Ruby 3.5.0dev (2025-01-10 revision 5fab31b15e32622c4b71d1d347a41937e9f9c212)
tgamma.c
1/* tgamma.c - public domain implementation of function tgamma(3m)
2
3reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
4 (New Algorithm handbook in C language) (Gijyutsu hyouron
5 sha, Tokyo, 1991) [in Japanese]
6 http://oku.edu.mie-u.ac.jp/~okumura/algo/
7*/
8
9/***********************************************************
10 gamma.c -- Gamma function
11***********************************************************/
12#include "ruby/internal/config.h"
13#include "ruby/missing.h"
14#include <math.h>
15#include <errno.h>
16
17#ifndef HAVE_LGAMMA_R
18
19#include <errno.h>
20#define PI 3.14159265358979324 /* $\pi$ */
21#define LOG_2PI 1.83787706640934548 /* $\log 2\pi$ */
22#define N 8
23
24#define B0 1 /* Bernoulli numbers */
25#define B1 (-1.0 / 2.0)
26#define B2 ( 1.0 / 6.0)
27#define B4 (-1.0 / 30.0)
28#define B6 ( 1.0 / 42.0)
29#define B8 (-1.0 / 30.0)
30#define B10 ( 5.0 / 66.0)
31#define B12 (-691.0 / 2730.0)
32#define B14 ( 7.0 / 6.0)
33#define B16 (-3617.0 / 510.0)
34
35static double
36loggamma(double x) /* the natural logarithm of the Gamma function. */
37{
38 double v, w;
39
40 v = 1;
41 while (x < N) { v *= x; x++; }
42 w = 1 / (x * x);
43 return ((((((((B16 / (16 * 15)) * w + (B14 / (14 * 13))) * w
44 + (B12 / (12 * 11))) * w + (B10 / (10 * 9))) * w
45 + (B8 / ( 8 * 7))) * w + (B6 / ( 6 * 5))) * w
46 + (B4 / ( 4 * 3))) * w + (B2 / ( 2 * 1))) / x
47 + 0.5 * LOG_2PI - log(v) - x + (x - 0.5) * log(x);
48}
49#endif
50
51double tgamma(double x) /* Gamma function */
52{
53 int sign;
54 if (x == 0.0) { /* Pole Error */
55 errno = ERANGE;
56 return 1/x < 0 ? -HUGE_VAL : HUGE_VAL;
57 }
58 if (isinf(x)) {
59 if (x < 0) goto domain_error;
60 return x;
61 }
62 if (x < 0) {
63 static double zero = 0.0;
64 double i, f;
65 f = modf(-x, &i);
66 if (f == 0.0) { /* Domain Error */
67 domain_error:
68 errno = EDOM;
69 return zero/zero;
70 }
71#ifndef HAVE_LGAMMA_R
72 sign = (fmod(i, 2.0) != 0.0) ? 1 : -1;
73 return sign * PI / (sin(PI * f) * exp(loggamma(1 - x)));
74#endif
75 }
76#ifndef HAVE_LGAMMA_R
77 return exp(loggamma(x));
78#else
79 x = lgamma_r(x, &sign);
80 return sign * exp(x);
81#endif
82}
#define errno
Ractor-aware version of errno.
Definition ruby.h:388