class Symbol
BigDecimal extends the native Integer class to provide the to_d method.
When you require the BigDecimal library in your application, this methodwill be available on Integer objects.
Add double dispatch to Integer
This class is the basis for the two concrete classes that hold whole numbers, Bignum and Fixnum.
Public Class Methods
Iterates the given block over all prime numbers.
See Prime
#each for more details.
# File lib/prime.rb, line 40 def Integer.each_prime(ubound, &block) # :yields: prime Prime.each(ubound, &block) end
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division for more details.
# File lib/prime.rb, line 21 def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end
Public Instance Methods
Returns a string containing the character represented by the
int
's value according to encoding
.
65.chr #=> "A" 230.chr #=> "\346" 255.chr(Encoding::UTF_8) #=> "\303\277"
static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%d out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_check_arity(argc, 0, 1); break; } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); }
Returns 1.
static VALUE integer_denominator(VALUE self) { return INT2FIX(1); }
Iterates the given block, passing decreasing values from int
down to and including limit
.
If no block is given, an Enumerator is returned instead.
5.downto(1) { |n| print n, ".. " } print " Liftoff!\n" #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
static VALUE int_downto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }
Returns true
if int
is an even number.
static VALUE int_even_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) { return Qtrue; } return Qfalse; }
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
2.gcd(2) #=> 2 3.gcd(-7) #=> 1 ((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); }
Returns an array; [int.gcd(int2), int.lcm(int2)].
2.gcdlcm(2) #=> [2, 2] 3.gcdlcm(-7) #=> [1, 21] ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); }
Since int
is already an Integer,
this always returns true
.
static VALUE int_int_p(VALUE num) { return Qtrue; }
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
2.lcm(2) #=> 2 3.lcm(-7) #=> 21 ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); }
Returns the Integer equal to int
+
1, same as #next.
1.next #=> 2 (-1).next #=> 0
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_plus(num, INT2FIX(1)); } return rb_funcall(num, '+', 1, INT2FIX(1)); }
Returns self.
static VALUE integer_numerator(VALUE self) { return self; }
Returns true
if int
is an odd number.
static VALUE int_odd_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) { return Qtrue; } return Qfalse; }
Returns the int
itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9.
For example, ?a.ord returns 97 both in 1.8 and 1.9.
static VALUE int_ord(VALUE num) { return num; }
Returns the Integer equal to int
-
1.
1.pred #=> 0 (-1).pred #=> -2
VALUE rb_int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_minus(num, INT2FIX(1)); } return rb_funcall(num, '-', 1, INT2FIX(1)); }
Returns true if self
is a prime number, false for a composite.
# File lib/prime.rb, line 33 def prime? Prime.prime?(self) end
Returns the factorization of self
.
See Prime#prime_division for more details.
# File lib/prime.rb, line 28 def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end
Returns the value as a rational. The optional argument eps is always ignored.
static VALUE integer_rationalize(int argc, VALUE *argv, VALUE self) { rb_scan_args(argc, argv, "01", NULL); return integer_to_r(self); }
Rounds int
to a given precision in decimal digits (default 0
digits).
Precision may be negative. Returns a floating point number when
ndigits
is positive, self
for zero, and round
down for negative.
1.round #=> 1 1.round(2) #=> 1.0 15.round(-1) #=> 20
static VALUE int_round(int argc, VALUE* argv, VALUE num) { VALUE n; int ndigits; if (argc == 0) return num; rb_scan_args(argc, argv, "1", &n); ndigits = NUM2INT(n); if (ndigits > 0) { return rb_Float(num); } if (ndigits == 0) { return num; } return int_round_0(num, ndigits); }
Returns the Integer equal to int
+
1, same as #next.
1.next #=> 2 (-1).next #=> 0
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } if (RB_TYPE_P(num, T_BIGNUM)) { return rb_big_plus(num, INT2FIX(1)); } return rb_funcall(num, '+', 1, INT2FIX(1)); }
Iterates the given block int
times, passing in values from
zero to int - 1
.
If no block is given, an Enumerator is returned instead.
5.times do |i| print i, " " end #=> 0 1 2 3 4
static VALUE int_dotimes(VALUE num) { RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i<end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = INT2FIX(0); for (;;) { if (!RTEST(rb_funcall(i, '<', 1, num))) break; rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } } return num; }
Casts an Integer as an OpenSSL::BN
See `man bn` for more info.
# File ext/openssl/lib/openssl/bn.rb, line 34 def to_bn OpenSSL::BN::new(self) end
Convert int
to a BigDecimal and
return it.
require 'bigdecimal' require 'bigdecimal/util' 42.to_d # => #<BigDecimal:1008ef070,'0.42E2',9(36)>
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 17 def to_d BigDecimal(self) end
Returns the value as a rational.
1.to_r #=> (1/1) (1<<64).to_r #=> (18446744073709551616/1)
static VALUE integer_to_r(VALUE self) { return rb_rational_new1(self); }
Iterates the given block, passing in integer values from int
up to and including limit
.
If no block is given, an Enumerator is returned instead.
For example:
5.upto(10) { |i| print i, " " } #=> 5 6 7 8 9 10
static VALUE int_upto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }