Ruby 3.5.0dev (2025-02-22 revision b17f984e4e903d3ece3013c1488279d1947dfc39)
pm_integer.c
2
7#define INTEGER_EXTRACT(integer, length_variable, values_variable) \
8 if ((integer)->values == NULL) { \
9 length_variable = 1; \
10 values_variable = &(integer)->value; \
11 } else { \
12 length_variable = (integer)->length; \
13 values_variable = (integer)->values; \
14 }
15
20static void
21big_add(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) {
22 size_t left_length;
23 uint32_t *left_values;
24 INTEGER_EXTRACT(left, left_length, left_values)
25
26 size_t right_length;
27 uint32_t *right_values;
28 INTEGER_EXTRACT(right, right_length, right_values)
29
30 size_t length = left_length < right_length ? right_length : left_length;
31 uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * (length + 1));
32 if (values == NULL) return;
33
34 uint64_t carry = 0;
35 for (size_t index = 0; index < length; index++) {
36 uint64_t sum = carry + (index < left_length ? left_values[index] : 0) + (index < right_length ? right_values[index] : 0);
37 values[index] = (uint32_t) (sum % base);
38 carry = sum / base;
39 }
40
41 if (carry > 0) {
42 values[length] = (uint32_t) carry;
43 length++;
44 }
45
46 *destination = (pm_integer_t) { length, values, 0, false };
47}
48
54static void
55big_sub2(pm_integer_t *destination, pm_integer_t *a, pm_integer_t *b, pm_integer_t *c, uint64_t base) {
56 size_t a_length;
57 uint32_t *a_values;
58 INTEGER_EXTRACT(a, a_length, a_values)
59
60 size_t b_length;
61 uint32_t *b_values;
62 INTEGER_EXTRACT(b, b_length, b_values)
63
64 size_t c_length;
65 uint32_t *c_values;
66 INTEGER_EXTRACT(c, c_length, c_values)
67
68 uint32_t *values = (uint32_t*) xmalloc(sizeof(uint32_t) * a_length);
69 int64_t carry = 0;
70
71 for (size_t index = 0; index < a_length; index++) {
72 int64_t sub = (
73 carry +
74 a_values[index] -
75 (index < b_length ? b_values[index] : 0) -
76 (index < c_length ? c_values[index] : 0)
77 );
78
79 if (sub >= 0) {
80 values[index] = (uint32_t) sub;
81 carry = 0;
82 } else {
83 sub += 2 * (int64_t) base;
84 values[index] = (uint32_t) ((uint64_t) sub % base);
85 carry = sub / (int64_t) base - 2;
86 }
87 }
88
89 while (a_length > 1 && values[a_length - 1] == 0) a_length--;
90 *destination = (pm_integer_t) { a_length, values, 0, false };
91}
92
97static void
98karatsuba_multiply(pm_integer_t *destination, pm_integer_t *left, pm_integer_t *right, uint64_t base) {
99 size_t left_length;
100 uint32_t *left_values;
101 INTEGER_EXTRACT(left, left_length, left_values)
102
103 size_t right_length;
104 uint32_t *right_values;
105 INTEGER_EXTRACT(right, right_length, right_values)
106
107 if (left_length > right_length) {
108 size_t temporary_length = left_length;
109 left_length = right_length;
110 right_length = temporary_length;
111
112 uint32_t *temporary_values = left_values;
113 left_values = right_values;
114 right_values = temporary_values;
115 }
116
117 if (left_length <= 10) {
118 size_t length = left_length + right_length;
119 uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
120 if (values == NULL) return;
121
122 for (size_t left_index = 0; left_index < left_length; left_index++) {
123 uint32_t carry = 0;
124 for (size_t right_index = 0; right_index < right_length; right_index++) {
125 uint64_t product = (uint64_t) left_values[left_index] * right_values[right_index] + values[left_index + right_index] + carry;
126 values[left_index + right_index] = (uint32_t) (product % base);
127 carry = (uint32_t) (product / base);
128 }
129 values[left_index + right_length] = carry;
130 }
131
132 while (length > 1 && values[length - 1] == 0) length--;
133 *destination = (pm_integer_t) { length, values, 0, false };
134 return;
135 }
136
137 if (left_length * 2 <= right_length) {
138 uint32_t *values = (uint32_t *) xcalloc(left_length + right_length, sizeof(uint32_t));
139
140 for (size_t start_offset = 0; start_offset < right_length; start_offset += left_length) {
141 size_t end_offset = start_offset + left_length;
142 if (end_offset > right_length) end_offset = right_length;
143
144 pm_integer_t sliced_left = {
145 .length = left_length,
146 .values = left_values,
147 .value = 0,
148 .negative = false
149 };
150
151 pm_integer_t sliced_right = {
152 .length = end_offset - start_offset,
153 .values = right_values + start_offset,
154 .value = 0,
155 .negative = false
156 };
157
158 pm_integer_t product;
159 karatsuba_multiply(&product, &sliced_left, &sliced_right, base);
160
161 uint32_t carry = 0;
162 for (size_t index = 0; index < product.length; index++) {
163 uint64_t sum = (uint64_t) values[start_offset + index] + product.values[index] + carry;
164 values[start_offset + index] = (uint32_t) (sum % base);
165 carry = (uint32_t) (sum / base);
166 }
167
168 if (carry > 0) values[start_offset + product.length] += carry;
169 pm_integer_free(&product);
170 }
171
172 *destination = (pm_integer_t) { left_length + right_length, values, 0, false };
173 return;
174 }
175
176 size_t half = left_length / 2;
177 pm_integer_t x0 = { half, left_values, 0, false };
178 pm_integer_t x1 = { left_length - half, left_values + half, 0, false };
179 pm_integer_t y0 = { half, right_values, 0, false };
180 pm_integer_t y1 = { right_length - half, right_values + half, 0, false };
181
182 pm_integer_t z0 = { 0 };
183 karatsuba_multiply(&z0, &x0, &y0, base);
184
185 pm_integer_t z2 = { 0 };
186 karatsuba_multiply(&z2, &x1, &y1, base);
187
188 // For simplicity to avoid considering negative values,
189 // use `z1 = (x0 + x1) * (y0 + y1) - z0 - z2` instead of original karatsuba algorithm.
190 pm_integer_t x01 = { 0 };
191 big_add(&x01, &x0, &x1, base);
192
193 pm_integer_t y01 = { 0 };
194 big_add(&y01, &y0, &y1, base);
195
196 pm_integer_t xy = { 0 };
197 karatsuba_multiply(&xy, &x01, &y01, base);
198
199 pm_integer_t z1;
200 big_sub2(&z1, &xy, &z0, &z2, base);
201
202 size_t length = left_length + right_length;
203 uint32_t *values = (uint32_t*) xcalloc(length, sizeof(uint32_t));
204
205 assert(z0.values != NULL);
206 memcpy(values, z0.values, sizeof(uint32_t) * z0.length);
207
208 assert(z2.values != NULL);
209 memcpy(values + 2 * half, z2.values, sizeof(uint32_t) * z2.length);
210
211 uint32_t carry = 0;
212 for(size_t index = 0; index < z1.length; index++) {
213 uint64_t sum = (uint64_t) carry + values[index + half] + z1.values[index];
214 values[index + half] = (uint32_t) (sum % base);
215 carry = (uint32_t) (sum / base);
216 }
217
218 for(size_t index = half + z1.length; carry > 0; index++) {
219 uint64_t sum = (uint64_t) carry + values[index];
220 values[index] = (uint32_t) (sum % base);
221 carry = (uint32_t) (sum / base);
222 }
223
224 while (length > 1 && values[length - 1] == 0) length--;
225 pm_integer_free(&z0);
226 pm_integer_free(&z1);
227 pm_integer_free(&z2);
228 pm_integer_free(&x01);
229 pm_integer_free(&y01);
230 pm_integer_free(&xy);
231
232 *destination = (pm_integer_t) { length, values, 0, false };
233}
234
242static const int8_t pm_integer_parse_digit_values[256] = {
243// 0 1 2 3 4 5 6 7 8 9 A B C D E F
244 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x
245 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 1x
246 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 2x
247 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, // 3x
248 -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 4x
249 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, // 5x
250 -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 6x
251 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 7x
252 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 8x
253 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 9x
254 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ax
255 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Bx
256 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Cx
257 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Dx
258 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Ex
259 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // Fx
260};
261
265static uint8_t
266pm_integer_parse_digit(const uint8_t character) {
267 int8_t value = pm_integer_parse_digit_values[character];
268 assert(value != -1 && "invalid digit");
269
270 return (uint8_t) value;
271}
272
277static void
278pm_integer_from_uint64(pm_integer_t *integer, uint64_t value, uint64_t base) {
279 if (value < base) {
280 integer->value = (uint32_t) value;
281 return;
282 }
283
284 size_t length = 0;
285 uint64_t length_value = value;
286 while (length_value > 0) {
287 length++;
288 length_value /= base;
289 }
290
291 uint32_t *values = (uint32_t *) xmalloc(sizeof(uint32_t) * length);
292 if (values == NULL) return;
293
294 for (size_t value_index = 0; value_index < length; value_index++) {
295 values[value_index] = (uint32_t) (value % base);
296 value /= base;
297 }
298
299 integer->length = length;
300 integer->values = values;
301}
302
308static void
309pm_integer_normalize(pm_integer_t *integer) {
310 if (integer->values == NULL) {
311 return;
312 }
313
314 while (integer->length > 1 && integer->values[integer->length - 1] == 0) {
315 integer->length--;
316 }
317
318 if (integer->length > 1) {
319 return;
320 }
321
322 uint32_t value = integer->values[0];
323 bool negative = integer->negative && value != 0;
324
325 pm_integer_free(integer);
326 *integer = (pm_integer_t) { .values = NULL, .value = value, .length = 0, .negative = negative };
327}
328
333static void
334pm_integer_convert_base(pm_integer_t *destination, const pm_integer_t *source, uint64_t base_from, uint64_t base_to) {
335 size_t source_length;
336 const uint32_t *source_values;
337 INTEGER_EXTRACT(source, source_length, source_values)
338
339 size_t bigints_length = (source_length + 1) / 2;
340 assert(bigints_length > 0);
341
342 pm_integer_t *bigints = (pm_integer_t *) xcalloc(bigints_length, sizeof(pm_integer_t));
343 if (bigints == NULL) return;
344
345 for (size_t index = 0; index < source_length; index += 2) {
346 uint64_t value = source_values[index] + base_from * (index + 1 < source_length ? source_values[index + 1] : 0);
347 pm_integer_from_uint64(&bigints[index / 2], value, base_to);
348 }
349
350 pm_integer_t base = { 0 };
351 pm_integer_from_uint64(&base, base_from, base_to);
352
353 while (bigints_length > 1) {
354 pm_integer_t next_base;
355 karatsuba_multiply(&next_base, &base, &base, base_to);
356
357 pm_integer_free(&base);
358 base = next_base;
359
360 size_t next_length = (bigints_length + 1) / 2;
361 pm_integer_t *next_bigints = (pm_integer_t *) xcalloc(next_length, sizeof(pm_integer_t));
362
363 for (size_t bigints_index = 0; bigints_index < bigints_length; bigints_index += 2) {
364 if (bigints_index + 1 == bigints_length) {
365 next_bigints[bigints_index / 2] = bigints[bigints_index];
366 } else {
367 pm_integer_t multiplied = { 0 };
368 karatsuba_multiply(&multiplied, &base, &bigints[bigints_index + 1], base_to);
369
370 big_add(&next_bigints[bigints_index / 2], &bigints[bigints_index], &multiplied, base_to);
371 pm_integer_free(&bigints[bigints_index]);
372 pm_integer_free(&bigints[bigints_index + 1]);
373 pm_integer_free(&multiplied);
374 }
375 }
376
377 xfree(bigints);
378 bigints = next_bigints;
379 bigints_length = next_length;
380 }
381
382 *destination = bigints[0];
383 destination->negative = source->negative;
384 pm_integer_normalize(destination);
385
386 xfree(bigints);
387 pm_integer_free(&base);
388}
389
390#undef INTEGER_EXTRACT
391
395static void
396pm_integer_parse_powof2(pm_integer_t *integer, uint32_t base, const uint8_t *digits, size_t digits_length) {
397 size_t bit = 1;
398 while (base > (uint32_t) (1 << bit)) bit++;
399
400 size_t length = (digits_length * bit + 31) / 32;
401 uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
402
403 for (size_t digit_index = 0; digit_index < digits_length; digit_index++) {
404 size_t bit_position = bit * (digits_length - digit_index - 1);
405 uint32_t value = digits[digit_index];
406
407 size_t index = bit_position / 32;
408 size_t shift = bit_position % 32;
409
410 values[index] |= value << shift;
411 if (32 - shift < bit) values[index + 1] |= value >> (32 - shift);
412 }
413
414 while (length > 1 && values[length - 1] == 0) length--;
415 *integer = (pm_integer_t) { .length = length, .values = values, .value = 0, .negative = false };
416 pm_integer_normalize(integer);
417}
418
422static void
423pm_integer_parse_decimal(pm_integer_t *integer, const uint8_t *digits, size_t digits_length) {
424 const size_t batch = 9;
425 size_t length = (digits_length + batch - 1) / batch;
426
427 uint32_t *values = (uint32_t *) xcalloc(length, sizeof(uint32_t));
428 uint32_t value = 0;
429
430 for (size_t digits_index = 0; digits_index < digits_length; digits_index++) {
431 value = value * 10 + digits[digits_index];
432
433 size_t reverse_index = digits_length - digits_index - 1;
434 if (reverse_index % batch == 0) {
435 values[reverse_index / batch] = value;
436 value = 0;
437 }
438 }
439
440 // Convert base from 10**9 to 1<<32.
441 pm_integer_convert_base(integer, &((pm_integer_t) { .length = length, .values = values, .value = 0, .negative = false }), 1000000000, ((uint64_t) 1 << 32));
442 xfree(values);
443}
444
448static void
449pm_integer_parse_big(pm_integer_t *integer, uint32_t multiplier, const uint8_t *start, const uint8_t *end) {
450 // Allocate an array to store digits.
451 uint8_t *digits = xmalloc(sizeof(uint8_t) * (size_t) (end - start));
452 size_t digits_length = 0;
453
454 for (; start < end; start++) {
455 if (*start == '_') continue;
456 digits[digits_length++] = pm_integer_parse_digit(*start);
457 }
458
459 // Construct pm_integer_t from the digits.
460 if (multiplier == 10) {
461 pm_integer_parse_decimal(integer, digits, digits_length);
462 } else {
463 pm_integer_parse_powof2(integer, multiplier, digits, digits_length);
464 }
465
466 xfree(digits);
467}
468
474void
475pm_integer_parse(pm_integer_t *integer, pm_integer_base_t base, const uint8_t *start, const uint8_t *end) {
476 // Ignore unary +. Unary - is parsed differently and will not end up here.
477 // Instead, it will modify the parsed integer later.
478 if (*start == '+') start++;
479
480 // Determine the multiplier from the base, and skip past any prefixes.
481 uint32_t multiplier = 10;
482 switch (base) {
484 while (*start == '0') start++; // 01 -> 1
485 break;
487 start += 2; // 0b
488 multiplier = 2;
489 break;
491 start++; // 0
492 if (*start == '_' || *start == 'o' || *start == 'O') start++; // o
493 multiplier = 8;
494 break;
496 if (*start == '0' && (end - start) > 1) start += 2; // 0d
497 break;
499 start += 2; // 0x
500 multiplier = 16;
501 break;
503 if (*start == '0' && (end - start) > 1) {
504 switch (start[1]) {
505 case '_': start += 2; multiplier = 8; break;
506 case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': start++; multiplier = 8; break;
507 case 'b': case 'B': start += 2; multiplier = 2; break;
508 case 'o': case 'O': start += 2; multiplier = 8; break;
509 case 'd': case 'D': start += 2; break;
510 case 'x': case 'X': start += 2; multiplier = 16; break;
511 default: assert(false && "unreachable"); break;
512 }
513 }
514 break;
515 }
516
517 // It's possible that we've consumed everything at this point if there is an
518 // invalid integer. If this is the case, we'll just return 0.
519 if (start >= end) return;
520
521 const uint8_t *cursor = start;
522 uint64_t value = (uint64_t) pm_integer_parse_digit(*cursor++);
523
524 for (; cursor < end; cursor++) {
525 if (*cursor == '_') continue;
526 value = value * multiplier + (uint64_t) pm_integer_parse_digit(*cursor);
527
528 if (value > UINT32_MAX) {
529 // If the integer is too large to fit into a single uint32_t, then
530 // we'll parse it as a big integer.
531 pm_integer_parse_big(integer, multiplier, start, end);
532 return;
533 }
534 }
535
536 integer->value = (uint32_t) value;
537}
538
544int
545pm_integer_compare(const pm_integer_t *left, const pm_integer_t *right) {
546 if (left->negative != right->negative) return left->negative ? -1 : 1;
547 int negative = left->negative ? -1 : 1;
548
549 if (left->values == NULL && right->values == NULL) {
550 if (left->value < right->value) return -1 * negative;
551 if (left->value > right->value) return 1 * negative;
552 return 0;
553 }
554
555 if (left->values == NULL || left->length < right->length) return -1 * negative;
556 if (right->values == NULL || left->length > right->length) return 1 * negative;
557
558 for (size_t index = 0; index < left->length; index++) {
559 size_t value_index = left->length - index - 1;
560 uint32_t left_value = left->values[value_index];
561 uint32_t right_value = right->values[value_index];
562
563 if (left_value < right_value) return -1 * negative;
564 if (left_value > right_value) return 1 * negative;
565 }
566
567 return 0;
568}
569
573void pm_integers_reduce(pm_integer_t *numerator, pm_integer_t *denominator) {
574 // If either the numerator or denominator do not fit into a 32-bit integer,
575 // then this function is a no-op. In the future, we may consider reducing
576 // even the larger numbers, but for now we're going to keep it simple.
577 if (
578 // If the numerator doesn't fit into a 32-bit integer, return early.
579 numerator->length != 0 ||
580 // If the denominator doesn't fit into a 32-bit integer, return early.
581 denominator->length != 0 ||
582 // If the numerator is 0, then return early.
583 numerator->value == 0 ||
584 // If the denominator is 1, then return early.
585 denominator->value == 1
586 ) return;
587
588 // Find the greatest common divisor of the numerator and denominator.
589 uint32_t divisor = numerator->value;
590 uint32_t remainder = denominator->value;
591
592 while (remainder != 0) {
593 uint32_t temporary = remainder;
594 remainder = divisor % remainder;
595 divisor = temporary;
596 }
597
598 // Divide the numerator and denominator by the greatest common divisor.
599 numerator->value /= divisor;
600 denominator->value /= divisor;
601}
602
607pm_integer_string(pm_buffer_t *buffer, const pm_integer_t *integer) {
608 if (integer->negative) {
609 pm_buffer_append_byte(buffer, '-');
610 }
611
612 // If the integer fits into a single uint32_t, then we can just append the
613 // value directly to the buffer.
614 if (integer->values == NULL) {
615 pm_buffer_append_format(buffer, "%" PRIu32, integer->value);
616 return;
617 }
618
619 // If the integer is two uint32_t values, then we can | them together and
620 // append the result to the buffer.
621 if (integer->length == 2) {
622 const uint64_t value = ((uint64_t) integer->values[0]) | ((uint64_t) integer->values[1] << 32);
623 pm_buffer_append_format(buffer, "%" PRIu64, value);
624 return;
625 }
626
627 // Otherwise, first we'll convert the base from 1<<32 to 10**9.
628 pm_integer_t converted = { 0 };
629 pm_integer_convert_base(&converted, integer, (uint64_t) 1 << 32, 1000000000);
630
631 if (converted.values == NULL) {
632 pm_buffer_append_format(buffer, "%" PRIu32, converted.value);
633 pm_integer_free(&converted);
634 return;
635 }
636
637 // Allocate a buffer that we'll copy the decimal digits into.
638 size_t digits_length = converted.length * 9;
639 char *digits = xcalloc(digits_length, sizeof(char));
640 if (digits == NULL) return;
641
642 // Pack bigdecimal to digits.
643 for (size_t value_index = 0; value_index < converted.length; value_index++) {
644 uint32_t value = converted.values[value_index];
645
646 for (size_t digit_index = 0; digit_index < 9; digit_index++) {
647 digits[digits_length - 9 * value_index - digit_index - 1] = (char) ('0' + value % 10);
648 value /= 10;
649 }
650 }
651
652 size_t start_offset = 0;
653 while (start_offset < digits_length - 1 && digits[start_offset] == '0') start_offset++;
654
655 // Finally, append the string to the buffer and free the digits.
656 pm_buffer_append_string(buffer, digits + start_offset, digits_length - start_offset);
657 xfree(digits);
658 pm_integer_free(&converted);
659}
660
666pm_integer_free(pm_integer_t *integer) {
667 if (integer->values) {
668 xfree(integer->values);
669 }
670}
#define xfree
Old name of ruby_xfree.
Definition xmalloc.h:58
#define xmalloc
Old name of ruby_xmalloc.
Definition xmalloc.h:53
#define xcalloc
Old name of ruby_xcalloc.
Definition xmalloc.h:55
This module provides functions for working with arbitrary-sized integers.
pm_integer_base_t
An enum controlling the base of an integer.
Definition pm_integer.h:50
@ PM_INTEGER_BASE_DEFAULT
The default decimal base, with no prefix.
Definition pm_integer.h:52
@ PM_INTEGER_BASE_BINARY
The binary base, indicated by a 0b or 0B prefix.
Definition pm_integer.h:55
@ PM_INTEGER_BASE_DECIMAL
The decimal base, indicated by a 0d, 0D, or empty prefix.
Definition pm_integer.h:61
@ PM_INTEGER_BASE_HEXADECIMAL
The hexadecimal base, indicated by a 0x or 0X prefix.
Definition pm_integer.h:64
@ PM_INTEGER_BASE_OCTAL
The octal base, indicated by a 0, 0o, or 0O prefix.
Definition pm_integer.h:58
@ PM_INTEGER_BASE_UNKNOWN
An unknown base, in which case pm_integer_parse will derive it based on the content of the string.
Definition pm_integer.h:72
#define PRISM_EXPORTED_FUNCTION
By default, we compile with -fvisibility=hidden.
Definition defines.h:53
A pm_buffer_t is a simple memory buffer that stores data in a contiguous block of memory.
Definition pm_buffer.h:22
A structure represents an arbitrary-sized integer.
Definition pm_integer.h:20
size_t length
The number of allocated values.
Definition pm_integer.h:25
uint32_t value
Embedded value for small integer.
Definition pm_integer.h:36
uint32_t * values
List of 32-bit integers.
Definition pm_integer.h:30
bool negative
Whether or not the integer is negative.
Definition pm_integer.h:42