class String
BigDecimal extends the native String class to provide the to_d method.
When you require BigDecimal in your application, this method will be available on String objects.
Rake extension methods for String.
A String
object holds and manipulates an arbitrary sequence of
bytes, typically representing characters. String objects may be created
using String::new
or as literals.
Because of aliasing issues, users of strings should be aware of the methods
that modify the contents of a String
object. Typically,
methods with names ending in “!'' modify their receiver, while
those without a “!'' return a new String
. However,
there are exceptions, such as String#[]=
.
Public Instance Methods
Replace the file extension with newext
. If there is no
extension on the string, append the new extension to the end. If the new
extension is not given, or is the empty string, remove any existing
extension.
ext
is a user added method for the String class.
# File lib/rake/ext/string.rb, line 14 def ext(newext='') return self.dup if ['.', '..'].include? self newext = (newext =~ /^\./) ? newext : ("." + newext) if newext != '' self.chomp(File.extname(self)) << newext end
Returns whether self
's encoding is EUC-JP or not.
# File ext/nkf/lib/kconv.rb, line 263 def iseuc; Kconv.iseuc(self) end
Returns whether self
's encoding is ISO-2022-JP or not.
# File ext/nkf/lib/kconv.rb, line 275 def isjis; Kconv.isjis(self) end
Returns whether self
's encoding is Shift_JIS or not.
# File ext/nkf/lib/kconv.rb, line 269 def issjis; Kconv.issjis(self) end
Returns whether self
's encoding is UTF-8 or not.
# File ext/nkf/lib/kconv.rb, line 281 def isutf8; Kconv.isutf8(self) end
Map the path according to the given specification. The specification controls the details of the mapping. The following special patterns are recognized:
-
%p – The complete path.
-
%f – The base file name of the path, with its file extension, but without any directories.
-
%n – The file name of the path without its file extension.
-
%d – The directory list of the path.
-
%x – The file extension of the path. An empty string if there is no extension.
-
%X – Everything but the file extension.
-
%s – The alternate file separator if defined, otherwise use the standard file separator.
-
%% – A percent sign.
The %d specifier can also have a numeric prefix (e.g. '%2d'). If
the number is positive, only return (up to) n
directories in
the path, starting from the left hand side. If n
is negative,
return (up to) |n
| directories from the right hand side of the
path.
Examples:
'a/b/c/d/file.txt'.pathmap("%2d") => 'a/b' 'a/b/c/d/file.txt'.pathmap("%-2d") => 'c/d'
Also the %d, %p, %f, %n, %x, and %X operators can take a pattern/replacement argument to perform simple string substitutions on a particular part of the path. The pattern and replacement are separated by a comma and are enclosed by curly braces. The replacement spec comes after the % character but before the operator letter. (e.g. “%{old,new}d”). Multiple replacement specs should be separated by semi-colons (e.g. “%{old,new;src,bin}d”).
Regular expressions may be used for the pattern, and back refs may be used in the replacement text. Curly braces, commas and semi-colons are excluded from both the pattern and replacement text (let's keep parsing reasonable).
For example:
"src/org/onestepback/proj/A.java".pathmap("%{^src,bin}X.class")
returns:
"bin/org/onestepback/proj/A.class"
If the replacement text is '*', then a block may be provided to perform some arbitrary calculation for the replacement.
For example:
"/path/to/file.TXT".pathmap("%X%{.*,*}x") { |ext| ext.downcase }
Returns:
"/path/to/file.txt"
# File lib/rake/ext/string.rb, line 128 def pathmap(spec=nil, &block) return self if spec.nil? result = '' spec.scan(/%\{[^}]*\}-?\d*[sdpfnxX%]|%-?\d+d|%.|[^%]+/) do |frag| case frag when '%f' result << File.basename(self) when '%n' result << File.basename(self).ext when '%d' result << File.dirname(self) when '%x' result << File.extname(self) when '%X' result << self.ext when '%p' result << self when '%s' result << (File::ALT_SEPARATOR || File::SEPARATOR) when '%-' # do nothing when '%%' result << "%" when /%(-?\d+)d/ result << pathmap_partial($1.to_i) when /^%\{([^}]*)\}(\d*[dpfnxX])/ patterns, operator = $1, $2 result << pathmap('%' + operator).pathmap_replace(patterns, &block) when /^%/ fail ArgumentError, "Unknown pathmap specifier #{frag} in '#{spec}'" else result << frag end end result end
Explode a path into individual components. Used by pathmap
.
# File lib/rake/ext/string.rb, line 23 def pathmap_explode head, tail = File.split(self) return [self] if head == self return [tail] if head == '.' || tail == '/' return [head, tail] if head == '/' return head.pathmap_explode + [tail] end
Extract a partial path from the path. Include n
directories
from the front end (left hand side) if n
is positive. Include
|n
| directories from the back end (right hand side) if
n
is negative.
# File lib/rake/ext/string.rb, line 35 def pathmap_partial(n) dirs = File.dirname(self).pathmap_explode partial_dirs = if n > 0 dirs[0...n] elsif n < 0 dirs.reverse[0...-n].reverse else "." end File.join(partial_dirs) end
Preform the pathmap replacement operations on the given path. The patterns take the form 'pat1,rep1;pat2,rep2…'.
# File lib/rake/ext/string.rb, line 51 def pathmap_replace(patterns, &block) result = self patterns.split(';').each do |pair| pattern, replacement = pair.split(',') pattern = Regexp.new(pattern) if replacement == '*' && block_given? result = result.sub(pattern, &block) elsif replacement result = result.sub(pattern, replacement) else result = result.sub(pattern, '') end end result end
Returns a complex which denotes the string form. The parser ignores leading whitespaces and trailing garbage. Any digit sequences can be separated by an underscore. Returns zero for null or garbage string.
'9'.to_c #=> (9+0i) '2.5'.to_c #=> (2.5+0i) '2.5/1'.to_c #=> ((5/2)+0i) '-3/2'.to_c #=> ((-3/2)+0i) '-i'.to_c #=> (0-1i) '45i'.to_c #=> (0+45i) '3-4i'.to_c #=> (3-4i) '-4e2-4e-2i'.to_c #=> (-400.0-0.04i) '-0.0-0.0i'.to_c #=> (-0.0-0.0i) '1/2+3/4i'.to_c #=> ((1/2)+(3/4)*i) 'ruby'.to_c #=> (0+0i)
See Kernel.Complex.
static VALUE string_to_c(VALUE self) { char *s; VALUE num; rb_must_asciicompat(self); s = RSTRING_PTR(self); if (s && s[RSTRING_LEN(self)]) { rb_str_modify(self); s = RSTRING_PTR(self); s[RSTRING_LEN(self)] = '\0'; } if (!s) s = (char *)""; (void)parse_comp(s, 0, &num); return num; }
Convert string
to a BigDecimal
and return it.
require 'bigdecimal' require 'bigdecimal/util' "0.5".to_d # => #<BigDecimal:1dc69e0,'0.5E0',9(18)>
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 59 def to_d BigDecimal(self) end
Convert self
to EUC-JP
# File ext/nkf/lib/kconv.rb, line 223 def toeuc; Kconv.toeuc(self) end
Convert self
to ISO-2022-JP
# File ext/nkf/lib/kconv.rb, line 217 def tojis; Kconv.tojis(self) end
Convert self
to locale encoding
# File ext/nkf/lib/kconv.rb, line 253 def tolocale; Kconv.tolocale(self) end
Convert self
to Shift_JIS
# File ext/nkf/lib/kconv.rb, line 229 def tosjis; Kconv.tosjis(self) end
Convert self
to UTF-16
# File ext/nkf/lib/kconv.rb, line 241 def toutf16; Kconv.toutf16(self) end
Convert self
to UTF-32
# File ext/nkf/lib/kconv.rb, line 247 def toutf32; Kconv.toutf32(self) end
Convert self
to UTF-8
# File ext/nkf/lib/kconv.rb, line 235 def toutf8; Kconv.toutf8(self) end
scanf
↑ topPublic Class Methods
Returns a new string object containing a copy of str.
static VALUE rb_str_init(int argc, VALUE *argv, VALUE str) { VALUE orig; if (argc > 0 && rb_scan_args(argc, argv, "01", &orig) == 1) rb_str_replace(str, orig); return str; }
Try to convert obj into a String, using #to_str method. Returns converted string or nil if obj cannot be converted for any reason.
String.try_convert("str") #=> "str" String.try_convert(/re/) #=> nil
static VALUE rb_str_s_try_convert(VALUE dummy, VALUE str) { return rb_check_string_type(str); }
Public Instance Methods
Format—Uses str as a format specification, and returns the result
of applying it to arg. If the format specification contains more
than one substitution, then arg must be an Array
or
Hash
containing the values to be substituted. See
Kernel::sprintf
for details of the format string.
"%05d" % 123 #=> "00123" "%-5s: %08x" % [ "ID", self.object_id ] #=> "ID : 200e14d6" "foo = %{foo}" % { :foo => 'bar' } #=> "foo = bar"
static VALUE rb_str_format_m(VALUE str, VALUE arg) { volatile VALUE tmp = rb_check_array_type(arg); if (!NIL_P(tmp)) { return rb_str_format(RARRAY_LENINT(tmp), RARRAY_CONST_PTR(tmp), str); } return rb_str_format(1, &arg, str); }
Copy — Returns a new String containing integer
copies of the
receiver. integer
must be greater than or equal to 0.
"Ho! " * 3 #=> "Ho! Ho! Ho! " "Ho! " * 0 #=> ""
VALUE rb_str_times(VALUE str, VALUE times) { VALUE str2; long n, len; char *ptr2; len = NUM2LONG(times); if (len < 0) { rb_raise(rb_eArgError, "negative argument"); } if (len && LONG_MAX/len < RSTRING_LEN(str)) { rb_raise(rb_eArgError, "argument too big"); } str2 = rb_str_new5(str, 0, len *= RSTRING_LEN(str)); ptr2 = RSTRING_PTR(str2); if (len) { n = RSTRING_LEN(str); memcpy(ptr2, RSTRING_PTR(str), n); while (n <= len/2) { memcpy(ptr2 + n, ptr2, n); n *= 2; } memcpy(ptr2 + n, ptr2, len-n); } ptr2[RSTRING_LEN(str2)] = '\0'; OBJ_INFECT(str2, str); rb_enc_cr_str_copy_for_substr(str2, str); return str2; }
Concatenation—Returns a new String
containing
other_str concatenated to str.
"Hello from " + self.to_s #=> "Hello from main"
VALUE rb_str_plus(VALUE str1, VALUE str2) { VALUE str3; rb_encoding *enc; StringValue(str2); enc = rb_enc_check(str1, str2); str3 = rb_str_new(0, RSTRING_LEN(str1)+RSTRING_LEN(str2)); memcpy(RSTRING_PTR(str3), RSTRING_PTR(str1), RSTRING_LEN(str1)); memcpy(RSTRING_PTR(str3) + RSTRING_LEN(str1), RSTRING_PTR(str2), RSTRING_LEN(str2)); RSTRING_PTR(str3)[RSTRING_LEN(str3)] = '\0'; FL_SET_RAW(str3, OBJ_TAINTED_RAW(str1) | OBJ_TAINTED_RAW(str2)); ENCODING_CODERANGE_SET(str3, rb_enc_to_index(enc), ENC_CODERANGE_AND(ENC_CODERANGE(str1), ENC_CODERANGE(str2))); return str3; }
Append—Concatenates the given object to str. If the object is a
Integer
, it is considered as a codepoint, and is converted to
a character before concatenation.
a = "hello " a << "world" #=> "hello world" a.concat(33) #=> "hello world!"
VALUE rb_str_concat(VALUE str1, VALUE str2) { unsigned int code; rb_encoding *enc = STR_ENC_GET(str1); if (FIXNUM_P(str2) || RB_TYPE_P(str2, T_BIGNUM)) { if (rb_num_to_uint(str2, &code) == 0) { } else if (FIXNUM_P(str2)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(str2)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } } else { return rb_str_append(str1, str2); } if (enc == rb_usascii_encoding()) { /* US-ASCII automatically extended to ASCII-8BIT */ char buf[1]; buf[0] = (char)code; if (code > 0xFF) { rb_raise(rb_eRangeError, "%u out of char range", code); } rb_str_cat(str1, buf, 1); if (code > 127) { rb_enc_associate(str1, rb_ascii8bit_encoding()); ENC_CODERANGE_SET(str1, ENC_CODERANGE_VALID); } } else { long pos = RSTRING_LEN(str1); int cr = ENC_CODERANGE(str1); int len; char *buf; switch (len = rb_enc_codelen(code, enc)) { case ONIGERR_INVALID_CODE_POINT_VALUE: rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); break; case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE: case 0: rb_raise(rb_eRangeError, "%u out of char range", code); break; } buf = ALLOCA_N(char, len + 1); rb_enc_mbcput(code, buf, enc); if (rb_enc_precise_mbclen(buf, buf + len + 1, enc) != len) { rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); } rb_str_resize(str1, pos+len); memcpy(RSTRING_PTR(str1) + pos, buf, len); if (cr == ENC_CODERANGE_7BIT && code > 127) cr = ENC_CODERANGE_VALID; ENC_CODERANGE_SET(str1, cr); } return str1; }
Comparison—Returns -1, 0, +1 or nil depending on whether
string
is less than, equal to, or greater than
other_string
.
nil
is returned if the two values are incomparable.
If the strings are of different lengths, and the strings are equal when compared up to the shortest length, then the longer string is considered greater than the shorter one.
<=>
is the basis for the methods <
,
<=
, >
, >=
, and
between?
, included from module Comparable. The method String#== does not use
Comparable#==.
"abcdef" <=> "abcde" #=> 1 "abcdef" <=> "abcdef" #=> 0 "abcdef" <=> "abcdefg" #=> -1 "abcdef" <=> "ABCDEF" #=> 1
static VALUE rb_str_cmp_m(VALUE str1, VALUE str2) { int result; if (!RB_TYPE_P(str2, T_STRING)) { VALUE tmp = rb_check_funcall(str2, rb_intern("to_str"), 0, 0); if (RB_TYPE_P(tmp, T_STRING)) { result = rb_str_cmp(str1, tmp); } else { return rb_invcmp(str1, str2); } } else { result = rb_str_cmp(str1, str2); } return INT2FIX(result); }
Equality¶ ↑
Returns whether str
== obj
, similar to Object#==.
If obj
is not an instance of String but responds to
to_str
, then the two strings are compared using case equality
Object#===.
Otherwise, returns similarly to #eql?, comparing length and content.
VALUE rb_str_equal(VALUE str1, VALUE str2) { if (str1 == str2) return Qtrue; if (!RB_TYPE_P(str2, T_STRING)) { if (!rb_respond_to(str2, rb_intern("to_str"))) { return Qfalse; } return rb_equal(str2, str1); } return str_eql(str1, str2); }
Equality¶ ↑
Returns whether str
== obj
, similar to Object#==.
If obj
is not an instance of String but responds to
to_str
, then the two strings are compared using case equality
Object#===.
Otherwise, returns similarly to #eql?, comparing length and content.
VALUE rb_str_equal(VALUE str1, VALUE str2) { if (str1 == str2) return Qtrue; if (!RB_TYPE_P(str2, T_STRING)) { if (!rb_respond_to(str2, rb_intern("to_str"))) { return Qfalse; } return rb_equal(str2, str1); } return str_eql(str1, str2); }
Match—If obj is a Regexp
, use it as a pattern to
match against str,and returns the position the match starts, or
nil
if there is no match. Otherwise, invokes obj.=~,
passing str as an argument. The default =~
in
Object
returns nil
.
Note: str =~ regexp
is not the same as regexp =~
str
. Strings captured from named capture groups are assigned to
local variables only in the second case.
"cat o' 9 tails" =~ /\d/ #=> 7 "cat o' 9 tails" =~ 9 #=> nil
static VALUE rb_str_match(VALUE x, VALUE y) { if (SPECIAL_CONST_P(y)) goto generic; switch (BUILTIN_TYPE(y)) { case T_STRING: rb_raise(rb_eTypeError, "type mismatch: String given"); case T_REGEXP: return rb_reg_match(y, x); generic: default: return rb_funcall(y, rb_intern("=~"), 1, x); } }
Element Reference — If passed a single index
, returns a
substring of one character at that index. If passed a start
index and a length
, returns a substring containing
length
characters starting at the index
. If
passed a range
, its beginning and end are interpreted as
offsets delimiting the substring to be returned.
In these three cases, if an index is negative, it is counted from the end
of the string. For the start
and range
cases the
starting index is just before a character and an index matching the
string's size. Additionally, an empty string is returned when the
starting index for a character range is at the end of the string.
Returns nil
if the initial index falls outside the string or
the length is negative.
If a Regexp
is supplied, the matching portion of the string is
returned. If a capture
follows the regular expression, which
may be a capture group index or name, follows the regular expression that
component of the MatchData is returned
instead.
If a match_str
is given, that string is returned if it occurs
in the string.
Returns nil
if the regular expression does not match or the
match string cannot be found.
a = "hello there" a[1] #=> "e" a[2, 3] #=> "llo" a[2..3] #=> "ll" a[-3, 2] #=> "er" a[7..-2] #=> "her" a[-4..-2] #=> "her" a[-2..-4] #=> "" a[11, 0] #=> "" a[11] #=> nil a[12, 0] #=> nil a[12..-1] #=> nil a[/[aeiou](.)\1/] #=> "ell" a[/[aeiou](.)\1/, 0] #=> "ell" a[/[aeiou](.)\1/, 1] #=> "l" a[/[aeiou](.)\1/, 2] #=> nil a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "non_vowel"] #=> "l" a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "vowel"] #=> "e" a["lo"] #=> "lo" a["bye"] #=> nil
static VALUE rb_str_aref_m(int argc, VALUE *argv, VALUE str) { if (argc == 2) { if (RB_TYPE_P(argv[0], T_REGEXP)) { return rb_str_subpat(str, argv[0], argv[1]); } return rb_str_substr(str, NUM2LONG(argv[0]), NUM2LONG(argv[1])); } rb_check_arity(argc, 1, 2); return rb_str_aref(str, argv[0]); }
Element Assignment—Replaces some or all of the content of str. The
portion of the string affected is determined using the same criteria as
String#[]
. If the replacement string is not the same length as
the text it is replacing, the string will be adjusted accordingly. If the
regular expression or string is used as the index doesn't match a
position in the string, IndexError
is raised. If the regular
expression form is used, the optional second Fixnum
allows you
to specify which portion of the match to replace (effectively using the
MatchData
indexing rules. The forms that take a
Fixnum
will raise an IndexError
if the value is
out of range; the Range
form will raise a
RangeError
, and the Regexp
and
String
will raise an IndexError
on negative
match.
static VALUE rb_str_aset_m(int argc, VALUE *argv, VALUE str) { if (argc == 3) { if (RB_TYPE_P(argv[0], T_REGEXP)) { rb_str_subpat_set(str, argv[0], argv[1], argv[2]); } else { rb_str_splice(str, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]); } return argv[2]; } rb_check_arity(argc, 2, 3); return rb_str_aset(str, argv[0], argv[1]); }
Returns true for a string which has only ASCII characters.
"abc".force_encoding("UTF-8").ascii_only? #=> true "abc\u{6666}".force_encoding("UTF-8").ascii_only? #=> false
static VALUE rb_str_is_ascii_only_p(VALUE str) { int cr = rb_enc_str_coderange(str); return cr == ENC_CODERANGE_7BIT ? Qtrue : Qfalse; }
Returns a copied string whose encoding is ASCII-8BIT.
static VALUE rb_str_b(VALUE str) { VALUE str2 = str_alloc(rb_cString); str_replace_shared_without_enc(str2, str); OBJ_INFECT_RAW(str2, str); ENC_CODERANGE_CLEAR(str2); return str2; }
Scans the current string until the match is exhausted yielding each match as it is encountered in the string. A block is not necessary as the results will simply be aggregated into the final array.
"123 456".block_scanf("%d") # => [123, 456]
If a block is given, the value from that is returned from the yield is added to an output array.
"123 456".block_scanf("%d) do |digit,| # the ',' unpacks the Array digit + 100 end # => [223, 556]
See Scanf for details on creating a format string.
You will need to require 'scanf' to use #block_scanf
# File lib/scanf.rb, line 753 def block_scanf(fstr) #:yield: current_match fs = Scanf::FormatString.new(fstr) str = self.dup final = [] begin current = str.scanf(fs) final.push(yield(current)) unless current.empty? str = fs.string_left end until current.empty? || str.empty? return final end
Returns an array of bytes in str. This is a shorthand for
str.each_byte.to_a
.
If a block is given, which is a deprecated form, works the same as
each_byte
.
static VALUE rb_str_bytes(VALUE str) { return rb_str_enumerate_bytes(str, 1); }
Returns the length of str
in bytes.
"\x80\u3042".bytesize #=> 4 "hello".bytesize #=> 5
static VALUE rb_str_bytesize(VALUE str) { return LONG2NUM(RSTRING_LEN(str)); }
Byte Reference—If passed a single Fixnum
, returns a substring
of one byte at that position. If passed two Fixnum
objects,
returns a substring starting at the offset given by the first, and a length
given by the second. If given a Range
, a substring containing
bytes at offsets given by the range is returned. In all three cases, if an
offset is negative, it is counted from the end of str. Returns
nil
if the initial offset falls outside the string, the length
is negative, or the beginning of the range is greater than the end. The
encoding of the resulted string keeps original encoding.
"hello".byteslice(1) #=> "e" "hello".byteslice(-1) #=> "o" "hello".byteslice(1, 2) #=> "el" "\x80\u3042".byteslice(1, 3) #=> "\u3042" "\x03\u3042\xff".byteslice(1..3) #=> "\u3042"
static VALUE rb_str_byteslice(int argc, VALUE *argv, VALUE str) { if (argc == 2) { return str_byte_substr(str, NUM2LONG(argv[0]), NUM2LONG(argv[1])); } rb_check_arity(argc, 1, 2); return str_byte_aref(str, argv[0]); }
Returns a copy of str with the first character converted to uppercase and the remainder to lowercase. Note: case conversion is effective only in ASCII region.
"hello".capitalize #=> "Hello" "HELLO".capitalize #=> "Hello" "123ABC".capitalize #=> "123abc"
static VALUE rb_str_capitalize(VALUE str) { str = rb_str_dup(str); rb_str_capitalize_bang(str); return str; }
Modifies str by converting the first character to uppercase and
the remainder to lowercase. Returns nil
if no changes are
made. Note: case conversion is effective only in ASCII region.
a = "hello" a.capitalize! #=> "Hello" a #=> "Hello" a.capitalize! #=> nil
static VALUE rb_str_capitalize_bang(VALUE str) { rb_encoding *enc; char *s, *send; int modify = 0; unsigned int c; int n; str_modify_keep_cr(str); enc = STR_ENC_GET(str); rb_str_check_dummy_enc(enc); if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return Qnil; s = RSTRING_PTR(str); send = RSTRING_END(str); c = rb_enc_codepoint_len(s, send, &n, enc); if (rb_enc_islower(c, enc)) { rb_enc_mbcput(rb_enc_toupper(c, enc), s, enc); modify = 1; } s += n; while (s < send) { c = rb_enc_codepoint_len(s, send, &n, enc); if (rb_enc_isupper(c, enc)) { rb_enc_mbcput(rb_enc_tolower(c, enc), s, enc); modify = 1; } s += n; } if (modify) return str; return Qnil; }
Case-insensitive version of String#<=>
.
"abcdef".casecmp("abcde") #=> 1 "aBcDeF".casecmp("abcdef") #=> 0 "abcdef".casecmp("abcdefg") #=> -1 "abcdef".casecmp("ABCDEF") #=> 0
static VALUE rb_str_casecmp(VALUE str1, VALUE str2) { long len; rb_encoding *enc; char *p1, *p1end, *p2, *p2end; StringValue(str2); enc = rb_enc_compatible(str1, str2); if (!enc) { return Qnil; } p1 = RSTRING_PTR(str1); p1end = RSTRING_END(str1); p2 = RSTRING_PTR(str2); p2end = RSTRING_END(str2); if (single_byte_optimizable(str1) && single_byte_optimizable(str2)) { while (p1 < p1end && p2 < p2end) { if (*p1 != *p2) { unsigned int c1 = TOUPPER(*p1 & 0xff); unsigned int c2 = TOUPPER(*p2 & 0xff); if (c1 != c2) return INT2FIX(c1 < c2 ? -1 : 1); } p1++; p2++; } } else { while (p1 < p1end && p2 < p2end) { int l1, c1 = rb_enc_ascget(p1, p1end, &l1, enc); int l2, c2 = rb_enc_ascget(p2, p2end, &l2, enc); if (0 <= c1 && 0 <= c2) { c1 = TOUPPER(c1); c2 = TOUPPER(c2); if (c1 != c2) return INT2FIX(c1 < c2 ? -1 : 1); } else { int r; l1 = rb_enc_mbclen(p1, p1end, enc); l2 = rb_enc_mbclen(p2, p2end, enc); len = l1 < l2 ? l1 : l2; r = memcmp(p1, p2, len); if (r != 0) return INT2FIX(r < 0 ? -1 : 1); if (l1 != l2) return INT2FIX(l1 < l2 ? -1 : 1); } p1 += l1; p2 += l2; } } if (RSTRING_LEN(str1) == RSTRING_LEN(str2)) return INT2FIX(0); if (RSTRING_LEN(str1) > RSTRING_LEN(str2)) return INT2FIX(1); return INT2FIX(-1); }
Centers str
in width
. If width
is
greater than the length of str
, returns a new String of length
width
with str
centered and padded with
padstr
; otherwise, returns str
.
"hello".center(4) #=> "hello" "hello".center(20) #=> " hello " "hello".center(20, '123') #=> "1231231hello12312312"
static VALUE rb_str_center(int argc, VALUE *argv, VALUE str) { return rb_str_justify(argc, argv, str, 'c'); }
Returns an array of characters in str. This is a shorthand for
str.each_char.to_a
.
If a block is given, which is a deprecated form, works the same as
each_char
.
static VALUE rb_str_chars(VALUE str) { return rb_str_enumerate_chars(str, 1); }
Returns a new String
with the given record separator removed
from the end of str (if present). If $/
has not been
changed from the default Ruby record separator, then chomp
also removes carriage return characters (that is it will remove
\n
, \r
, and \r\n
). If
$/
is an empty string, it will remove all trailing newlines
from the string.
"hello".chomp #=> "hello" "hello\n".chomp #=> "hello" "hello\r\n".chomp #=> "hello" "hello\n\r".chomp #=> "hello\n" "hello\r".chomp #=> "hello" "hello \n there".chomp #=> "hello \n there" "hello".chomp("llo") #=> "he" "hello\r\n\r\n".chomp('') #=> "hello" "hello\r\n\r\r\n".chomp('') #=> "hello\r\n\r"
static VALUE rb_str_chomp(int argc, VALUE *argv, VALUE str) { str = rb_str_dup(str); rb_str_chomp_bang(argc, argv, str); return str; }
Modifies str in place as described for String#chomp
,
returning str, or nil
if no modifications were made.
static VALUE rb_str_chomp_bang(int argc, VALUE *argv, VALUE str) { rb_encoding *enc; VALUE rs; int newline; char *p, *pp, *e; long len, rslen; str_modify_keep_cr(str); len = RSTRING_LEN(str); if (len == 0) return Qnil; p = RSTRING_PTR(str); e = p + len; if (argc == 0) { rs = rb_rs; if (rs == rb_default_rs) { smart_chomp: enc = rb_enc_get(str); if (rb_enc_mbminlen(enc) > 1) { pp = rb_enc_left_char_head(p, e-rb_enc_mbminlen(enc), e, enc); if (rb_enc_is_newline(pp, e, enc)) { e = pp; } pp = e - rb_enc_mbminlen(enc); if (pp >= p) { pp = rb_enc_left_char_head(p, pp, e, enc); if (rb_enc_ascget(pp, e, 0, enc) == '\r') { e = pp; } } if (e == RSTRING_END(str)) { return Qnil; } len = e - RSTRING_PTR(str); STR_SET_LEN(str, len); } else { if (RSTRING_PTR(str)[len-1] == '\n') { STR_DEC_LEN(str); if (RSTRING_LEN(str) > 0 && RSTRING_PTR(str)[RSTRING_LEN(str)-1] == '\r') { STR_DEC_LEN(str); } } else if (RSTRING_PTR(str)[len-1] == '\r') { STR_DEC_LEN(str); } else { return Qnil; } } RSTRING_PTR(str)[RSTRING_LEN(str)] = '\0'; return str; } } else { rb_scan_args(argc, argv, "01", &rs); } if (NIL_P(rs)) return Qnil; StringValue(rs); rslen = RSTRING_LEN(rs); if (rslen == 0) { while (len>0 && p[len-1] == '\n') { len--; if (len>0 && p[len-1] == '\r') len--; } if (len < RSTRING_LEN(str)) { STR_SET_LEN(str, len); RSTRING_PTR(str)[len] = '\0'; return str; } return Qnil; } if (rslen > len) return Qnil; newline = RSTRING_PTR(rs)[rslen-1]; if (rslen == 1 && newline == '\n') goto smart_chomp; enc = rb_enc_check(str, rs); if (is_broken_string(rs)) { return Qnil; } pp = e - rslen; if (p[len-1] == newline && (rslen <= 1 || memcmp(RSTRING_PTR(rs), pp, rslen) == 0)) { if (rb_enc_left_char_head(p, pp, e, enc) != pp) return Qnil; if (ENC_CODERANGE(str) != ENC_CODERANGE_7BIT) { ENC_CODERANGE_CLEAR(str); } STR_SET_LEN(str, RSTRING_LEN(str) - rslen); RSTRING_PTR(str)[RSTRING_LEN(str)] = '\0'; return str; } return Qnil; }
Returns a new String
with the last character removed. If the
string ends with \r\n
, both characters are removed. Applying
chop
to an empty string returns an empty string.
String#chomp
is often a safer alternative, as it leaves the
string unchanged if it doesn't end in a record separator.
"string\r\n".chop #=> "string" "string\n\r".chop #=> "string\n" "string\n".chop #=> "string" "string".chop #=> "strin" "x".chop.chop #=> ""
static VALUE rb_str_chop(VALUE str) { return rb_str_subseq(str, 0, chopped_length(str)); }
Processes str as for String#chop
, returning
str, or nil
if str is the empty string. See
also String#chomp!
.
static VALUE rb_str_chop_bang(VALUE str) { str_modify_keep_cr(str); if (RSTRING_LEN(str) > 0) { long len; len = chopped_length(str); STR_SET_LEN(str, len); RSTRING_PTR(str)[len] = '\0'; if (ENC_CODERANGE(str) != ENC_CODERANGE_7BIT) { ENC_CODERANGE_CLEAR(str); } return str; } return Qnil; }
Returns a one-character string at the beginning of the string.
a = "abcde" a.chr #=> "a"
static VALUE rb_str_chr(VALUE str) { return rb_str_substr(str, 0, 1); }
Makes string empty.
a = "abcde" a.clear #=> ""
static VALUE rb_str_clear(VALUE str) { str_discard(str); STR_SET_EMBED(str); STR_SET_EMBED_LEN(str, 0); RSTRING_PTR(str)[0] = 0; if (rb_enc_asciicompat(STR_ENC_GET(str))) ENC_CODERANGE_SET(str, ENC_CODERANGE_7BIT); else ENC_CODERANGE_SET(str, ENC_CODERANGE_VALID); return str; }
Returns an array of the Integer
ordinals of the characters in
str. This is a shorthand for
str.each_codepoint.to_a
.
If a block is given, which is a deprecated form, works the same as
each_codepoint
.
static VALUE rb_str_codepoints(VALUE str) { return rb_str_enumerate_codepoints(str, 1); }
Append—Concatenates the given object to str. If the object is a
Integer
, it is considered as a codepoint, and is converted to
a character before concatenation.
a = "hello " a << "world" #=> "hello world" a.concat(33) #=> "hello world!"
VALUE rb_str_concat(VALUE str1, VALUE str2) { unsigned int code; rb_encoding *enc = STR_ENC_GET(str1); if (FIXNUM_P(str2) || RB_TYPE_P(str2, T_BIGNUM)) { if (rb_num_to_uint(str2, &code) == 0) { } else if (FIXNUM_P(str2)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(str2)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } } else { return rb_str_append(str1, str2); } if (enc == rb_usascii_encoding()) { /* US-ASCII automatically extended to ASCII-8BIT */ char buf[1]; buf[0] = (char)code; if (code > 0xFF) { rb_raise(rb_eRangeError, "%u out of char range", code); } rb_str_cat(str1, buf, 1); if (code > 127) { rb_enc_associate(str1, rb_ascii8bit_encoding()); ENC_CODERANGE_SET(str1, ENC_CODERANGE_VALID); } } else { long pos = RSTRING_LEN(str1); int cr = ENC_CODERANGE(str1); int len; char *buf; switch (len = rb_enc_codelen(code, enc)) { case ONIGERR_INVALID_CODE_POINT_VALUE: rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); break; case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE: case 0: rb_raise(rb_eRangeError, "%u out of char range", code); break; } buf = ALLOCA_N(char, len + 1); rb_enc_mbcput(code, buf, enc); if (rb_enc_precise_mbclen(buf, buf + len + 1, enc) != len) { rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc)); } rb_str_resize(str1, pos+len); memcpy(RSTRING_PTR(str1) + pos, buf, len); if (cr == ENC_CODERANGE_7BIT && code > 127) cr = ENC_CODERANGE_VALID; ENC_CODERANGE_SET(str1, cr); } return str1; }
Each other_str
parameter defines a set of characters to count.
The intersection of these sets defines the characters to count in
str
. Any other_str
that starts with a caret
^
is negated. The sequence c1-c2
means all
characters between c1 and c2. The backslash character </code>
can be used to escape <code>^
or -
and is
otherwise ignored unless it appears at the end of a sequence or the end of
a other_str
.
a = "hello world" a.count "lo" #=> 5 a.count "lo", "o" #=> 2 a.count "hello", "^l" #=> 4 a.count "ej-m" #=> 4 "hello^world".count "\\^aeiou" #=> 4 "hello-world".count "a\\-eo" #=> 4 c = "hello world\\r\\n" c.count "\\" #=> 2 c.count "\\A" #=> 0 c.count "X-\\w" #=> 3
static VALUE rb_str_count(int argc, VALUE *argv, VALUE str) { char table[TR_TABLE_SIZE]; rb_encoding *enc = 0; VALUE del = 0, nodel = 0, tstr; char *s, *send; int i; int ascompat; rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); tstr = argv[0]; StringValue(tstr); enc = rb_enc_check(str, tstr); if (argc == 1) { const char *ptstr; if (RSTRING_LEN(tstr) == 1 && rb_enc_asciicompat(enc) && (ptstr = RSTRING_PTR(tstr), ONIGENC_IS_ALLOWED_REVERSE_MATCH(enc, (const unsigned char *)ptstr, (const unsigned char *)ptstr+1)) && !is_broken_string(str)) { int n = 0; int clen; unsigned char c = rb_enc_codepoint_len(ptstr, ptstr+1, &clen, enc); s = RSTRING_PTR(str); if (!s || RSTRING_LEN(str) == 0) return INT2FIX(0); send = RSTRING_END(str); while (s < send) { if (*(unsigned char*)s++ == c) n++; } return INT2NUM(n); } } tr_setup_table(tstr, table, TRUE, &del, &nodel, enc); for (i=1; i<argc; i++) { tstr = argv[i]; StringValue(tstr); enc = rb_enc_check(str, tstr); tr_setup_table(tstr, table, FALSE, &del, &nodel, enc); } s = RSTRING_PTR(str); if (!s || RSTRING_LEN(str) == 0) return INT2FIX(0); send = RSTRING_END(str); ascompat = rb_enc_asciicompat(enc); i = 0; while (s < send) { unsigned int c; if (ascompat && (c = *(unsigned char*)s) < 0x80) { if (table[c]) { i++; } s++; } else { int clen; c = rb_enc_codepoint_len(s, send, &clen, enc); if (tr_find(c, table, del, nodel)) { i++; } s += clen; } } return INT2NUM(i); }
Applies a one-way cryptographic hash to str by invoking the
standard library function crypt(3)
with the given salt string.
While the format and the result are system and implementation dependent,
using a salt matching the regular expression
\A[a-zA-Z0-9./]{2}
should be valid and safe on any platform,
in which only the first two characters are significant.
This method is for use in system specific scripts, so if you want a cross-platform hash function consider using Digest or OpenSSL instead.
static VALUE rb_str_crypt(VALUE str, VALUE salt) { extern char *crypt(const char *, const char *); VALUE result; const char *s, *saltp; char *res; #ifdef BROKEN_CRYPT char salt_8bit_clean[3]; #endif StringValue(salt); if (RSTRING_LEN(salt) < 2) rb_raise(rb_eArgError, "salt too short (need >=2 bytes)"); s = RSTRING_PTR(str); if (!s) s = ""; saltp = RSTRING_PTR(salt); #ifdef BROKEN_CRYPT if (!ISASCII((unsigned char)saltp[0]) || !ISASCII((unsigned char)saltp[1])) { salt_8bit_clean[0] = saltp[0] & 0x7f; salt_8bit_clean[1] = saltp[1] & 0x7f; salt_8bit_clean[2] = '\0'; saltp = salt_8bit_clean; } #endif res = crypt(s, saltp); if (!res) { rb_sys_fail("crypt"); } result = rb_str_new2(res); FL_SET_RAW(result, OBJ_TAINTED_RAW(str) | OBJ_TAINTED_RAW(salt)); return result; }
Returns a copy of str with all characters in the intersection of
its arguments deleted. Uses the same rules for building the set of
characters as String#count
.
"hello".delete "l","lo" #=> "heo" "hello".delete "lo" #=> "he" "hello".delete "aeiou", "^e" #=> "hell" "hello".delete "ej-m" #=> "ho"
static VALUE rb_str_delete(int argc, VALUE *argv, VALUE str) { str = rb_str_dup(str); rb_str_delete_bang(argc, argv, str); return str; }
Performs a delete
operation in place, returning str,
or nil
if str was not modified.
static VALUE rb_str_delete_bang(int argc, VALUE *argv, VALUE str) { char squeez[TR_TABLE_SIZE]; rb_encoding *enc = 0; char *s, *send, *t; VALUE del = 0, nodel = 0; int modify = 0; int i, ascompat, cr; if (RSTRING_LEN(str) == 0 || !RSTRING_PTR(str)) return Qnil; rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); for (i=0; i<argc; i++) { VALUE s = argv[i]; StringValue(s); enc = rb_enc_check(str, s); tr_setup_table(s, squeez, i==0, &del, &nodel, enc); } str_modify_keep_cr(str); ascompat = rb_enc_asciicompat(enc); s = t = RSTRING_PTR(str); send = RSTRING_END(str); cr = ascompat ? ENC_CODERANGE_7BIT : ENC_CODERANGE_VALID; while (s < send) { unsigned int c; int clen; if (ascompat && (c = *(unsigned char*)s) < 0x80) { if (squeez[c]) { modify = 1; } else { if (t != s) *t = c; t++; } s++; } else { c = rb_enc_codepoint_len(s, send, &clen, enc); if (tr_find(c, squeez, del, nodel)) { modify = 1; } else { if (t != s) rb_enc_mbcput(c, t, enc); t += clen; if (cr == ENC_CODERANGE_7BIT) cr = ENC_CODERANGE_VALID; } s += clen; } } *t = '\0'; STR_SET_LEN(str, t - RSTRING_PTR(str)); ENC_CODERANGE_SET(str, cr); if (modify) return str; return Qnil; }
Returns a copy of str with all uppercase letters replaced with their lowercase counterparts. The operation is locale insensitive—only characters “A'' to “Z'' are affected. Note: case replacement is effective only in ASCII region.
"hEllO".downcase #=> "hello"
static VALUE rb_str_downcase(VALUE str) { str = rb_str_dup(str); rb_str_downcase_bang(str); return str; }
Downcases the contents of str, returning nil
if no
changes were made. Note: case replacement is effective only in ASCII
region.
static VALUE rb_str_downcase_bang(VALUE str) { rb_encoding *enc; char *s, *send; int modify = 0; str_modify_keep_cr(str); enc = STR_ENC_GET(str); rb_str_check_dummy_enc(enc); s = RSTRING_PTR(str); send = RSTRING_END(str); if (single_byte_optimizable(str)) { while (s < send) { unsigned int c = *(unsigned char*)s; if (rb_enc_isascii(c, enc) && 'A' <= c && c <= 'Z') { *s = 'a' + (c - 'A'); modify = 1; } s++; } } else { int ascompat = rb_enc_asciicompat(enc); while (s < send) { unsigned int c; int n; if (ascompat && (c = *(unsigned char*)s) < 0x80) { if (rb_enc_isascii(c, enc) && 'A' <= c && c <= 'Z') { *s = 'a' + (c - 'A'); modify = 1; } s++; } else { c = rb_enc_codepoint_len(s, send, &n, enc); if (rb_enc_isupper(c, enc)) { /* assuming toupper returns codepoint with same size */ rb_enc_mbcput(rb_enc_tolower(c, enc), s, enc); modify = 1; } s += n; } } } if (modify) return str; return Qnil; }
Produces a version of str
with all non-printing characters
replaced by \nnn
notation and all special characters escaped.
"hello \n ''".dump #=> "\"hello \\n ''\"
VALUE rb_str_dump(VALUE str) { rb_encoding *enc = rb_enc_get(str); long len; const char *p, *pend; char *q, *qend; VALUE result; int u8 = (enc == rb_utf8_encoding()); len = 2; /* "" */ p = RSTRING_PTR(str); pend = p + RSTRING_LEN(str); while (p < pend) { unsigned char c = *p++; switch (c) { case '"': case '\\': case '\n': case '\r': case '\t': case '\f': case '\013': case '\010': case '\007': case '\033': len += 2; break; case '#': len += IS_EVSTR(p, pend) ? 2 : 1; break; default: if (ISPRINT(c)) { len++; } else { if (u8 && c > 0x7F) { /* \u{NN} */ int n = rb_enc_precise_mbclen(p-1, pend, enc); if (MBCLEN_CHARFOUND_P(n)) { unsigned int cc = rb_enc_mbc_to_codepoint(p-1, pend, enc); while (cc >>= 4) len++; len += 5; p += MBCLEN_CHARFOUND_LEN(n)-1; break; } } len += 4; /* \xNN */ } break; } } if (!rb_enc_asciicompat(enc)) { len += 19; /* ".force_encoding('')" */ len += strlen(enc->name); } result = rb_str_new5(str, 0, len); p = RSTRING_PTR(str); pend = p + RSTRING_LEN(str); q = RSTRING_PTR(result); qend = q + len + 1; *q++ = '"'; while (p < pend) { unsigned char c = *p++; if (c == '"' || c == '\\') { *q++ = '\\'; *q++ = c; } else if (c == '#') { if (IS_EVSTR(p, pend)) *q++ = '\\'; *q++ = '#'; } else if (c == '\n') { *q++ = '\\'; *q++ = 'n'; } else if (c == '\r') { *q++ = '\\'; *q++ = 'r'; } else if (c == '\t') { *q++ = '\\'; *q++ = 't'; } else if (c == '\f') { *q++ = '\\'; *q++ = 'f'; } else if (c == '\013') { *q++ = '\\'; *q++ = 'v'; } else if (c == '\010') { *q++ = '\\'; *q++ = 'b'; } else if (c == '\007') { *q++ = '\\'; *q++ = 'a'; } else if (c == '\033') { *q++ = '\\'; *q++ = 'e'; } else if (ISPRINT(c)) { *q++ = c; } else { *q++ = '\\'; if (u8) { int n = rb_enc_precise_mbclen(p-1, pend, enc) - 1; if (MBCLEN_CHARFOUND_P(n)) { int cc = rb_enc_mbc_to_codepoint(p-1, pend, enc); p += n; snprintf(q, qend-q, "u{%x}", cc); q += strlen(q); continue; } } snprintf(q, qend-q, "x%02X", c); q += 3; } } *q++ = '"'; *q = '\0'; if (!rb_enc_asciicompat(enc)) { snprintf(q, qend-q, ".force_encoding(\"%s\")", enc->name); enc = rb_ascii8bit_encoding(); } OBJ_INFECT_RAW(result, str); /* result from dump is ASCII */ rb_enc_associate(result, enc); ENC_CODERANGE_SET(result, ENC_CODERANGE_7BIT); return result; }
Passes each byte in str to the given block, or returns an enumerator if no block is given.
"hello".each_byte {|c| print c, ' ' }
produces:
104 101 108 108 111
static VALUE rb_str_each_byte(VALUE str) { return rb_str_enumerate_bytes(str, 0); }
Passes each character in str to the given block, or returns an enumerator if no block is given.
"hello".each_char {|c| print c, ' ' }
produces:
h e l l o
static VALUE rb_str_each_char(VALUE str) { return rb_str_enumerate_chars(str, 0); }
Passes the Integer
ordinal of each character in str,
also known as a codepoint when applied to Unicode strings to the
given block.
If no block is given, an enumerator is returned instead.
"hello\u0639".each_codepoint {|c| print c, ' ' }
produces:
104 101 108 108 111 1593
static VALUE rb_str_each_codepoint(VALUE str) { return rb_str_enumerate_codepoints(str, 0); }
Splits str using the supplied parameter as the record separator
($/
by default), passing each substring in turn to the
supplied block. If a zero-length record separator is supplied, the string
is split into paragraphs delimited by multiple successive newlines.
If no block is given, an enumerator is returned instead.
print "Example one\n" "hello\nworld".each_line {|s| p s} print "Example two\n" "hello\nworld".each_line('l') {|s| p s} print "Example three\n" "hello\n\n\nworld".each_line('') {|s| p s}
produces:
Example one "hello\n" "world" Example two "hel" "l" "o\nworl" "d" Example three "hello\n\n\n" "world"
static VALUE rb_str_each_line(int argc, VALUE *argv, VALUE str) { return rb_str_enumerate_lines(argc, argv, str, 0); }
Returns true
if str has a length of zero.
"hello".empty? #=> false " ".empty? #=> false "".empty? #=> true
static VALUE rb_str_empty(VALUE str) { if (RSTRING_LEN(str) == 0) return Qtrue; return Qfalse; }
The first form returns a copy of str
transcoded to encoding
encoding
. The second form returns a copy of str
transcoded from src_encoding to dst_encoding. The last form returns a copy
of str
transcoded to Encoding.default_internal
.
By default, the first and second form raise Encoding::UndefinedConversionError for characters that are undefined in the destination encoding, and Encoding::InvalidByteSequenceError for invalid byte sequences in the source encoding. The last form by default does not raise exceptions but uses replacement strings.
The options
Hash gives details for
conversion and can have the following keys:
- :invalid
-
If the value is
:replace
, encode replaces invalid byte sequences instr
with the replacement character. The default is to raise the Encoding::InvalidByteSequenceError exception - :undef
-
If the value is
:replace
, encode replaces characters which are undefined in the destination encoding with the replacement character. The default is to raise the Encoding::UndefinedConversionError. - :replace
-
Sets the replacement string to the given value. The default replacement string is “uFFFD” for Unicode encoding forms, and “?” otherwise.
- :fallback
-
Sets the replacement string by the given object for undefined character. The object should be a Hash, a Proc, a Method, or an object which has [] method. Its key is an undefined character encoded in the source encoding of current transcoder. Its value can be any encoding until it can be converted into the destination encoding of the transcoder.
- :xml
-
The value must be
:text
or:attr
. If the value is:text
encode replaces undefined characters with their (upper-case hexadecimal) numeric character references. '&', '<', and '>' are converted to “&”, “<”, and “>”, respectively. If the value is:attr
, encode also quotes the replacement result (using '“'), and replaces '”' with “"”. - :cr_newline
-
Replaces LF (“n”) with CR (“r”) if value is true.
- :crlf_newline
-
Replaces LF (“n”) with CRLF (“rn”) if value is true.
- :universal_newline
-
Replaces CRLF (“rn”) and CR (“r”) with LF (“n”) if value is true.
static VALUE str_encode(int argc, VALUE *argv, VALUE str) { VALUE newstr = str; int encidx = str_transcode(argc, argv, &newstr); return encoded_dup(newstr, str, encidx); }
The first form transcodes the contents of str from str.encoding to
encoding
. The second form transcodes the contents of
str from src_encoding to dst_encoding. The options Hash gives details for conversion. See #encode for details. Returns the
string even if no changes were made.
static VALUE str_encode_bang(int argc, VALUE *argv, VALUE str) { VALUE newstr; int encidx; rb_check_frozen(str); newstr = str; encidx = str_transcode(argc, argv, &newstr); if (encidx < 0) return str; if (newstr == str) { rb_enc_associate_index(str, encidx); return str; } rb_str_shared_replace(str, newstr); return str_encode_associate(str, encidx); }
Returns the Encoding object that represents the encoding of obj.
VALUE rb_obj_encoding(VALUE obj) { int idx = rb_enc_get_index(obj); if (idx < 0) { rb_raise(rb_eTypeError, "unknown encoding"); } return rb_enc_from_encoding_index(idx & ENC_INDEX_MASK); }
Returns true if str
ends with one of the suffixes
given.
static VALUE rb_str_end_with(int argc, VALUE *argv, VALUE str) { int i; char *p, *s, *e; rb_encoding *enc; for (i=0; i<argc; i++) { VALUE tmp = argv[i]; StringValue(tmp); enc = rb_enc_check(str, tmp); if (RSTRING_LEN(str) < RSTRING_LEN(tmp)) continue; p = RSTRING_PTR(str); e = p + RSTRING_LEN(str); s = e - RSTRING_LEN(tmp); if (rb_enc_left_char_head(p, s, e, enc) != s) continue; if (memcmp(s, RSTRING_PTR(tmp), RSTRING_LEN(tmp)) == 0) return Qtrue; } return Qfalse; }
Two strings are equal if they have the same length and content.
static VALUE rb_str_eql(VALUE str1, VALUE str2) { if (str1 == str2) return Qtrue; if (!RB_TYPE_P(str2, T_STRING)) return Qfalse; return str_eql(str1, str2); }
Changes the encoding to encoding
and returns self.
static VALUE rb_str_force_encoding(VALUE str, VALUE enc) { str_modifiable(str); rb_enc_associate(str, rb_to_encoding(enc)); ENC_CODERANGE_CLEAR(str); return str; }
returns the indexth byte as an integer.
static VALUE rb_str_getbyte(VALUE str, VALUE index) { long pos = NUM2LONG(index); if (pos < 0) pos += RSTRING_LEN(str); if (pos < 0 || RSTRING_LEN(str) <= pos) return Qnil; return INT2FIX((unsigned char)RSTRING_PTR(str)[pos]); }
Returns a copy of str with the all occurrences of
pattern substituted for the second argument. The pattern
is typically a Regexp
; if given as a String
, any
regular expression metacharacters it contains will be interpreted
literally, e.g. '\\d'
will match a backlash followed
by 'd', instead of a digit.
If replacement is a String
it will be substituted for
the matched text. It may contain back-references to the pattern's
capture groups of the form \\d
, where d is a group
number, or \\k<n>
, where n is a group name. If
it is a double-quoted string, both back-references must be preceded by an
additional backslash. However, within replacement the special
match variables, such as $&
, will not refer to the current
match.
If the second argument is a Hash
, and the matched text is one
of its keys, the corresponding value is the replacement string.
In the block form, the current match string is passed in as a parameter,
and variables such as $1
, $2
, $`
,
$&
, and $'
will be set appropriately. The
value returned by the block will be substituted for the match on each call.
The result inherits any tainting in the original string or any supplied replacement string.
When neither a block nor a second argument is supplied, an
Enumerator
is returned.
"hello".gsub(/[aeiou]/, '*') #=> "h*ll*" "hello".gsub(/([aeiou])/, '<\1>') #=> "h<e>ll<o>" "hello".gsub(/./) {|s| s.ord.to_s + ' '} #=> "104 101 108 108 111 " "hello".gsub(/(?<foo>[aeiou])/, '{\k<foo>}') #=> "h{e}ll{o}" 'hello'.gsub(/[eo]/, 'e' => 3, 'o' => '*') #=> "h3ll*"
static VALUE rb_str_gsub(int argc, VALUE *argv, VALUE str) { return str_gsub(argc, argv, str, 0); }
Performs the substitutions of String#gsub
in place, returning
str, or nil
if no substitutions were performed. If no
block and no replacement is given, an enumerator is returned
instead.
static VALUE rb_str_gsub_bang(int argc, VALUE *argv, VALUE str) { str_modify_keep_cr(str); return str_gsub(argc, argv, str, 1); }
Return a hash based on the string's length and content.
static VALUE rb_str_hash_m(VALUE str) { st_index_t hval = rb_str_hash(str); return INT2FIX(hval); }
Treats leading characters from str as a string of hexadecimal
digits (with an optional sign and an optional 0x
) and returns
the corresponding number. Zero is returned on error.
"0x0a".hex #=> 10 "-1234".hex #=> -4660 "0".hex #=> 0 "wombat".hex #=> 0
static VALUE rb_str_hex(VALUE str) { return rb_str_to_inum(str, 16, FALSE); }
Returns true
if str contains the given string or
character.
"hello".include? "lo" #=> true "hello".include? "ol" #=> false "hello".include? ?h #=> true
static VALUE rb_str_include(VALUE str, VALUE arg) { long i; StringValue(arg); i = rb_str_index(str, arg, 0); if (i == -1) return Qfalse; return Qtrue; }
Returns the index of the first occurrence of the given substring
or pattern (regexp) in str. Returns nil
if
not found. If the second parameter is present, it specifies the position in
the string to begin the search.
"hello".index('e') #=> 1 "hello".index('lo') #=> 3 "hello".index('a') #=> nil "hello".index(?e) #=> 1 "hello".index(/[aeiou]/, -3) #=> 4
static VALUE rb_str_index_m(int argc, VALUE *argv, VALUE str) { VALUE sub; VALUE initpos; long pos; if (rb_scan_args(argc, argv, "11", &sub, &initpos) == 2) { pos = NUM2LONG(initpos); } else { pos = 0; } if (pos < 0) { pos += str_strlen(str, STR_ENC_GET(str)); if (pos < 0) { if (RB_TYPE_P(sub, T_REGEXP)) { rb_backref_set(Qnil); } return Qnil; } } if (SPECIAL_CONST_P(sub)) goto generic; switch (BUILTIN_TYPE(sub)) { case T_REGEXP: if (pos > str_strlen(str, STR_ENC_GET(str))) return Qnil; pos = str_offset(RSTRING_PTR(str), RSTRING_END(str), pos, rb_enc_check(str, sub), single_byte_optimizable(str)); pos = rb_reg_search(sub, str, pos, 0); pos = rb_str_sublen(str, pos); break; generic: default: { VALUE tmp; tmp = rb_check_string_type(sub); if (NIL_P(tmp)) { rb_raise(rb_eTypeError, "type mismatch: %s given", rb_obj_classname(sub)); } sub = tmp; } /* fall through */ case T_STRING: pos = rb_str_index(str, sub, pos); pos = rb_str_sublen(str, pos); break; } if (pos == -1) return Qnil; return LONG2NUM(pos); }
Replaces the contents and taintedness of str with the corresponding values in other_str.
s = "hello" #=> "hello" s.replace "world" #=> "world"
VALUE rb_str_replace(VALUE str, VALUE str2) { str_modifiable(str); if (str == str2) return str; StringValue(str2); str_discard(str); return str_replace(str, str2); }
Inserts other_str before the character at the given index, modifying str. Negative indices count from the end of the string, and insert after the given character. The intent is insert aString so that it starts at the given index.
"abcd".insert(0, 'X') #=> "Xabcd" "abcd".insert(3, 'X') #=> "abcXd" "abcd".insert(4, 'X') #=> "abcdX" "abcd".insert(-3, 'X') #=> "abXcd" "abcd".insert(-1, 'X') #=> "abcdX"
static VALUE rb_str_insert(VALUE str, VALUE idx, VALUE str2) { long pos = NUM2LONG(idx); if (pos == -1) { return rb_str_append(str, str2); } else if (pos < 0) { pos++; } rb_str_splice(str, pos, 0, str2); return str; }
Returns a printable version of str, surrounded by quote marks, with special characters escaped.
str = "hello" str[3] = "\b" str.inspect #=> "\"hel\\bo\""
VALUE rb_str_inspect(VALUE str) { int encidx = ENCODING_GET(str); rb_encoding *enc = rb_enc_from_index(encidx), *actenc; const char *p, *pend, *prev; char buf[CHAR_ESC_LEN + 1]; VALUE result = rb_str_buf_new(0); rb_encoding *resenc = rb_default_internal_encoding(); int unicode_p = rb_enc_unicode_p(enc); int asciicompat = rb_enc_asciicompat(enc); if (resenc == NULL) resenc = rb_default_external_encoding(); if (!rb_enc_asciicompat(resenc)) resenc = rb_usascii_encoding(); rb_enc_associate(result, resenc); str_buf_cat2(result, "\""); p = RSTRING_PTR(str); pend = RSTRING_END(str); prev = p; actenc = get_actual_encoding(encidx, str); if (actenc != enc) { enc = actenc; if (unicode_p) unicode_p = rb_enc_unicode_p(enc); } while (p < pend) { unsigned int c, cc; int n; n = rb_enc_precise_mbclen(p, pend, enc); if (!MBCLEN_CHARFOUND_P(n)) { if (p > prev) str_buf_cat(result, prev, p - prev); n = rb_enc_mbminlen(enc); if (pend < p + n) n = (int)(pend - p); while (n--) { snprintf(buf, CHAR_ESC_LEN, "\\x%02X", *p & 0377); str_buf_cat(result, buf, strlen(buf)); prev = ++p; } continue; } n = MBCLEN_CHARFOUND_LEN(n); c = rb_enc_mbc_to_codepoint(p, pend, enc); p += n; if ((asciicompat || unicode_p) && (c == '"'|| c == '\\' || (c == '#' && p < pend && MBCLEN_CHARFOUND_P(rb_enc_precise_mbclen(p,pend,enc)) && (cc = rb_enc_codepoint(p,pend,enc), (cc == '$' || cc == '@' || cc == '{'))))) { if (p - n > prev) str_buf_cat(result, prev, p - n - prev); str_buf_cat2(result, "\\"); if (asciicompat || enc == resenc) { prev = p - n; continue; } } switch (c) { case '\n': cc = 'n'; break; case '\r': cc = 'r'; break; case '\t': cc = 't'; break; case '\f': cc = 'f'; break; case '\013': cc = 'v'; break; case '\010': cc = 'b'; break; case '\007': cc = 'a'; break; case 033: cc = 'e'; break; default: cc = 0; break; } if (cc) { if (p - n > prev) str_buf_cat(result, prev, p - n - prev); buf[0] = '\\'; buf[1] = (char)cc; str_buf_cat(result, buf, 2); prev = p; continue; } if ((enc == resenc && rb_enc_isprint(c, enc)) || (asciicompat && rb_enc_isascii(c, enc) && ISPRINT(c))) { continue; } else { if (p - n > prev) str_buf_cat(result, prev, p - n - prev); rb_str_buf_cat_escaped_char(result, c, unicode_p); prev = p; continue; } } if (p > prev) str_buf_cat(result, prev, p - prev); str_buf_cat2(result, "\""); OBJ_INFECT_RAW(result, str); return result; }
Returns the Symbol
corresponding to str, creating the
symbol if it did not previously exist. See Symbol#id2name
.
"Koala".intern #=> :Koala s = 'cat'.to_sym #=> :cat s == :cat #=> true s = '@cat'.to_sym #=> :@cat s == :@cat #=> true
This can also be used to create symbols that cannot be represented using
the :xxx
notation.
'cat and dog'.to_sym #=> :"cat and dog"
VALUE rb_str_intern(VALUE s) { VALUE str = RB_GC_GUARD(s); ID id; id = rb_intern_str(str); return ID2SYM(id); }
Returns the character length of str.
VALUE rb_str_length(VALUE str) { long len; len = str_strlen(str, STR_ENC_GET(str)); return LONG2NUM(len); }
Returns an array of lines in str split using the supplied record
separator ($/
by default). This is a shorthand for
str.each_line(separator).to_a
.
If a block is given, which is a deprecated form, works the same as
each_line
.
static VALUE rb_str_lines(int argc, VALUE *argv, VALUE str) { return rb_str_enumerate_lines(argc, argv, str, 1); }
If integer is greater than the length of str, returns a
new String
of length integer with str left
justified and padded with padstr; otherwise, returns str.
"hello".ljust(4) #=> "hello" "hello".ljust(20) #=> "hello " "hello".ljust(20, '1234') #=> "hello123412341234123"
static VALUE rb_str_ljust(int argc, VALUE *argv, VALUE str) { return rb_str_justify(argc, argv, str, 'l'); }
Returns a copy of str with leading whitespace removed. See also
String#rstrip
and String#strip
.
" hello ".lstrip #=> "hello " "hello".lstrip #=> "hello"
static VALUE rb_str_lstrip(VALUE str) { str = rb_str_dup(str); rb_str_lstrip_bang(str); return str; }
Removes leading whitespace from str, returning nil
if
no change was made. See also String#rstrip!
and
String#strip!
.
" hello ".lstrip #=> "hello " "hello".lstrip! #=> nil
static VALUE rb_str_lstrip_bang(VALUE str) { rb_encoding *enc; char *s, *t, *e; str_modify_keep_cr(str); enc = STR_ENC_GET(str); s = RSTRING_PTR(str); if (!s || RSTRING_LEN(str) == 0) return Qnil; e = t = RSTRING_END(str); /* remove spaces at head */ while (s < e) { int n; unsigned int cc = rb_enc_codepoint_len(s, e, &n, enc); if (!rb_isspace(cc)) break; s += n; } if (s > RSTRING_PTR(str)) { STR_SET_LEN(str, t-s); memmove(RSTRING_PTR(str), s, RSTRING_LEN(str)); RSTRING_PTR(str)[RSTRING_LEN(str)] = '\0'; return str; } return Qnil; }
Converts pattern to a Regexp
(if it isn't already
one), then invokes its match
method on str. If the
second parameter is present, it specifies the position in the string to
begin the search.
'hello'.match('(.)\1') #=> #<MatchData "ll" 1:"l"> 'hello'.match('(.)\1')[0] #=> "ll" 'hello'.match(/(.)\1/)[0] #=> "ll" 'hello'.match('xx') #=> nil
If a block is given, invoke the block with MatchData if match succeed, so that you can write
str.match(pat) {|m| ...}
instead of
if m = str.match(pat) ... end
The return value is a value from block execution in this case.
static VALUE rb_str_match_m(int argc, VALUE *argv, VALUE str) { VALUE re, result; if (argc < 1) rb_check_arity(argc, 1, 2); re = argv[0]; argv[0] = str; result = rb_funcall2(get_pat(re, 0), rb_intern("match"), argc, argv); if (!NIL_P(result) && rb_block_given_p()) { return rb_yield(result); } return result; }
Returns the successor to str. The successor is calculated by incrementing characters starting from the rightmost alphanumeric (or the rightmost character if there are no alphanumerics) in the string. Incrementing a digit always results in another digit, and incrementing a letter results in another letter of the same case. Incrementing nonalphanumerics uses the underlying character set's collating sequence.
If the increment generates a “carry,'' the character to the left of it is incremented. This process repeats until there is no carry, adding an additional character if necessary.
"abcd".succ #=> "abce" "THX1138".succ #=> "THX1139" "<<koala>>".succ #=> "<<koalb>>" "1999zzz".succ #=> "2000aaa" "ZZZ9999".succ #=> "AAAA0000" "***".succ #=> "**+"
VALUE rb_str_succ(VALUE orig) { rb_encoding *enc; VALUE str; char *sbeg, *s, *e, *last_alnum = 0; int c = -1; long l; char carry[ONIGENC_CODE_TO_MBC_MAXLEN] = "\1"; long carry_pos = 0, carry_len = 1; enum neighbor_char neighbor = NEIGHBOR_FOUND; str = rb_str_new5(orig, RSTRING_PTR(orig), RSTRING_LEN(orig)); rb_enc_cr_str_copy_for_substr(str, orig); OBJ_INFECT(str, orig); if (RSTRING_LEN(str) == 0) return str; enc = STR_ENC_GET(orig); sbeg = RSTRING_PTR(str); s = e = sbeg + RSTRING_LEN(str); while ((s = rb_enc_prev_char(sbeg, s, e, enc)) != 0) { if (neighbor == NEIGHBOR_NOT_CHAR && last_alnum) { if (ISALPHA(*last_alnum) ? ISDIGIT(*s) : ISDIGIT(*last_alnum) ? ISALPHA(*s) : 0) { s = last_alnum; break; } } l = rb_enc_precise_mbclen(s, e, enc); if (!ONIGENC_MBCLEN_CHARFOUND_P(l)) continue; l = ONIGENC_MBCLEN_CHARFOUND_LEN(l); neighbor = enc_succ_alnum_char(s, l, enc, carry); switch (neighbor) { case NEIGHBOR_NOT_CHAR: continue; case NEIGHBOR_FOUND: return str; case NEIGHBOR_WRAPPED: last_alnum = s; break; } c = 1; carry_pos = s - sbeg; carry_len = l; } if (c == -1) { /* str contains no alnum */ s = e; while ((s = rb_enc_prev_char(sbeg, s, e, enc)) != 0) { enum neighbor_char neighbor; char tmp[ONIGENC_CODE_TO_MBC_MAXLEN]; l = rb_enc_precise_mbclen(s, e, enc); if (!ONIGENC_MBCLEN_CHARFOUND_P(l)) continue; l = ONIGENC_MBCLEN_CHARFOUND_LEN(l); MEMCPY(tmp, s, char, l); neighbor = enc_succ_char(tmp, l, enc); switch (neighbor) { case NEIGHBOR_FOUND: MEMCPY(s, tmp, char, l); return str; break; case NEIGHBOR_WRAPPED: MEMCPY(s, tmp, char, l); break; case NEIGHBOR_NOT_CHAR: break; } if (rb_enc_precise_mbclen(s, s+l, enc) != l) { /* wrapped to \0...\0. search next valid char. */ enc_succ_char(s, l, enc); } if (!rb_enc_asciicompat(enc)) { MEMCPY(carry, s, char, l); carry_len = l; } carry_pos = s - sbeg; } } RESIZE_CAPA(str, RSTRING_LEN(str) + carry_len); s = RSTRING_PTR(str) + carry_pos; memmove(s + carry_len, s, RSTRING_LEN(str) - carry_pos); memmove(s, carry, carry_len); STR_SET_LEN(str, RSTRING_LEN(str) + carry_len); RSTRING_PTR(str)[RSTRING_LEN(str)] = '\0'; rb_enc_str_coderange(str); return str; }
Equivalent to String#succ
, but modifies the receiver in place.
static VALUE rb_str_succ_bang(VALUE str) { rb_str_shared_replace(str, rb_str_succ(str)); return str; }
Treats leading characters of str as a string of octal digits (with an optional sign) and returns the corresponding number. Returns 0 if the conversion fails.
"123".oct #=> 83 "-377".oct #=> -255 "bad".oct #=> 0 "0377bad".oct #=> 255
static VALUE rb_str_oct(VALUE str) { return rb_str_to_inum(str, -8, FALSE); }
Return the Integer
ordinal of a one-character string.
"a".ord #=> 97
VALUE rb_str_ord(VALUE s) { unsigned int c; c = rb_enc_codepoint(RSTRING_PTR(s), RSTRING_END(s), STR_ENC_GET(s)); return UINT2NUM(c); }
Searches sep or pattern (regexp) in the string and returns the part before it, the match, and the part after it. If it is not found, returns two empty strings and str.
"hello".partition("l") #=> ["he", "l", "lo"] "hello".partition("x") #=> ["hello", "", ""] "hello".partition(/.l/) #=> ["h", "el", "lo"]
static VALUE rb_str_partition(VALUE str, VALUE sep) { long pos; int regex = FALSE; if (RB_TYPE_P(sep, T_REGEXP)) { pos = rb_reg_search(sep, str, 0, 0); regex = TRUE; } else { VALUE tmp; tmp = rb_check_string_type(sep); if (NIL_P(tmp)) { rb_raise(rb_eTypeError, "type mismatch: %s given", rb_obj_classname(sep)); } sep = tmp; pos = rb_str_index(str, sep, 0); } if (pos < 0) { failed: return rb_ary_new3(3, str, str_new_empty(str), str_new_empty(str)); } if (regex) { sep = rb_str_subpat(str, sep, INT2FIX(0)); if (pos == 0 && RSTRING_LEN(sep) == 0) goto failed; } return rb_ary_new3(3, rb_str_subseq(str, 0, pos), sep, rb_str_subseq(str, pos+RSTRING_LEN(sep), RSTRING_LEN(str)-pos-RSTRING_LEN(sep))); }
Prepend—Prepend the given string to str.
a = "world" a.prepend("hello ") #=> "hello world" a #=> "hello world"
static VALUE rb_str_prepend(VALUE str, VALUE str2) { StringValue(str2); StringValue(str); rb_str_update(str, 0L, 0L, str2); return str; }
Replaces the contents and taintedness of str with the corresponding values in other_str.
s = "hello" #=> "hello" s.replace "world" #=> "world"
VALUE rb_str_replace(VALUE str, VALUE str2) { str_modifiable(str); if (str == str2) return str; StringValue(str2); str_discard(str); return str_replace(str, str2); }
Returns a new string with the characters from str in reverse order.
"stressed".reverse #=> "desserts"
static VALUE rb_str_reverse(VALUE str) { rb_encoding *enc; VALUE rev; char *s, *e, *p; int cr; if (RSTRING_LEN(str) <= 1) return rb_str_dup(str); enc = STR_ENC_GET(str); rev = rb_str_new5(str, 0, RSTRING_LEN(str)); s = RSTRING_PTR(str); e = RSTRING_END(str); p = RSTRING_END(rev); cr = ENC_CODERANGE(str); if (RSTRING_LEN(str) > 1) { if (single_byte_optimizable(str)) { while (s < e) { *--p = *s++; } } else if (cr == ENC_CODERANGE_VALID) { while (s < e) { int clen = rb_enc_fast_mbclen(s, e, enc); p -= clen; memcpy(p, s, clen); s += clen; } } else { cr = rb_enc_asciicompat(enc) ? ENC_CODERANGE_7BIT : ENC_CODERANGE_VALID; while (s < e) { int clen = rb_enc_mbclen(s, e, enc); if (clen > 1 || (*s & 0x80)) cr = ENC_CODERANGE_UNKNOWN; p -= clen; memcpy(p, s, clen); s += clen; } } } STR_SET_LEN(rev, RSTRING_LEN(str)); OBJ_INFECT_RAW(rev, str); str_enc_copy(rev, str); ENC_CODERANGE_SET(rev, cr); return rev; }
Reverses str in place.
static VALUE rb_str_reverse_bang(VALUE str) { if (RSTRING_LEN(str) > 1) { if (single_byte_optimizable(str)) { char *s, *e, c; str_modify_keep_cr(str); s = RSTRING_PTR(str); e = RSTRING_END(str) - 1; while (s < e) { c = *s; *s++ = *e; *e-- = c; } } else { rb_str_shared_replace(str, rb_str_reverse(str)); } } else { str_modify_keep_cr(str); } return str; }
Returns the index of the last occurrence of the given substring or
pattern (regexp) in str. Returns nil
if not
found. If the second parameter is present, it specifies the position in the
string to end the search—characters beyond this point will not be
considered.
"hello".rindex('e') #=> 1 "hello".rindex('l') #=> 3 "hello".rindex('a') #=> nil "hello".rindex(?e) #=> 1 "hello".rindex(/[aeiou]/, -2) #=> 1
static VALUE rb_str_rindex_m(int argc, VALUE *argv, VALUE str) { VALUE sub; VALUE vpos; rb_encoding *enc = STR_ENC_GET(str); long pos, len = str_strlen(str, enc); if (rb_scan_args(argc, argv, "11", &sub, &vpos) == 2) { pos = NUM2LONG(vpos); if (pos < 0) { pos += len; if (pos < 0) { if (RB_TYPE_P(sub, T_REGEXP)) { rb_backref_set(Qnil); } return Qnil; } } if (pos > len) pos = len; } else { pos = len; } if (SPECIAL_CONST_P(sub)) goto generic; switch (BUILTIN_TYPE(sub)) { case T_REGEXP: /* enc = rb_get_check(str, sub); */ pos = str_offset(RSTRING_PTR(str), RSTRING_END(str), pos, STR_ENC_GET(str), single_byte_optimizable(str)); if (!RREGEXP(sub)->ptr || RREGEXP_SRC_LEN(sub)) { pos = rb_reg_search(sub, str, pos, 1); pos = rb_str_sublen(str, pos); } if (pos >= 0) return LONG2NUM(pos); break; generic: default: { VALUE tmp; tmp = rb_check_string_type(sub); if (NIL_P(tmp)) { rb_raise(rb_eTypeError, "type mismatch: %s given", rb_obj_classname(sub)); } sub = tmp; } /* fall through */ case T_STRING: pos = rb_str_rindex(str, sub, pos); if (pos >= 0) return LONG2NUM(pos); break; } return Qnil; }
If integer is greater than the length of str, returns a
new String
of length integer with str right
justified and padded with padstr; otherwise, returns str.
"hello".rjust(4) #=> "hello" "hello".rjust(20) #=> " hello" "hello".rjust(20, '1234') #=> "123412341234123hello"
static VALUE rb_str_rjust(int argc, VALUE *argv, VALUE str) { return rb_str_justify(argc, argv, str, 'r'); }
Searches sep or pattern (regexp) in the string from the end of the string, and returns the part before it, the match, and the part after it. If it is not found, returns two empty strings and str.
"hello".rpartition("l") #=> ["hel", "l", "o"] "hello".rpartition("x") #=> ["", "", "hello"] "hello".rpartition(/.l/) #=> ["he", "ll", "o"]
static VALUE rb_str_rpartition(VALUE str, VALUE sep) { long pos = RSTRING_LEN(str); int regex = FALSE; if (RB_TYPE_P(sep, T_REGEXP)) { pos = rb_reg_search(sep, str, pos, 1); regex = TRUE; } else { VALUE tmp; tmp = rb_check_string_type(sep); if (NIL_P(tmp)) { rb_raise(rb_eTypeError, "type mismatch: %s given", rb_obj_classname(sep)); } sep = tmp; pos = rb_str_sublen(str, pos); pos = rb_str_rindex(str, sep, pos); } if (pos < 0) { return rb_ary_new3(3, str_new_empty(str), str_new_empty(str), str); } if (regex) { sep = rb_reg_nth_match(0, rb_backref_get()); } else { pos = rb_str_offset(str, pos); } return rb_ary_new3(3, rb_str_subseq(str, 0, pos), sep, rb_str_subseq(str, pos+RSTRING_LEN(sep), RSTRING_LEN(str)-pos-RSTRING_LEN(sep))); }
Returns a copy of str with trailing whitespace removed. See also
String#lstrip
and String#strip
.
" hello ".rstrip #=> " hello" "hello".rstrip #=> "hello"
static VALUE rb_str_rstrip(VALUE str) { str = rb_str_dup(str); rb_str_rstrip_bang(str); return str; }
Removes trailing whitespace from str, returning nil
if no change was made. See also String#lstrip!
and
String#strip!
.
" hello ".rstrip #=> " hello" "hello".rstrip! #=> nil
static VALUE rb_str_rstrip_bang(VALUE str) { rb_encoding *enc; char *s, *t, *e; str_modify_keep_cr(str); enc = STR_ENC_GET(str); rb_str_check_dummy_enc(enc); s = RSTRING_PTR(str); if (!s || RSTRING_LEN(str) == 0) return Qnil; t = e = RSTRING_END(str); /* remove trailing spaces or '\0's */ if (single_byte_optimizable(str)) { unsigned char c; while (s < t && ((c = *(t-1)) == '\0' || ascii_isspace(c))) t--; } else { char *tp; while ((tp = rb_enc_prev_char(s, t, e, enc)) != NULL) { unsigned int c = rb_enc_codepoint(tp, e, enc); if (c && !rb_isspace(c)) break; t = tp; } } if (t < e) { long len = t-RSTRING_PTR(str); STR_SET_LEN(str, len); RSTRING_PTR(str)[len] = '\0'; return str; } return Qnil; }
Both forms iterate through str, matching the pattern (which may be
a Regexp
or a String
). For each match, a result
is generated and either added to the result array or passed to the block.
If the pattern contains no groups, each individual result consists of the
matched string, $&
. If the pattern contains groups, each
individual result is itself an array containing one entry per group.
a = "cruel world" a.scan(/\w+/) #=> ["cruel", "world"] a.scan(/.../) #=> ["cru", "el ", "wor"] a.scan(/(...)/) #=> [["cru"], ["el "], ["wor"]] a.scan(/(..)(..)/) #=> [["cr", "ue"], ["l ", "wo"]]
And the block form:
a.scan(/\w+/) {|w| print "<<#{w}>> " } print "\n" a.scan(/(.)(.)/) {|x,y| print y, x } print "\n"
produces:
<<cruel>> <<world>> rceu lowlr
static VALUE rb_str_scan(VALUE str, VALUE pat) { VALUE result; long start = 0; long last = -1, prev = 0; char *p = RSTRING_PTR(str); long len = RSTRING_LEN(str); pat = get_pat(pat, 1); if (!rb_block_given_p()) { VALUE ary = rb_ary_new(); while (!NIL_P(result = scan_once(str, pat, &start))) { last = prev; prev = start; rb_ary_push(ary, result); } if (last >= 0) rb_reg_search(pat, str, last, 0); return ary; } while (!NIL_P(result = scan_once(str, pat, &start))) { last = prev; prev = start; rb_yield(result); str_mod_check(str, p, len); } if (last >= 0) rb_reg_search(pat, str, last, 0); return str; }
Scans the current string. If a block is given, it functions exactly like block_scanf.
arr = "123 456".scanf("%d%d") # => [123, 456] require 'pp' "this 123 read that 456 other".scanf("%s%d%s") {|m| pp m} # ["this", 123, "read"] # ["that", 456, "other"] # => [["this", 123, "read"], ["that", 456, "other"]]
See Scanf for details on creating a format string.
You will need to require 'scanf' to use #scanf
# File lib/scanf.rb, line 720 def scanf(fstr,&b) #:yield: current_match if b block_scanf(fstr,&b) else fs = if fstr.is_a? Scanf::FormatString fstr else Scanf::FormatString.new(fstr) end fs.match(self) end end
If the string is invalid byte sequence then replace invalid bytes with given replacement character, else returns self. If block is given, replace invalid bytes with returned value of the block.
"abc\u3042\x81".scrub #=> "abc\u3042\uFFFD" "abc\u3042\x81".scrub("*") #=> "abc\u3042*" "abc\u3042\xE3\x80".scrub{|bytes| '<'+bytes.unpack('H*')[0]+'>' } #=> "abc\u3042<e380>"
static VALUE str_scrub(int argc, VALUE *argv, VALUE str) { VALUE repl = argc ? (rb_check_arity(argc, 0, 1), argv[0]) : Qnil; VALUE new = rb_str_scrub(str, repl); return NIL_P(new) ? rb_str_dup(str): new; }
If the string is invalid byte sequence then replace invalid bytes with given replacement character, else returns self. If block is given, replace invalid bytes with returned value of the block.
"abc\u3042\x81".scrub! #=> "abc\u3042\uFFFD" "abc\u3042\x81".scrub!("*") #=> "abc\u3042*" "abc\u3042\xE3\x80".scrub!{|bytes| '<'+bytes.unpack('H*')[0]+'>' } #=> "abc\u3042<e380>"
static VALUE str_scrub_bang(int argc, VALUE *argv, VALUE str) { VALUE repl = argc ? (rb_check_arity(argc, 0, 1), argv[0]) : Qnil; VALUE new = rb_str_scrub(str, repl); if (!NIL_P(new)) rb_str_replace(str, new); return str; }
modifies the indexth byte as integer.
static VALUE rb_str_setbyte(VALUE str, VALUE index, VALUE value) { long pos = NUM2LONG(index); int byte = NUM2INT(value); rb_str_modify(str); if (pos < -RSTRING_LEN(str) || RSTRING_LEN(str) <= pos) rb_raise(rb_eIndexError, "index %ld out of string", pos); if (pos < 0) pos += RSTRING_LEN(str); RSTRING_PTR(str)[pos] = byte; return value; }
Escapes str
so that it can be safely used in a Bourne shell
command line.
See Shellwords#shellescape for details.
# File lib/shellwords.rb, line 199 def shellescape Shellwords.escape(self) end
Splits str
into an array of tokens in the same way the UNIX
Bourne shell does.
See Shellwords#shellsplit for details.
# File lib/shellwords.rb, line 188 def shellsplit Shellwords.split(self) end
Returns the character length of str.
VALUE rb_str_length(VALUE str) { long len; len = str_strlen(str, STR_ENC_GET(str)); return LONG2NUM(len); }
Element Reference — If passed a single index
, returns a
substring of one character at that index. If passed a start
index and a length
, returns a substring containing
length
characters starting at the index
. If
passed a range
, its beginning and end are interpreted as
offsets delimiting the substring to be returned.
In these three cases, if an index is negative, it is counted from the end
of the string. For the start
and range
cases the
starting index is just before a character and an index matching the
string's size. Additionally, an empty string is returned when the
starting index for a character range is at the end of the string.
Returns nil
if the initial index falls outside the string or
the length is negative.
If a Regexp
is supplied, the matching portion of the string is
returned. If a capture
follows the regular expression, which
may be a capture group index or name, follows the regular expression that
component of the MatchData is returned
instead.
If a match_str
is given, that string is returned if it occurs
in the string.
Returns nil
if the regular expression does not match or the
match string cannot be found.
a = "hello there" a[1] #=> "e" a[2, 3] #=> "llo" a[2..3] #=> "ll" a[-3, 2] #=> "er" a[7..-2] #=> "her" a[-4..-2] #=> "her" a[-2..-4] #=> "" a[11, 0] #=> "" a[11] #=> nil a[12, 0] #=> nil a[12..-1] #=> nil a[/[aeiou](.)\1/] #=> "ell" a[/[aeiou](.)\1/, 0] #=> "ell" a[/[aeiou](.)\1/, 1] #=> "l" a[/[aeiou](.)\1/, 2] #=> nil a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "non_vowel"] #=> "l" a[/(?<vowel>[aeiou])(?<non_vowel>[^aeiou])/, "vowel"] #=> "e" a["lo"] #=> "lo" a["bye"] #=> nil
static VALUE rb_str_aref_m(int argc, VALUE *argv, VALUE str) { if (argc == 2) { if (RB_TYPE_P(argv[0], T_REGEXP)) { return rb_str_subpat(str, argv[0], argv[1]); } return rb_str_substr(str, NUM2LONG(argv[0]), NUM2LONG(argv[1])); } rb_check_arity(argc, 1, 2); return rb_str_aref(str, argv[0]); }
Deletes the specified portion from str, and returns the portion deleted.
string = "this is a string" string.slice!(2) #=> "i" string.slice!(3..6) #=> " is " string.slice!(/s.*t/) #=> "sa st" string.slice!("r") #=> "r" string #=> "thing"
static VALUE rb_str_slice_bang(int argc, VALUE *argv, VALUE str) { VALUE result; VALUE buf[3]; int i; rb_check_arity(argc, 1, 2); for (i=0; i<argc; i++) { buf[i] = argv[i]; } str_modify_keep_cr(str); result = rb_str_aref_m(argc, buf, str); if (!NIL_P(result)) { buf[i] = rb_str_new(0,0); rb_str_aset_m(argc+1, buf, str); } return result; }
Divides str into substrings based on a delimiter, returning an array of these substrings.
If pattern is a String
, then its contents are used as
the delimiter when splitting str. If pattern is a single
space, str is split on whitespace, with leading whitespace and
runs of contiguous whitespace characters ignored.
If pattern is a Regexp
, str is divided where
the pattern matches. Whenever the pattern matches a zero-length string,
str is split into individual characters. If pattern
contains groups, the respective matches will be returned in the array as
well.
If pattern is omitted, the value of $;
is used. If
$;
is nil
(which is the default), str is
split on whitespace as if ` ' were specified.
If the limit parameter is omitted, trailing null fields are
suppressed. If limit is a positive number, at most that number of
fields will be returned (if limit is 1
, the entire
string is returned as the only entry in an array). If negative, there is no
limit to the number of fields returned, and trailing null fields are not
suppressed.
When the input str
is empty an empty Array is returned as the
string is considered to have no fields to split.
" now's the time".split #=> ["now's", "the", "time"] " now's the time".split(' ') #=> ["now's", "the", "time"] " now's the time".split(/ /) #=> ["", "now's", "", "the", "time"] "1, 2.34,56, 7".split(%r{,\s*}) #=> ["1", "2.34", "56", "7"] "hello".split(//) #=> ["h", "e", "l", "l", "o"] "hello".split(//, 3) #=> ["h", "e", "llo"] "hi mom".split(%r{\s*}) #=> ["h", "i", "m", "o", "m"] "mellow yellow".split("ello") #=> ["m", "w y", "w"] "1,2,,3,4,,".split(',') #=> ["1", "2", "", "3", "4"] "1,2,,3,4,,".split(',', 4) #=> ["1", "2", "", "3,4,,"] "1,2,,3,4,,".split(',', -4) #=> ["1", "2", "", "3", "4", "", ""] "".split(',', -1) #=> []
static VALUE rb_str_split_m(int argc, VALUE *argv, VALUE str) { rb_encoding *enc; VALUE spat; VALUE limit; enum {awk, string, regexp} split_type; long beg, end, i = 0; int lim = 0; VALUE result, tmp; if (rb_scan_args(argc, argv, "02", &spat, &limit) == 2) { lim = NUM2INT(limit); if (lim <= 0) limit = Qnil; else if (lim == 1) { if (RSTRING_LEN(str) == 0) return rb_ary_new2(0); return rb_ary_new3(1, str); } i = 1; } enc = STR_ENC_GET(str); if (NIL_P(spat) && NIL_P(spat = rb_fs)) { split_type = awk; } else { if (RB_TYPE_P(spat, T_STRING)) { rb_encoding *enc2 = STR_ENC_GET(spat); split_type = string; if (RSTRING_LEN(spat) == 0) { /* Special case - split into chars */ spat = rb_reg_regcomp(spat); split_type = regexp; } else if (rb_enc_asciicompat(enc2) == 1) { if (RSTRING_LEN(spat) == 1 && RSTRING_PTR(spat)[0] == ' '){ split_type = awk; } } else { int l; if (rb_enc_ascget(RSTRING_PTR(spat), RSTRING_END(spat), &l, enc2) == ' ' && RSTRING_LEN(spat) == l) { split_type = awk; } } } else { spat = get_pat(spat, 1); split_type = regexp; } } result = rb_ary_new(); beg = 0; if (split_type == awk) { char *ptr = RSTRING_PTR(str); char *eptr = RSTRING_END(str); char *bptr = ptr; int skip = 1; unsigned int c; end = beg; if (is_ascii_string(str)) { while (ptr < eptr) { c = (unsigned char)*ptr++; if (skip) { if (ascii_isspace(c)) { beg = ptr - bptr; } else { end = ptr - bptr; skip = 0; if (!NIL_P(limit) && lim <= i) break; } } else if (ascii_isspace(c)) { rb_ary_push(result, rb_str_subseq(str, beg, end-beg)); skip = 1; beg = ptr - bptr; if (!NIL_P(limit)) ++i; } else { end = ptr - bptr; } } } else { while (ptr < eptr) { int n; c = rb_enc_codepoint_len(ptr, eptr, &n, enc); ptr += n; if (skip) { if (rb_isspace(c)) { beg = ptr - bptr; } else { end = ptr - bptr; skip = 0; if (!NIL_P(limit) && lim <= i) break; } } else if (rb_isspace(c)) { rb_ary_push(result, rb_str_subseq(str, beg, end-beg)); skip = 1; beg = ptr - bptr; if (!NIL_P(limit)) ++i; } else { end = ptr - bptr; } } } } else if (split_type == string) { char *ptr = RSTRING_PTR(str); char *temp = ptr; char *eptr = RSTRING_END(str); char *sptr = RSTRING_PTR(spat); long slen = RSTRING_LEN(spat); if (is_broken_string(str)) { rb_raise(rb_eArgError, "invalid byte sequence in %s", rb_enc_name(STR_ENC_GET(str))); } if (is_broken_string(spat)) { rb_raise(rb_eArgError, "invalid byte sequence in %s", rb_enc_name(STR_ENC_GET(spat))); } enc = rb_enc_check(str, spat); while (ptr < eptr && (end = rb_memsearch(sptr, slen, ptr, eptr - ptr, enc)) >= 0) { /* Check we are at the start of a char */ char *t = rb_enc_right_char_head(ptr, ptr + end, eptr, enc); if (t != ptr + end) { ptr = t; continue; } rb_ary_push(result, rb_str_subseq(str, ptr - temp, end)); ptr += end + slen; if (!NIL_P(limit) && lim <= ++i) break; } beg = ptr - temp; } else { char *ptr = RSTRING_PTR(str); long len = RSTRING_LEN(str); long start = beg; long idx; int last_null = 0; struct re_registers *regs; while ((end = rb_reg_search(spat, str, start, 0)) >= 0) { regs = RMATCH_REGS(rb_backref_get()); if (start == end && BEG(0) == END(0)) { if (!ptr) { rb_ary_push(result, str_new_empty(str)); break; } else if (last_null == 1) { rb_ary_push(result, rb_str_subseq(str, beg, rb_enc_fast_mbclen(ptr+beg, ptr+len, enc))); beg = start; } else { if (ptr+start == ptr+len) start++; else start += rb_enc_fast_mbclen(ptr+start,ptr+len,enc); last_null = 1; continue; } } else { rb_ary_push(result, rb_str_subseq(str, beg, end-beg)); beg = start = END(0); } last_null = 0; for (idx=1; idx < regs->num_regs; idx++) { if (BEG(idx) == -1) continue; if (BEG(idx) == END(idx)) tmp = str_new_empty(str); else tmp = rb_str_subseq(str, BEG(idx), END(idx)-BEG(idx)); rb_ary_push(result, tmp); } if (!NIL_P(limit) && lim <= ++i) break; } } if (RSTRING_LEN(str) > 0 && (!NIL_P(limit) || RSTRING_LEN(str) > beg || lim < 0)) { if (RSTRING_LEN(str) == beg) tmp = str_new_empty(str); else tmp = rb_str_subseq(str, beg, RSTRING_LEN(str)-beg); rb_ary_push(result, tmp); } if (NIL_P(limit) && lim == 0) { long len; while ((len = RARRAY_LEN(result)) > 0 && (tmp = RARRAY_AREF(result, len-1), RSTRING_LEN(tmp) == 0)) rb_ary_pop(result); } return result; }
Builds a set of characters from the other_str parameter(s) using
the procedure described for String#count
. Returns a new string
where runs of the same character that occur in this set are replaced by a
single character. If no arguments are given, all runs of identical
characters are replaced by a single character.
"yellow moon".squeeze #=> "yelow mon" " now is the".squeeze(" ") #=> " now is the" "putters shoot balls".squeeze("m-z") #=> "puters shot balls"
static VALUE rb_str_squeeze(int argc, VALUE *argv, VALUE str) { str = rb_str_dup(str); rb_str_squeeze_bang(argc, argv, str); return str; }
Squeezes str in place, returning either str, or
nil
if no changes were made.
static VALUE rb_str_squeeze_bang(int argc, VALUE *argv, VALUE str) { char squeez[TR_TABLE_SIZE]; rb_encoding *enc = 0; VALUE del = 0, nodel = 0; char *s, *send, *t; int i, modify = 0; int ascompat, singlebyte = single_byte_optimizable(str); unsigned int save; if (argc == 0) { enc = STR_ENC_GET(str); } else { for (i=0; i<argc; i++) { VALUE s = argv[i]; StringValue(s); enc = rb_enc_check(str, s); if (singlebyte && !single_byte_optimizable(s)) singlebyte = 0; tr_setup_table(s, squeez, i==0, &del, &nodel, enc); } } str_modify_keep_cr(str); s = t = RSTRING_PTR(str); if (!s || RSTRING_LEN(str) == 0) return Qnil; send = RSTRING_END(str); save = -1; ascompat = rb_enc_asciicompat(enc); if (singlebyte) { while (s < send) { unsigned int c = *(unsigned char*)s++; if (c != save || (argc > 0 && !squeez[c])) { *t++ = save = c; } } } else { while (s < send) { unsigned int c; int clen; if (ascompat && (c = *(unsigned char*)s) < 0x80) { if (c != save || (argc > 0 && !squeez[c])) { *t++ = save = c; } s++; } else { c = rb_enc_codepoint_len(s, send, &clen, enc); if (c != save || (argc > 0 && !tr_find(c, squeez, del, nodel))) { if (t != s) rb_enc_mbcput(c, t, enc); save = c; t += clen; } s += clen; } } } *t = '\0'; if (t - RSTRING_PTR(str) != RSTRING_LEN(str)) { STR_SET_LEN(str, t - RSTRING_PTR(str)); modify = 1; } if (modify) return str; return Qnil; }
Returns true if str
starts with one of the
prefixes
given.
"hello".start_with?("hell") #=> true # returns true if one of the prefixes matches. "hello".start_with?("heaven", "hell") #=> true "hello".start_with?("heaven", "paradise") #=> false
static VALUE rb_str_start_with(int argc, VALUE *argv, VALUE str) { int i; for (i=0; i<argc; i++) { VALUE tmp = argv[i]; StringValue(tmp); rb_enc_check(str, tmp); if (RSTRING_LEN(str) < RSTRING_LEN(tmp)) continue; if (memcmp(RSTRING_PTR(str), RSTRING_PTR(tmp), RSTRING_LEN(tmp)) == 0) return Qtrue; } return Qfalse; }
Returns a copy of str with leading and trailing whitespace removed.
" hello ".strip #=> "hello" "\tgoodbye\r\n".strip #=> "goodbye"
static VALUE rb_str_strip(VALUE str) { str = rb_str_dup(str); rb_str_strip_bang(str); return str; }
Removes leading and trailing whitespace from str. Returns
nil
if str was not altered.
static VALUE rb_str_strip_bang(VALUE str) { VALUE l = rb_str_lstrip_bang(str); VALUE r = rb_str_rstrip_bang(str); if (NIL_P(l) && NIL_P(r)) return Qnil; return str; }
Returns a copy of str
with the first occurrence of
pattern
replaced by the second argument. The
pattern
is typically a Regexp; if
given as a String, any regular expression metacharacters it contains will
be interpreted literally, e.g. '\\d'
will match a
backlash followed by 'd', instead of a digit.
If replacement
is a String it will be substituted for the
matched text. It may contain back-references to the pattern's capture
groups of the form "\d"
, where d is a group
number, or "\k<n>"
, where n is a
group name. If it is a double-quoted string, both back-references must be
preceded by an additional backslash. However, within
replacement
the special match variables, such as
&$
, will not refer to the current match. If
replacement
is a String that looks like a pattern's
capture group but is actaully not a pattern capture group e.g.
"\'"
, then it will have to be preceded by two
backslashes like so "\\'"
.
If the second argument is a Hash, and the matched text is one of its keys, the corresponding value is the replacement string.
In the block form, the current match string is passed in as a parameter,
and variables such as $1
, $2
, $`
,
$&
, and $'
will be set appropriately. The
value returned by the block will be substituted for the match on each call.
The result inherits any tainting in the original string or any supplied replacement string.
"hello".sub(/[aeiou]/, '*') #=> "h*llo" "hello".sub(/([aeiou])/, '<\1>') #=> "h<e>llo" "hello".sub(/./) {|s| s.ord.to_s + ' ' } #=> "104 ello" "hello".sub(/(?<foo>[aeiou])/, '*\k<foo>*') #=> "h*e*llo" 'Is SHELL your preferred shell?'.sub(/[[:upper:]]{2,}/, ENV) #=> "Is /bin/bash your preferred shell?"
static VALUE rb_str_sub(int argc, VALUE *argv, VALUE str) { str = rb_str_dup(str); rb_str_sub_bang(argc, argv, str); return str; }
Performs the same substitution as #sub in-place.
Returns str
if a substitution was performed or
nil
if no substitution was performed.
static VALUE rb_str_sub_bang(int argc, VALUE *argv, VALUE str) { VALUE pat, repl, hash = Qnil; int iter = 0; int tainted = 0; long plen; int min_arity = rb_block_given_p() ? 1 : 2; rb_check_arity(argc, min_arity, 2); if (argc == 1) { iter = 1; } else { repl = argv[1]; hash = rb_check_hash_type(argv[1]); if (NIL_P(hash)) { StringValue(repl); } tainted = OBJ_TAINTED_RAW(repl); } pat = get_pat(argv[0], 1); str_modifiable(str); if (rb_reg_search(pat, str, 0, 0) >= 0) { rb_encoding *enc; int cr = ENC_CODERANGE(str); VALUE match = rb_backref_get(); struct re_registers *regs = RMATCH_REGS(match); long beg0 = BEG(0); long end0 = END(0); char *p, *rp; long len, rlen; if (iter || !NIL_P(hash)) { p = RSTRING_PTR(str); len = RSTRING_LEN(str); if (iter) { repl = rb_obj_as_string(rb_yield(rb_reg_nth_match(0, match))); } else { repl = rb_hash_aref(hash, rb_str_subseq(str, beg0, end0 - beg0)); repl = rb_obj_as_string(repl); } str_mod_check(str, p, len); rb_check_frozen(str); } else { repl = rb_reg_regsub(repl, str, regs, pat); } enc = rb_enc_compatible(str, repl); if (!enc) { rb_encoding *str_enc = STR_ENC_GET(str); p = RSTRING_PTR(str); len = RSTRING_LEN(str); if (coderange_scan(p, beg0, str_enc) != ENC_CODERANGE_7BIT || coderange_scan(p+end0, len-end0, str_enc) != ENC_CODERANGE_7BIT) { rb_raise(rb_eEncCompatError, "incompatible character encodings: %s and %s", rb_enc_name(str_enc), rb_enc_name(STR_ENC_GET(repl))); } enc = STR_ENC_GET(repl); } rb_str_modify(str); rb_enc_associate(str, enc); tainted |= OBJ_TAINTED_RAW(repl); if (ENC_CODERANGE_UNKNOWN < cr && cr < ENC_CODERANGE_BROKEN) { int cr2 = ENC_CODERANGE(repl); if (cr2 == ENC_CODERANGE_BROKEN || (cr == ENC_CODERANGE_VALID && cr2 == ENC_CODERANGE_7BIT)) cr = ENC_CODERANGE_UNKNOWN; else cr = cr2; } plen = end0 - beg0; rp = RSTRING_PTR(repl); rlen = RSTRING_LEN(repl); len = RSTRING_LEN(str); if (rlen > plen) { RESIZE_CAPA(str, len + rlen - plen); } p = RSTRING_PTR(str); if (rlen != plen) { memmove(p + beg0 + rlen, p + beg0 + plen, len - beg0 - plen); } memcpy(p + beg0, rp, rlen); len += rlen - plen; STR_SET_LEN(str, len); RSTRING_PTR(str)[len] = '\0'; ENC_CODERANGE_SET(str, cr); FL_SET_RAW(str, tainted); return str; } return Qnil; }
Returns the successor to str. The successor is calculated by incrementing characters starting from the rightmost alphanumeric (or the rightmost character if there are no alphanumerics) in the string. Incrementing a digit always results in another digit, and incrementing a letter results in another letter of the same case. Incrementing nonalphanumerics uses the underlying character set's collating sequence.
If the increment generates a “carry,'' the character to the left of it is incremented. This process repeats until there is no carry, adding an additional character if necessary.
"abcd".succ #=> "abce" "THX1138".succ #=> "THX1139" "<<koala>>".succ #=> "<<koalb>>" "1999zzz".succ #=> "2000aaa" "ZZZ9999".succ #=> "AAAA0000" "***".succ #=> "**+"
VALUE rb_str_succ(VALUE orig) { rb_encoding *enc; VALUE str; char *sbeg, *s, *e, *last_alnum = 0; int c = -1; long l; char carry[ONIGENC_CODE_TO_MBC_MAXLEN] = "\1"; long carry_pos = 0, carry_len = 1; enum neighbor_char neighbor = NEIGHBOR_FOUND; str = rb_str_new5(orig, RSTRING_PTR(orig), RSTRING_LEN(orig)); rb_enc_cr_str_copy_for_substr(str, orig); OBJ_INFECT(str, orig); if (RSTRING_LEN(str) == 0) return str; enc = STR_ENC_GET(orig); sbeg = RSTRING_PTR(str); s = e = sbeg + RSTRING_LEN(str); while ((s = rb_enc_prev_char(sbeg, s, e, enc)) != 0) { if (neighbor == NEIGHBOR_NOT_CHAR && last_alnum) { if (ISALPHA(*last_alnum) ? ISDIGIT(*s) : ISDIGIT(*last_alnum) ? ISALPHA(*s) : 0) { s = last_alnum; break; } } l = rb_enc_precise_mbclen(s, e, enc); if (!ONIGENC_MBCLEN_CHARFOUND_P(l)) continue; l = ONIGENC_MBCLEN_CHARFOUND_LEN(l); neighbor = enc_succ_alnum_char(s, l, enc, carry); switch (neighbor) { case NEIGHBOR_NOT_CHAR: continue; case NEIGHBOR_FOUND: return str; case NEIGHBOR_WRAPPED: last_alnum = s; break; } c = 1; carry_pos = s - sbeg; carry_len = l; } if (c == -1) { /* str contains no alnum */ s = e; while ((s = rb_enc_prev_char(sbeg, s, e, enc)) != 0) { enum neighbor_char neighbor; char tmp[ONIGENC_CODE_TO_MBC_MAXLEN]; l = rb_enc_precise_mbclen(s, e, enc); if (!ONIGENC_MBCLEN_CHARFOUND_P(l)) continue; l = ONIGENC_MBCLEN_CHARFOUND_LEN(l); MEMCPY(tmp, s, char, l); neighbor = enc_succ_char(tmp, l, enc); switch (neighbor) { case NEIGHBOR_FOUND: MEMCPY(s, tmp, char, l); return str; break; case NEIGHBOR_WRAPPED: MEMCPY(s, tmp, char, l); break; case NEIGHBOR_NOT_CHAR: break; } if (rb_enc_precise_mbclen(s, s+l, enc) != l) { /* wrapped to \0...\0. search next valid char. */ enc_succ_char(s, l, enc); } if (!rb_enc_asciicompat(enc)) { MEMCPY(carry, s, char, l); carry_len = l; } carry_pos = s - sbeg; } } RESIZE_CAPA(str, RSTRING_LEN(str) + carry_len); s = RSTRING_PTR(str) + carry_pos; memmove(s + carry_len, s, RSTRING_LEN(str) - carry_pos); memmove(s, carry, carry_len); STR_SET_LEN(str, RSTRING_LEN(str) + carry_len); RSTRING_PTR(str)[RSTRING_LEN(str)] = '\0'; rb_enc_str_coderange(str); return str; }
Equivalent to String#succ
, but modifies the receiver in place.
static VALUE rb_str_succ_bang(VALUE str) { rb_str_shared_replace(str, rb_str_succ(str)); return str; }
Returns a basic n-bit checksum of the characters in str,
where n is the optional Fixnum
parameter, defaulting
to 16. The result is simply the sum of the binary value of each character
in str modulo 2**n - 1
. This is not a particularly
good checksum.
static VALUE rb_str_sum(int argc, VALUE *argv, VALUE str) { VALUE vbits; int bits; char *ptr, *p, *pend; long len; VALUE sum = INT2FIX(0); unsigned long sum0 = 0; if (argc == 0) { bits = 16; } else { rb_scan_args(argc, argv, "01", &vbits); bits = NUM2INT(vbits); } ptr = p = RSTRING_PTR(str); len = RSTRING_LEN(str); pend = p + len; while (p < pend) { if (FIXNUM_MAX - UCHAR_MAX < sum0) { sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0)); str_mod_check(str, ptr, len); sum0 = 0; } sum0 += (unsigned char)*p; p++; } if (bits == 0) { if (sum0) { sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0)); } } else { if (sum == INT2FIX(0)) { if (bits < (int)sizeof(long)*CHAR_BIT) { sum0 &= (((unsigned long)1)<<bits)-1; } sum = LONG2FIX(sum0); } else { VALUE mod; if (sum0) { sum = rb_funcall(sum, '+', 1, LONG2FIX(sum0)); } mod = rb_funcall(INT2FIX(1), rb_intern("<<"), 1, INT2FIX(bits)); mod = rb_funcall(mod, '-', 1, INT2FIX(1)); sum = rb_funcall(sum, '&', 1, mod); } } return sum; }
Returns a copy of str with uppercase alphabetic characters converted to lowercase and lowercase characters converted to uppercase. Note: case conversion is effective only in ASCII region.
"Hello".swapcase #=> "hELLO" "cYbEr_PuNk11".swapcase #=> "CyBeR_pUnK11"
static VALUE rb_str_swapcase(VALUE str) { str = rb_str_dup(str); rb_str_swapcase_bang(str); return str; }
Equivalent to String#swapcase
, but modifies the receiver in
place, returning str, or nil
if no changes were made.
Note: case conversion is effective only in ASCII region.
static VALUE rb_str_swapcase_bang(VALUE str) { rb_encoding *enc; char *s, *send; int modify = 0; int n; str_modify_keep_cr(str); enc = STR_ENC_GET(str); rb_str_check_dummy_enc(enc); s = RSTRING_PTR(str); send = RSTRING_END(str); while (s < send) { unsigned int c = rb_enc_codepoint_len(s, send, &n, enc); if (rb_enc_isupper(c, enc)) { /* assuming toupper returns codepoint with same size */ rb_enc_mbcput(rb_enc_tolower(c, enc), s, enc); modify = 1; } else if (rb_enc_islower(c, enc)) { /* assuming tolower returns codepoint with same size */ rb_enc_mbcput(rb_enc_toupper(c, enc), s, enc); modify = 1; } s += n; } if (modify) return str; return Qnil; }
Returns the result of interpreting leading characters in str as a
floating point number. Extraneous characters past the end of a valid number
are ignored. If there is not a valid number at the start of str,
0.0
is returned. This method never raises an exception.
"123.45e1".to_f #=> 1234.5 "45.67 degrees".to_f #=> 45.67 "thx1138".to_f #=> 0.0
static VALUE rb_str_to_f(VALUE str) { return DBL2NUM(rb_str_to_dbl(str, FALSE)); }
Returns the result of interpreting leading characters in str as an
integer base base (between 2 and 36). Extraneous characters past
the end of a valid number are ignored. If there is not a valid number at
the start of str, 0
is returned. This method never
raises an exception when base is valid.
"12345".to_i #=> 12345 "99 red balloons".to_i #=> 99 "0a".to_i #=> 0 "0a".to_i(16) #=> 10 "hello".to_i #=> 0 "1100101".to_i(2) #=> 101 "1100101".to_i(8) #=> 294977 "1100101".to_i(10) #=> 1100101 "1100101".to_i(16) #=> 17826049
static VALUE rb_str_to_i(int argc, VALUE *argv, VALUE str) { int base; if (argc == 0) base = 10; else { VALUE b; rb_scan_args(argc, argv, "01", &b); base = NUM2INT(b); } if (base < 0) { rb_raise(rb_eArgError, "invalid radix %d", base); } return rb_str_to_inum(str, base, FALSE); }
Returns a rational which denotes the string form. The parser ignores leading whitespaces and trailing garbage. Any digit sequences can be separated by an underscore. Returns zero for null or garbage string.
NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is equivalent to '3/10'.to_r, but the latter isn't so.
' 2 '.to_r #=> (2/1) '300/2'.to_r #=> (150/1) '-9.2'.to_r #=> (-46/5) '-9.2e2'.to_r #=> (-920/1) '1_234_567'.to_r #=> (1234567/1) '21 june 09'.to_r #=> (21/1) '21/06/09'.to_r #=> (7/2) 'bwv 1079'.to_r #=> (0/1)
See Kernel.Rational.
static VALUE string_to_r(VALUE self) { char *s; VALUE num; rb_must_asciicompat(self); s = RSTRING_PTR(self); if (s && s[RSTRING_LEN(self)]) { rb_str_modify(self); s = RSTRING_PTR(self); s[RSTRING_LEN(self)] = '\0'; } if (!s) s = (char *)""; (void)parse_rat(s, 0, &num); if (RB_TYPE_P(num, T_FLOAT)) rb_raise(rb_eFloatDomainError, "Infinity"); return num; }
Returns the receiver.
static VALUE rb_str_to_s(VALUE str) { if (rb_obj_class(str) != rb_cString) { return str_duplicate(rb_cString, str); } return str; }
Returns the receiver.
static VALUE rb_str_to_s(VALUE str) { if (rb_obj_class(str) != rb_cString) { return str_duplicate(rb_cString, str); } return str; }
Returns the Symbol
corresponding to str, creating the
symbol if it did not previously exist. See Symbol#id2name
.
"Koala".intern #=> :Koala s = 'cat'.to_sym #=> :cat s == :cat #=> true s = '@cat'.to_sym #=> :@cat s == :@cat #=> true
This can also be used to create symbols that cannot be represented using
the :xxx
notation.
'cat and dog'.to_sym #=> :"cat and dog"
VALUE rb_str_intern(VALUE s) { VALUE str = RB_GC_GUARD(s); ID id; id = rb_intern_str(str); return ID2SYM(id); }
Returns a copy of str
with the characters in
from_str
replaced by the corresponding characters in
to_str
. If to_str
is shorter than
from_str
, it is padded with its last character in order to
maintain the correspondence.
"hello".tr('el', 'ip') #=> "hippo" "hello".tr('aeiou', '*') #=> "h*ll*" "hello".tr('aeiou', 'AA*') #=> "hAll*"
Both strings may use the c1-c2
notation to denote ranges of
characters, and from_str
may start with a ^
,
which denotes all characters except those listed.
"hello".tr('a-y', 'b-z') #=> "ifmmp" "hello".tr('^aeiou', '*') #=> "*e**o"
The backslash character </code> can be used to escape
<code>^
or -
and is otherwise ignored unless it
appears at the end of a range or the end of the from_str
or
to_str
:
"hello^world".tr("\\^aeiou", "*") #=> "h*ll**w*rld" "hello-world".tr("a\\-eo", "*") #=> "h*ll**w*rld" "hello\r\nworld".tr("\r", "") #=> "hello\nworld" "hello\r\nworld".tr("\\r", "") #=> "hello\r\nwold" "hello\r\nworld".tr("\\\r", "") #=> "hello\nworld" "X['\\b']".tr("X\\", "") #=> "['b']" "X['\\b']".tr("X-\\]", "") #=> "'b'"
static VALUE rb_str_tr(VALUE str, VALUE src, VALUE repl) { str = rb_str_dup(str); tr_trans(str, src, repl, 0); return str; }
Translates str in place, using the same rules as
String#tr
. Returns str, or nil
if no
changes were made.
static VALUE rb_str_tr_bang(VALUE str, VALUE src, VALUE repl) { return tr_trans(str, src, repl, 0); }
Processes a copy of str as described under String#tr
,
then removes duplicate characters in regions that were affected by the
translation.
"hello".tr_s('l', 'r') #=> "hero" "hello".tr_s('el', '*') #=> "h*o" "hello".tr_s('el', 'hx') #=> "hhxo"
static VALUE rb_str_tr_s(VALUE str, VALUE src, VALUE repl) { str = rb_str_dup(str); tr_trans(str, src, repl, 1); return str; }
Performs String#tr_s
processing on str in place,
returning str, or nil
if no changes were made.
static VALUE rb_str_tr_s_bang(VALUE str, VALUE src, VALUE repl) { return tr_trans(str, src, repl, 1); }
Decodes str (which may contain binary data) according to the
format string, returning an array of each value extracted. The format
string consists of a sequence of single-character directives, summarized in
the table at the end of this entry. Each directive may be followed by a
number, indicating the number of times to repeat with this directive. An
asterisk (“*
'') will use up all remaining elements.
The directives sSiIlL
may each be followed by an underscore
(“_
'') or exclamation mark (“!
'')
to use the underlying platform's native size for the specified type;
otherwise, it uses a platform-independent consistent size. Spaces are
ignored in the format string. See also Array#pack
.
"abc \0\0abc \0\0".unpack('A6Z6') #=> ["abc", "abc "] "abc \0\0".unpack('a3a3') #=> ["abc", " \000\000"] "abc \0abc \0".unpack('Z*Z*') #=> ["abc ", "abc "] "aa".unpack('b8B8') #=> ["10000110", "01100001"] "aaa".unpack('h2H2c') #=> ["16", "61", 97] "\xfe\xff\xfe\xff".unpack('sS') #=> [-2, 65534] "now=20is".unpack('M*') #=> ["now is"] "whole".unpack('xax2aX2aX1aX2a') #=> ["h", "e", "l", "l", "o"]
This table summarizes the various formats and the Ruby classes returned by each.
Integer | | Directive | Returns | Meaning ----------------------------------------------------------------- C | Integer | 8-bit unsigned (unsigned char) S | Integer | 16-bit unsigned, native endian (uint16_t) L | Integer | 32-bit unsigned, native endian (uint32_t) Q | Integer | 64-bit unsigned, native endian (uint64_t) | | c | Integer | 8-bit signed (signed char) s | Integer | 16-bit signed, native endian (int16_t) l | Integer | 32-bit signed, native endian (int32_t) q | Integer | 64-bit signed, native endian (int64_t) | | S_, S! | Integer | unsigned short, native endian I, I_, I! | Integer | unsigned int, native endian L_, L! | Integer | unsigned long, native endian Q_, Q! | Integer | unsigned long long, native endian (ArgumentError | | if the platform has no long long type.) | | (Q_ and Q! is available since Ruby 2.1.) | | s_, s! | Integer | signed short, native endian i, i_, i! | Integer | signed int, native endian l_, l! | Integer | signed long, native endian q_, q! | Integer | signed long long, native endian (ArgumentError | | if the platform has no long long type.) | | (q_ and q! is available since Ruby 2.1.) | | S> L> Q> | Integer | same as the directives without ">" except s> l> q> | | big endian S!> I!> | | (available since Ruby 1.9.3) L!> Q!> | | "S>" is same as "n" s!> i!> | | "L>" is same as "N" l!> q!> | | | | S< L< Q< | Integer | same as the directives without "<" except s< l< q< | | little endian S!< I!< | | (available since Ruby 1.9.3) L!< Q!< | | "S<" is same as "v" s!< i!< | | "L<" is same as "V" l!< q!< | | | | n | Integer | 16-bit unsigned, network (big-endian) byte order N | Integer | 32-bit unsigned, network (big-endian) byte order v | Integer | 16-bit unsigned, VAX (little-endian) byte order V | Integer | 32-bit unsigned, VAX (little-endian) byte order | | U | Integer | UTF-8 character w | Integer | BER-compressed integer (see Array.pack) Float | | Directive | Returns | Meaning ----------------------------------------------------------------- D, d | Float | double-precision, native format F, f | Float | single-precision, native format E | Float | double-precision, little-endian byte order e | Float | single-precision, little-endian byte order G | Float | double-precision, network (big-endian) byte order g | Float | single-precision, network (big-endian) byte order String | | Directive | Returns | Meaning ----------------------------------------------------------------- A | String | arbitrary binary string (remove trailing nulls and ASCII spaces) a | String | arbitrary binary string Z | String | null-terminated string B | String | bit string (MSB first) b | String | bit string (LSB first) H | String | hex string (high nibble first) h | String | hex string (low nibble first) u | String | UU-encoded string M | String | quoted-printable, MIME encoding (see RFC2045) m | String | base64 encoded string (RFC 2045) (default) | | base64 encoded string (RFC 4648) if followed by 0 P | String | pointer to a structure (fixed-length string) p | String | pointer to a null-terminated string Misc. | | Directive | Returns | Meaning ----------------------------------------------------------------- @ | --- | skip to the offset given by the length argument X | --- | skip backward one byte x | --- | skip forward one byte
static VALUE pack_unpack(VALUE str, VALUE fmt) { static const char hexdigits[] = "0123456789abcdef"; char *s, *send; char *p, *pend; VALUE ary; char type; long len, tmp_len; int star; #ifdef NATINT_PACK int natint; /* native integer */ #endif int block_p = rb_block_given_p(); int signed_p, integer_size, bigendian_p; #define UNPACK_PUSH(item) do {\ VALUE item_val = (item);\ if (block_p) {\ rb_yield(item_val);\ }\ else {\ rb_ary_push(ary, item_val);\ }\ } while (0) StringValue(str); StringValue(fmt); s = RSTRING_PTR(str); send = s + RSTRING_LEN(str); p = RSTRING_PTR(fmt); pend = p + RSTRING_LEN(fmt); ary = block_p ? Qnil : rb_ary_new(); while (p < pend) { int explicit_endian = 0; type = *p++; #ifdef NATINT_PACK natint = 0; #endif if (ISSPACE(type)) continue; if (type == '#') { while ((p < pend) && (*p != '\n')) { p++; } continue; } star = 0; { modifiers: switch (*p) { case '_': case '!': if (strchr(natstr, type)) { #ifdef NATINT_PACK natint = 1; #endif p++; } else { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, natstr); } goto modifiers; case '<': case '>': if (!strchr(endstr, type)) { rb_raise(rb_eArgError, "'%c' allowed only after types %s", *p, endstr); } if (explicit_endian) { rb_raise(rb_eRangeError, "Can't use both '<' and '>'"); } explicit_endian = *p++; goto modifiers; } } if (p >= pend) len = 1; else if (*p == '*') { star = 1; len = send - s; p++; } else if (ISDIGIT(*p)) { errno = 0; len = STRTOUL(p, (char**)&p, 10); if (errno) { rb_raise(rb_eRangeError, "pack length too big"); } } else { len = (type != '@'); } switch (type) { case '%': rb_raise(rb_eArgError, "%% is not supported"); break; case 'A': if (len > send - s) len = send - s; { long end = len; char *t = s + len - 1; while (t >= s) { if (*t != ' ' && *t != '\0') break; t--; len--; } UNPACK_PUSH(infected_str_new(s, len, str)); s += end; } break; case 'Z': { char *t = s; if (len > send-s) len = send-s; while (t < s+len && *t) t++; UNPACK_PUSH(infected_str_new(s, t-s, str)); if (t < send) t++; s = star ? t : s+len; } break; case 'a': if (len > send - s) len = send - s; UNPACK_PUSH(infected_str_new(s, len, str)); s += len; break; case 'b': { VALUE bitstr; char *t; int bits; long i; if (p[-1] == '*' || len > (send - s) * 8) len = (send - s) * 8; bits = 0; UNPACK_PUSH(bitstr = rb_usascii_str_new(0, len)); t = RSTRING_PTR(bitstr); for (i=0; i<len; i++) { if (i & 7) bits >>= 1; else bits = *s++; *t++ = (bits & 1) ? '1' : '0'; } } break; case 'B': { VALUE bitstr; char *t; int bits; long i; if (p[-1] == '*' || len > (send - s) * 8) len = (send - s) * 8; bits = 0; UNPACK_PUSH(bitstr = rb_usascii_str_new(0, len)); t = RSTRING_PTR(bitstr); for (i=0; i<len; i++) { if (i & 7) bits <<= 1; else bits = *s++; *t++ = (bits & 128) ? '1' : '0'; } } break; case 'h': { VALUE bitstr; char *t; int bits; long i; if (p[-1] == '*' || len > (send - s) * 2) len = (send - s) * 2; bits = 0; UNPACK_PUSH(bitstr = rb_usascii_str_new(0, len)); t = RSTRING_PTR(bitstr); for (i=0; i<len; i++) { if (i & 1) bits >>= 4; else bits = *s++; *t++ = hexdigits[bits & 15]; } } break; case 'H': { VALUE bitstr; char *t; int bits; long i; if (p[-1] == '*' || len > (send - s) * 2) len = (send - s) * 2; bits = 0; UNPACK_PUSH(bitstr = rb_usascii_str_new(0, len)); t = RSTRING_PTR(bitstr); for (i=0; i<len; i++) { if (i & 1) bits <<= 4; else bits = *s++; *t++ = hexdigits[(bits >> 4) & 15]; } } break; case 'c': signed_p = 1; integer_size = 1; bigendian_p = BIGENDIAN_P(); /* not effective */ goto unpack_integer; case 'C': signed_p = 0; integer_size = 1; bigendian_p = BIGENDIAN_P(); /* not effective */ goto unpack_integer; case 's': signed_p = 1; integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'S': signed_p = 0; integer_size = NATINT_LEN(short, 2); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'i': signed_p = 1; integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'I': signed_p = 0; integer_size = (int)sizeof(int); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'l': signed_p = 1; integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'L': signed_p = 0; integer_size = NATINT_LEN(long, 4); bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'q': signed_p = 1; integer_size = NATINT_LEN_Q; bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'Q': signed_p = 0; integer_size = NATINT_LEN_Q; bigendian_p = BIGENDIAN_P(); goto unpack_integer; case 'n': signed_p = 0; integer_size = 2; bigendian_p = 1; goto unpack_integer; case 'N': signed_p = 0; integer_size = 4; bigendian_p = 1; goto unpack_integer; case 'v': signed_p = 0; integer_size = 2; bigendian_p = 0; goto unpack_integer; case 'V': signed_p = 0; integer_size = 4; bigendian_p = 0; goto unpack_integer; unpack_integer: if (explicit_endian) { bigendian_p = explicit_endian == '>'; } PACK_LENGTH_ADJUST_SIZE(integer_size); while (len-- > 0) { int flags = bigendian_p ? INTEGER_PACK_BIG_ENDIAN : INTEGER_PACK_LITTLE_ENDIAN; VALUE val; if (signed_p) flags |= INTEGER_PACK_2COMP; val = rb_integer_unpack(s, integer_size, 1, 0, flags); UNPACK_PUSH(val); s += integer_size; } PACK_ITEM_ADJUST(); break; case 'f': case 'F': PACK_LENGTH_ADJUST_SIZE(sizeof(float)); while (len-- > 0) { float tmp; memcpy(&tmp, s, sizeof(float)); s += sizeof(float); UNPACK_PUSH(DBL2NUM((double)tmp)); } PACK_ITEM_ADJUST(); break; case 'e': PACK_LENGTH_ADJUST_SIZE(sizeof(float)); while (len-- > 0) { float tmp; FLOAT_CONVWITH(ftmp); memcpy(&tmp, s, sizeof(float)); s += sizeof(float); tmp = VTOHF(tmp,ftmp); UNPACK_PUSH(DBL2NUM((double)tmp)); } PACK_ITEM_ADJUST(); break; case 'E': PACK_LENGTH_ADJUST_SIZE(sizeof(double)); while (len-- > 0) { double tmp; DOUBLE_CONVWITH(dtmp); memcpy(&tmp, s, sizeof(double)); s += sizeof(double); tmp = VTOHD(tmp,dtmp); UNPACK_PUSH(DBL2NUM(tmp)); } PACK_ITEM_ADJUST(); break; case 'D': case 'd': PACK_LENGTH_ADJUST_SIZE(sizeof(double)); while (len-- > 0) { double tmp; memcpy(&tmp, s, sizeof(double)); s += sizeof(double); UNPACK_PUSH(DBL2NUM(tmp)); } PACK_ITEM_ADJUST(); break; case 'g': PACK_LENGTH_ADJUST_SIZE(sizeof(float)); while (len-- > 0) { float tmp; FLOAT_CONVWITH(ftmp); memcpy(&tmp, s, sizeof(float)); s += sizeof(float); tmp = NTOHF(tmp,ftmp); UNPACK_PUSH(DBL2NUM((double)tmp)); } PACK_ITEM_ADJUST(); break; case 'G': PACK_LENGTH_ADJUST_SIZE(sizeof(double)); while (len-- > 0) { double tmp; DOUBLE_CONVWITH(dtmp); memcpy(&tmp, s, sizeof(double)); s += sizeof(double); tmp = NTOHD(tmp,dtmp); UNPACK_PUSH(DBL2NUM(tmp)); } PACK_ITEM_ADJUST(); break; case 'U': if (len > send - s) len = send - s; while (len > 0 && s < send) { long alen = send - s; unsigned long l; l = utf8_to_uv(s, &alen); s += alen; len--; UNPACK_PUSH(ULONG2NUM(l)); } break; case 'u': { VALUE buf = infected_str_new(0, (send - s)*3/4, str); char *ptr = RSTRING_PTR(buf); long total = 0; while (s < send && *s > ' ' && *s < 'a') { long a,b,c,d; char hunk[4]; hunk[3] = '\0'; len = (*s++ - ' ') & 077; total += len; if (total > RSTRING_LEN(buf)) { len -= total - RSTRING_LEN(buf); total = RSTRING_LEN(buf); } while (len > 0) { long mlen = len > 3 ? 3 : len; if (s < send && *s >= ' ') a = (*s++ - ' ') & 077; else a = 0; if (s < send && *s >= ' ') b = (*s++ - ' ') & 077; else b = 0; if (s < send && *s >= ' ') c = (*s++ - ' ') & 077; else c = 0; if (s < send && *s >= ' ') d = (*s++ - ' ') & 077; else d = 0; hunk[0] = (char)(a << 2 | b >> 4); hunk[1] = (char)(b << 4 | c >> 2); hunk[2] = (char)(c << 6 | d); memcpy(ptr, hunk, mlen); ptr += mlen; len -= mlen; } if (*s == '\r') s++; if (*s == '\n') s++; else if (s < send && (s+1 == send || s[1] == '\n')) s += 2; /* possible checksum byte */ } rb_str_set_len(buf, total); UNPACK_PUSH(buf); } break; case 'm': { VALUE buf = infected_str_new(0, (send - s + 3)*3/4, str); /* +3 is for skipping paddings */ char *ptr = RSTRING_PTR(buf); int a = -1,b = -1,c = 0,d = 0; static signed char b64_xtable[256]; if (b64_xtable['/'] <= 0) { int i; for (i = 0; i < 256; i++) { b64_xtable[i] = -1; } for (i = 0; i < 64; i++) { b64_xtable[(unsigned char)b64_table[i]] = (char)i; } } if (len == 0) { while (s < send) { a = b = c = d = -1; a = b64_xtable[(unsigned char)*s++]; if (s >= send || a == -1) rb_raise(rb_eArgError, "invalid base64"); b = b64_xtable[(unsigned char)*s++]; if (s >= send || b == -1) rb_raise(rb_eArgError, "invalid base64"); if (*s == '=') { if (s + 2 == send && *(s + 1) == '=') break; rb_raise(rb_eArgError, "invalid base64"); } c = b64_xtable[(unsigned char)*s++]; if (s >= send || c == -1) rb_raise(rb_eArgError, "invalid base64"); if (s + 1 == send && *s == '=') break; d = b64_xtable[(unsigned char)*s++]; if (d == -1) rb_raise(rb_eArgError, "invalid base64"); *ptr++ = castchar(a << 2 | b >> 4); *ptr++ = castchar(b << 4 | c >> 2); *ptr++ = castchar(c << 6 | d); } if (c == -1) { *ptr++ = castchar(a << 2 | b >> 4); if (b & 0xf) rb_raise(rb_eArgError, "invalid base64"); } else if (d == -1) { *ptr++ = castchar(a << 2 | b >> 4); *ptr++ = castchar(b << 4 | c >> 2); if (c & 0x3) rb_raise(rb_eArgError, "invalid base64"); } } else { while (s < send) { a = b = c = d = -1; while ((a = b64_xtable[(unsigned char)*s]) == -1 && s < send) {s++;} if (s >= send) break; s++; while ((b = b64_xtable[(unsigned char)*s]) == -1 && s < send) {s++;} if (s >= send) break; s++; while ((c = b64_xtable[(unsigned char)*s]) == -1 && s < send) {if (*s == '=') break; s++;} if (*s == '=' || s >= send) break; s++; while ((d = b64_xtable[(unsigned char)*s]) == -1 && s < send) {if (*s == '=') break; s++;} if (*s == '=' || s >= send) break; s++; *ptr++ = castchar(a << 2 | b >> 4); *ptr++ = castchar(b << 4 | c >> 2); *ptr++ = castchar(c << 6 | d); a = -1; } if (a != -1 && b != -1) { if (c == -1) *ptr++ = castchar(a << 2 | b >> 4); else { *ptr++ = castchar(a << 2 | b >> 4); *ptr++ = castchar(b << 4 | c >> 2); } } } rb_str_set_len(buf, ptr - RSTRING_PTR(buf)); UNPACK_PUSH(buf); } break; case 'M': { VALUE buf = infected_str_new(0, send - s, str); char *ptr = RSTRING_PTR(buf), *ss = s; int c1, c2; while (s < send) { if (*s == '=') { if (++s == send) break; if (s+1 < send && *s == '\r' && *(s+1) == '\n') s++; if (*s != '\n') { if ((c1 = hex2num(*s)) == -1) break; if (++s == send) break; if ((c2 = hex2num(*s)) == -1) break; *ptr++ = castchar(c1 << 4 | c2); } } else { *ptr++ = *s; } s++; ss = s; } rb_str_set_len(buf, ptr - RSTRING_PTR(buf)); rb_str_buf_cat(buf, ss, send-ss); ENCODING_CODERANGE_SET(buf, rb_ascii8bit_encindex(), ENC_CODERANGE_VALID); UNPACK_PUSH(buf); } break; case '@': if (len > RSTRING_LEN(str)) rb_raise(rb_eArgError, "@ outside of string"); s = RSTRING_PTR(str) + len; break; case 'X': if (len > s - RSTRING_PTR(str)) rb_raise(rb_eArgError, "X outside of string"); s -= len; break; case 'x': if (len > send - s) rb_raise(rb_eArgError, "x outside of string"); s += len; break; case 'P': if (sizeof(char *) <= (size_t)(send - s)) { VALUE tmp = Qnil; char *t; memcpy(&t, s, sizeof(char *)); s += sizeof(char *); if (t) { VALUE a; const VALUE *p, *pend; if (!(a = rb_str_associated(str))) { rb_raise(rb_eArgError, "no associated pointer"); } p = RARRAY_CONST_PTR(a); pend = p + RARRAY_LEN(a); while (p < pend) { if (RB_TYPE_P(*p, T_STRING) && RSTRING_PTR(*p) == t) { if (len < RSTRING_LEN(*p)) { tmp = rb_tainted_str_new(t, len); rb_str_associate(tmp, a); } else { tmp = *p; } break; } p++; } if (p == pend) { rb_raise(rb_eArgError, "non associated pointer"); } } UNPACK_PUSH(tmp); } break; case 'p': if (len > (long)((send - s) / sizeof(char *))) len = (send - s) / sizeof(char *); while (len-- > 0) { if ((size_t)(send - s) < sizeof(char *)) break; else { VALUE tmp = Qnil; char *t; memcpy(&t, s, sizeof(char *)); s += sizeof(char *); if (t) { VALUE a; const VALUE *p, *pend; if (!(a = rb_str_associated(str))) { rb_raise(rb_eArgError, "no associated pointer"); } p = RARRAY_CONST_PTR(a); pend = p + RARRAY_LEN(a); while (p < pend) { if (RB_TYPE_P(*p, T_STRING) && RSTRING_PTR(*p) == t) { tmp = *p; break; } p++; } if (p == pend) { rb_raise(rb_eArgError, "non associated pointer"); } } UNPACK_PUSH(tmp); } } break; case 'w': { char *s0 = s; while (len > 0 && s < send) { if (*s & 0x80) { s++; } else { s++; UNPACK_PUSH(rb_integer_unpack(s0, s-s0, 1, 1, INTEGER_PACK_BIG_ENDIAN)); len--; s0 = s; } } } break; default: rb_warning("unknown unpack directive '%c' in '%s'", type, RSTRING_PTR(fmt)); break; } } return ary; }
Returns a copy of str with all lowercase letters replaced with their uppercase counterparts. The operation is locale insensitive—only characters “a'' to “z'' are affected. Note: case replacement is effective only in ASCII region.
"hEllO".upcase #=> "HELLO"
static VALUE rb_str_upcase(VALUE str) { str = rb_str_dup(str); rb_str_upcase_bang(str); return str; }
Upcases the contents of str, returning nil
if no
changes were made. Note: case replacement is effective only in ASCII
region.
static VALUE rb_str_upcase_bang(VALUE str) { rb_encoding *enc; char *s, *send; int modify = 0; int n; str_modify_keep_cr(str); enc = STR_ENC_GET(str); rb_str_check_dummy_enc(enc); s = RSTRING_PTR(str); send = RSTRING_END(str); if (single_byte_optimizable(str)) { while (s < send) { unsigned int c = *(unsigned char*)s; if (rb_enc_isascii(c, enc) && 'a' <= c && c <= 'z') { *s = 'A' + (c - 'a'); modify = 1; } s++; } } else { int ascompat = rb_enc_asciicompat(enc); while (s < send) { unsigned int c; if (ascompat && (c = *(unsigned char*)s) < 0x80) { if (rb_enc_isascii(c, enc) && 'a' <= c && c <= 'z') { *s = 'A' + (c - 'a'); modify = 1; } s++; } else { c = rb_enc_codepoint_len(s, send, &n, enc); if (rb_enc_islower(c, enc)) { /* assuming toupper returns codepoint with same size */ rb_enc_mbcput(rb_enc_toupper(c, enc), s, enc); modify = 1; } s += n; } } } if (modify) return str; return Qnil; }
Iterates through successive values, starting at str and ending at
other_str inclusive, passing each value in turn to the block. The
String#succ
method is used to generate each value. If
optional second argument exclusive is omitted or is false, the last value
will be included; otherwise it will be excluded.
If no block is given, an enumerator is returned instead.
"a8".upto("b6") {|s| print s, ' ' } for s in "a8".."b6" print s, ' ' end
produces:
a8 a9 b0 b1 b2 b3 b4 b5 b6 a8 a9 b0 b1 b2 b3 b4 b5 b6
If str and other_str contains only ascii numeric characters, both are recognized as decimal numbers. In addition, the width of string (e.g. leading zeros) is handled appropriately.
"9".upto("11").to_a #=> ["9", "10", "11"] "25".upto("5").to_a #=> [] "07".upto("11").to_a #=> ["07", "08", "09", "10", "11"]
static VALUE rb_str_upto(int argc, VALUE *argv, VALUE beg) { VALUE end, exclusive; VALUE current, after_end; ID succ; int n, excl, ascii; rb_encoding *enc; rb_scan_args(argc, argv, "11", &end, &exclusive); RETURN_ENUMERATOR(beg, argc, argv); excl = RTEST(exclusive); CONST_ID(succ, "succ"); StringValue(end); enc = rb_enc_check(beg, end); ascii = (is_ascii_string(beg) && is_ascii_string(end)); /* single character */ if (RSTRING_LEN(beg) == 1 && RSTRING_LEN(end) == 1 && ascii) { char c = RSTRING_PTR(beg)[0]; char e = RSTRING_PTR(end)[0]; if (c > e || (excl && c == e)) return beg; for (;;) { rb_yield(rb_enc_str_new(&c, 1, enc)); if (!excl && c == e) break; c++; if (excl && c == e) break; } return beg; } /* both edges are all digits */ if (ascii && ISDIGIT(RSTRING_PTR(beg)[0]) && ISDIGIT(RSTRING_PTR(end)[0])) { char *s, *send; VALUE b, e; int width; s = RSTRING_PTR(beg); send = RSTRING_END(beg); width = rb_long2int(send - s); while (s < send) { if (!ISDIGIT(*s)) goto no_digits; s++; } s = RSTRING_PTR(end); send = RSTRING_END(end); while (s < send) { if (!ISDIGIT(*s)) goto no_digits; s++; } b = rb_str_to_inum(beg, 10, FALSE); e = rb_str_to_inum(end, 10, FALSE); if (FIXNUM_P(b) && FIXNUM_P(e)) { long bi = FIX2LONG(b); long ei = FIX2LONG(e); rb_encoding *usascii = rb_usascii_encoding(); while (bi <= ei) { if (excl && bi == ei) break; rb_yield(rb_enc_sprintf(usascii, "%.*ld", width, bi)); bi++; } } else { ID op = excl ? '<' : rb_intern("<="); VALUE args[2], fmt = rb_obj_freeze(rb_usascii_str_new_cstr("%.*d")); args[0] = INT2FIX(width); while (rb_funcall(b, op, 1, e)) { args[1] = b; rb_yield(rb_str_format(numberof(args), args, fmt)); b = rb_funcall(b, succ, 0, 0); } } return beg; } /* normal case */ no_digits: n = rb_str_cmp(beg, end); if (n > 0 || (excl && n == 0)) return beg; after_end = rb_funcall(end, succ, 0, 0); current = rb_str_dup(beg); while (!rb_str_equal(current, after_end)) { VALUE next = Qnil; if (excl || !rb_str_equal(current, end)) next = rb_funcall(current, succ, 0, 0); rb_yield(current); if (NIL_P(next)) break; current = next; StringValue(current); if (excl && rb_str_equal(current, end)) break; if (RSTRING_LEN(current) > RSTRING_LEN(end) || RSTRING_LEN(current) == 0) break; } return beg; }
Returns true for a string which encoded correctly.
"\xc2\xa1".force_encoding("UTF-8").valid_encoding? #=> true "\xc2".force_encoding("UTF-8").valid_encoding? #=> false "\x80".force_encoding("UTF-8").valid_encoding? #=> false
static VALUE rb_str_valid_encoding_p(VALUE str) { int cr = rb_enc_str_coderange(str); return cr == ENC_CODERANGE_BROKEN ? Qfalse : Qtrue; }