class Symbol
Add double dispatch to Integer
Integer is the basis for the two concrete classes that hold
whole numbers, Bignum and Fixnum.
Public Class Methods
Iterates the given block over all prime numbers.
See Prime#each for more details.
# File lib/prime.rb, line 40 def Integer.each_prime(ubound, &block) # :yields: prime Prime.each(ubound, &block) end
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division for more details.
# File lib/prime.rb, line 21 def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end
Public Instance Methods
As int is already an Integer, all these methods
simply return the receiver.
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns a string containing the character represented by the receiver's
value according to encoding.
65.chr #=> "A" 230.chr #=> "\346" 255.chr(Encoding::UTF_8) #=> "\303\277"
static VALUE
int_chr(int argc, VALUE *argv, VALUE num)
{
char c;
unsigned int i;
rb_encoding *enc;
if (rb_num_to_uint(num, &i) == 0) {
}
else if (FIXNUM_P(num)) {
rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
}
else {
rb_raise(rb_eRangeError, "bignum out of char range");
}
switch (argc) {
case 0:
if (0xff < i) {
enc = rb_default_internal_encoding();
if (!enc) {
rb_raise(rb_eRangeError, "%d out of char range", i);
}
goto decode;
}
c = (char)i;
if (i < 0x80) {
return rb_usascii_str_new(&c, 1);
}
else {
return rb_str_new(&c, 1);
}
case 1:
break;
default:
rb_check_arity(argc, 0, 1);
break;
}
enc = rb_to_encoding(argv[0]);
if (!enc) enc = rb_ascii8bit_encoding();
decode:
return rb_enc_uint_chr(i, enc);
}
Returns 1.
static VALUE
integer_denominator(VALUE self)
{
return INT2FIX(1);
}
Iterates block, passing decreasing values from int down to and including limit.
If no block is given, an enumerator is returned instead.
5.downto(1) { |n| print n, ".. " } print " Liftoff!\n"
produces:
5.. 4.. 3.. 2.. 1.. Liftoff!
static VALUE
int_downto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i=FIX2LONG(from); i >= end; i--) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '<', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '-', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}
Returns true if int is an even number.
static VALUE
int_even_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
As int is already an Integer, all these methods
simply return the receiver.
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
2.gcd(2) #=> 2 3.gcd(-7) #=> 1 ((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE
rb_gcd(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_gcd(self, other);
}
Returns an array; [int.gcd(int2), int.lcm(int2)].
2.gcdlcm(2) #=> [2, 2] 3.gcdlcm(-7) #=> [1, 21] ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
VALUE
rb_gcdlcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
}
Always returns true.
static VALUE
int_int_p(VALUE num)
{
return Qtrue;
}
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
2.lcm(2) #=> 2 3.lcm(-7) #=> 21 ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
VALUE
rb_lcm(VALUE self, VALUE other)
{
other = nurat_int_value(other);
return f_lcm(self, other);
}
Returns the Integer equal to int + 1.
1.next #=> 2 (-1).next #=> 0
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
Returns self.
static VALUE
integer_numerator(VALUE self)
{
return self;
}
Returns true if int is an odd number.
static VALUE
int_odd_p(VALUE num)
{
if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
return Qtrue;
}
return Qfalse;
}
Returns the int itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9. For example, ?a.ord returns 97 both in 1.8 and 1.9.
static VALUE
int_ord(VALUE num)
{
return num;
}
Returns the Integer equal to int - 1.
1.pred #=> 0 (-1).pred #=> -2
VALUE
rb_int_pred(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) - 1;
return LONG2NUM(i);
}
return rb_funcall(num, '-', 1, INT2FIX(1));
}
Returns true if self is a prime number, false for a composite.
# File lib/prime.rb, line 33 def prime? Prime.prime?(self) end
Returns the factorization of self.
See Prime#prime_division for more details.
# File lib/prime.rb, line 28 def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end
Returns the value as a rational. The optional argument eps is always ignored.
static VALUE
integer_rationalize(int argc, VALUE *argv, VALUE self)
{
rb_scan_args(argc, argv, "01", NULL);
return integer_to_r(self);
}
Rounds flt to a given precision in decimal digits (default 0
digits). Precision may be negative. Returns a floating point number when
ndigits is positive, self for zero, and round
down for negative.
1.round #=> 1 1.round(2) #=> 1.0 15.round(-1) #=> 20
static VALUE
int_round(int argc, VALUE* argv, VALUE num)
{
VALUE n;
int ndigits;
if (argc == 0) return num;
rb_scan_args(argc, argv, "1", &n);
ndigits = NUM2INT(n);
if (ndigits > 0) {
return rb_Float(num);
}
if (ndigits == 0) {
return num;
}
return int_round_0(num, ndigits);
}
Returns the Integer equal to int + 1.
1.next #=> 2 (-1).next #=> 0
VALUE
rb_int_succ(VALUE num)
{
if (FIXNUM_P(num)) {
long i = FIX2LONG(num) + 1;
return LONG2NUM(i);
}
return rb_funcall(num, '+', 1, INT2FIX(1));
}
Iterates block int times, passing in values from zero to int - 1.
If no block is given, an enumerator is returned instead.
5.times do |i| print i, " " end
produces:
0 1 2 3 4
static VALUE
int_dotimes(VALUE num)
{
RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
if (FIXNUM_P(num)) {
long i, end;
end = FIX2LONG(num);
for (i=0; i<end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = INT2FIX(0);
for (;;) {
if (!RTEST(rb_funcall(i, '<', 1, num))) break;
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
}
return num;
}
# File ext/openssl/lib/openssl/bn.rb, line 31 def to_bn OpenSSL::BN::new(self.to_s(16), 16) end
Convert int to a BigDecimal and
return it.
require 'bigdecimal' require 'bigdecimal/util' 42.to_d # => #<BigDecimal:1008ef070,'0.42E2',9(36)>
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 13 def to_d BigDecimal(self) end
As int is already an Integer, all these methods
simply return the receiver.
static VALUE
int_to_i(VALUE num)
{
return num;
}
As int is already an Integer, all these methods
simply return the receiver.
static VALUE
int_to_i(VALUE num)
{
return num;
}
Returns the value as a rational.
1.to_r #=> (1/1) (1<<64).to_r #=> (18446744073709551616/1)
static VALUE
integer_to_r(VALUE self)
{
return rb_rational_new1(self);
}
As int is already an Integer, all these methods
simply return the receiver.
static VALUE
int_to_i(VALUE num)
{
return num;
}
Iterates block, passing in integer values from int up to and including limit.
If no block is given, an enumerator is returned instead.
5.upto(10) { |i| print i, " " }
produces:
5 6 7 8 9 10
static VALUE
int_upto(VALUE from, VALUE to)
{
RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
if (FIXNUM_P(from) && FIXNUM_P(to)) {
long i, end;
end = FIX2LONG(to);
for (i = FIX2LONG(from); i <= end; i++) {
rb_yield(LONG2FIX(i));
}
}
else {
VALUE i = from, c;
while (!(c = rb_funcall(i, '>', 1, to))) {
rb_yield(i);
i = rb_funcall(i, '+', 1, INT2FIX(1));
}
if (NIL_P(c)) rb_cmperr(i, to);
}
return from;
}