class Float

When mathn is required, Float is changed to handle Complex numbers.

`Float` objects represent inexact real numbers using the native architecture's double-precision floating point representation.

Floating point has a different arithmetic and is a inexact number. So you should know its esoteric system. see following:

Constants

DIG

The number of decimal digits in a double-precision floating point.

Usually defaults to 15.

EPSILON

The difference between 1 and the smallest double-precision floating point number.

Usually defaults to 2.2204460492503131e-16.

INFINITY

An expression representing positive infinity.

MANT_DIG

The number of base digits for the `double` data type.

Usually defaults to 53.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

MAX_10_EXP

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

MAX_EXP

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

MIN

The smallest positive integer in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

MIN_10_EXP

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

MIN_EXP

The smallest posable exponent value in a double-precision floating point.

Usually defaults to -1021.

NAN

An expression representing a value which is “not a number”.

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.

ROUNDS

Represents the rounding mode for floating point addition.

Usually defaults to 1, rounding to the nearest number.

Other modes include:

-1

Indeterminable

0

Rounding towards zero

1

Rounding to the nearest number

2

Rounding towards positive infinity

3

Rounding towards negative infinity

Public Instance Methods

float % other → float click to toggle source

Return the modulo after division of `float` by `other`.

```6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996
```
```static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;

switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}```
float * other → float click to toggle source

Returns a new float which is the product of `float` and `other`.

```static VALUE
flo_mul(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '*');
}
}```
**(other) click to toggle source

Exponentiate by `other`

```# File lib/mathn.rb, line 316
def ** (other)
if self < 0 && other.round != other
Complex(self, 0.0) ** other
else
power!(other)
end
end```
Also aliased as: power!
float + other → float click to toggle source

Returns a new float which is the sum of `float` and `other`.

```static VALUE
flo_plus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '+');
}
}```
float - other → float click to toggle source

Returns a new float which is the difference of `float` and `other`.

```static VALUE
flo_minus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '-');
}
}```
-float → float click to toggle source

Returns float, negated.

```static VALUE
flo_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}```
float / other → float click to toggle source

Returns a new float which is the result of dividing `float` by `other`.

```static VALUE
flo_div(VALUE x, VALUE y)
{
long f_y;
double d;

switch (TYPE(y)) {
case T_FIXNUM:
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
case T_BIGNUM:
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '/');
}
}```
flt < real → true or false click to toggle source

`true` if `flt` is less than `real`. The result of `NaN < NaN` is undefined, so the implementation-dependent value is returned.

```static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;

a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
{
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}

case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;

default:
return rb_num_coerce_relop(x, y, '<');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a < b)?Qtrue:Qfalse;
}```
flt <= real → true or false click to toggle source

`true` if `flt` is less than or equal to `real`. The result of `NaN <= NaN` is undefined, so the implementation-dependent value is returned.

```static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;

a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
{
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}

case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;

default:
return rb_num_coerce_relop(x, y, rb_intern("<="));
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a <= b)?Qtrue:Qfalse;
}```
float <=> real → -1, 0, +1 or nil click to toggle source

Returns -1, 0, +1 or nil depending on whether `float` is less than, equal to, or greater than `real`. This is the basis for the tests in Comparable.

The result of `NaN <=> NaN` is undefined, so the implementation-dependent value is returned.

`nil` is returned if the two values are incomparable.

```static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
VALUE i;

a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
{
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return INT2FIX(-FIX2INT(rel));
return rel;
}

case T_FLOAT:
b = RFLOAT_VALUE(y);
break;

default:
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
}
return rb_dbl_cmp(a, b);
}```
flt == obj → true or false click to toggle source

Returns `true` only if obj has the same value as flt. Contrast this with `Float#eql?`, which requires obj to be a `Float`. The result of ```NaN == NaN``` is undefined, so the implementation-dependent value is returned.

```1.0 == 1   #=> true
```
```static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;

switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
return rb_integer_float_eq(y, x);
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}```
flt == obj → true or false click to toggle source

Returns `true` only if obj has the same value as flt. Contrast this with `Float#eql?`, which requires obj to be a `Float`. The result of ```NaN == NaN``` is undefined, so the implementation-dependent value is returned.

```1.0 == 1   #=> true
```
```static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;

switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
return rb_integer_float_eq(y, x);
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}```
flt > real → true or false click to toggle source

`true` if `flt` is greater than `real`. The result of `NaN > NaN` is undefined, so the implementation-dependent value is returned.

```static VALUE
flo_gt(VALUE x, VALUE y)
{
double a, b;

a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
{
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}

case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;

default:
return rb_num_coerce_relop(x, y, '>');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a > b)?Qtrue:Qfalse;
}```
flt >= real → true or false click to toggle source

`true` if `flt` is greater than or equal to `real`. The result of `NaN >= NaN` is undefined, so the implementation-dependent value is returned.

```static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;

a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
case T_BIGNUM:
{
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}

case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;

default:
return rb_num_coerce_relop(x, y, rb_intern(">="));
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a >= b)?Qtrue:Qfalse;
}```
abs → float click to toggle source

Returns the absolute value of flt.

```(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
```
```static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}```
angle → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

```static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}```
arg → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

```static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}```
ceil → integer click to toggle source

Returns the smallest `Integer` greater than or equal to flt.

```1.2.ceil      #=> 2
2.0.ceil      #=> 2
(-1.2).ceil   #=> -1
(-2.0).ceil   #=> -2
```
```static VALUE
flo_ceil(VALUE num)
{
double f = ceil(RFLOAT_VALUE(num));
long val;

if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}```
coerce(numeric) → array click to toggle source

Returns an array with both aNumeric and flt represented as `Float` objects. This is achieved by converting aNumeric to a `Float`.

```1.2.coerce(3)       #=> [3.0, 1.2]
2.5.coerce(1.1)     #=> [1.1, 2.5]
```
```static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}```
dclone() click to toggle source

provides a unified `clone` operation, for REXML::XPathParser to use across multiple Object types

```# File lib/rexml/xpath_parser.rb, line 27
def dclone ; self ; end```
denominator → integer click to toggle source

Returns the denominator (always positive). The result is machine dependent.

See numerator.

```static VALUE
float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return INT2FIX(1);
return rb_call_super(0, 0);
}```
divmod(numeric) → array click to toggle source

See Numeric#divmod.

```42.0.divmod 6 #=> [7, 0.0]
42.0.divmod 5 #=> [8, 2.0]
```
```static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;

switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}```
eql?(obj) → true or false click to toggle source

Returns `true` only if obj is a `Float` with the same value as flt. Contrast this with `Float#==`, which performs type conversions. The result of `NaN.eql?(NaN)` is undefined, so the implementation-dependent value is returned.

```1.0.eql?(1)   #=> false
```
```static VALUE
flo_eql(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FLOAT)) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a) || isnan(b)) return Qfalse;
#endif
if (a == b)
return Qtrue;
}
return Qfalse;
}```
quo(numeric) → float click to toggle source

Returns float / numeric.

```static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}```
finite? → true or false click to toggle source

Returns `true` if flt is a valid IEEE floating point number (it is not infinite, and `nan?` is `false`).

```static VALUE
flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);

#if HAVE_ISFINITE
if (!isfinite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif

return Qtrue;
}```
floor → integer click to toggle source

Returns the largest integer less than or equal to flt.

```1.2.floor      #=> 1
2.0.floor      #=> 2
(-1.2).floor   #=> -2
(-2.0).floor   #=> -2
```
```static VALUE
flo_floor(VALUE num)
{
double f = floor(RFLOAT_VALUE(num));
long val;

if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}```
hash → integer click to toggle source

Returns a hash code for this float.

```static VALUE
flo_hash(VALUE num)
{
double d;
st_index_t hash;

d = RFLOAT_VALUE(num);
/* normalize -0.0 to 0.0 */
if (d == 0.0) d = 0.0;
hash = rb_memhash(&d, sizeof(d));
return LONG2FIX(hash);
}```
infinite? → nil, -1, +1 click to toggle source

Returns `nil`, -1, or +1 depending on whether flt is finite, -infinity, or +infinity.

```(0.0).infinite?        #=> nil
(-1.0/0.0).infinite?   #=> -1
(+1.0/0.0).infinite?   #=> 1
```
```static VALUE
flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);

if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}

return Qnil;
}```
inspect()
Alias for: to_s
magnitude → float click to toggle source

Returns the absolute value of flt.

```(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56
```
```static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}```
modulo(other) → float click to toggle source

Return the modulo after division of `float` by `other`.

```6543.21.modulo(137)      #=> 104.21
6543.21.modulo(137.24)   #=> 92.9299999999996
```
```static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;

switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}```
nan? → true or false click to toggle source

Returns `true` if flt is an invalid IEEE floating point number.

```a = -1.0      #=> -1.0
a.nan?        #=> false
a = 0.0/0.0   #=> NaN
a.nan?        #=> true
```
```static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);

return isnan(value) ? Qtrue : Qfalse;
}```
numerator → integer click to toggle source

Returns the numerator. The result is machine dependent.

```n = 0.3.numerator    #=> 5404319552844595
d = 0.3.denominator  #=> 18014398509481984
n.fdiv(d)            #=> 0.3
```
```static VALUE
float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return self;
return rb_call_super(0, 0);
}```
phase → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

```static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}```
power!(other)
Alias for: **
quo(numeric) → float click to toggle source

Returns float / numeric.

```static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}```
rationalize([eps]) → rational click to toggle source

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.

```0.3.rationalize          #=> (3/10)
1.333.rationalize        #=> (1333/1000)
1.333.rationalize(0.01)  #=> (4/3)
```

See to_r.

```static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;

if (f_negative_p(self))
return f_negate(float_rationalize(argc, argv, f_abs(self)));

rb_scan_args(argc, argv, "01", &e);

if (argc != 0) {
e = f_abs(e);
a = f_sub(self, e);
}
else {
VALUE f, n;

float_decode_internal(self, &f, &n);
if (f_zero_p(f) || f_positive_p(n))
return rb_rational_new1(f_lshift(f, n));

{
VALUE two_times_f, den;

two_times_f = f_mul(TWO, f);
den = f_lshift(ONE, f_sub(ONE, n));

a = rb_rational_new2(f_sub(two_times_f, ONE), den);
}
#else
{

}
#endif
}

if (f_eqeq_p(a, b))
return f_to_r(self);

nurat_rationalize_internal(a, b, &p, &q);
return rb_rational_new2(p, q);
}```
round([ndigits]) → integer or float click to toggle source

Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is more than zero.

```1.4.round      #=> 1
1.5.round      #=> 2
1.6.round      #=> 2
(-1.5).round   #=> -2

1.234567.round(2)  #=> 1.23
1.234567.round(3)  #=> 1.235
1.234567.round(4)  #=> 1.2346
1.234567.round(5)  #=> 1.23457

34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0)  #=> 34568
34567.89.round(1)  #=> 34567.9
34567.89.round(2)  #=> 34567.89
34567.89.round(3)  #=> 34567.89
```
```static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
VALUE nd;
double number, f;
int ndigits = 0;
int binexp;
enum {float_dig = DBL_DIG+2};

if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
if (ndigits < 0) {
return int_round_0(flo_truncate(num), ndigits);
}
number  = RFLOAT_VALUE(num);
if (ndigits == 0) {
return dbl2ival(number);
}
frexp(number, &binexp);

/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
i.e. such that  10 ** (exp - 1) <= |number| < 10 ** exp
Recall that up to float_dig digits can be needed to represent a double,
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
will be an integer and thus the result is the original number.
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
2 ** (binexp-1) <= |number| < 2 ** binexp
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
If binexp >= 0, and since log_2(10) = 3.322259:
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
floor(binexp/4) <= exp <= ceil(binexp/3)
If binexp <= 0, swap the /4 and the /3
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (isinf(number) || isnan(number) ||
(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
return num;
}
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
return DBL2NUM(0);
}
f = pow(10, ndigits);
return DBL2NUM(round(number * f) / f);
}```
to_d → bigdecimal click to toggle source

Convert `flt` to a BigDecimal and return it.

```require 'bigdecimal'
require 'bigdecimal/util'

0.5.to_d
# => #<BigDecimal:1dc69e0,'0.5E0',9(18)>
```
```# File ext/bigdecimal/lib/bigdecimal/util.rb, line 30
def to_d(precision=nil)
BigDecimal(self, precision || Float::DIG+1)
end```
to_f → self click to toggle source

As `flt` is already a float, returns `self`.

```static VALUE
flo_to_f(VALUE num)
{
return num;
}```
to_i → integer click to toggle source
to_int → integer

Returns flt truncated to an `Integer`.

```static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;

if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);

if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}```
to_int → integer click to toggle source

Returns flt truncated to an `Integer`.

```static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;

if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);

if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}```
to_r → rational click to toggle source

Returns the value as a rational.

NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is equivalent to '3/10'.to_r, but the former isn't so.

```2.0.to_r    #=> (2/1)
2.5.to_r    #=> (5/2)
-0.75.to_r  #=> (-3/4)
0.0.to_r    #=> (0/1)
```

See rationalize.

```static VALUE
float_to_r(VALUE self)
{
VALUE f, n;

float_decode_internal(self, &f, &n);
{
long ln = FIX2LONG(n);

if (ln == 0)
return f_to_r(f);
if (ln > 0)
return f_to_r(f_lshift(f, n));
ln = -ln;
return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
}
#else
#endif
}```
to_s → string click to toggle source

Returns a string containing a representation of self. As well as a fixed or exponential form of the number, the call may return “`NaN`'', “`Infinity`'', and “`-Infinity`''.

```static VALUE
flo_to_s(VALUE flt)
{
char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve);
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;

if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if (isnan(value))
return rb_usascii_str_new2("NaN");

p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}```
Also aliased as: inspect
truncate → integer click to toggle source

Returns flt truncated to an `Integer`.

```static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;

if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);

if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}```
zero? → true or false click to toggle source

Returns `true` if flt is 0.0.

```static VALUE
flo_zero_p(VALUE num)
{
if (RFLOAT_VALUE(num) == 0.0) {
return Qtrue;
}
return Qfalse;
}```