, klass); if (NIL_P(refinement)) { refinement = rb_module_new(); RCLASS_SET_SUPER(refinement, klass); FL_SET(refinement, RMODULE_IS_REFINEMENT); CONST_ID(id_refined_class, "__refined_class__"); rb_ivar_set(refinement, id_refined_class, klass); CONST_ID(id_defined_at, "__defined_at__"); rb_ivar_set(refinement, id_defined_at, module); rb_hash_aset(refinements, klass, refinement); add_activated_refinement(activated_refinements, klass, refinement); } rb_yield_refine_block(refinement, activated_refinements); return refinement; }
Removes the definition of the given constant, returning that constant's previous value. If that constant referred to a module, this will not change that module's name and can lead to confusion.
VALUE rb_mod_remove_const(VALUE mod, VALUE name) { const ID id = rb_check_id(&name); if (!id) { if (rb_is_const_name(name)) { rb_name_error_str(name, "constant %"PRIsVALUE"::%"PRIsVALUE" not defined", rb_class_name(mod), name); } else { rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as a constant name", QUOTE(name)); } } if (!rb_is_const_id(id)) { rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a constant name", QUOTE_ID(id)); } return rb_const_remove(mod, id); }
Removes the method identified by symbol from the current class.
For an example, see Module.undef_method
. String arguments are
converted to symbols.
static VALUE rb_mod_remove_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { VALUE v = argv[i]; ID id = rb_check_id(&v); if (!id) { rb_name_error_str(v, "method `%"PRIsVALUE"' not defined in %"PRIsVALUE, v, rb_obj_class(mod)); } remove_method(mod, id); } return mod; }
Prevents the current class from responding to calls to the named method.
Contrast this with remove_method
, which deletes the method
from the particular class; Ruby will still search superclasses and mixed-in
modules for a possible receiver. String arguments are converted to symbols.
class Parent def hello puts "In parent" end end class Child < Parent def hello puts "In child" end end c = Child.new c.hello class Child remove_method :hello # remove from child, still in parent end c.hello class Child undef_method :hello # prevent any calls to 'hello' end c.hello
produces:
In child In parent prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)
static VALUE rb_mod_undef_method(int argc, VALUE *argv, VALUE mod) { int i; for (i = 0; i < argc; i++) { VALUE v = argv[i]; ID id = rb_check_id(&v); if (!id) { rb_method_name_error(mod, v); } rb_undef(mod, id); } return mod; }
Import class refinements from module into the current class or module definition.
static VALUE mod_using(VALUE self, VALUE module) { NODE *cref = rb_vm_cref(); rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD()); if (prev_frame_func()) { rb_raise(rb_eRuntimeError, "Module#using is not permitted in methods"); } if (prev_cfp && prev_cfp->self != self) { rb_raise(rb_eRuntimeError, "Module#using is not called on self"); } rb_using_module(cref, module); return self; }