class Symbol
Add double dispatch to Integer
Integer
is the basis for the two concrete classes that hold
whole numbers, Bignum
and Fixnum
.
Public Class Methods
Iterates the given block over all prime numbers.
See Prime
#each for more details.
# File lib/prime.rb, line 40 def Integer.each_prime(ubound, &block) # :yields: prime Prime.each(ubound, &block) end
Re-composes a prime factorization and returns the product.
See Prime#int_from_prime_division for more details.
# File lib/prime.rb, line 21 def Integer.from_prime_division(pd) Prime.int_from_prime_division(pd) end
Public Instance Methods
As int is already an Integer
, all these methods
simply return the receiver.
static VALUE int_to_i(VALUE num) { return num; }
Returns a string containing the character represented by the receiver's
value according to encoding
.
65.chr #=> "A" 230.chr #=> "\346" 255.chr(Encoding::UTF_8) #=> "\303\277"
static VALUE int_chr(int argc, VALUE *argv, VALUE num) { char c; unsigned int i; rb_encoding *enc; if (rb_num_to_uint(num, &i) == 0) { } else if (FIXNUM_P(num)) { rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num)); } else { rb_raise(rb_eRangeError, "bignum out of char range"); } switch (argc) { case 0: if (0xff < i) { enc = rb_default_internal_encoding(); if (!enc) { rb_raise(rb_eRangeError, "%d out of char range", i); } goto decode; } c = (char)i; if (i < 0x80) { return rb_usascii_str_new(&c, 1); } else { return rb_str_new(&c, 1); } case 1: break; default: rb_check_arity(argc, 0, 1); break; } enc = rb_to_encoding(argv[0]); if (!enc) enc = rb_ascii8bit_encoding(); decode: return rb_enc_uint_chr(i, enc); }
Returns 1.
static VALUE integer_denominator(VALUE self) { return INT2FIX(1); }
Iterates block, passing decreasing values from int down to and including limit.
If no block is given, an enumerator is returned instead.
5.downto(1) { |n| print n, ".. " } print " Liftoff!\n"
produces:
5.. 4.. 3.. 2.. 1.. Liftoff!
static VALUE int_downto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }
Returns true
if int is an even number.
static VALUE int_even_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) { return Qtrue; } return Qfalse; }
As int is already an Integer
, all these methods
simply return the receiver.
static VALUE int_to_i(VALUE num) { return num; }
Returns the greatest common divisor (always positive). 0.gcd(x) and x.gcd(0) return abs(x).
2.gcd(2) #=> 2 3.gcd(-7) #=> 1 ((1<<31)-1).gcd((1<<61)-1) #=> 1
VALUE rb_gcd(VALUE self, VALUE other) { other = nurat_int_value(other); return f_gcd(self, other); }
Returns an array; [int.gcd(int2), int.lcm(int2)].
2.gcdlcm(2) #=> [2, 2] 3.gcdlcm(-7) #=> [1, 21] ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
VALUE rb_gcdlcm(VALUE self, VALUE other) { other = nurat_int_value(other); return rb_assoc_new(f_gcd(self, other), f_lcm(self, other)); }
Always returns true
.
static VALUE int_int_p(VALUE num) { return Qtrue; }
Returns the least common multiple (always positive). 0.lcm(x) and x.lcm(0) return zero.
2.lcm(2) #=> 2 3.lcm(-7) #=> 21 ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
VALUE rb_lcm(VALUE self, VALUE other) { other = nurat_int_value(other); return f_lcm(self, other); }
Returns the Integer
equal to int + 1.
1.next #=> 2 (-1).next #=> 0
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } return rb_funcall(num, '+', 1, INT2FIX(1)); }
Returns self.
static VALUE integer_numerator(VALUE self) { return self; }
Returns true
if int is an odd number.
static VALUE int_odd_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) { return Qtrue; } return Qfalse; }
Returns the int itself.
?a.ord #=> 97
This method is intended for compatibility to character constant in Ruby 1.9. For example, ?a.ord returns 97 both in 1.8 and 1.9.
static VALUE int_ord(VALUE num) { return num; }
Returns the Integer
equal to int - 1.
1.pred #=> 0 (-1).pred #=> -2
VALUE rb_int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } return rb_funcall(num, '-', 1, INT2FIX(1)); }
Returns true if self
is a prime number, false for a composite.
# File lib/prime.rb, line 33 def prime? Prime.prime?(self) end
Returns the factorization of self
.
See Prime#prime_division for more details.
# File lib/prime.rb, line 28 def prime_division(generator = Prime::Generator23.new) Prime.prime_division(self, generator) end
Returns the value as a rational. The optional argument eps is always ignored.
static VALUE integer_rationalize(int argc, VALUE *argv, VALUE self) { rb_scan_args(argc, argv, "01", NULL); return integer_to_r(self); }
Rounds flt to a given precision in decimal digits (default 0
digits). Precision may be negative. Returns a floating point number when
ndigits
is positive, self
for zero, and round
down for negative.
1.round #=> 1 1.round(2) #=> 1.0 15.round(-1) #=> 20
static VALUE int_round(int argc, VALUE* argv, VALUE num) { VALUE n; int ndigits; if (argc == 0) return num; rb_scan_args(argc, argv, "1", &n); ndigits = NUM2INT(n); if (ndigits > 0) { return rb_Float(num); } if (ndigits == 0) { return num; } return int_round_0(num, ndigits); }
Returns the Integer
equal to int + 1.
1.next #=> 2 (-1).next #=> 0
VALUE rb_int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } return rb_funcall(num, '+', 1, INT2FIX(1)); }
Iterates block int times, passing in values from zero to int - 1.
If no block is given, an enumerator is returned instead.
5.times do |i| print i, " " end
produces:
0 1 2 3 4
static VALUE int_dotimes(VALUE num) { RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size); if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i<end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = INT2FIX(0); for (;;) { if (!RTEST(rb_funcall(i, '<', 1, num))) break; rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } } return num; }
# File ext/openssl/lib/openssl/bn.rb, line 31 def to_bn OpenSSL::BN::new(self.to_s(16), 16) end
Convert int
to a BigDecimal and
return it.
require 'bigdecimal' require 'bigdecimal/util' 42.to_d # => #<BigDecimal:1008ef070,'0.42E2',9(36)>
# File ext/bigdecimal/lib/bigdecimal/util.rb, line 13 def to_d BigDecimal(self) end
As int is already an Integer
, all these methods
simply return the receiver.
static VALUE int_to_i(VALUE num) { return num; }
As int is already an Integer
, all these methods
simply return the receiver.
static VALUE int_to_i(VALUE num) { return num; }
Returns the value as a rational.
1.to_r #=> (1/1) (1<<64).to_r #=> (18446744073709551616/1)
static VALUE integer_to_r(VALUE self) { return rb_rational_new1(self); }
As int is already an Integer
, all these methods
simply return the receiver.
static VALUE int_to_i(VALUE num) { return num; }
Iterates block, passing in integer values from int up to and including limit.
If no block is given, an enumerator is returned instead.
5.upto(10) { |i| print i, " " }
produces:
5 6 7 8 9 10
static VALUE int_upto(VALUE from, VALUE to) { RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; }